intel_pm.c 136 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #define FORCEWAKE_ACK_TIMEOUT_MS 2
  33. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  34. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  35. * during in-memory transfers and, therefore, reduce the power packet.
  36. *
  37. * The benefits of FBC are mostly visible with solid backgrounds and
  38. * variation-less patterns.
  39. *
  40. * FBC-related functionality can be enabled by the means of the
  41. * i915.i915_enable_fbc parameter
  42. */
  43. static bool intel_crtc_active(struct drm_crtc *crtc)
  44. {
  45. /* Be paranoid as we can arrive here with only partial
  46. * state retrieved from the hardware during setup.
  47. */
  48. return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
  49. }
  50. static void i8xx_disable_fbc(struct drm_device *dev)
  51. {
  52. struct drm_i915_private *dev_priv = dev->dev_private;
  53. u32 fbc_ctl;
  54. /* Disable compression */
  55. fbc_ctl = I915_READ(FBC_CONTROL);
  56. if ((fbc_ctl & FBC_CTL_EN) == 0)
  57. return;
  58. fbc_ctl &= ~FBC_CTL_EN;
  59. I915_WRITE(FBC_CONTROL, fbc_ctl);
  60. /* Wait for compressing bit to clear */
  61. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  62. DRM_DEBUG_KMS("FBC idle timed out\n");
  63. return;
  64. }
  65. DRM_DEBUG_KMS("disabled FBC\n");
  66. }
  67. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  68. {
  69. struct drm_device *dev = crtc->dev;
  70. struct drm_i915_private *dev_priv = dev->dev_private;
  71. struct drm_framebuffer *fb = crtc->fb;
  72. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  73. struct drm_i915_gem_object *obj = intel_fb->obj;
  74. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  75. int cfb_pitch;
  76. int plane, i;
  77. u32 fbc_ctl, fbc_ctl2;
  78. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  79. if (fb->pitches[0] < cfb_pitch)
  80. cfb_pitch = fb->pitches[0];
  81. /* FBC_CTL wants 64B units */
  82. cfb_pitch = (cfb_pitch / 64) - 1;
  83. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  84. /* Clear old tags */
  85. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  86. I915_WRITE(FBC_TAG + (i * 4), 0);
  87. /* Set it up... */
  88. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  89. fbc_ctl2 |= plane;
  90. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  91. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  92. /* enable it... */
  93. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  94. if (IS_I945GM(dev))
  95. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  96. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  97. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  98. fbc_ctl |= obj->fence_reg;
  99. I915_WRITE(FBC_CONTROL, fbc_ctl);
  100. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
  101. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  102. }
  103. static bool i8xx_fbc_enabled(struct drm_device *dev)
  104. {
  105. struct drm_i915_private *dev_priv = dev->dev_private;
  106. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  107. }
  108. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  109. {
  110. struct drm_device *dev = crtc->dev;
  111. struct drm_i915_private *dev_priv = dev->dev_private;
  112. struct drm_framebuffer *fb = crtc->fb;
  113. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  114. struct drm_i915_gem_object *obj = intel_fb->obj;
  115. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  116. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  117. unsigned long stall_watermark = 200;
  118. u32 dpfc_ctl;
  119. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  120. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  121. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  122. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  123. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  124. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  125. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  126. /* enable it... */
  127. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  128. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  129. }
  130. static void g4x_disable_fbc(struct drm_device *dev)
  131. {
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. u32 dpfc_ctl;
  134. /* Disable compression */
  135. dpfc_ctl = I915_READ(DPFC_CONTROL);
  136. if (dpfc_ctl & DPFC_CTL_EN) {
  137. dpfc_ctl &= ~DPFC_CTL_EN;
  138. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  139. DRM_DEBUG_KMS("disabled FBC\n");
  140. }
  141. }
  142. static bool g4x_fbc_enabled(struct drm_device *dev)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  146. }
  147. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  148. {
  149. struct drm_i915_private *dev_priv = dev->dev_private;
  150. u32 blt_ecoskpd;
  151. /* Make sure blitter notifies FBC of writes */
  152. gen6_gt_force_wake_get(dev_priv);
  153. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  154. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  155. GEN6_BLITTER_LOCK_SHIFT;
  156. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  157. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  158. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  159. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  160. GEN6_BLITTER_LOCK_SHIFT);
  161. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  162. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  163. gen6_gt_force_wake_put(dev_priv);
  164. }
  165. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  166. {
  167. struct drm_device *dev = crtc->dev;
  168. struct drm_i915_private *dev_priv = dev->dev_private;
  169. struct drm_framebuffer *fb = crtc->fb;
  170. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  171. struct drm_i915_gem_object *obj = intel_fb->obj;
  172. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  173. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  174. unsigned long stall_watermark = 200;
  175. u32 dpfc_ctl;
  176. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  177. dpfc_ctl &= DPFC_RESERVED;
  178. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  179. /* Set persistent mode for front-buffer rendering, ala X. */
  180. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  181. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  182. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  183. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  184. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  185. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  186. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  187. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  188. /* enable it... */
  189. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  190. if (IS_GEN6(dev)) {
  191. I915_WRITE(SNB_DPFC_CTL_SA,
  192. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  193. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  194. sandybridge_blit_fbc_update(dev);
  195. }
  196. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  197. }
  198. static void ironlake_disable_fbc(struct drm_device *dev)
  199. {
  200. struct drm_i915_private *dev_priv = dev->dev_private;
  201. u32 dpfc_ctl;
  202. /* Disable compression */
  203. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  204. if (dpfc_ctl & DPFC_CTL_EN) {
  205. dpfc_ctl &= ~DPFC_CTL_EN;
  206. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  207. DRM_DEBUG_KMS("disabled FBC\n");
  208. }
  209. }
  210. static bool ironlake_fbc_enabled(struct drm_device *dev)
  211. {
  212. struct drm_i915_private *dev_priv = dev->dev_private;
  213. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  214. }
  215. bool intel_fbc_enabled(struct drm_device *dev)
  216. {
  217. struct drm_i915_private *dev_priv = dev->dev_private;
  218. if (!dev_priv->display.fbc_enabled)
  219. return false;
  220. return dev_priv->display.fbc_enabled(dev);
  221. }
  222. static void intel_fbc_work_fn(struct work_struct *__work)
  223. {
  224. struct intel_fbc_work *work =
  225. container_of(to_delayed_work(__work),
  226. struct intel_fbc_work, work);
  227. struct drm_device *dev = work->crtc->dev;
  228. struct drm_i915_private *dev_priv = dev->dev_private;
  229. mutex_lock(&dev->struct_mutex);
  230. if (work == dev_priv->fbc_work) {
  231. /* Double check that we haven't switched fb without cancelling
  232. * the prior work.
  233. */
  234. if (work->crtc->fb == work->fb) {
  235. dev_priv->display.enable_fbc(work->crtc,
  236. work->interval);
  237. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  238. dev_priv->cfb_fb = work->crtc->fb->base.id;
  239. dev_priv->cfb_y = work->crtc->y;
  240. }
  241. dev_priv->fbc_work = NULL;
  242. }
  243. mutex_unlock(&dev->struct_mutex);
  244. kfree(work);
  245. }
  246. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  247. {
  248. if (dev_priv->fbc_work == NULL)
  249. return;
  250. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  251. /* Synchronisation is provided by struct_mutex and checking of
  252. * dev_priv->fbc_work, so we can perform the cancellation
  253. * entirely asynchronously.
  254. */
  255. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  256. /* tasklet was killed before being run, clean up */
  257. kfree(dev_priv->fbc_work);
  258. /* Mark the work as no longer wanted so that if it does
  259. * wake-up (because the work was already running and waiting
  260. * for our mutex), it will discover that is no longer
  261. * necessary to run.
  262. */
  263. dev_priv->fbc_work = NULL;
  264. }
  265. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  266. {
  267. struct intel_fbc_work *work;
  268. struct drm_device *dev = crtc->dev;
  269. struct drm_i915_private *dev_priv = dev->dev_private;
  270. if (!dev_priv->display.enable_fbc)
  271. return;
  272. intel_cancel_fbc_work(dev_priv);
  273. work = kzalloc(sizeof *work, GFP_KERNEL);
  274. if (work == NULL) {
  275. dev_priv->display.enable_fbc(crtc, interval);
  276. return;
  277. }
  278. work->crtc = crtc;
  279. work->fb = crtc->fb;
  280. work->interval = interval;
  281. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  282. dev_priv->fbc_work = work;
  283. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  284. /* Delay the actual enabling to let pageflipping cease and the
  285. * display to settle before starting the compression. Note that
  286. * this delay also serves a second purpose: it allows for a
  287. * vblank to pass after disabling the FBC before we attempt
  288. * to modify the control registers.
  289. *
  290. * A more complicated solution would involve tracking vblanks
  291. * following the termination of the page-flipping sequence
  292. * and indeed performing the enable as a co-routine and not
  293. * waiting synchronously upon the vblank.
  294. */
  295. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  296. }
  297. void intel_disable_fbc(struct drm_device *dev)
  298. {
  299. struct drm_i915_private *dev_priv = dev->dev_private;
  300. intel_cancel_fbc_work(dev_priv);
  301. if (!dev_priv->display.disable_fbc)
  302. return;
  303. dev_priv->display.disable_fbc(dev);
  304. dev_priv->cfb_plane = -1;
  305. }
  306. /**
  307. * intel_update_fbc - enable/disable FBC as needed
  308. * @dev: the drm_device
  309. *
  310. * Set up the framebuffer compression hardware at mode set time. We
  311. * enable it if possible:
  312. * - plane A only (on pre-965)
  313. * - no pixel mulitply/line duplication
  314. * - no alpha buffer discard
  315. * - no dual wide
  316. * - framebuffer <= 2048 in width, 1536 in height
  317. *
  318. * We can't assume that any compression will take place (worst case),
  319. * so the compressed buffer has to be the same size as the uncompressed
  320. * one. It also must reside (along with the line length buffer) in
  321. * stolen memory.
  322. *
  323. * We need to enable/disable FBC on a global basis.
  324. */
  325. void intel_update_fbc(struct drm_device *dev)
  326. {
  327. struct drm_i915_private *dev_priv = dev->dev_private;
  328. struct drm_crtc *crtc = NULL, *tmp_crtc;
  329. struct intel_crtc *intel_crtc;
  330. struct drm_framebuffer *fb;
  331. struct intel_framebuffer *intel_fb;
  332. struct drm_i915_gem_object *obj;
  333. int enable_fbc;
  334. if (!i915_powersave)
  335. return;
  336. if (!I915_HAS_FBC(dev))
  337. return;
  338. /*
  339. * If FBC is already on, we just have to verify that we can
  340. * keep it that way...
  341. * Need to disable if:
  342. * - more than one pipe is active
  343. * - changing FBC params (stride, fence, mode)
  344. * - new fb is too large to fit in compressed buffer
  345. * - going to an unsupported config (interlace, pixel multiply, etc.)
  346. */
  347. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  348. if (intel_crtc_active(tmp_crtc) &&
  349. !to_intel_crtc(tmp_crtc)->primary_disabled) {
  350. if (crtc) {
  351. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  352. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  353. goto out_disable;
  354. }
  355. crtc = tmp_crtc;
  356. }
  357. }
  358. if (!crtc || crtc->fb == NULL) {
  359. DRM_DEBUG_KMS("no output, disabling\n");
  360. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  361. goto out_disable;
  362. }
  363. intel_crtc = to_intel_crtc(crtc);
  364. fb = crtc->fb;
  365. intel_fb = to_intel_framebuffer(fb);
  366. obj = intel_fb->obj;
  367. enable_fbc = i915_enable_fbc;
  368. if (enable_fbc < 0) {
  369. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  370. enable_fbc = 1;
  371. if (INTEL_INFO(dev)->gen <= 6)
  372. enable_fbc = 0;
  373. }
  374. if (!enable_fbc) {
  375. DRM_DEBUG_KMS("fbc disabled per module param\n");
  376. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  377. goto out_disable;
  378. }
  379. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  380. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  381. DRM_DEBUG_KMS("mode incompatible with compression, "
  382. "disabling\n");
  383. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  384. goto out_disable;
  385. }
  386. if ((crtc->mode.hdisplay > 2048) ||
  387. (crtc->mode.vdisplay > 1536)) {
  388. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  389. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  390. goto out_disable;
  391. }
  392. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  393. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  394. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  395. goto out_disable;
  396. }
  397. /* The use of a CPU fence is mandatory in order to detect writes
  398. * by the CPU to the scanout and trigger updates to the FBC.
  399. */
  400. if (obj->tiling_mode != I915_TILING_X ||
  401. obj->fence_reg == I915_FENCE_REG_NONE) {
  402. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  403. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  404. goto out_disable;
  405. }
  406. /* If the kernel debugger is active, always disable compression */
  407. if (in_dbg_master())
  408. goto out_disable;
  409. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  410. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  411. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  412. goto out_disable;
  413. }
  414. /* If the scanout has not changed, don't modify the FBC settings.
  415. * Note that we make the fundamental assumption that the fb->obj
  416. * cannot be unpinned (and have its GTT offset and fence revoked)
  417. * without first being decoupled from the scanout and FBC disabled.
  418. */
  419. if (dev_priv->cfb_plane == intel_crtc->plane &&
  420. dev_priv->cfb_fb == fb->base.id &&
  421. dev_priv->cfb_y == crtc->y)
  422. return;
  423. if (intel_fbc_enabled(dev)) {
  424. /* We update FBC along two paths, after changing fb/crtc
  425. * configuration (modeswitching) and after page-flipping
  426. * finishes. For the latter, we know that not only did
  427. * we disable the FBC at the start of the page-flip
  428. * sequence, but also more than one vblank has passed.
  429. *
  430. * For the former case of modeswitching, it is possible
  431. * to switch between two FBC valid configurations
  432. * instantaneously so we do need to disable the FBC
  433. * before we can modify its control registers. We also
  434. * have to wait for the next vblank for that to take
  435. * effect. However, since we delay enabling FBC we can
  436. * assume that a vblank has passed since disabling and
  437. * that we can safely alter the registers in the deferred
  438. * callback.
  439. *
  440. * In the scenario that we go from a valid to invalid
  441. * and then back to valid FBC configuration we have
  442. * no strict enforcement that a vblank occurred since
  443. * disabling the FBC. However, along all current pipe
  444. * disabling paths we do need to wait for a vblank at
  445. * some point. And we wait before enabling FBC anyway.
  446. */
  447. DRM_DEBUG_KMS("disabling active FBC for update\n");
  448. intel_disable_fbc(dev);
  449. }
  450. intel_enable_fbc(crtc, 500);
  451. return;
  452. out_disable:
  453. /* Multiple disables should be harmless */
  454. if (intel_fbc_enabled(dev)) {
  455. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  456. intel_disable_fbc(dev);
  457. }
  458. i915_gem_stolen_cleanup_compression(dev);
  459. }
  460. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  461. {
  462. drm_i915_private_t *dev_priv = dev->dev_private;
  463. u32 tmp;
  464. tmp = I915_READ(CLKCFG);
  465. switch (tmp & CLKCFG_FSB_MASK) {
  466. case CLKCFG_FSB_533:
  467. dev_priv->fsb_freq = 533; /* 133*4 */
  468. break;
  469. case CLKCFG_FSB_800:
  470. dev_priv->fsb_freq = 800; /* 200*4 */
  471. break;
  472. case CLKCFG_FSB_667:
  473. dev_priv->fsb_freq = 667; /* 167*4 */
  474. break;
  475. case CLKCFG_FSB_400:
  476. dev_priv->fsb_freq = 400; /* 100*4 */
  477. break;
  478. }
  479. switch (tmp & CLKCFG_MEM_MASK) {
  480. case CLKCFG_MEM_533:
  481. dev_priv->mem_freq = 533;
  482. break;
  483. case CLKCFG_MEM_667:
  484. dev_priv->mem_freq = 667;
  485. break;
  486. case CLKCFG_MEM_800:
  487. dev_priv->mem_freq = 800;
  488. break;
  489. }
  490. /* detect pineview DDR3 setting */
  491. tmp = I915_READ(CSHRDDR3CTL);
  492. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  493. }
  494. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  495. {
  496. drm_i915_private_t *dev_priv = dev->dev_private;
  497. u16 ddrpll, csipll;
  498. ddrpll = I915_READ16(DDRMPLL1);
  499. csipll = I915_READ16(CSIPLL0);
  500. switch (ddrpll & 0xff) {
  501. case 0xc:
  502. dev_priv->mem_freq = 800;
  503. break;
  504. case 0x10:
  505. dev_priv->mem_freq = 1066;
  506. break;
  507. case 0x14:
  508. dev_priv->mem_freq = 1333;
  509. break;
  510. case 0x18:
  511. dev_priv->mem_freq = 1600;
  512. break;
  513. default:
  514. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  515. ddrpll & 0xff);
  516. dev_priv->mem_freq = 0;
  517. break;
  518. }
  519. dev_priv->ips.r_t = dev_priv->mem_freq;
  520. switch (csipll & 0x3ff) {
  521. case 0x00c:
  522. dev_priv->fsb_freq = 3200;
  523. break;
  524. case 0x00e:
  525. dev_priv->fsb_freq = 3733;
  526. break;
  527. case 0x010:
  528. dev_priv->fsb_freq = 4266;
  529. break;
  530. case 0x012:
  531. dev_priv->fsb_freq = 4800;
  532. break;
  533. case 0x014:
  534. dev_priv->fsb_freq = 5333;
  535. break;
  536. case 0x016:
  537. dev_priv->fsb_freq = 5866;
  538. break;
  539. case 0x018:
  540. dev_priv->fsb_freq = 6400;
  541. break;
  542. default:
  543. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  544. csipll & 0x3ff);
  545. dev_priv->fsb_freq = 0;
  546. break;
  547. }
  548. if (dev_priv->fsb_freq == 3200) {
  549. dev_priv->ips.c_m = 0;
  550. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  551. dev_priv->ips.c_m = 1;
  552. } else {
  553. dev_priv->ips.c_m = 2;
  554. }
  555. }
  556. static const struct cxsr_latency cxsr_latency_table[] = {
  557. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  558. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  559. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  560. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  561. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  562. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  563. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  564. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  565. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  566. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  567. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  568. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  569. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  570. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  571. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  572. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  573. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  574. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  575. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  576. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  577. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  578. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  579. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  580. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  581. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  582. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  583. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  584. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  585. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  586. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  587. };
  588. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  589. int is_ddr3,
  590. int fsb,
  591. int mem)
  592. {
  593. const struct cxsr_latency *latency;
  594. int i;
  595. if (fsb == 0 || mem == 0)
  596. return NULL;
  597. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  598. latency = &cxsr_latency_table[i];
  599. if (is_desktop == latency->is_desktop &&
  600. is_ddr3 == latency->is_ddr3 &&
  601. fsb == latency->fsb_freq && mem == latency->mem_freq)
  602. return latency;
  603. }
  604. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  605. return NULL;
  606. }
  607. static void pineview_disable_cxsr(struct drm_device *dev)
  608. {
  609. struct drm_i915_private *dev_priv = dev->dev_private;
  610. /* deactivate cxsr */
  611. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  612. }
  613. /*
  614. * Latency for FIFO fetches is dependent on several factors:
  615. * - memory configuration (speed, channels)
  616. * - chipset
  617. * - current MCH state
  618. * It can be fairly high in some situations, so here we assume a fairly
  619. * pessimal value. It's a tradeoff between extra memory fetches (if we
  620. * set this value too high, the FIFO will fetch frequently to stay full)
  621. * and power consumption (set it too low to save power and we might see
  622. * FIFO underruns and display "flicker").
  623. *
  624. * A value of 5us seems to be a good balance; safe for very low end
  625. * platforms but not overly aggressive on lower latency configs.
  626. */
  627. static const int latency_ns = 5000;
  628. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  629. {
  630. struct drm_i915_private *dev_priv = dev->dev_private;
  631. uint32_t dsparb = I915_READ(DSPARB);
  632. int size;
  633. size = dsparb & 0x7f;
  634. if (plane)
  635. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  636. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  637. plane ? "B" : "A", size);
  638. return size;
  639. }
  640. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  641. {
  642. struct drm_i915_private *dev_priv = dev->dev_private;
  643. uint32_t dsparb = I915_READ(DSPARB);
  644. int size;
  645. size = dsparb & 0x1ff;
  646. if (plane)
  647. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  648. size >>= 1; /* Convert to cachelines */
  649. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  650. plane ? "B" : "A", size);
  651. return size;
  652. }
  653. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  654. {
  655. struct drm_i915_private *dev_priv = dev->dev_private;
  656. uint32_t dsparb = I915_READ(DSPARB);
  657. int size;
  658. size = dsparb & 0x7f;
  659. size >>= 2; /* Convert to cachelines */
  660. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  661. plane ? "B" : "A",
  662. size);
  663. return size;
  664. }
  665. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  666. {
  667. struct drm_i915_private *dev_priv = dev->dev_private;
  668. uint32_t dsparb = I915_READ(DSPARB);
  669. int size;
  670. size = dsparb & 0x7f;
  671. size >>= 1; /* Convert to cachelines */
  672. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  673. plane ? "B" : "A", size);
  674. return size;
  675. }
  676. /* Pineview has different values for various configs */
  677. static const struct intel_watermark_params pineview_display_wm = {
  678. PINEVIEW_DISPLAY_FIFO,
  679. PINEVIEW_MAX_WM,
  680. PINEVIEW_DFT_WM,
  681. PINEVIEW_GUARD_WM,
  682. PINEVIEW_FIFO_LINE_SIZE
  683. };
  684. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  685. PINEVIEW_DISPLAY_FIFO,
  686. PINEVIEW_MAX_WM,
  687. PINEVIEW_DFT_HPLLOFF_WM,
  688. PINEVIEW_GUARD_WM,
  689. PINEVIEW_FIFO_LINE_SIZE
  690. };
  691. static const struct intel_watermark_params pineview_cursor_wm = {
  692. PINEVIEW_CURSOR_FIFO,
  693. PINEVIEW_CURSOR_MAX_WM,
  694. PINEVIEW_CURSOR_DFT_WM,
  695. PINEVIEW_CURSOR_GUARD_WM,
  696. PINEVIEW_FIFO_LINE_SIZE,
  697. };
  698. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  699. PINEVIEW_CURSOR_FIFO,
  700. PINEVIEW_CURSOR_MAX_WM,
  701. PINEVIEW_CURSOR_DFT_WM,
  702. PINEVIEW_CURSOR_GUARD_WM,
  703. PINEVIEW_FIFO_LINE_SIZE
  704. };
  705. static const struct intel_watermark_params g4x_wm_info = {
  706. G4X_FIFO_SIZE,
  707. G4X_MAX_WM,
  708. G4X_MAX_WM,
  709. 2,
  710. G4X_FIFO_LINE_SIZE,
  711. };
  712. static const struct intel_watermark_params g4x_cursor_wm_info = {
  713. I965_CURSOR_FIFO,
  714. I965_CURSOR_MAX_WM,
  715. I965_CURSOR_DFT_WM,
  716. 2,
  717. G4X_FIFO_LINE_SIZE,
  718. };
  719. static const struct intel_watermark_params valleyview_wm_info = {
  720. VALLEYVIEW_FIFO_SIZE,
  721. VALLEYVIEW_MAX_WM,
  722. VALLEYVIEW_MAX_WM,
  723. 2,
  724. G4X_FIFO_LINE_SIZE,
  725. };
  726. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  727. I965_CURSOR_FIFO,
  728. VALLEYVIEW_CURSOR_MAX_WM,
  729. I965_CURSOR_DFT_WM,
  730. 2,
  731. G4X_FIFO_LINE_SIZE,
  732. };
  733. static const struct intel_watermark_params i965_cursor_wm_info = {
  734. I965_CURSOR_FIFO,
  735. I965_CURSOR_MAX_WM,
  736. I965_CURSOR_DFT_WM,
  737. 2,
  738. I915_FIFO_LINE_SIZE,
  739. };
  740. static const struct intel_watermark_params i945_wm_info = {
  741. I945_FIFO_SIZE,
  742. I915_MAX_WM,
  743. 1,
  744. 2,
  745. I915_FIFO_LINE_SIZE
  746. };
  747. static const struct intel_watermark_params i915_wm_info = {
  748. I915_FIFO_SIZE,
  749. I915_MAX_WM,
  750. 1,
  751. 2,
  752. I915_FIFO_LINE_SIZE
  753. };
  754. static const struct intel_watermark_params i855_wm_info = {
  755. I855GM_FIFO_SIZE,
  756. I915_MAX_WM,
  757. 1,
  758. 2,
  759. I830_FIFO_LINE_SIZE
  760. };
  761. static const struct intel_watermark_params i830_wm_info = {
  762. I830_FIFO_SIZE,
  763. I915_MAX_WM,
  764. 1,
  765. 2,
  766. I830_FIFO_LINE_SIZE
  767. };
  768. static const struct intel_watermark_params ironlake_display_wm_info = {
  769. ILK_DISPLAY_FIFO,
  770. ILK_DISPLAY_MAXWM,
  771. ILK_DISPLAY_DFTWM,
  772. 2,
  773. ILK_FIFO_LINE_SIZE
  774. };
  775. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  776. ILK_CURSOR_FIFO,
  777. ILK_CURSOR_MAXWM,
  778. ILK_CURSOR_DFTWM,
  779. 2,
  780. ILK_FIFO_LINE_SIZE
  781. };
  782. static const struct intel_watermark_params ironlake_display_srwm_info = {
  783. ILK_DISPLAY_SR_FIFO,
  784. ILK_DISPLAY_MAX_SRWM,
  785. ILK_DISPLAY_DFT_SRWM,
  786. 2,
  787. ILK_FIFO_LINE_SIZE
  788. };
  789. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  790. ILK_CURSOR_SR_FIFO,
  791. ILK_CURSOR_MAX_SRWM,
  792. ILK_CURSOR_DFT_SRWM,
  793. 2,
  794. ILK_FIFO_LINE_SIZE
  795. };
  796. static const struct intel_watermark_params sandybridge_display_wm_info = {
  797. SNB_DISPLAY_FIFO,
  798. SNB_DISPLAY_MAXWM,
  799. SNB_DISPLAY_DFTWM,
  800. 2,
  801. SNB_FIFO_LINE_SIZE
  802. };
  803. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  804. SNB_CURSOR_FIFO,
  805. SNB_CURSOR_MAXWM,
  806. SNB_CURSOR_DFTWM,
  807. 2,
  808. SNB_FIFO_LINE_SIZE
  809. };
  810. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  811. SNB_DISPLAY_SR_FIFO,
  812. SNB_DISPLAY_MAX_SRWM,
  813. SNB_DISPLAY_DFT_SRWM,
  814. 2,
  815. SNB_FIFO_LINE_SIZE
  816. };
  817. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  818. SNB_CURSOR_SR_FIFO,
  819. SNB_CURSOR_MAX_SRWM,
  820. SNB_CURSOR_DFT_SRWM,
  821. 2,
  822. SNB_FIFO_LINE_SIZE
  823. };
  824. /**
  825. * intel_calculate_wm - calculate watermark level
  826. * @clock_in_khz: pixel clock
  827. * @wm: chip FIFO params
  828. * @pixel_size: display pixel size
  829. * @latency_ns: memory latency for the platform
  830. *
  831. * Calculate the watermark level (the level at which the display plane will
  832. * start fetching from memory again). Each chip has a different display
  833. * FIFO size and allocation, so the caller needs to figure that out and pass
  834. * in the correct intel_watermark_params structure.
  835. *
  836. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  837. * on the pixel size. When it reaches the watermark level, it'll start
  838. * fetching FIFO line sized based chunks from memory until the FIFO fills
  839. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  840. * will occur, and a display engine hang could result.
  841. */
  842. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  843. const struct intel_watermark_params *wm,
  844. int fifo_size,
  845. int pixel_size,
  846. unsigned long latency_ns)
  847. {
  848. long entries_required, wm_size;
  849. /*
  850. * Note: we need to make sure we don't overflow for various clock &
  851. * latency values.
  852. * clocks go from a few thousand to several hundred thousand.
  853. * latency is usually a few thousand
  854. */
  855. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  856. 1000;
  857. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  858. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  859. wm_size = fifo_size - (entries_required + wm->guard_size);
  860. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  861. /* Don't promote wm_size to unsigned... */
  862. if (wm_size > (long)wm->max_wm)
  863. wm_size = wm->max_wm;
  864. if (wm_size <= 0)
  865. wm_size = wm->default_wm;
  866. return wm_size;
  867. }
  868. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  869. {
  870. struct drm_crtc *crtc, *enabled = NULL;
  871. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  872. if (intel_crtc_active(crtc)) {
  873. if (enabled)
  874. return NULL;
  875. enabled = crtc;
  876. }
  877. }
  878. return enabled;
  879. }
  880. static void pineview_update_wm(struct drm_device *dev)
  881. {
  882. struct drm_i915_private *dev_priv = dev->dev_private;
  883. struct drm_crtc *crtc;
  884. const struct cxsr_latency *latency;
  885. u32 reg;
  886. unsigned long wm;
  887. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  888. dev_priv->fsb_freq, dev_priv->mem_freq);
  889. if (!latency) {
  890. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  891. pineview_disable_cxsr(dev);
  892. return;
  893. }
  894. crtc = single_enabled_crtc(dev);
  895. if (crtc) {
  896. int clock = crtc->mode.clock;
  897. int pixel_size = crtc->fb->bits_per_pixel / 8;
  898. /* Display SR */
  899. wm = intel_calculate_wm(clock, &pineview_display_wm,
  900. pineview_display_wm.fifo_size,
  901. pixel_size, latency->display_sr);
  902. reg = I915_READ(DSPFW1);
  903. reg &= ~DSPFW_SR_MASK;
  904. reg |= wm << DSPFW_SR_SHIFT;
  905. I915_WRITE(DSPFW1, reg);
  906. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  907. /* cursor SR */
  908. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  909. pineview_display_wm.fifo_size,
  910. pixel_size, latency->cursor_sr);
  911. reg = I915_READ(DSPFW3);
  912. reg &= ~DSPFW_CURSOR_SR_MASK;
  913. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  914. I915_WRITE(DSPFW3, reg);
  915. /* Display HPLL off SR */
  916. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  917. pineview_display_hplloff_wm.fifo_size,
  918. pixel_size, latency->display_hpll_disable);
  919. reg = I915_READ(DSPFW3);
  920. reg &= ~DSPFW_HPLL_SR_MASK;
  921. reg |= wm & DSPFW_HPLL_SR_MASK;
  922. I915_WRITE(DSPFW3, reg);
  923. /* cursor HPLL off SR */
  924. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  925. pineview_display_hplloff_wm.fifo_size,
  926. pixel_size, latency->cursor_hpll_disable);
  927. reg = I915_READ(DSPFW3);
  928. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  929. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  930. I915_WRITE(DSPFW3, reg);
  931. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  932. /* activate cxsr */
  933. I915_WRITE(DSPFW3,
  934. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  935. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  936. } else {
  937. pineview_disable_cxsr(dev);
  938. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  939. }
  940. }
  941. static bool g4x_compute_wm0(struct drm_device *dev,
  942. int plane,
  943. const struct intel_watermark_params *display,
  944. int display_latency_ns,
  945. const struct intel_watermark_params *cursor,
  946. int cursor_latency_ns,
  947. int *plane_wm,
  948. int *cursor_wm)
  949. {
  950. struct drm_crtc *crtc;
  951. int htotal, hdisplay, clock, pixel_size;
  952. int line_time_us, line_count;
  953. int entries, tlb_miss;
  954. crtc = intel_get_crtc_for_plane(dev, plane);
  955. if (!intel_crtc_active(crtc)) {
  956. *cursor_wm = cursor->guard_size;
  957. *plane_wm = display->guard_size;
  958. return false;
  959. }
  960. htotal = crtc->mode.htotal;
  961. hdisplay = crtc->mode.hdisplay;
  962. clock = crtc->mode.clock;
  963. pixel_size = crtc->fb->bits_per_pixel / 8;
  964. /* Use the small buffer method to calculate plane watermark */
  965. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  966. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  967. if (tlb_miss > 0)
  968. entries += tlb_miss;
  969. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  970. *plane_wm = entries + display->guard_size;
  971. if (*plane_wm > (int)display->max_wm)
  972. *plane_wm = display->max_wm;
  973. /* Use the large buffer method to calculate cursor watermark */
  974. line_time_us = ((htotal * 1000) / clock);
  975. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  976. entries = line_count * 64 * pixel_size;
  977. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  978. if (tlb_miss > 0)
  979. entries += tlb_miss;
  980. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  981. *cursor_wm = entries + cursor->guard_size;
  982. if (*cursor_wm > (int)cursor->max_wm)
  983. *cursor_wm = (int)cursor->max_wm;
  984. return true;
  985. }
  986. /*
  987. * Check the wm result.
  988. *
  989. * If any calculated watermark values is larger than the maximum value that
  990. * can be programmed into the associated watermark register, that watermark
  991. * must be disabled.
  992. */
  993. static bool g4x_check_srwm(struct drm_device *dev,
  994. int display_wm, int cursor_wm,
  995. const struct intel_watermark_params *display,
  996. const struct intel_watermark_params *cursor)
  997. {
  998. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  999. display_wm, cursor_wm);
  1000. if (display_wm > display->max_wm) {
  1001. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1002. display_wm, display->max_wm);
  1003. return false;
  1004. }
  1005. if (cursor_wm > cursor->max_wm) {
  1006. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1007. cursor_wm, cursor->max_wm);
  1008. return false;
  1009. }
  1010. if (!(display_wm || cursor_wm)) {
  1011. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1012. return false;
  1013. }
  1014. return true;
  1015. }
  1016. static bool g4x_compute_srwm(struct drm_device *dev,
  1017. int plane,
  1018. int latency_ns,
  1019. const struct intel_watermark_params *display,
  1020. const struct intel_watermark_params *cursor,
  1021. int *display_wm, int *cursor_wm)
  1022. {
  1023. struct drm_crtc *crtc;
  1024. int hdisplay, htotal, pixel_size, clock;
  1025. unsigned long line_time_us;
  1026. int line_count, line_size;
  1027. int small, large;
  1028. int entries;
  1029. if (!latency_ns) {
  1030. *display_wm = *cursor_wm = 0;
  1031. return false;
  1032. }
  1033. crtc = intel_get_crtc_for_plane(dev, plane);
  1034. hdisplay = crtc->mode.hdisplay;
  1035. htotal = crtc->mode.htotal;
  1036. clock = crtc->mode.clock;
  1037. pixel_size = crtc->fb->bits_per_pixel / 8;
  1038. line_time_us = (htotal * 1000) / clock;
  1039. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1040. line_size = hdisplay * pixel_size;
  1041. /* Use the minimum of the small and large buffer method for primary */
  1042. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1043. large = line_count * line_size;
  1044. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1045. *display_wm = entries + display->guard_size;
  1046. /* calculate the self-refresh watermark for display cursor */
  1047. entries = line_count * pixel_size * 64;
  1048. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1049. *cursor_wm = entries + cursor->guard_size;
  1050. return g4x_check_srwm(dev,
  1051. *display_wm, *cursor_wm,
  1052. display, cursor);
  1053. }
  1054. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1055. int plane,
  1056. int *plane_prec_mult,
  1057. int *plane_dl,
  1058. int *cursor_prec_mult,
  1059. int *cursor_dl)
  1060. {
  1061. struct drm_crtc *crtc;
  1062. int clock, pixel_size;
  1063. int entries;
  1064. crtc = intel_get_crtc_for_plane(dev, plane);
  1065. if (!intel_crtc_active(crtc))
  1066. return false;
  1067. clock = crtc->mode.clock; /* VESA DOT Clock */
  1068. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1069. entries = (clock / 1000) * pixel_size;
  1070. *plane_prec_mult = (entries > 256) ?
  1071. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1072. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1073. pixel_size);
  1074. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1075. *cursor_prec_mult = (entries > 256) ?
  1076. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1077. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1078. return true;
  1079. }
  1080. /*
  1081. * Update drain latency registers of memory arbiter
  1082. *
  1083. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1084. * to be programmed. Each plane has a drain latency multiplier and a drain
  1085. * latency value.
  1086. */
  1087. static void vlv_update_drain_latency(struct drm_device *dev)
  1088. {
  1089. struct drm_i915_private *dev_priv = dev->dev_private;
  1090. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1091. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1092. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1093. either 16 or 32 */
  1094. /* For plane A, Cursor A */
  1095. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1096. &cursor_prec_mult, &cursora_dl)) {
  1097. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1098. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1099. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1100. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1101. I915_WRITE(VLV_DDL1, cursora_prec |
  1102. (cursora_dl << DDL_CURSORA_SHIFT) |
  1103. planea_prec | planea_dl);
  1104. }
  1105. /* For plane B, Cursor B */
  1106. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1107. &cursor_prec_mult, &cursorb_dl)) {
  1108. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1109. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1110. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1111. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1112. I915_WRITE(VLV_DDL2, cursorb_prec |
  1113. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1114. planeb_prec | planeb_dl);
  1115. }
  1116. }
  1117. #define single_plane_enabled(mask) is_power_of_2(mask)
  1118. static void valleyview_update_wm(struct drm_device *dev)
  1119. {
  1120. static const int sr_latency_ns = 12000;
  1121. struct drm_i915_private *dev_priv = dev->dev_private;
  1122. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1123. int plane_sr, cursor_sr;
  1124. int ignore_plane_sr, ignore_cursor_sr;
  1125. unsigned int enabled = 0;
  1126. vlv_update_drain_latency(dev);
  1127. if (g4x_compute_wm0(dev, 0,
  1128. &valleyview_wm_info, latency_ns,
  1129. &valleyview_cursor_wm_info, latency_ns,
  1130. &planea_wm, &cursora_wm))
  1131. enabled |= 1;
  1132. if (g4x_compute_wm0(dev, 1,
  1133. &valleyview_wm_info, latency_ns,
  1134. &valleyview_cursor_wm_info, latency_ns,
  1135. &planeb_wm, &cursorb_wm))
  1136. enabled |= 2;
  1137. if (single_plane_enabled(enabled) &&
  1138. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1139. sr_latency_ns,
  1140. &valleyview_wm_info,
  1141. &valleyview_cursor_wm_info,
  1142. &plane_sr, &ignore_cursor_sr) &&
  1143. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1144. 2*sr_latency_ns,
  1145. &valleyview_wm_info,
  1146. &valleyview_cursor_wm_info,
  1147. &ignore_plane_sr, &cursor_sr)) {
  1148. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1149. } else {
  1150. I915_WRITE(FW_BLC_SELF_VLV,
  1151. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1152. plane_sr = cursor_sr = 0;
  1153. }
  1154. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1155. planea_wm, cursora_wm,
  1156. planeb_wm, cursorb_wm,
  1157. plane_sr, cursor_sr);
  1158. I915_WRITE(DSPFW1,
  1159. (plane_sr << DSPFW_SR_SHIFT) |
  1160. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1161. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1162. planea_wm);
  1163. I915_WRITE(DSPFW2,
  1164. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1165. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1166. I915_WRITE(DSPFW3,
  1167. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1168. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1169. }
  1170. static void g4x_update_wm(struct drm_device *dev)
  1171. {
  1172. static const int sr_latency_ns = 12000;
  1173. struct drm_i915_private *dev_priv = dev->dev_private;
  1174. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1175. int plane_sr, cursor_sr;
  1176. unsigned int enabled = 0;
  1177. if (g4x_compute_wm0(dev, 0,
  1178. &g4x_wm_info, latency_ns,
  1179. &g4x_cursor_wm_info, latency_ns,
  1180. &planea_wm, &cursora_wm))
  1181. enabled |= 1;
  1182. if (g4x_compute_wm0(dev, 1,
  1183. &g4x_wm_info, latency_ns,
  1184. &g4x_cursor_wm_info, latency_ns,
  1185. &planeb_wm, &cursorb_wm))
  1186. enabled |= 2;
  1187. if (single_plane_enabled(enabled) &&
  1188. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1189. sr_latency_ns,
  1190. &g4x_wm_info,
  1191. &g4x_cursor_wm_info,
  1192. &plane_sr, &cursor_sr)) {
  1193. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1194. } else {
  1195. I915_WRITE(FW_BLC_SELF,
  1196. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1197. plane_sr = cursor_sr = 0;
  1198. }
  1199. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1200. planea_wm, cursora_wm,
  1201. planeb_wm, cursorb_wm,
  1202. plane_sr, cursor_sr);
  1203. I915_WRITE(DSPFW1,
  1204. (plane_sr << DSPFW_SR_SHIFT) |
  1205. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1206. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1207. planea_wm);
  1208. I915_WRITE(DSPFW2,
  1209. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1210. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1211. /* HPLL off in SR has some issues on G4x... disable it */
  1212. I915_WRITE(DSPFW3,
  1213. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1214. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1215. }
  1216. static void i965_update_wm(struct drm_device *dev)
  1217. {
  1218. struct drm_i915_private *dev_priv = dev->dev_private;
  1219. struct drm_crtc *crtc;
  1220. int srwm = 1;
  1221. int cursor_sr = 16;
  1222. /* Calc sr entries for one plane configs */
  1223. crtc = single_enabled_crtc(dev);
  1224. if (crtc) {
  1225. /* self-refresh has much higher latency */
  1226. static const int sr_latency_ns = 12000;
  1227. int clock = crtc->mode.clock;
  1228. int htotal = crtc->mode.htotal;
  1229. int hdisplay = crtc->mode.hdisplay;
  1230. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1231. unsigned long line_time_us;
  1232. int entries;
  1233. line_time_us = ((htotal * 1000) / clock);
  1234. /* Use ns/us then divide to preserve precision */
  1235. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1236. pixel_size * hdisplay;
  1237. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1238. srwm = I965_FIFO_SIZE - entries;
  1239. if (srwm < 0)
  1240. srwm = 1;
  1241. srwm &= 0x1ff;
  1242. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1243. entries, srwm);
  1244. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1245. pixel_size * 64;
  1246. entries = DIV_ROUND_UP(entries,
  1247. i965_cursor_wm_info.cacheline_size);
  1248. cursor_sr = i965_cursor_wm_info.fifo_size -
  1249. (entries + i965_cursor_wm_info.guard_size);
  1250. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1251. cursor_sr = i965_cursor_wm_info.max_wm;
  1252. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1253. "cursor %d\n", srwm, cursor_sr);
  1254. if (IS_CRESTLINE(dev))
  1255. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1256. } else {
  1257. /* Turn off self refresh if both pipes are enabled */
  1258. if (IS_CRESTLINE(dev))
  1259. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1260. & ~FW_BLC_SELF_EN);
  1261. }
  1262. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1263. srwm);
  1264. /* 965 has limitations... */
  1265. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1266. (8 << 16) | (8 << 8) | (8 << 0));
  1267. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1268. /* update cursor SR watermark */
  1269. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1270. }
  1271. static void i9xx_update_wm(struct drm_device *dev)
  1272. {
  1273. struct drm_i915_private *dev_priv = dev->dev_private;
  1274. const struct intel_watermark_params *wm_info;
  1275. uint32_t fwater_lo;
  1276. uint32_t fwater_hi;
  1277. int cwm, srwm = 1;
  1278. int fifo_size;
  1279. int planea_wm, planeb_wm;
  1280. struct drm_crtc *crtc, *enabled = NULL;
  1281. if (IS_I945GM(dev))
  1282. wm_info = &i945_wm_info;
  1283. else if (!IS_GEN2(dev))
  1284. wm_info = &i915_wm_info;
  1285. else
  1286. wm_info = &i855_wm_info;
  1287. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1288. crtc = intel_get_crtc_for_plane(dev, 0);
  1289. if (intel_crtc_active(crtc)) {
  1290. int cpp = crtc->fb->bits_per_pixel / 8;
  1291. if (IS_GEN2(dev))
  1292. cpp = 4;
  1293. planea_wm = intel_calculate_wm(crtc->mode.clock,
  1294. wm_info, fifo_size, cpp,
  1295. latency_ns);
  1296. enabled = crtc;
  1297. } else
  1298. planea_wm = fifo_size - wm_info->guard_size;
  1299. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1300. crtc = intel_get_crtc_for_plane(dev, 1);
  1301. if (intel_crtc_active(crtc)) {
  1302. int cpp = crtc->fb->bits_per_pixel / 8;
  1303. if (IS_GEN2(dev))
  1304. cpp = 4;
  1305. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  1306. wm_info, fifo_size, cpp,
  1307. latency_ns);
  1308. if (enabled == NULL)
  1309. enabled = crtc;
  1310. else
  1311. enabled = NULL;
  1312. } else
  1313. planeb_wm = fifo_size - wm_info->guard_size;
  1314. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1315. /*
  1316. * Overlay gets an aggressive default since video jitter is bad.
  1317. */
  1318. cwm = 2;
  1319. /* Play safe and disable self-refresh before adjusting watermarks. */
  1320. if (IS_I945G(dev) || IS_I945GM(dev))
  1321. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1322. else if (IS_I915GM(dev))
  1323. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1324. /* Calc sr entries for one plane configs */
  1325. if (HAS_FW_BLC(dev) && enabled) {
  1326. /* self-refresh has much higher latency */
  1327. static const int sr_latency_ns = 6000;
  1328. int clock = enabled->mode.clock;
  1329. int htotal = enabled->mode.htotal;
  1330. int hdisplay = enabled->mode.hdisplay;
  1331. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1332. unsigned long line_time_us;
  1333. int entries;
  1334. line_time_us = (htotal * 1000) / clock;
  1335. /* Use ns/us then divide to preserve precision */
  1336. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1337. pixel_size * hdisplay;
  1338. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1339. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1340. srwm = wm_info->fifo_size - entries;
  1341. if (srwm < 0)
  1342. srwm = 1;
  1343. if (IS_I945G(dev) || IS_I945GM(dev))
  1344. I915_WRITE(FW_BLC_SELF,
  1345. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1346. else if (IS_I915GM(dev))
  1347. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1348. }
  1349. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1350. planea_wm, planeb_wm, cwm, srwm);
  1351. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1352. fwater_hi = (cwm & 0x1f);
  1353. /* Set request length to 8 cachelines per fetch */
  1354. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1355. fwater_hi = fwater_hi | (1 << 8);
  1356. I915_WRITE(FW_BLC, fwater_lo);
  1357. I915_WRITE(FW_BLC2, fwater_hi);
  1358. if (HAS_FW_BLC(dev)) {
  1359. if (enabled) {
  1360. if (IS_I945G(dev) || IS_I945GM(dev))
  1361. I915_WRITE(FW_BLC_SELF,
  1362. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1363. else if (IS_I915GM(dev))
  1364. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1365. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1366. } else
  1367. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1368. }
  1369. }
  1370. static void i830_update_wm(struct drm_device *dev)
  1371. {
  1372. struct drm_i915_private *dev_priv = dev->dev_private;
  1373. struct drm_crtc *crtc;
  1374. uint32_t fwater_lo;
  1375. int planea_wm;
  1376. crtc = single_enabled_crtc(dev);
  1377. if (crtc == NULL)
  1378. return;
  1379. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  1380. dev_priv->display.get_fifo_size(dev, 0),
  1381. 4, latency_ns);
  1382. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1383. fwater_lo |= (3<<8) | planea_wm;
  1384. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1385. I915_WRITE(FW_BLC, fwater_lo);
  1386. }
  1387. #define ILK_LP0_PLANE_LATENCY 700
  1388. #define ILK_LP0_CURSOR_LATENCY 1300
  1389. /*
  1390. * Check the wm result.
  1391. *
  1392. * If any calculated watermark values is larger than the maximum value that
  1393. * can be programmed into the associated watermark register, that watermark
  1394. * must be disabled.
  1395. */
  1396. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1397. int fbc_wm, int display_wm, int cursor_wm,
  1398. const struct intel_watermark_params *display,
  1399. const struct intel_watermark_params *cursor)
  1400. {
  1401. struct drm_i915_private *dev_priv = dev->dev_private;
  1402. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1403. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1404. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1405. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1406. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1407. /* fbc has it's own way to disable FBC WM */
  1408. I915_WRITE(DISP_ARB_CTL,
  1409. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1410. return false;
  1411. }
  1412. if (display_wm > display->max_wm) {
  1413. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1414. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1415. return false;
  1416. }
  1417. if (cursor_wm > cursor->max_wm) {
  1418. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1419. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1420. return false;
  1421. }
  1422. if (!(fbc_wm || display_wm || cursor_wm)) {
  1423. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1424. return false;
  1425. }
  1426. return true;
  1427. }
  1428. /*
  1429. * Compute watermark values of WM[1-3],
  1430. */
  1431. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1432. int latency_ns,
  1433. const struct intel_watermark_params *display,
  1434. const struct intel_watermark_params *cursor,
  1435. int *fbc_wm, int *display_wm, int *cursor_wm)
  1436. {
  1437. struct drm_crtc *crtc;
  1438. unsigned long line_time_us;
  1439. int hdisplay, htotal, pixel_size, clock;
  1440. int line_count, line_size;
  1441. int small, large;
  1442. int entries;
  1443. if (!latency_ns) {
  1444. *fbc_wm = *display_wm = *cursor_wm = 0;
  1445. return false;
  1446. }
  1447. crtc = intel_get_crtc_for_plane(dev, plane);
  1448. hdisplay = crtc->mode.hdisplay;
  1449. htotal = crtc->mode.htotal;
  1450. clock = crtc->mode.clock;
  1451. pixel_size = crtc->fb->bits_per_pixel / 8;
  1452. line_time_us = (htotal * 1000) / clock;
  1453. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1454. line_size = hdisplay * pixel_size;
  1455. /* Use the minimum of the small and large buffer method for primary */
  1456. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1457. large = line_count * line_size;
  1458. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1459. *display_wm = entries + display->guard_size;
  1460. /*
  1461. * Spec says:
  1462. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1463. */
  1464. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1465. /* calculate the self-refresh watermark for display cursor */
  1466. entries = line_count * pixel_size * 64;
  1467. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1468. *cursor_wm = entries + cursor->guard_size;
  1469. return ironlake_check_srwm(dev, level,
  1470. *fbc_wm, *display_wm, *cursor_wm,
  1471. display, cursor);
  1472. }
  1473. static void ironlake_update_wm(struct drm_device *dev)
  1474. {
  1475. struct drm_i915_private *dev_priv = dev->dev_private;
  1476. int fbc_wm, plane_wm, cursor_wm;
  1477. unsigned int enabled;
  1478. enabled = 0;
  1479. if (g4x_compute_wm0(dev, 0,
  1480. &ironlake_display_wm_info,
  1481. ILK_LP0_PLANE_LATENCY,
  1482. &ironlake_cursor_wm_info,
  1483. ILK_LP0_CURSOR_LATENCY,
  1484. &plane_wm, &cursor_wm)) {
  1485. I915_WRITE(WM0_PIPEA_ILK,
  1486. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1487. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1488. " plane %d, " "cursor: %d\n",
  1489. plane_wm, cursor_wm);
  1490. enabled |= 1;
  1491. }
  1492. if (g4x_compute_wm0(dev, 1,
  1493. &ironlake_display_wm_info,
  1494. ILK_LP0_PLANE_LATENCY,
  1495. &ironlake_cursor_wm_info,
  1496. ILK_LP0_CURSOR_LATENCY,
  1497. &plane_wm, &cursor_wm)) {
  1498. I915_WRITE(WM0_PIPEB_ILK,
  1499. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1500. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1501. " plane %d, cursor: %d\n",
  1502. plane_wm, cursor_wm);
  1503. enabled |= 2;
  1504. }
  1505. /*
  1506. * Calculate and update the self-refresh watermark only when one
  1507. * display plane is used.
  1508. */
  1509. I915_WRITE(WM3_LP_ILK, 0);
  1510. I915_WRITE(WM2_LP_ILK, 0);
  1511. I915_WRITE(WM1_LP_ILK, 0);
  1512. if (!single_plane_enabled(enabled))
  1513. return;
  1514. enabled = ffs(enabled) - 1;
  1515. /* WM1 */
  1516. if (!ironlake_compute_srwm(dev, 1, enabled,
  1517. ILK_READ_WM1_LATENCY() * 500,
  1518. &ironlake_display_srwm_info,
  1519. &ironlake_cursor_srwm_info,
  1520. &fbc_wm, &plane_wm, &cursor_wm))
  1521. return;
  1522. I915_WRITE(WM1_LP_ILK,
  1523. WM1_LP_SR_EN |
  1524. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1525. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1526. (plane_wm << WM1_LP_SR_SHIFT) |
  1527. cursor_wm);
  1528. /* WM2 */
  1529. if (!ironlake_compute_srwm(dev, 2, enabled,
  1530. ILK_READ_WM2_LATENCY() * 500,
  1531. &ironlake_display_srwm_info,
  1532. &ironlake_cursor_srwm_info,
  1533. &fbc_wm, &plane_wm, &cursor_wm))
  1534. return;
  1535. I915_WRITE(WM2_LP_ILK,
  1536. WM2_LP_EN |
  1537. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1538. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1539. (plane_wm << WM1_LP_SR_SHIFT) |
  1540. cursor_wm);
  1541. /*
  1542. * WM3 is unsupported on ILK, probably because we don't have latency
  1543. * data for that power state
  1544. */
  1545. }
  1546. static void sandybridge_update_wm(struct drm_device *dev)
  1547. {
  1548. struct drm_i915_private *dev_priv = dev->dev_private;
  1549. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1550. u32 val;
  1551. int fbc_wm, plane_wm, cursor_wm;
  1552. unsigned int enabled;
  1553. enabled = 0;
  1554. if (g4x_compute_wm0(dev, 0,
  1555. &sandybridge_display_wm_info, latency,
  1556. &sandybridge_cursor_wm_info, latency,
  1557. &plane_wm, &cursor_wm)) {
  1558. val = I915_READ(WM0_PIPEA_ILK);
  1559. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1560. I915_WRITE(WM0_PIPEA_ILK, val |
  1561. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1562. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1563. " plane %d, " "cursor: %d\n",
  1564. plane_wm, cursor_wm);
  1565. enabled |= 1;
  1566. }
  1567. if (g4x_compute_wm0(dev, 1,
  1568. &sandybridge_display_wm_info, latency,
  1569. &sandybridge_cursor_wm_info, latency,
  1570. &plane_wm, &cursor_wm)) {
  1571. val = I915_READ(WM0_PIPEB_ILK);
  1572. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1573. I915_WRITE(WM0_PIPEB_ILK, val |
  1574. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1575. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1576. " plane %d, cursor: %d\n",
  1577. plane_wm, cursor_wm);
  1578. enabled |= 2;
  1579. }
  1580. /*
  1581. * Calculate and update the self-refresh watermark only when one
  1582. * display plane is used.
  1583. *
  1584. * SNB support 3 levels of watermark.
  1585. *
  1586. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1587. * and disabled in the descending order
  1588. *
  1589. */
  1590. I915_WRITE(WM3_LP_ILK, 0);
  1591. I915_WRITE(WM2_LP_ILK, 0);
  1592. I915_WRITE(WM1_LP_ILK, 0);
  1593. if (!single_plane_enabled(enabled) ||
  1594. dev_priv->sprite_scaling_enabled)
  1595. return;
  1596. enabled = ffs(enabled) - 1;
  1597. /* WM1 */
  1598. if (!ironlake_compute_srwm(dev, 1, enabled,
  1599. SNB_READ_WM1_LATENCY() * 500,
  1600. &sandybridge_display_srwm_info,
  1601. &sandybridge_cursor_srwm_info,
  1602. &fbc_wm, &plane_wm, &cursor_wm))
  1603. return;
  1604. I915_WRITE(WM1_LP_ILK,
  1605. WM1_LP_SR_EN |
  1606. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1607. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1608. (plane_wm << WM1_LP_SR_SHIFT) |
  1609. cursor_wm);
  1610. /* WM2 */
  1611. if (!ironlake_compute_srwm(dev, 2, enabled,
  1612. SNB_READ_WM2_LATENCY() * 500,
  1613. &sandybridge_display_srwm_info,
  1614. &sandybridge_cursor_srwm_info,
  1615. &fbc_wm, &plane_wm, &cursor_wm))
  1616. return;
  1617. I915_WRITE(WM2_LP_ILK,
  1618. WM2_LP_EN |
  1619. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1620. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1621. (plane_wm << WM1_LP_SR_SHIFT) |
  1622. cursor_wm);
  1623. /* WM3 */
  1624. if (!ironlake_compute_srwm(dev, 3, enabled,
  1625. SNB_READ_WM3_LATENCY() * 500,
  1626. &sandybridge_display_srwm_info,
  1627. &sandybridge_cursor_srwm_info,
  1628. &fbc_wm, &plane_wm, &cursor_wm))
  1629. return;
  1630. I915_WRITE(WM3_LP_ILK,
  1631. WM3_LP_EN |
  1632. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1633. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1634. (plane_wm << WM1_LP_SR_SHIFT) |
  1635. cursor_wm);
  1636. }
  1637. static void ivybridge_update_wm(struct drm_device *dev)
  1638. {
  1639. struct drm_i915_private *dev_priv = dev->dev_private;
  1640. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1641. u32 val;
  1642. int fbc_wm, plane_wm, cursor_wm;
  1643. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1644. unsigned int enabled;
  1645. enabled = 0;
  1646. if (g4x_compute_wm0(dev, 0,
  1647. &sandybridge_display_wm_info, latency,
  1648. &sandybridge_cursor_wm_info, latency,
  1649. &plane_wm, &cursor_wm)) {
  1650. val = I915_READ(WM0_PIPEA_ILK);
  1651. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1652. I915_WRITE(WM0_PIPEA_ILK, val |
  1653. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1654. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1655. " plane %d, " "cursor: %d\n",
  1656. plane_wm, cursor_wm);
  1657. enabled |= 1;
  1658. }
  1659. if (g4x_compute_wm0(dev, 1,
  1660. &sandybridge_display_wm_info, latency,
  1661. &sandybridge_cursor_wm_info, latency,
  1662. &plane_wm, &cursor_wm)) {
  1663. val = I915_READ(WM0_PIPEB_ILK);
  1664. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1665. I915_WRITE(WM0_PIPEB_ILK, val |
  1666. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1667. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1668. " plane %d, cursor: %d\n",
  1669. plane_wm, cursor_wm);
  1670. enabled |= 2;
  1671. }
  1672. if (g4x_compute_wm0(dev, 2,
  1673. &sandybridge_display_wm_info, latency,
  1674. &sandybridge_cursor_wm_info, latency,
  1675. &plane_wm, &cursor_wm)) {
  1676. val = I915_READ(WM0_PIPEC_IVB);
  1677. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1678. I915_WRITE(WM0_PIPEC_IVB, val |
  1679. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1680. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1681. " plane %d, cursor: %d\n",
  1682. plane_wm, cursor_wm);
  1683. enabled |= 3;
  1684. }
  1685. /*
  1686. * Calculate and update the self-refresh watermark only when one
  1687. * display plane is used.
  1688. *
  1689. * SNB support 3 levels of watermark.
  1690. *
  1691. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1692. * and disabled in the descending order
  1693. *
  1694. */
  1695. I915_WRITE(WM3_LP_ILK, 0);
  1696. I915_WRITE(WM2_LP_ILK, 0);
  1697. I915_WRITE(WM1_LP_ILK, 0);
  1698. if (!single_plane_enabled(enabled) ||
  1699. dev_priv->sprite_scaling_enabled)
  1700. return;
  1701. enabled = ffs(enabled) - 1;
  1702. /* WM1 */
  1703. if (!ironlake_compute_srwm(dev, 1, enabled,
  1704. SNB_READ_WM1_LATENCY() * 500,
  1705. &sandybridge_display_srwm_info,
  1706. &sandybridge_cursor_srwm_info,
  1707. &fbc_wm, &plane_wm, &cursor_wm))
  1708. return;
  1709. I915_WRITE(WM1_LP_ILK,
  1710. WM1_LP_SR_EN |
  1711. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1712. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1713. (plane_wm << WM1_LP_SR_SHIFT) |
  1714. cursor_wm);
  1715. /* WM2 */
  1716. if (!ironlake_compute_srwm(dev, 2, enabled,
  1717. SNB_READ_WM2_LATENCY() * 500,
  1718. &sandybridge_display_srwm_info,
  1719. &sandybridge_cursor_srwm_info,
  1720. &fbc_wm, &plane_wm, &cursor_wm))
  1721. return;
  1722. I915_WRITE(WM2_LP_ILK,
  1723. WM2_LP_EN |
  1724. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1725. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1726. (plane_wm << WM1_LP_SR_SHIFT) |
  1727. cursor_wm);
  1728. /* WM3, note we have to correct the cursor latency */
  1729. if (!ironlake_compute_srwm(dev, 3, enabled,
  1730. SNB_READ_WM3_LATENCY() * 500,
  1731. &sandybridge_display_srwm_info,
  1732. &sandybridge_cursor_srwm_info,
  1733. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1734. !ironlake_compute_srwm(dev, 3, enabled,
  1735. 2 * SNB_READ_WM3_LATENCY() * 500,
  1736. &sandybridge_display_srwm_info,
  1737. &sandybridge_cursor_srwm_info,
  1738. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1739. return;
  1740. I915_WRITE(WM3_LP_ILK,
  1741. WM3_LP_EN |
  1742. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1743. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1744. (plane_wm << WM1_LP_SR_SHIFT) |
  1745. cursor_wm);
  1746. }
  1747. static void
  1748. haswell_update_linetime_wm(struct drm_device *dev, int pipe,
  1749. struct drm_display_mode *mode)
  1750. {
  1751. struct drm_i915_private *dev_priv = dev->dev_private;
  1752. u32 temp;
  1753. temp = I915_READ(PIPE_WM_LINETIME(pipe));
  1754. temp &= ~PIPE_WM_LINETIME_MASK;
  1755. /* The WM are computed with base on how long it takes to fill a single
  1756. * row at the given clock rate, multiplied by 8.
  1757. * */
  1758. temp |= PIPE_WM_LINETIME_TIME(
  1759. ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
  1760. /* IPS watermarks are only used by pipe A, and are ignored by
  1761. * pipes B and C. They are calculated similarly to the common
  1762. * linetime values, except that we are using CD clock frequency
  1763. * in MHz instead of pixel rate for the division.
  1764. *
  1765. * This is a placeholder for the IPS watermark calculation code.
  1766. */
  1767. I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
  1768. }
  1769. static bool
  1770. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  1771. uint32_t sprite_width, int pixel_size,
  1772. const struct intel_watermark_params *display,
  1773. int display_latency_ns, int *sprite_wm)
  1774. {
  1775. struct drm_crtc *crtc;
  1776. int clock;
  1777. int entries, tlb_miss;
  1778. crtc = intel_get_crtc_for_plane(dev, plane);
  1779. if (!intel_crtc_active(crtc)) {
  1780. *sprite_wm = display->guard_size;
  1781. return false;
  1782. }
  1783. clock = crtc->mode.clock;
  1784. /* Use the small buffer method to calculate the sprite watermark */
  1785. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1786. tlb_miss = display->fifo_size*display->cacheline_size -
  1787. sprite_width * 8;
  1788. if (tlb_miss > 0)
  1789. entries += tlb_miss;
  1790. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1791. *sprite_wm = entries + display->guard_size;
  1792. if (*sprite_wm > (int)display->max_wm)
  1793. *sprite_wm = display->max_wm;
  1794. return true;
  1795. }
  1796. static bool
  1797. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  1798. uint32_t sprite_width, int pixel_size,
  1799. const struct intel_watermark_params *display,
  1800. int latency_ns, int *sprite_wm)
  1801. {
  1802. struct drm_crtc *crtc;
  1803. unsigned long line_time_us;
  1804. int clock;
  1805. int line_count, line_size;
  1806. int small, large;
  1807. int entries;
  1808. if (!latency_ns) {
  1809. *sprite_wm = 0;
  1810. return false;
  1811. }
  1812. crtc = intel_get_crtc_for_plane(dev, plane);
  1813. clock = crtc->mode.clock;
  1814. if (!clock) {
  1815. *sprite_wm = 0;
  1816. return false;
  1817. }
  1818. line_time_us = (sprite_width * 1000) / clock;
  1819. if (!line_time_us) {
  1820. *sprite_wm = 0;
  1821. return false;
  1822. }
  1823. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1824. line_size = sprite_width * pixel_size;
  1825. /* Use the minimum of the small and large buffer method for primary */
  1826. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1827. large = line_count * line_size;
  1828. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1829. *sprite_wm = entries + display->guard_size;
  1830. return *sprite_wm > 0x3ff ? false : true;
  1831. }
  1832. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  1833. uint32_t sprite_width, int pixel_size)
  1834. {
  1835. struct drm_i915_private *dev_priv = dev->dev_private;
  1836. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1837. u32 val;
  1838. int sprite_wm, reg;
  1839. int ret;
  1840. switch (pipe) {
  1841. case 0:
  1842. reg = WM0_PIPEA_ILK;
  1843. break;
  1844. case 1:
  1845. reg = WM0_PIPEB_ILK;
  1846. break;
  1847. case 2:
  1848. reg = WM0_PIPEC_IVB;
  1849. break;
  1850. default:
  1851. return; /* bad pipe */
  1852. }
  1853. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  1854. &sandybridge_display_wm_info,
  1855. latency, &sprite_wm);
  1856. if (!ret) {
  1857. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
  1858. pipe_name(pipe));
  1859. return;
  1860. }
  1861. val = I915_READ(reg);
  1862. val &= ~WM0_PIPE_SPRITE_MASK;
  1863. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  1864. DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
  1865. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1866. pixel_size,
  1867. &sandybridge_display_srwm_info,
  1868. SNB_READ_WM1_LATENCY() * 500,
  1869. &sprite_wm);
  1870. if (!ret) {
  1871. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
  1872. pipe_name(pipe));
  1873. return;
  1874. }
  1875. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  1876. /* Only IVB has two more LP watermarks for sprite */
  1877. if (!IS_IVYBRIDGE(dev))
  1878. return;
  1879. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1880. pixel_size,
  1881. &sandybridge_display_srwm_info,
  1882. SNB_READ_WM2_LATENCY() * 500,
  1883. &sprite_wm);
  1884. if (!ret) {
  1885. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
  1886. pipe_name(pipe));
  1887. return;
  1888. }
  1889. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  1890. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1891. pixel_size,
  1892. &sandybridge_display_srwm_info,
  1893. SNB_READ_WM3_LATENCY() * 500,
  1894. &sprite_wm);
  1895. if (!ret) {
  1896. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
  1897. pipe_name(pipe));
  1898. return;
  1899. }
  1900. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  1901. }
  1902. /**
  1903. * intel_update_watermarks - update FIFO watermark values based on current modes
  1904. *
  1905. * Calculate watermark values for the various WM regs based on current mode
  1906. * and plane configuration.
  1907. *
  1908. * There are several cases to deal with here:
  1909. * - normal (i.e. non-self-refresh)
  1910. * - self-refresh (SR) mode
  1911. * - lines are large relative to FIFO size (buffer can hold up to 2)
  1912. * - lines are small relative to FIFO size (buffer can hold more than 2
  1913. * lines), so need to account for TLB latency
  1914. *
  1915. * The normal calculation is:
  1916. * watermark = dotclock * bytes per pixel * latency
  1917. * where latency is platform & configuration dependent (we assume pessimal
  1918. * values here).
  1919. *
  1920. * The SR calculation is:
  1921. * watermark = (trunc(latency/line time)+1) * surface width *
  1922. * bytes per pixel
  1923. * where
  1924. * line time = htotal / dotclock
  1925. * surface width = hdisplay for normal plane and 64 for cursor
  1926. * and latency is assumed to be high, as above.
  1927. *
  1928. * The final value programmed to the register should always be rounded up,
  1929. * and include an extra 2 entries to account for clock crossings.
  1930. *
  1931. * We don't use the sprite, so we can ignore that. And on Crestline we have
  1932. * to set the non-SR watermarks to 8.
  1933. */
  1934. void intel_update_watermarks(struct drm_device *dev)
  1935. {
  1936. struct drm_i915_private *dev_priv = dev->dev_private;
  1937. if (dev_priv->display.update_wm)
  1938. dev_priv->display.update_wm(dev);
  1939. }
  1940. void intel_update_linetime_watermarks(struct drm_device *dev,
  1941. int pipe, struct drm_display_mode *mode)
  1942. {
  1943. struct drm_i915_private *dev_priv = dev->dev_private;
  1944. if (dev_priv->display.update_linetime_wm)
  1945. dev_priv->display.update_linetime_wm(dev, pipe, mode);
  1946. }
  1947. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  1948. uint32_t sprite_width, int pixel_size)
  1949. {
  1950. struct drm_i915_private *dev_priv = dev->dev_private;
  1951. if (dev_priv->display.update_sprite_wm)
  1952. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  1953. pixel_size);
  1954. }
  1955. static struct drm_i915_gem_object *
  1956. intel_alloc_context_page(struct drm_device *dev)
  1957. {
  1958. struct drm_i915_gem_object *ctx;
  1959. int ret;
  1960. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  1961. ctx = i915_gem_alloc_object(dev, 4096);
  1962. if (!ctx) {
  1963. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  1964. return NULL;
  1965. }
  1966. ret = i915_gem_object_pin(ctx, 4096, true, false);
  1967. if (ret) {
  1968. DRM_ERROR("failed to pin power context: %d\n", ret);
  1969. goto err_unref;
  1970. }
  1971. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  1972. if (ret) {
  1973. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  1974. goto err_unpin;
  1975. }
  1976. return ctx;
  1977. err_unpin:
  1978. i915_gem_object_unpin(ctx);
  1979. err_unref:
  1980. drm_gem_object_unreference(&ctx->base);
  1981. return NULL;
  1982. }
  1983. /**
  1984. * Lock protecting IPS related data structures
  1985. */
  1986. DEFINE_SPINLOCK(mchdev_lock);
  1987. /* Global for IPS driver to get at the current i915 device. Protected by
  1988. * mchdev_lock. */
  1989. static struct drm_i915_private *i915_mch_dev;
  1990. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  1991. {
  1992. struct drm_i915_private *dev_priv = dev->dev_private;
  1993. u16 rgvswctl;
  1994. assert_spin_locked(&mchdev_lock);
  1995. rgvswctl = I915_READ16(MEMSWCTL);
  1996. if (rgvswctl & MEMCTL_CMD_STS) {
  1997. DRM_DEBUG("gpu busy, RCS change rejected\n");
  1998. return false; /* still busy with another command */
  1999. }
  2000. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2001. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2002. I915_WRITE16(MEMSWCTL, rgvswctl);
  2003. POSTING_READ16(MEMSWCTL);
  2004. rgvswctl |= MEMCTL_CMD_STS;
  2005. I915_WRITE16(MEMSWCTL, rgvswctl);
  2006. return true;
  2007. }
  2008. static void ironlake_enable_drps(struct drm_device *dev)
  2009. {
  2010. struct drm_i915_private *dev_priv = dev->dev_private;
  2011. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2012. u8 fmax, fmin, fstart, vstart;
  2013. spin_lock_irq(&mchdev_lock);
  2014. /* Enable temp reporting */
  2015. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2016. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2017. /* 100ms RC evaluation intervals */
  2018. I915_WRITE(RCUPEI, 100000);
  2019. I915_WRITE(RCDNEI, 100000);
  2020. /* Set max/min thresholds to 90ms and 80ms respectively */
  2021. I915_WRITE(RCBMAXAVG, 90000);
  2022. I915_WRITE(RCBMINAVG, 80000);
  2023. I915_WRITE(MEMIHYST, 1);
  2024. /* Set up min, max, and cur for interrupt handling */
  2025. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2026. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2027. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2028. MEMMODE_FSTART_SHIFT;
  2029. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2030. PXVFREQ_PX_SHIFT;
  2031. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2032. dev_priv->ips.fstart = fstart;
  2033. dev_priv->ips.max_delay = fstart;
  2034. dev_priv->ips.min_delay = fmin;
  2035. dev_priv->ips.cur_delay = fstart;
  2036. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2037. fmax, fmin, fstart);
  2038. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2039. /*
  2040. * Interrupts will be enabled in ironlake_irq_postinstall
  2041. */
  2042. I915_WRITE(VIDSTART, vstart);
  2043. POSTING_READ(VIDSTART);
  2044. rgvmodectl |= MEMMODE_SWMODE_EN;
  2045. I915_WRITE(MEMMODECTL, rgvmodectl);
  2046. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2047. DRM_ERROR("stuck trying to change perf mode\n");
  2048. mdelay(1);
  2049. ironlake_set_drps(dev, fstart);
  2050. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2051. I915_READ(0x112e0);
  2052. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2053. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2054. getrawmonotonic(&dev_priv->ips.last_time2);
  2055. spin_unlock_irq(&mchdev_lock);
  2056. }
  2057. static void ironlake_disable_drps(struct drm_device *dev)
  2058. {
  2059. struct drm_i915_private *dev_priv = dev->dev_private;
  2060. u16 rgvswctl;
  2061. spin_lock_irq(&mchdev_lock);
  2062. rgvswctl = I915_READ16(MEMSWCTL);
  2063. /* Ack interrupts, disable EFC interrupt */
  2064. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2065. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2066. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2067. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2068. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2069. /* Go back to the starting frequency */
  2070. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2071. mdelay(1);
  2072. rgvswctl |= MEMCTL_CMD_STS;
  2073. I915_WRITE(MEMSWCTL, rgvswctl);
  2074. mdelay(1);
  2075. spin_unlock_irq(&mchdev_lock);
  2076. }
  2077. /* There's a funny hw issue where the hw returns all 0 when reading from
  2078. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2079. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2080. * all limits and the gpu stuck at whatever frequency it is at atm).
  2081. */
  2082. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
  2083. {
  2084. u32 limits;
  2085. limits = 0;
  2086. if (*val >= dev_priv->rps.max_delay)
  2087. *val = dev_priv->rps.max_delay;
  2088. limits |= dev_priv->rps.max_delay << 24;
  2089. /* Only set the down limit when we've reached the lowest level to avoid
  2090. * getting more interrupts, otherwise leave this clear. This prevents a
  2091. * race in the hw when coming out of rc6: There's a tiny window where
  2092. * the hw runs at the minimal clock before selecting the desired
  2093. * frequency, if the down threshold expires in that window we will not
  2094. * receive a down interrupt. */
  2095. if (*val <= dev_priv->rps.min_delay) {
  2096. *val = dev_priv->rps.min_delay;
  2097. limits |= dev_priv->rps.min_delay << 16;
  2098. }
  2099. return limits;
  2100. }
  2101. void gen6_set_rps(struct drm_device *dev, u8 val)
  2102. {
  2103. struct drm_i915_private *dev_priv = dev->dev_private;
  2104. u32 limits = gen6_rps_limits(dev_priv, &val);
  2105. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2106. WARN_ON(val > dev_priv->rps.max_delay);
  2107. WARN_ON(val < dev_priv->rps.min_delay);
  2108. if (val == dev_priv->rps.cur_delay)
  2109. return;
  2110. if (IS_HASWELL(dev))
  2111. I915_WRITE(GEN6_RPNSWREQ,
  2112. HSW_FREQUENCY(val));
  2113. else
  2114. I915_WRITE(GEN6_RPNSWREQ,
  2115. GEN6_FREQUENCY(val) |
  2116. GEN6_OFFSET(0) |
  2117. GEN6_AGGRESSIVE_TURBO);
  2118. /* Make sure we continue to get interrupts
  2119. * until we hit the minimum or maximum frequencies.
  2120. */
  2121. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  2122. POSTING_READ(GEN6_RPNSWREQ);
  2123. dev_priv->rps.cur_delay = val;
  2124. trace_intel_gpu_freq_change(val * 50);
  2125. }
  2126. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2127. {
  2128. struct drm_i915_private *dev_priv = dev->dev_private;
  2129. unsigned long timeout = jiffies + msecs_to_jiffies(10);
  2130. u32 limits = gen6_rps_limits(dev_priv, &val);
  2131. u32 pval;
  2132. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2133. WARN_ON(val > dev_priv->rps.max_delay);
  2134. WARN_ON(val < dev_priv->rps.min_delay);
  2135. DRM_DEBUG_DRIVER("gpu freq request from %d to %d\n",
  2136. vlv_gpu_freq(dev_priv->mem_freq,
  2137. dev_priv->rps.cur_delay),
  2138. vlv_gpu_freq(dev_priv->mem_freq, val));
  2139. if (val == dev_priv->rps.cur_delay)
  2140. return;
  2141. valleyview_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2142. do {
  2143. valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
  2144. if (time_after(jiffies, timeout)) {
  2145. DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
  2146. break;
  2147. }
  2148. udelay(10);
  2149. } while (pval & 1);
  2150. valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
  2151. if ((pval >> 8) != val)
  2152. DRM_DEBUG_DRIVER("punit overrode freq: %d requested, but got %d\n",
  2153. val, pval >> 8);
  2154. /* Make sure we continue to get interrupts
  2155. * until we hit the minimum or maximum frequencies.
  2156. */
  2157. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  2158. dev_priv->rps.cur_delay = pval >> 8;
  2159. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
  2160. }
  2161. static void gen6_disable_rps(struct drm_device *dev)
  2162. {
  2163. struct drm_i915_private *dev_priv = dev->dev_private;
  2164. I915_WRITE(GEN6_RC_CONTROL, 0);
  2165. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  2166. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2167. I915_WRITE(GEN6_PMIER, 0);
  2168. /* Complete PM interrupt masking here doesn't race with the rps work
  2169. * item again unmasking PM interrupts because that is using a different
  2170. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2171. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2172. spin_lock_irq(&dev_priv->rps.lock);
  2173. dev_priv->rps.pm_iir = 0;
  2174. spin_unlock_irq(&dev_priv->rps.lock);
  2175. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  2176. }
  2177. static void valleyview_disable_rps(struct drm_device *dev)
  2178. {
  2179. struct drm_i915_private *dev_priv = dev->dev_private;
  2180. I915_WRITE(GEN6_RC_CONTROL, 0);
  2181. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2182. I915_WRITE(GEN6_PMIER, 0);
  2183. /* Complete PM interrupt masking here doesn't race with the rps work
  2184. * item again unmasking PM interrupts because that is using a different
  2185. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2186. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2187. spin_lock_irq(&dev_priv->rps.lock);
  2188. dev_priv->rps.pm_iir = 0;
  2189. spin_unlock_irq(&dev_priv->rps.lock);
  2190. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  2191. }
  2192. int intel_enable_rc6(const struct drm_device *dev)
  2193. {
  2194. /* Respect the kernel parameter if it is set */
  2195. if (i915_enable_rc6 >= 0)
  2196. return i915_enable_rc6;
  2197. /* Disable RC6 on Ironlake */
  2198. if (INTEL_INFO(dev)->gen == 5)
  2199. return 0;
  2200. if (IS_HASWELL(dev)) {
  2201. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  2202. return INTEL_RC6_ENABLE;
  2203. }
  2204. /* snb/ivb have more than one rc6 state. */
  2205. if (INTEL_INFO(dev)->gen == 6) {
  2206. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  2207. return INTEL_RC6_ENABLE;
  2208. }
  2209. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  2210. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  2211. }
  2212. static void gen6_enable_rps(struct drm_device *dev)
  2213. {
  2214. struct drm_i915_private *dev_priv = dev->dev_private;
  2215. struct intel_ring_buffer *ring;
  2216. u32 rp_state_cap;
  2217. u32 gt_perf_status;
  2218. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  2219. u32 gtfifodbg;
  2220. int rc6_mode;
  2221. int i, ret;
  2222. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2223. /* Here begins a magic sequence of register writes to enable
  2224. * auto-downclocking.
  2225. *
  2226. * Perhaps there might be some value in exposing these to
  2227. * userspace...
  2228. */
  2229. I915_WRITE(GEN6_RC_STATE, 0);
  2230. /* Clear the DBG now so we don't confuse earlier errors */
  2231. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2232. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2233. I915_WRITE(GTFIFODBG, gtfifodbg);
  2234. }
  2235. gen6_gt_force_wake_get(dev_priv);
  2236. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2237. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  2238. /* In units of 50MHz */
  2239. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  2240. dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
  2241. dev_priv->rps.cur_delay = 0;
  2242. /* disable the counters and set deterministic thresholds */
  2243. I915_WRITE(GEN6_RC_CONTROL, 0);
  2244. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  2245. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  2246. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  2247. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  2248. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  2249. for_each_ring(ring, dev_priv, i)
  2250. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2251. I915_WRITE(GEN6_RC_SLEEP, 0);
  2252. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  2253. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  2254. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  2255. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  2256. /* Check if we are enabling RC6 */
  2257. rc6_mode = intel_enable_rc6(dev_priv->dev);
  2258. if (rc6_mode & INTEL_RC6_ENABLE)
  2259. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  2260. /* We don't use those on Haswell */
  2261. if (!IS_HASWELL(dev)) {
  2262. if (rc6_mode & INTEL_RC6p_ENABLE)
  2263. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  2264. if (rc6_mode & INTEL_RC6pp_ENABLE)
  2265. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  2266. }
  2267. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  2268. (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  2269. (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  2270. (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  2271. I915_WRITE(GEN6_RC_CONTROL,
  2272. rc6_mask |
  2273. GEN6_RC_CTL_EI_MODE(1) |
  2274. GEN6_RC_CTL_HW_ENABLE);
  2275. if (IS_HASWELL(dev)) {
  2276. I915_WRITE(GEN6_RPNSWREQ,
  2277. HSW_FREQUENCY(10));
  2278. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  2279. HSW_FREQUENCY(12));
  2280. } else {
  2281. I915_WRITE(GEN6_RPNSWREQ,
  2282. GEN6_FREQUENCY(10) |
  2283. GEN6_OFFSET(0) |
  2284. GEN6_AGGRESSIVE_TURBO);
  2285. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  2286. GEN6_FREQUENCY(12));
  2287. }
  2288. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  2289. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  2290. dev_priv->rps.max_delay << 24 |
  2291. dev_priv->rps.min_delay << 16);
  2292. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  2293. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  2294. I915_WRITE(GEN6_RP_UP_EI, 66000);
  2295. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  2296. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2297. I915_WRITE(GEN6_RP_CONTROL,
  2298. GEN6_RP_MEDIA_TURBO |
  2299. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2300. GEN6_RP_MEDIA_IS_GFX |
  2301. GEN6_RP_ENABLE |
  2302. GEN6_RP_UP_BUSY_AVG |
  2303. (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
  2304. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  2305. if (!ret && (IS_GEN6(dev) || IS_IVYBRIDGE(dev))) {
  2306. pcu_mbox = 0;
  2307. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  2308. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  2309. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  2310. (dev_priv->rps.max_delay & 0xff) * 50,
  2311. (pcu_mbox & 0xff) * 50);
  2312. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  2313. }
  2314. } else {
  2315. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  2316. }
  2317. gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
  2318. /* requires MSI enabled */
  2319. I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
  2320. spin_lock_irq(&dev_priv->rps.lock);
  2321. WARN_ON(dev_priv->rps.pm_iir != 0);
  2322. I915_WRITE(GEN6_PMIMR, 0);
  2323. spin_unlock_irq(&dev_priv->rps.lock);
  2324. /* enable all PM interrupts */
  2325. I915_WRITE(GEN6_PMINTRMSK, 0);
  2326. rc6vids = 0;
  2327. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  2328. if (IS_GEN6(dev) && ret) {
  2329. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  2330. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  2331. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  2332. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  2333. rc6vids &= 0xffff00;
  2334. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  2335. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  2336. if (ret)
  2337. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  2338. }
  2339. gen6_gt_force_wake_put(dev_priv);
  2340. }
  2341. static void gen6_update_ring_freq(struct drm_device *dev)
  2342. {
  2343. struct drm_i915_private *dev_priv = dev->dev_private;
  2344. int min_freq = 15;
  2345. unsigned int gpu_freq;
  2346. unsigned int max_ia_freq, min_ring_freq;
  2347. int scaling_factor = 180;
  2348. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2349. max_ia_freq = cpufreq_quick_get_max(0);
  2350. /*
  2351. * Default to measured freq if none found, PCU will ensure we don't go
  2352. * over
  2353. */
  2354. if (!max_ia_freq)
  2355. max_ia_freq = tsc_khz;
  2356. /* Convert from kHz to MHz */
  2357. max_ia_freq /= 1000;
  2358. min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
  2359. /* convert DDR frequency from units of 133.3MHz to bandwidth */
  2360. min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
  2361. /*
  2362. * For each potential GPU frequency, load a ring frequency we'd like
  2363. * to use for memory access. We do this by specifying the IA frequency
  2364. * the PCU should use as a reference to determine the ring frequency.
  2365. */
  2366. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  2367. gpu_freq--) {
  2368. int diff = dev_priv->rps.max_delay - gpu_freq;
  2369. unsigned int ia_freq = 0, ring_freq = 0;
  2370. if (IS_HASWELL(dev)) {
  2371. ring_freq = (gpu_freq * 5 + 3) / 4;
  2372. ring_freq = max(min_ring_freq, ring_freq);
  2373. /* leave ia_freq as the default, chosen by cpufreq */
  2374. } else {
  2375. /* On older processors, there is no separate ring
  2376. * clock domain, so in order to boost the bandwidth
  2377. * of the ring, we need to upclock the CPU (ia_freq).
  2378. *
  2379. * For GPU frequencies less than 750MHz,
  2380. * just use the lowest ring freq.
  2381. */
  2382. if (gpu_freq < min_freq)
  2383. ia_freq = 800;
  2384. else
  2385. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  2386. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  2387. }
  2388. sandybridge_pcode_write(dev_priv,
  2389. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  2390. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  2391. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  2392. gpu_freq);
  2393. }
  2394. }
  2395. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  2396. {
  2397. u32 val, rp0;
  2398. valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE, &val);
  2399. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  2400. /* Clamp to max */
  2401. rp0 = min_t(u32, rp0, 0xea);
  2402. return rp0;
  2403. }
  2404. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  2405. {
  2406. u32 val, rpe;
  2407. valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO, &val);
  2408. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  2409. valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI, &val);
  2410. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  2411. return rpe;
  2412. }
  2413. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  2414. {
  2415. u32 val;
  2416. valleyview_punit_read(dev_priv, PUNIT_REG_GPU_LFM, &val);
  2417. return val & 0xff;
  2418. }
  2419. static void vlv_rps_timer_work(struct work_struct *work)
  2420. {
  2421. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  2422. rps.vlv_work.work);
  2423. /*
  2424. * Timer fired, we must be idle. Drop to min voltage state.
  2425. * Note: we use RPe here since it should match the
  2426. * Vmin we were shooting for. That should give us better
  2427. * perf when we come back out of RC6 than if we used the
  2428. * min freq available.
  2429. */
  2430. mutex_lock(&dev_priv->rps.hw_lock);
  2431. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  2432. mutex_unlock(&dev_priv->rps.hw_lock);
  2433. }
  2434. static void valleyview_enable_rps(struct drm_device *dev)
  2435. {
  2436. struct drm_i915_private *dev_priv = dev->dev_private;
  2437. struct intel_ring_buffer *ring;
  2438. u32 gtfifodbg, val, rpe;
  2439. int i;
  2440. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2441. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2442. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2443. I915_WRITE(GTFIFODBG, gtfifodbg);
  2444. }
  2445. gen6_gt_force_wake_get(dev_priv);
  2446. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  2447. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  2448. I915_WRITE(GEN6_RP_UP_EI, 66000);
  2449. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  2450. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2451. I915_WRITE(GEN6_RP_CONTROL,
  2452. GEN6_RP_MEDIA_TURBO |
  2453. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2454. GEN6_RP_MEDIA_IS_GFX |
  2455. GEN6_RP_ENABLE |
  2456. GEN6_RP_UP_BUSY_AVG |
  2457. GEN6_RP_DOWN_IDLE_CONT);
  2458. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  2459. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  2460. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  2461. for_each_ring(ring, dev_priv, i)
  2462. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2463. I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
  2464. /* allows RC6 residency counter to work */
  2465. I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
  2466. I915_WRITE(GEN6_RC_CONTROL,
  2467. GEN7_RC_CTL_TO_MODE);
  2468. valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &val);
  2469. switch ((val >> 6) & 3) {
  2470. case 0:
  2471. case 1:
  2472. dev_priv->mem_freq = 800;
  2473. break;
  2474. case 2:
  2475. dev_priv->mem_freq = 1066;
  2476. break;
  2477. case 3:
  2478. dev_priv->mem_freq = 1333;
  2479. break;
  2480. }
  2481. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  2482. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  2483. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  2484. DRM_DEBUG_DRIVER("current GPU freq: %d\n",
  2485. vlv_gpu_freq(dev_priv->mem_freq, (val >> 8) & 0xff));
  2486. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  2487. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  2488. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  2489. DRM_DEBUG_DRIVER("max GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
  2490. dev_priv->rps.max_delay));
  2491. rpe = valleyview_rps_rpe_freq(dev_priv);
  2492. DRM_DEBUG_DRIVER("RPe GPU freq: %d\n",
  2493. vlv_gpu_freq(dev_priv->mem_freq, rpe));
  2494. dev_priv->rps.rpe_delay = rpe;
  2495. val = valleyview_rps_min_freq(dev_priv);
  2496. DRM_DEBUG_DRIVER("min GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
  2497. val));
  2498. dev_priv->rps.min_delay = val;
  2499. DRM_DEBUG_DRIVER("setting GPU freq to %d\n",
  2500. vlv_gpu_freq(dev_priv->mem_freq, rpe));
  2501. INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
  2502. valleyview_set_rps(dev_priv->dev, rpe);
  2503. /* requires MSI enabled */
  2504. I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
  2505. spin_lock_irq(&dev_priv->rps.lock);
  2506. WARN_ON(dev_priv->rps.pm_iir != 0);
  2507. I915_WRITE(GEN6_PMIMR, 0);
  2508. spin_unlock_irq(&dev_priv->rps.lock);
  2509. /* enable all PM interrupts */
  2510. I915_WRITE(GEN6_PMINTRMSK, 0);
  2511. gen6_gt_force_wake_put(dev_priv);
  2512. }
  2513. void ironlake_teardown_rc6(struct drm_device *dev)
  2514. {
  2515. struct drm_i915_private *dev_priv = dev->dev_private;
  2516. if (dev_priv->ips.renderctx) {
  2517. i915_gem_object_unpin(dev_priv->ips.renderctx);
  2518. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  2519. dev_priv->ips.renderctx = NULL;
  2520. }
  2521. if (dev_priv->ips.pwrctx) {
  2522. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  2523. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  2524. dev_priv->ips.pwrctx = NULL;
  2525. }
  2526. }
  2527. static void ironlake_disable_rc6(struct drm_device *dev)
  2528. {
  2529. struct drm_i915_private *dev_priv = dev->dev_private;
  2530. if (I915_READ(PWRCTXA)) {
  2531. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  2532. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  2533. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  2534. 50);
  2535. I915_WRITE(PWRCTXA, 0);
  2536. POSTING_READ(PWRCTXA);
  2537. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  2538. POSTING_READ(RSTDBYCTL);
  2539. }
  2540. }
  2541. static int ironlake_setup_rc6(struct drm_device *dev)
  2542. {
  2543. struct drm_i915_private *dev_priv = dev->dev_private;
  2544. if (dev_priv->ips.renderctx == NULL)
  2545. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  2546. if (!dev_priv->ips.renderctx)
  2547. return -ENOMEM;
  2548. if (dev_priv->ips.pwrctx == NULL)
  2549. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  2550. if (!dev_priv->ips.pwrctx) {
  2551. ironlake_teardown_rc6(dev);
  2552. return -ENOMEM;
  2553. }
  2554. return 0;
  2555. }
  2556. static void ironlake_enable_rc6(struct drm_device *dev)
  2557. {
  2558. struct drm_i915_private *dev_priv = dev->dev_private;
  2559. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  2560. bool was_interruptible;
  2561. int ret;
  2562. /* rc6 disabled by default due to repeated reports of hanging during
  2563. * boot and resume.
  2564. */
  2565. if (!intel_enable_rc6(dev))
  2566. return;
  2567. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2568. ret = ironlake_setup_rc6(dev);
  2569. if (ret)
  2570. return;
  2571. was_interruptible = dev_priv->mm.interruptible;
  2572. dev_priv->mm.interruptible = false;
  2573. /*
  2574. * GPU can automatically power down the render unit if given a page
  2575. * to save state.
  2576. */
  2577. ret = intel_ring_begin(ring, 6);
  2578. if (ret) {
  2579. ironlake_teardown_rc6(dev);
  2580. dev_priv->mm.interruptible = was_interruptible;
  2581. return;
  2582. }
  2583. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  2584. intel_ring_emit(ring, MI_SET_CONTEXT);
  2585. intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
  2586. MI_MM_SPACE_GTT |
  2587. MI_SAVE_EXT_STATE_EN |
  2588. MI_RESTORE_EXT_STATE_EN |
  2589. MI_RESTORE_INHIBIT);
  2590. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  2591. intel_ring_emit(ring, MI_NOOP);
  2592. intel_ring_emit(ring, MI_FLUSH);
  2593. intel_ring_advance(ring);
  2594. /*
  2595. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  2596. * does an implicit flush, combined with MI_FLUSH above, it should be
  2597. * safe to assume that renderctx is valid
  2598. */
  2599. ret = intel_ring_idle(ring);
  2600. dev_priv->mm.interruptible = was_interruptible;
  2601. if (ret) {
  2602. DRM_ERROR("failed to enable ironlake power savings\n");
  2603. ironlake_teardown_rc6(dev);
  2604. return;
  2605. }
  2606. I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
  2607. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  2608. }
  2609. static unsigned long intel_pxfreq(u32 vidfreq)
  2610. {
  2611. unsigned long freq;
  2612. int div = (vidfreq & 0x3f0000) >> 16;
  2613. int post = (vidfreq & 0x3000) >> 12;
  2614. int pre = (vidfreq & 0x7);
  2615. if (!pre)
  2616. return 0;
  2617. freq = ((div * 133333) / ((1<<post) * pre));
  2618. return freq;
  2619. }
  2620. static const struct cparams {
  2621. u16 i;
  2622. u16 t;
  2623. u16 m;
  2624. u16 c;
  2625. } cparams[] = {
  2626. { 1, 1333, 301, 28664 },
  2627. { 1, 1066, 294, 24460 },
  2628. { 1, 800, 294, 25192 },
  2629. { 0, 1333, 276, 27605 },
  2630. { 0, 1066, 276, 27605 },
  2631. { 0, 800, 231, 23784 },
  2632. };
  2633. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  2634. {
  2635. u64 total_count, diff, ret;
  2636. u32 count1, count2, count3, m = 0, c = 0;
  2637. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  2638. int i;
  2639. assert_spin_locked(&mchdev_lock);
  2640. diff1 = now - dev_priv->ips.last_time1;
  2641. /* Prevent division-by-zero if we are asking too fast.
  2642. * Also, we don't get interesting results if we are polling
  2643. * faster than once in 10ms, so just return the saved value
  2644. * in such cases.
  2645. */
  2646. if (diff1 <= 10)
  2647. return dev_priv->ips.chipset_power;
  2648. count1 = I915_READ(DMIEC);
  2649. count2 = I915_READ(DDREC);
  2650. count3 = I915_READ(CSIEC);
  2651. total_count = count1 + count2 + count3;
  2652. /* FIXME: handle per-counter overflow */
  2653. if (total_count < dev_priv->ips.last_count1) {
  2654. diff = ~0UL - dev_priv->ips.last_count1;
  2655. diff += total_count;
  2656. } else {
  2657. diff = total_count - dev_priv->ips.last_count1;
  2658. }
  2659. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  2660. if (cparams[i].i == dev_priv->ips.c_m &&
  2661. cparams[i].t == dev_priv->ips.r_t) {
  2662. m = cparams[i].m;
  2663. c = cparams[i].c;
  2664. break;
  2665. }
  2666. }
  2667. diff = div_u64(diff, diff1);
  2668. ret = ((m * diff) + c);
  2669. ret = div_u64(ret, 10);
  2670. dev_priv->ips.last_count1 = total_count;
  2671. dev_priv->ips.last_time1 = now;
  2672. dev_priv->ips.chipset_power = ret;
  2673. return ret;
  2674. }
  2675. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  2676. {
  2677. unsigned long val;
  2678. if (dev_priv->info->gen != 5)
  2679. return 0;
  2680. spin_lock_irq(&mchdev_lock);
  2681. val = __i915_chipset_val(dev_priv);
  2682. spin_unlock_irq(&mchdev_lock);
  2683. return val;
  2684. }
  2685. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  2686. {
  2687. unsigned long m, x, b;
  2688. u32 tsfs;
  2689. tsfs = I915_READ(TSFS);
  2690. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  2691. x = I915_READ8(TR1);
  2692. b = tsfs & TSFS_INTR_MASK;
  2693. return ((m * x) / 127) - b;
  2694. }
  2695. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  2696. {
  2697. static const struct v_table {
  2698. u16 vd; /* in .1 mil */
  2699. u16 vm; /* in .1 mil */
  2700. } v_table[] = {
  2701. { 0, 0, },
  2702. { 375, 0, },
  2703. { 500, 0, },
  2704. { 625, 0, },
  2705. { 750, 0, },
  2706. { 875, 0, },
  2707. { 1000, 0, },
  2708. { 1125, 0, },
  2709. { 4125, 3000, },
  2710. { 4125, 3000, },
  2711. { 4125, 3000, },
  2712. { 4125, 3000, },
  2713. { 4125, 3000, },
  2714. { 4125, 3000, },
  2715. { 4125, 3000, },
  2716. { 4125, 3000, },
  2717. { 4125, 3000, },
  2718. { 4125, 3000, },
  2719. { 4125, 3000, },
  2720. { 4125, 3000, },
  2721. { 4125, 3000, },
  2722. { 4125, 3000, },
  2723. { 4125, 3000, },
  2724. { 4125, 3000, },
  2725. { 4125, 3000, },
  2726. { 4125, 3000, },
  2727. { 4125, 3000, },
  2728. { 4125, 3000, },
  2729. { 4125, 3000, },
  2730. { 4125, 3000, },
  2731. { 4125, 3000, },
  2732. { 4125, 3000, },
  2733. { 4250, 3125, },
  2734. { 4375, 3250, },
  2735. { 4500, 3375, },
  2736. { 4625, 3500, },
  2737. { 4750, 3625, },
  2738. { 4875, 3750, },
  2739. { 5000, 3875, },
  2740. { 5125, 4000, },
  2741. { 5250, 4125, },
  2742. { 5375, 4250, },
  2743. { 5500, 4375, },
  2744. { 5625, 4500, },
  2745. { 5750, 4625, },
  2746. { 5875, 4750, },
  2747. { 6000, 4875, },
  2748. { 6125, 5000, },
  2749. { 6250, 5125, },
  2750. { 6375, 5250, },
  2751. { 6500, 5375, },
  2752. { 6625, 5500, },
  2753. { 6750, 5625, },
  2754. { 6875, 5750, },
  2755. { 7000, 5875, },
  2756. { 7125, 6000, },
  2757. { 7250, 6125, },
  2758. { 7375, 6250, },
  2759. { 7500, 6375, },
  2760. { 7625, 6500, },
  2761. { 7750, 6625, },
  2762. { 7875, 6750, },
  2763. { 8000, 6875, },
  2764. { 8125, 7000, },
  2765. { 8250, 7125, },
  2766. { 8375, 7250, },
  2767. { 8500, 7375, },
  2768. { 8625, 7500, },
  2769. { 8750, 7625, },
  2770. { 8875, 7750, },
  2771. { 9000, 7875, },
  2772. { 9125, 8000, },
  2773. { 9250, 8125, },
  2774. { 9375, 8250, },
  2775. { 9500, 8375, },
  2776. { 9625, 8500, },
  2777. { 9750, 8625, },
  2778. { 9875, 8750, },
  2779. { 10000, 8875, },
  2780. { 10125, 9000, },
  2781. { 10250, 9125, },
  2782. { 10375, 9250, },
  2783. { 10500, 9375, },
  2784. { 10625, 9500, },
  2785. { 10750, 9625, },
  2786. { 10875, 9750, },
  2787. { 11000, 9875, },
  2788. { 11125, 10000, },
  2789. { 11250, 10125, },
  2790. { 11375, 10250, },
  2791. { 11500, 10375, },
  2792. { 11625, 10500, },
  2793. { 11750, 10625, },
  2794. { 11875, 10750, },
  2795. { 12000, 10875, },
  2796. { 12125, 11000, },
  2797. { 12250, 11125, },
  2798. { 12375, 11250, },
  2799. { 12500, 11375, },
  2800. { 12625, 11500, },
  2801. { 12750, 11625, },
  2802. { 12875, 11750, },
  2803. { 13000, 11875, },
  2804. { 13125, 12000, },
  2805. { 13250, 12125, },
  2806. { 13375, 12250, },
  2807. { 13500, 12375, },
  2808. { 13625, 12500, },
  2809. { 13750, 12625, },
  2810. { 13875, 12750, },
  2811. { 14000, 12875, },
  2812. { 14125, 13000, },
  2813. { 14250, 13125, },
  2814. { 14375, 13250, },
  2815. { 14500, 13375, },
  2816. { 14625, 13500, },
  2817. { 14750, 13625, },
  2818. { 14875, 13750, },
  2819. { 15000, 13875, },
  2820. { 15125, 14000, },
  2821. { 15250, 14125, },
  2822. { 15375, 14250, },
  2823. { 15500, 14375, },
  2824. { 15625, 14500, },
  2825. { 15750, 14625, },
  2826. { 15875, 14750, },
  2827. { 16000, 14875, },
  2828. { 16125, 15000, },
  2829. };
  2830. if (dev_priv->info->is_mobile)
  2831. return v_table[pxvid].vm;
  2832. else
  2833. return v_table[pxvid].vd;
  2834. }
  2835. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  2836. {
  2837. struct timespec now, diff1;
  2838. u64 diff;
  2839. unsigned long diffms;
  2840. u32 count;
  2841. assert_spin_locked(&mchdev_lock);
  2842. getrawmonotonic(&now);
  2843. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  2844. /* Don't divide by 0 */
  2845. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  2846. if (!diffms)
  2847. return;
  2848. count = I915_READ(GFXEC);
  2849. if (count < dev_priv->ips.last_count2) {
  2850. diff = ~0UL - dev_priv->ips.last_count2;
  2851. diff += count;
  2852. } else {
  2853. diff = count - dev_priv->ips.last_count2;
  2854. }
  2855. dev_priv->ips.last_count2 = count;
  2856. dev_priv->ips.last_time2 = now;
  2857. /* More magic constants... */
  2858. diff = diff * 1181;
  2859. diff = div_u64(diff, diffms * 10);
  2860. dev_priv->ips.gfx_power = diff;
  2861. }
  2862. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  2863. {
  2864. if (dev_priv->info->gen != 5)
  2865. return;
  2866. spin_lock_irq(&mchdev_lock);
  2867. __i915_update_gfx_val(dev_priv);
  2868. spin_unlock_irq(&mchdev_lock);
  2869. }
  2870. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  2871. {
  2872. unsigned long t, corr, state1, corr2, state2;
  2873. u32 pxvid, ext_v;
  2874. assert_spin_locked(&mchdev_lock);
  2875. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  2876. pxvid = (pxvid >> 24) & 0x7f;
  2877. ext_v = pvid_to_extvid(dev_priv, pxvid);
  2878. state1 = ext_v;
  2879. t = i915_mch_val(dev_priv);
  2880. /* Revel in the empirically derived constants */
  2881. /* Correction factor in 1/100000 units */
  2882. if (t > 80)
  2883. corr = ((t * 2349) + 135940);
  2884. else if (t >= 50)
  2885. corr = ((t * 964) + 29317);
  2886. else /* < 50 */
  2887. corr = ((t * 301) + 1004);
  2888. corr = corr * ((150142 * state1) / 10000 - 78642);
  2889. corr /= 100000;
  2890. corr2 = (corr * dev_priv->ips.corr);
  2891. state2 = (corr2 * state1) / 10000;
  2892. state2 /= 100; /* convert to mW */
  2893. __i915_update_gfx_val(dev_priv);
  2894. return dev_priv->ips.gfx_power + state2;
  2895. }
  2896. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  2897. {
  2898. unsigned long val;
  2899. if (dev_priv->info->gen != 5)
  2900. return 0;
  2901. spin_lock_irq(&mchdev_lock);
  2902. val = __i915_gfx_val(dev_priv);
  2903. spin_unlock_irq(&mchdev_lock);
  2904. return val;
  2905. }
  2906. /**
  2907. * i915_read_mch_val - return value for IPS use
  2908. *
  2909. * Calculate and return a value for the IPS driver to use when deciding whether
  2910. * we have thermal and power headroom to increase CPU or GPU power budget.
  2911. */
  2912. unsigned long i915_read_mch_val(void)
  2913. {
  2914. struct drm_i915_private *dev_priv;
  2915. unsigned long chipset_val, graphics_val, ret = 0;
  2916. spin_lock_irq(&mchdev_lock);
  2917. if (!i915_mch_dev)
  2918. goto out_unlock;
  2919. dev_priv = i915_mch_dev;
  2920. chipset_val = __i915_chipset_val(dev_priv);
  2921. graphics_val = __i915_gfx_val(dev_priv);
  2922. ret = chipset_val + graphics_val;
  2923. out_unlock:
  2924. spin_unlock_irq(&mchdev_lock);
  2925. return ret;
  2926. }
  2927. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  2928. /**
  2929. * i915_gpu_raise - raise GPU frequency limit
  2930. *
  2931. * Raise the limit; IPS indicates we have thermal headroom.
  2932. */
  2933. bool i915_gpu_raise(void)
  2934. {
  2935. struct drm_i915_private *dev_priv;
  2936. bool ret = true;
  2937. spin_lock_irq(&mchdev_lock);
  2938. if (!i915_mch_dev) {
  2939. ret = false;
  2940. goto out_unlock;
  2941. }
  2942. dev_priv = i915_mch_dev;
  2943. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  2944. dev_priv->ips.max_delay--;
  2945. out_unlock:
  2946. spin_unlock_irq(&mchdev_lock);
  2947. return ret;
  2948. }
  2949. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  2950. /**
  2951. * i915_gpu_lower - lower GPU frequency limit
  2952. *
  2953. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  2954. * frequency maximum.
  2955. */
  2956. bool i915_gpu_lower(void)
  2957. {
  2958. struct drm_i915_private *dev_priv;
  2959. bool ret = true;
  2960. spin_lock_irq(&mchdev_lock);
  2961. if (!i915_mch_dev) {
  2962. ret = false;
  2963. goto out_unlock;
  2964. }
  2965. dev_priv = i915_mch_dev;
  2966. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  2967. dev_priv->ips.max_delay++;
  2968. out_unlock:
  2969. spin_unlock_irq(&mchdev_lock);
  2970. return ret;
  2971. }
  2972. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  2973. /**
  2974. * i915_gpu_busy - indicate GPU business to IPS
  2975. *
  2976. * Tell the IPS driver whether or not the GPU is busy.
  2977. */
  2978. bool i915_gpu_busy(void)
  2979. {
  2980. struct drm_i915_private *dev_priv;
  2981. struct intel_ring_buffer *ring;
  2982. bool ret = false;
  2983. int i;
  2984. spin_lock_irq(&mchdev_lock);
  2985. if (!i915_mch_dev)
  2986. goto out_unlock;
  2987. dev_priv = i915_mch_dev;
  2988. for_each_ring(ring, dev_priv, i)
  2989. ret |= !list_empty(&ring->request_list);
  2990. out_unlock:
  2991. spin_unlock_irq(&mchdev_lock);
  2992. return ret;
  2993. }
  2994. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  2995. /**
  2996. * i915_gpu_turbo_disable - disable graphics turbo
  2997. *
  2998. * Disable graphics turbo by resetting the max frequency and setting the
  2999. * current frequency to the default.
  3000. */
  3001. bool i915_gpu_turbo_disable(void)
  3002. {
  3003. struct drm_i915_private *dev_priv;
  3004. bool ret = true;
  3005. spin_lock_irq(&mchdev_lock);
  3006. if (!i915_mch_dev) {
  3007. ret = false;
  3008. goto out_unlock;
  3009. }
  3010. dev_priv = i915_mch_dev;
  3011. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3012. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  3013. ret = false;
  3014. out_unlock:
  3015. spin_unlock_irq(&mchdev_lock);
  3016. return ret;
  3017. }
  3018. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  3019. /**
  3020. * Tells the intel_ips driver that the i915 driver is now loaded, if
  3021. * IPS got loaded first.
  3022. *
  3023. * This awkward dance is so that neither module has to depend on the
  3024. * other in order for IPS to do the appropriate communication of
  3025. * GPU turbo limits to i915.
  3026. */
  3027. static void
  3028. ips_ping_for_i915_load(void)
  3029. {
  3030. void (*link)(void);
  3031. link = symbol_get(ips_link_to_i915_driver);
  3032. if (link) {
  3033. link();
  3034. symbol_put(ips_link_to_i915_driver);
  3035. }
  3036. }
  3037. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  3038. {
  3039. /* We only register the i915 ips part with intel-ips once everything is
  3040. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  3041. spin_lock_irq(&mchdev_lock);
  3042. i915_mch_dev = dev_priv;
  3043. spin_unlock_irq(&mchdev_lock);
  3044. ips_ping_for_i915_load();
  3045. }
  3046. void intel_gpu_ips_teardown(void)
  3047. {
  3048. spin_lock_irq(&mchdev_lock);
  3049. i915_mch_dev = NULL;
  3050. spin_unlock_irq(&mchdev_lock);
  3051. }
  3052. static void intel_init_emon(struct drm_device *dev)
  3053. {
  3054. struct drm_i915_private *dev_priv = dev->dev_private;
  3055. u32 lcfuse;
  3056. u8 pxw[16];
  3057. int i;
  3058. /* Disable to program */
  3059. I915_WRITE(ECR, 0);
  3060. POSTING_READ(ECR);
  3061. /* Program energy weights for various events */
  3062. I915_WRITE(SDEW, 0x15040d00);
  3063. I915_WRITE(CSIEW0, 0x007f0000);
  3064. I915_WRITE(CSIEW1, 0x1e220004);
  3065. I915_WRITE(CSIEW2, 0x04000004);
  3066. for (i = 0; i < 5; i++)
  3067. I915_WRITE(PEW + (i * 4), 0);
  3068. for (i = 0; i < 3; i++)
  3069. I915_WRITE(DEW + (i * 4), 0);
  3070. /* Program P-state weights to account for frequency power adjustment */
  3071. for (i = 0; i < 16; i++) {
  3072. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  3073. unsigned long freq = intel_pxfreq(pxvidfreq);
  3074. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  3075. PXVFREQ_PX_SHIFT;
  3076. unsigned long val;
  3077. val = vid * vid;
  3078. val *= (freq / 1000);
  3079. val *= 255;
  3080. val /= (127*127*900);
  3081. if (val > 0xff)
  3082. DRM_ERROR("bad pxval: %ld\n", val);
  3083. pxw[i] = val;
  3084. }
  3085. /* Render standby states get 0 weight */
  3086. pxw[14] = 0;
  3087. pxw[15] = 0;
  3088. for (i = 0; i < 4; i++) {
  3089. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  3090. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  3091. I915_WRITE(PXW + (i * 4), val);
  3092. }
  3093. /* Adjust magic regs to magic values (more experimental results) */
  3094. I915_WRITE(OGW0, 0);
  3095. I915_WRITE(OGW1, 0);
  3096. I915_WRITE(EG0, 0x00007f00);
  3097. I915_WRITE(EG1, 0x0000000e);
  3098. I915_WRITE(EG2, 0x000e0000);
  3099. I915_WRITE(EG3, 0x68000300);
  3100. I915_WRITE(EG4, 0x42000000);
  3101. I915_WRITE(EG5, 0x00140031);
  3102. I915_WRITE(EG6, 0);
  3103. I915_WRITE(EG7, 0);
  3104. for (i = 0; i < 8; i++)
  3105. I915_WRITE(PXWL + (i * 4), 0);
  3106. /* Enable PMON + select events */
  3107. I915_WRITE(ECR, 0x80000019);
  3108. lcfuse = I915_READ(LCFUSE02);
  3109. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  3110. }
  3111. void intel_disable_gt_powersave(struct drm_device *dev)
  3112. {
  3113. struct drm_i915_private *dev_priv = dev->dev_private;
  3114. /* Interrupts should be disabled already to avoid re-arming. */
  3115. WARN_ON(dev->irq_enabled);
  3116. if (IS_IRONLAKE_M(dev)) {
  3117. ironlake_disable_drps(dev);
  3118. ironlake_disable_rc6(dev);
  3119. } else if (INTEL_INFO(dev)->gen >= 6) {
  3120. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  3121. cancel_work_sync(&dev_priv->rps.work);
  3122. if (IS_VALLEYVIEW(dev))
  3123. cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
  3124. mutex_lock(&dev_priv->rps.hw_lock);
  3125. if (IS_VALLEYVIEW(dev))
  3126. valleyview_disable_rps(dev);
  3127. else
  3128. gen6_disable_rps(dev);
  3129. mutex_unlock(&dev_priv->rps.hw_lock);
  3130. }
  3131. }
  3132. static void intel_gen6_powersave_work(struct work_struct *work)
  3133. {
  3134. struct drm_i915_private *dev_priv =
  3135. container_of(work, struct drm_i915_private,
  3136. rps.delayed_resume_work.work);
  3137. struct drm_device *dev = dev_priv->dev;
  3138. mutex_lock(&dev_priv->rps.hw_lock);
  3139. if (IS_VALLEYVIEW(dev)) {
  3140. valleyview_enable_rps(dev);
  3141. } else {
  3142. gen6_enable_rps(dev);
  3143. gen6_update_ring_freq(dev);
  3144. }
  3145. mutex_unlock(&dev_priv->rps.hw_lock);
  3146. }
  3147. void intel_enable_gt_powersave(struct drm_device *dev)
  3148. {
  3149. struct drm_i915_private *dev_priv = dev->dev_private;
  3150. if (IS_IRONLAKE_M(dev)) {
  3151. ironlake_enable_drps(dev);
  3152. ironlake_enable_rc6(dev);
  3153. intel_init_emon(dev);
  3154. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  3155. /*
  3156. * PCU communication is slow and this doesn't need to be
  3157. * done at any specific time, so do this out of our fast path
  3158. * to make resume and init faster.
  3159. */
  3160. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  3161. round_jiffies_up_relative(HZ));
  3162. }
  3163. }
  3164. static void ibx_init_clock_gating(struct drm_device *dev)
  3165. {
  3166. struct drm_i915_private *dev_priv = dev->dev_private;
  3167. /*
  3168. * On Ibex Peak and Cougar Point, we need to disable clock
  3169. * gating for the panel power sequencer or it will fail to
  3170. * start up when no ports are active.
  3171. */
  3172. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  3173. }
  3174. static void ironlake_init_clock_gating(struct drm_device *dev)
  3175. {
  3176. struct drm_i915_private *dev_priv = dev->dev_private;
  3177. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  3178. /* Required for FBC */
  3179. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  3180. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  3181. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  3182. I915_WRITE(PCH_3DCGDIS0,
  3183. MARIUNIT_CLOCK_GATE_DISABLE |
  3184. SVSMUNIT_CLOCK_GATE_DISABLE);
  3185. I915_WRITE(PCH_3DCGDIS1,
  3186. VFMUNIT_CLOCK_GATE_DISABLE);
  3187. /*
  3188. * According to the spec the following bits should be set in
  3189. * order to enable memory self-refresh
  3190. * The bit 22/21 of 0x42004
  3191. * The bit 5 of 0x42020
  3192. * The bit 15 of 0x45000
  3193. */
  3194. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3195. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  3196. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  3197. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  3198. I915_WRITE(DISP_ARB_CTL,
  3199. (I915_READ(DISP_ARB_CTL) |
  3200. DISP_FBC_WM_DIS));
  3201. I915_WRITE(WM3_LP_ILK, 0);
  3202. I915_WRITE(WM2_LP_ILK, 0);
  3203. I915_WRITE(WM1_LP_ILK, 0);
  3204. /*
  3205. * Based on the document from hardware guys the following bits
  3206. * should be set unconditionally in order to enable FBC.
  3207. * The bit 22 of 0x42000
  3208. * The bit 22 of 0x42004
  3209. * The bit 7,8,9 of 0x42020.
  3210. */
  3211. if (IS_IRONLAKE_M(dev)) {
  3212. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  3213. I915_READ(ILK_DISPLAY_CHICKEN1) |
  3214. ILK_FBCQ_DIS);
  3215. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3216. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3217. ILK_DPARB_GATE);
  3218. }
  3219. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  3220. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3221. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3222. ILK_ELPIN_409_SELECT);
  3223. I915_WRITE(_3D_CHICKEN2,
  3224. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  3225. _3D_CHICKEN2_WM_READ_PIPELINED);
  3226. /* WaDisableRenderCachePipelinedFlush:ilk */
  3227. I915_WRITE(CACHE_MODE_0,
  3228. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  3229. ibx_init_clock_gating(dev);
  3230. }
  3231. static void cpt_init_clock_gating(struct drm_device *dev)
  3232. {
  3233. struct drm_i915_private *dev_priv = dev->dev_private;
  3234. int pipe;
  3235. uint32_t val;
  3236. /*
  3237. * On Ibex Peak and Cougar Point, we need to disable clock
  3238. * gating for the panel power sequencer or it will fail to
  3239. * start up when no ports are active.
  3240. */
  3241. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  3242. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  3243. DPLS_EDP_PPS_FIX_DIS);
  3244. /* The below fixes the weird display corruption, a few pixels shifted
  3245. * downward, on (only) LVDS of some HP laptops with IVY.
  3246. */
  3247. for_each_pipe(pipe) {
  3248. val = I915_READ(TRANS_CHICKEN2(pipe));
  3249. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  3250. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  3251. if (dev_priv->fdi_rx_polarity_inverted)
  3252. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  3253. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  3254. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  3255. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  3256. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  3257. }
  3258. /* WADP0ClockGatingDisable */
  3259. for_each_pipe(pipe) {
  3260. I915_WRITE(TRANS_CHICKEN1(pipe),
  3261. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  3262. }
  3263. }
  3264. static void gen6_check_mch_setup(struct drm_device *dev)
  3265. {
  3266. struct drm_i915_private *dev_priv = dev->dev_private;
  3267. uint32_t tmp;
  3268. tmp = I915_READ(MCH_SSKPD);
  3269. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  3270. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  3271. DRM_INFO("This can cause pipe underruns and display issues.\n");
  3272. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  3273. }
  3274. }
  3275. static void gen6_init_clock_gating(struct drm_device *dev)
  3276. {
  3277. struct drm_i915_private *dev_priv = dev->dev_private;
  3278. int pipe;
  3279. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  3280. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  3281. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3282. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3283. ILK_ELPIN_409_SELECT);
  3284. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  3285. I915_WRITE(_3D_CHICKEN,
  3286. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  3287. /* WaSetupGtModeTdRowDispatch:snb */
  3288. if (IS_SNB_GT1(dev))
  3289. I915_WRITE(GEN6_GT_MODE,
  3290. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  3291. I915_WRITE(WM3_LP_ILK, 0);
  3292. I915_WRITE(WM2_LP_ILK, 0);
  3293. I915_WRITE(WM1_LP_ILK, 0);
  3294. I915_WRITE(CACHE_MODE_0,
  3295. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  3296. I915_WRITE(GEN6_UCGCTL1,
  3297. I915_READ(GEN6_UCGCTL1) |
  3298. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  3299. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  3300. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3301. * gating disable must be set. Failure to set it results in
  3302. * flickering pixels due to Z write ordering failures after
  3303. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3304. * Sanctuary and Tropics, and apparently anything else with
  3305. * alpha test or pixel discard.
  3306. *
  3307. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3308. * but we didn't debug actual testcases to find it out.
  3309. *
  3310. * Also apply WaDisableVDSUnitClockGating:snb and
  3311. * WaDisableRCPBUnitClockGating:snb.
  3312. */
  3313. I915_WRITE(GEN6_UCGCTL2,
  3314. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  3315. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  3316. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3317. /* Bspec says we need to always set all mask bits. */
  3318. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  3319. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  3320. /*
  3321. * According to the spec the following bits should be
  3322. * set in order to enable memory self-refresh and fbc:
  3323. * The bit21 and bit22 of 0x42000
  3324. * The bit21 and bit22 of 0x42004
  3325. * The bit5 and bit7 of 0x42020
  3326. * The bit14 of 0x70180
  3327. * The bit14 of 0x71180
  3328. */
  3329. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  3330. I915_READ(ILK_DISPLAY_CHICKEN1) |
  3331. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  3332. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3333. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3334. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  3335. I915_WRITE(ILK_DSPCLK_GATE_D,
  3336. I915_READ(ILK_DSPCLK_GATE_D) |
  3337. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  3338. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  3339. /* WaMbcDriverBootEnable:snb */
  3340. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3341. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3342. for_each_pipe(pipe) {
  3343. I915_WRITE(DSPCNTR(pipe),
  3344. I915_READ(DSPCNTR(pipe)) |
  3345. DISPPLANE_TRICKLE_FEED_DISABLE);
  3346. intel_flush_display_plane(dev_priv, pipe);
  3347. }
  3348. /* The default value should be 0x200 according to docs, but the two
  3349. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  3350. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  3351. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  3352. cpt_init_clock_gating(dev);
  3353. gen6_check_mch_setup(dev);
  3354. }
  3355. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  3356. {
  3357. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  3358. reg &= ~GEN7_FF_SCHED_MASK;
  3359. reg |= GEN7_FF_TS_SCHED_HW;
  3360. reg |= GEN7_FF_VS_SCHED_HW;
  3361. reg |= GEN7_FF_DS_SCHED_HW;
  3362. if (IS_HASWELL(dev_priv->dev))
  3363. reg &= ~GEN7_FF_VS_REF_CNT_FFME;
  3364. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  3365. }
  3366. static void lpt_init_clock_gating(struct drm_device *dev)
  3367. {
  3368. struct drm_i915_private *dev_priv = dev->dev_private;
  3369. /*
  3370. * TODO: this bit should only be enabled when really needed, then
  3371. * disabled when not needed anymore in order to save power.
  3372. */
  3373. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  3374. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  3375. I915_READ(SOUTH_DSPCLK_GATE_D) |
  3376. PCH_LP_PARTITION_LEVEL_DISABLE);
  3377. }
  3378. static void haswell_init_clock_gating(struct drm_device *dev)
  3379. {
  3380. struct drm_i915_private *dev_priv = dev->dev_private;
  3381. int pipe;
  3382. I915_WRITE(WM3_LP_ILK, 0);
  3383. I915_WRITE(WM2_LP_ILK, 0);
  3384. I915_WRITE(WM1_LP_ILK, 0);
  3385. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3386. * This implements the WaDisableRCZUnitClockGating:hsw workaround.
  3387. */
  3388. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  3389. /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
  3390. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3391. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3392. /* WaApplyL3ControlAndL3ChickenMode:hsw */
  3393. I915_WRITE(GEN7_L3CNTLREG1,
  3394. GEN7_WA_FOR_GEN7_L3_CONTROL);
  3395. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  3396. GEN7_WA_L3_CHICKEN_MODE);
  3397. /* This is required by WaCatErrorRejectionIssue:hsw */
  3398. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3399. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3400. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3401. for_each_pipe(pipe) {
  3402. I915_WRITE(DSPCNTR(pipe),
  3403. I915_READ(DSPCNTR(pipe)) |
  3404. DISPPLANE_TRICKLE_FEED_DISABLE);
  3405. intel_flush_display_plane(dev_priv, pipe);
  3406. }
  3407. /* WaVSRefCountFullforceMissDisable:hsw */
  3408. gen7_setup_fixed_func_scheduler(dev_priv);
  3409. /* WaDisable4x2SubspanOptimization:hsw */
  3410. I915_WRITE(CACHE_MODE_1,
  3411. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3412. /* WaMbcDriverBootEnable:hsw */
  3413. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3414. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3415. /* WaSwitchSolVfFArbitrationPriority:hsw */
  3416. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  3417. /* XXX: This is a workaround for early silicon revisions and should be
  3418. * removed later.
  3419. */
  3420. I915_WRITE(WM_DBG,
  3421. I915_READ(WM_DBG) |
  3422. WM_DBG_DISALLOW_MULTIPLE_LP |
  3423. WM_DBG_DISALLOW_SPRITE |
  3424. WM_DBG_DISALLOW_MAXFIFO);
  3425. lpt_init_clock_gating(dev);
  3426. }
  3427. static void ivybridge_init_clock_gating(struct drm_device *dev)
  3428. {
  3429. struct drm_i915_private *dev_priv = dev->dev_private;
  3430. int pipe;
  3431. uint32_t snpcr;
  3432. I915_WRITE(WM3_LP_ILK, 0);
  3433. I915_WRITE(WM2_LP_ILK, 0);
  3434. I915_WRITE(WM1_LP_ILK, 0);
  3435. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  3436. /* WaDisableEarlyCull:ivb */
  3437. I915_WRITE(_3D_CHICKEN3,
  3438. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  3439. /* WaDisableBackToBackFlipFix:ivb */
  3440. I915_WRITE(IVB_CHICKEN3,
  3441. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  3442. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  3443. /* WaDisablePSDDualDispatchEnable:ivb */
  3444. if (IS_IVB_GT1(dev))
  3445. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  3446. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3447. else
  3448. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  3449. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3450. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  3451. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3452. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3453. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  3454. I915_WRITE(GEN7_L3CNTLREG1,
  3455. GEN7_WA_FOR_GEN7_L3_CONTROL);
  3456. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  3457. GEN7_WA_L3_CHICKEN_MODE);
  3458. if (IS_IVB_GT1(dev))
  3459. I915_WRITE(GEN7_ROW_CHICKEN2,
  3460. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3461. else
  3462. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  3463. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3464. /* WaForceL3Serialization:ivb */
  3465. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3466. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3467. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3468. * gating disable must be set. Failure to set it results in
  3469. * flickering pixels due to Z write ordering failures after
  3470. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3471. * Sanctuary and Tropics, and apparently anything else with
  3472. * alpha test or pixel discard.
  3473. *
  3474. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3475. * but we didn't debug actual testcases to find it out.
  3476. *
  3477. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3478. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  3479. */
  3480. I915_WRITE(GEN6_UCGCTL2,
  3481. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  3482. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3483. /* This is required by WaCatErrorRejectionIssue:ivb */
  3484. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3485. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3486. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3487. for_each_pipe(pipe) {
  3488. I915_WRITE(DSPCNTR(pipe),
  3489. I915_READ(DSPCNTR(pipe)) |
  3490. DISPPLANE_TRICKLE_FEED_DISABLE);
  3491. intel_flush_display_plane(dev_priv, pipe);
  3492. }
  3493. /* WaMbcDriverBootEnable:ivb */
  3494. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3495. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3496. /* WaVSRefCountFullforceMissDisable:ivb */
  3497. gen7_setup_fixed_func_scheduler(dev_priv);
  3498. /* WaDisable4x2SubspanOptimization:ivb */
  3499. I915_WRITE(CACHE_MODE_1,
  3500. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3501. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3502. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3503. snpcr |= GEN6_MBC_SNPCR_MED;
  3504. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3505. if (!HAS_PCH_NOP(dev))
  3506. cpt_init_clock_gating(dev);
  3507. gen6_check_mch_setup(dev);
  3508. }
  3509. static void valleyview_init_clock_gating(struct drm_device *dev)
  3510. {
  3511. struct drm_i915_private *dev_priv = dev->dev_private;
  3512. int pipe;
  3513. I915_WRITE(WM3_LP_ILK, 0);
  3514. I915_WRITE(WM2_LP_ILK, 0);
  3515. I915_WRITE(WM1_LP_ILK, 0);
  3516. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  3517. /* WaDisableEarlyCull:vlv */
  3518. I915_WRITE(_3D_CHICKEN3,
  3519. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  3520. /* WaDisableBackToBackFlipFix:vlv */
  3521. I915_WRITE(IVB_CHICKEN3,
  3522. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  3523. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  3524. /* WaDisablePSDDualDispatchEnable:vlv */
  3525. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  3526. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  3527. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3528. /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
  3529. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3530. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3531. /* WaApplyL3ControlAndL3ChickenMode:vlv */
  3532. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  3533. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  3534. /* WaForceL3Serialization:vlv */
  3535. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3536. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3537. /* WaDisableDopClockGating:vlv */
  3538. I915_WRITE(GEN7_ROW_CHICKEN2,
  3539. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3540. /* WaForceL3Serialization:vlv */
  3541. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3542. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3543. /* This is required by WaCatErrorRejectionIssue:vlv */
  3544. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3545. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3546. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3547. /* WaMbcDriverBootEnable:vlv */
  3548. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3549. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3550. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3551. * gating disable must be set. Failure to set it results in
  3552. * flickering pixels due to Z write ordering failures after
  3553. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3554. * Sanctuary and Tropics, and apparently anything else with
  3555. * alpha test or pixel discard.
  3556. *
  3557. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3558. * but we didn't debug actual testcases to find it out.
  3559. *
  3560. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3561. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  3562. *
  3563. * Also apply WaDisableVDSUnitClockGating:vlv and
  3564. * WaDisableRCPBUnitClockGating:vlv.
  3565. */
  3566. I915_WRITE(GEN6_UCGCTL2,
  3567. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  3568. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  3569. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  3570. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  3571. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3572. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  3573. for_each_pipe(pipe) {
  3574. I915_WRITE(DSPCNTR(pipe),
  3575. I915_READ(DSPCNTR(pipe)) |
  3576. DISPPLANE_TRICKLE_FEED_DISABLE);
  3577. intel_flush_display_plane(dev_priv, pipe);
  3578. }
  3579. I915_WRITE(CACHE_MODE_1,
  3580. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3581. /*
  3582. * WaDisableVLVClockGating_VBIIssue:vlv
  3583. * Disable clock gating on th GCFG unit to prevent a delay
  3584. * in the reporting of vblank events.
  3585. */
  3586. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  3587. /* Conservative clock gating settings for now */
  3588. I915_WRITE(0x9400, 0xffffffff);
  3589. I915_WRITE(0x9404, 0xffffffff);
  3590. I915_WRITE(0x9408, 0xffffffff);
  3591. I915_WRITE(0x940c, 0xffffffff);
  3592. I915_WRITE(0x9410, 0xffffffff);
  3593. I915_WRITE(0x9414, 0xffffffff);
  3594. I915_WRITE(0x9418, 0xffffffff);
  3595. }
  3596. static void g4x_init_clock_gating(struct drm_device *dev)
  3597. {
  3598. struct drm_i915_private *dev_priv = dev->dev_private;
  3599. uint32_t dspclk_gate;
  3600. I915_WRITE(RENCLK_GATE_D1, 0);
  3601. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  3602. GS_UNIT_CLOCK_GATE_DISABLE |
  3603. CL_UNIT_CLOCK_GATE_DISABLE);
  3604. I915_WRITE(RAMCLK_GATE_D, 0);
  3605. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  3606. OVRUNIT_CLOCK_GATE_DISABLE |
  3607. OVCUNIT_CLOCK_GATE_DISABLE;
  3608. if (IS_GM45(dev))
  3609. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  3610. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  3611. /* WaDisableRenderCachePipelinedFlush */
  3612. I915_WRITE(CACHE_MODE_0,
  3613. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  3614. }
  3615. static void crestline_init_clock_gating(struct drm_device *dev)
  3616. {
  3617. struct drm_i915_private *dev_priv = dev->dev_private;
  3618. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  3619. I915_WRITE(RENCLK_GATE_D2, 0);
  3620. I915_WRITE(DSPCLK_GATE_D, 0);
  3621. I915_WRITE(RAMCLK_GATE_D, 0);
  3622. I915_WRITE16(DEUC, 0);
  3623. }
  3624. static void broadwater_init_clock_gating(struct drm_device *dev)
  3625. {
  3626. struct drm_i915_private *dev_priv = dev->dev_private;
  3627. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  3628. I965_RCC_CLOCK_GATE_DISABLE |
  3629. I965_RCPB_CLOCK_GATE_DISABLE |
  3630. I965_ISC_CLOCK_GATE_DISABLE |
  3631. I965_FBC_CLOCK_GATE_DISABLE);
  3632. I915_WRITE(RENCLK_GATE_D2, 0);
  3633. }
  3634. static void gen3_init_clock_gating(struct drm_device *dev)
  3635. {
  3636. struct drm_i915_private *dev_priv = dev->dev_private;
  3637. u32 dstate = I915_READ(D_STATE);
  3638. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  3639. DSTATE_DOT_CLOCK_GATING;
  3640. I915_WRITE(D_STATE, dstate);
  3641. if (IS_PINEVIEW(dev))
  3642. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  3643. /* IIR "flip pending" means done if this bit is set */
  3644. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  3645. }
  3646. static void i85x_init_clock_gating(struct drm_device *dev)
  3647. {
  3648. struct drm_i915_private *dev_priv = dev->dev_private;
  3649. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  3650. }
  3651. static void i830_init_clock_gating(struct drm_device *dev)
  3652. {
  3653. struct drm_i915_private *dev_priv = dev->dev_private;
  3654. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  3655. }
  3656. void intel_init_clock_gating(struct drm_device *dev)
  3657. {
  3658. struct drm_i915_private *dev_priv = dev->dev_private;
  3659. dev_priv->display.init_clock_gating(dev);
  3660. }
  3661. /**
  3662. * We should only use the power well if we explicitly asked the hardware to
  3663. * enable it, so check if it's enabled and also check if we've requested it to
  3664. * be enabled.
  3665. */
  3666. bool intel_display_power_enabled(struct drm_device *dev,
  3667. enum intel_display_power_domain domain)
  3668. {
  3669. struct drm_i915_private *dev_priv = dev->dev_private;
  3670. if (!HAS_POWER_WELL(dev))
  3671. return true;
  3672. switch (domain) {
  3673. case POWER_DOMAIN_PIPE_A:
  3674. case POWER_DOMAIN_TRANSCODER_EDP:
  3675. return true;
  3676. case POWER_DOMAIN_PIPE_B:
  3677. case POWER_DOMAIN_PIPE_C:
  3678. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  3679. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  3680. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  3681. case POWER_DOMAIN_TRANSCODER_A:
  3682. case POWER_DOMAIN_TRANSCODER_B:
  3683. case POWER_DOMAIN_TRANSCODER_C:
  3684. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  3685. (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
  3686. default:
  3687. BUG();
  3688. }
  3689. }
  3690. void intel_set_power_well(struct drm_device *dev, bool enable)
  3691. {
  3692. struct drm_i915_private *dev_priv = dev->dev_private;
  3693. bool is_enabled, enable_requested;
  3694. uint32_t tmp;
  3695. if (!HAS_POWER_WELL(dev))
  3696. return;
  3697. if (!i915_disable_power_well && !enable)
  3698. return;
  3699. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  3700. is_enabled = tmp & HSW_PWR_WELL_STATE;
  3701. enable_requested = tmp & HSW_PWR_WELL_ENABLE;
  3702. if (enable) {
  3703. if (!enable_requested)
  3704. I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
  3705. if (!is_enabled) {
  3706. DRM_DEBUG_KMS("Enabling power well\n");
  3707. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  3708. HSW_PWR_WELL_STATE), 20))
  3709. DRM_ERROR("Timeout enabling power well\n");
  3710. }
  3711. } else {
  3712. if (enable_requested) {
  3713. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  3714. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  3715. }
  3716. }
  3717. }
  3718. /*
  3719. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  3720. * when not needed anymore. We have 4 registers that can request the power well
  3721. * to be enabled, and it will only be disabled if none of the registers is
  3722. * requesting it to be enabled.
  3723. */
  3724. void intel_init_power_well(struct drm_device *dev)
  3725. {
  3726. struct drm_i915_private *dev_priv = dev->dev_private;
  3727. if (!HAS_POWER_WELL(dev))
  3728. return;
  3729. /* For now, we need the power well to be always enabled. */
  3730. intel_set_power_well(dev, true);
  3731. /* We're taking over the BIOS, so clear any requests made by it since
  3732. * the driver is in charge now. */
  3733. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
  3734. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  3735. }
  3736. /* Set up chip specific power management-related functions */
  3737. void intel_init_pm(struct drm_device *dev)
  3738. {
  3739. struct drm_i915_private *dev_priv = dev->dev_private;
  3740. if (I915_HAS_FBC(dev)) {
  3741. if (HAS_PCH_SPLIT(dev)) {
  3742. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  3743. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  3744. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  3745. } else if (IS_GM45(dev)) {
  3746. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  3747. dev_priv->display.enable_fbc = g4x_enable_fbc;
  3748. dev_priv->display.disable_fbc = g4x_disable_fbc;
  3749. } else if (IS_CRESTLINE(dev)) {
  3750. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  3751. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  3752. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  3753. }
  3754. /* 855GM needs testing */
  3755. }
  3756. /* For cxsr */
  3757. if (IS_PINEVIEW(dev))
  3758. i915_pineview_get_mem_freq(dev);
  3759. else if (IS_GEN5(dev))
  3760. i915_ironlake_get_mem_freq(dev);
  3761. /* For FIFO watermark updates */
  3762. if (HAS_PCH_SPLIT(dev)) {
  3763. if (IS_GEN5(dev)) {
  3764. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  3765. dev_priv->display.update_wm = ironlake_update_wm;
  3766. else {
  3767. DRM_DEBUG_KMS("Failed to get proper latency. "
  3768. "Disable CxSR\n");
  3769. dev_priv->display.update_wm = NULL;
  3770. }
  3771. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  3772. } else if (IS_GEN6(dev)) {
  3773. if (SNB_READ_WM0_LATENCY()) {
  3774. dev_priv->display.update_wm = sandybridge_update_wm;
  3775. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3776. } else {
  3777. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3778. "Disable CxSR\n");
  3779. dev_priv->display.update_wm = NULL;
  3780. }
  3781. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  3782. } else if (IS_IVYBRIDGE(dev)) {
  3783. if (SNB_READ_WM0_LATENCY()) {
  3784. dev_priv->display.update_wm = ivybridge_update_wm;
  3785. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3786. } else {
  3787. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3788. "Disable CxSR\n");
  3789. dev_priv->display.update_wm = NULL;
  3790. }
  3791. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  3792. } else if (IS_HASWELL(dev)) {
  3793. if (SNB_READ_WM0_LATENCY()) {
  3794. dev_priv->display.update_wm = sandybridge_update_wm;
  3795. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3796. dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
  3797. } else {
  3798. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3799. "Disable CxSR\n");
  3800. dev_priv->display.update_wm = NULL;
  3801. }
  3802. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  3803. } else
  3804. dev_priv->display.update_wm = NULL;
  3805. } else if (IS_VALLEYVIEW(dev)) {
  3806. dev_priv->display.update_wm = valleyview_update_wm;
  3807. dev_priv->display.init_clock_gating =
  3808. valleyview_init_clock_gating;
  3809. } else if (IS_PINEVIEW(dev)) {
  3810. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  3811. dev_priv->is_ddr3,
  3812. dev_priv->fsb_freq,
  3813. dev_priv->mem_freq)) {
  3814. DRM_INFO("failed to find known CxSR latency "
  3815. "(found ddr%s fsb freq %d, mem freq %d), "
  3816. "disabling CxSR\n",
  3817. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  3818. dev_priv->fsb_freq, dev_priv->mem_freq);
  3819. /* Disable CxSR and never update its watermark again */
  3820. pineview_disable_cxsr(dev);
  3821. dev_priv->display.update_wm = NULL;
  3822. } else
  3823. dev_priv->display.update_wm = pineview_update_wm;
  3824. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  3825. } else if (IS_G4X(dev)) {
  3826. dev_priv->display.update_wm = g4x_update_wm;
  3827. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  3828. } else if (IS_GEN4(dev)) {
  3829. dev_priv->display.update_wm = i965_update_wm;
  3830. if (IS_CRESTLINE(dev))
  3831. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  3832. else if (IS_BROADWATER(dev))
  3833. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  3834. } else if (IS_GEN3(dev)) {
  3835. dev_priv->display.update_wm = i9xx_update_wm;
  3836. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  3837. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  3838. } else if (IS_I865G(dev)) {
  3839. dev_priv->display.update_wm = i830_update_wm;
  3840. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  3841. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  3842. } else if (IS_I85X(dev)) {
  3843. dev_priv->display.update_wm = i9xx_update_wm;
  3844. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  3845. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  3846. } else {
  3847. dev_priv->display.update_wm = i830_update_wm;
  3848. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  3849. if (IS_845G(dev))
  3850. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  3851. else
  3852. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  3853. }
  3854. }
  3855. static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
  3856. {
  3857. u32 gt_thread_status_mask;
  3858. if (IS_HASWELL(dev_priv->dev))
  3859. gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
  3860. else
  3861. gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
  3862. /* w/a for a sporadic read returning 0 by waiting for the GT
  3863. * thread to wake up.
  3864. */
  3865. if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
  3866. DRM_ERROR("GT thread status wait timed out\n");
  3867. }
  3868. static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
  3869. {
  3870. I915_WRITE_NOTRACE(FORCEWAKE, 0);
  3871. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3872. }
  3873. static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
  3874. {
  3875. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
  3876. FORCEWAKE_ACK_TIMEOUT_MS))
  3877. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  3878. I915_WRITE_NOTRACE(FORCEWAKE, 1);
  3879. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3880. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
  3881. FORCEWAKE_ACK_TIMEOUT_MS))
  3882. DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
  3883. __gen6_gt_wait_for_thread_c0(dev_priv);
  3884. }
  3885. static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
  3886. {
  3887. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
  3888. /* something from same cacheline, but !FORCEWAKE_MT */
  3889. POSTING_READ(ECOBUS);
  3890. }
  3891. static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
  3892. {
  3893. u32 forcewake_ack;
  3894. if (IS_HASWELL(dev_priv->dev))
  3895. forcewake_ack = FORCEWAKE_ACK_HSW;
  3896. else
  3897. forcewake_ack = FORCEWAKE_MT_ACK;
  3898. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
  3899. FORCEWAKE_ACK_TIMEOUT_MS))
  3900. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  3901. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
  3902. /* something from same cacheline, but !FORCEWAKE_MT */
  3903. POSTING_READ(ECOBUS);
  3904. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
  3905. FORCEWAKE_ACK_TIMEOUT_MS))
  3906. DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
  3907. __gen6_gt_wait_for_thread_c0(dev_priv);
  3908. }
  3909. /*
  3910. * Generally this is called implicitly by the register read function. However,
  3911. * if some sequence requires the GT to not power down then this function should
  3912. * be called at the beginning of the sequence followed by a call to
  3913. * gen6_gt_force_wake_put() at the end of the sequence.
  3914. */
  3915. void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
  3916. {
  3917. unsigned long irqflags;
  3918. spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
  3919. if (dev_priv->forcewake_count++ == 0)
  3920. dev_priv->gt.force_wake_get(dev_priv);
  3921. spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
  3922. }
  3923. void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
  3924. {
  3925. u32 gtfifodbg;
  3926. gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
  3927. if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
  3928. "MMIO read or write has been dropped %x\n", gtfifodbg))
  3929. I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
  3930. }
  3931. static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
  3932. {
  3933. I915_WRITE_NOTRACE(FORCEWAKE, 0);
  3934. /* something from same cacheline, but !FORCEWAKE */
  3935. POSTING_READ(ECOBUS);
  3936. gen6_gt_check_fifodbg(dev_priv);
  3937. }
  3938. static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
  3939. {
  3940. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
  3941. /* something from same cacheline, but !FORCEWAKE_MT */
  3942. POSTING_READ(ECOBUS);
  3943. gen6_gt_check_fifodbg(dev_priv);
  3944. }
  3945. /*
  3946. * see gen6_gt_force_wake_get()
  3947. */
  3948. void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
  3949. {
  3950. unsigned long irqflags;
  3951. spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
  3952. if (--dev_priv->forcewake_count == 0)
  3953. dev_priv->gt.force_wake_put(dev_priv);
  3954. spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
  3955. }
  3956. int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
  3957. {
  3958. int ret = 0;
  3959. if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
  3960. int loop = 500;
  3961. u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
  3962. while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
  3963. udelay(10);
  3964. fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
  3965. }
  3966. if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
  3967. ++ret;
  3968. dev_priv->gt_fifo_count = fifo;
  3969. }
  3970. dev_priv->gt_fifo_count--;
  3971. return ret;
  3972. }
  3973. static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
  3974. {
  3975. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
  3976. /* something from same cacheline, but !FORCEWAKE_VLV */
  3977. POSTING_READ(FORCEWAKE_ACK_VLV);
  3978. }
  3979. static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
  3980. {
  3981. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
  3982. FORCEWAKE_ACK_TIMEOUT_MS))
  3983. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  3984. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
  3985. I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
  3986. _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
  3987. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
  3988. FORCEWAKE_ACK_TIMEOUT_MS))
  3989. DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
  3990. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
  3991. FORCEWAKE_KERNEL),
  3992. FORCEWAKE_ACK_TIMEOUT_MS))
  3993. DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
  3994. __gen6_gt_wait_for_thread_c0(dev_priv);
  3995. }
  3996. static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
  3997. {
  3998. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
  3999. I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
  4000. _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
  4001. /* The below doubles as a POSTING_READ */
  4002. gen6_gt_check_fifodbg(dev_priv);
  4003. }
  4004. void intel_gt_reset(struct drm_device *dev)
  4005. {
  4006. struct drm_i915_private *dev_priv = dev->dev_private;
  4007. if (IS_VALLEYVIEW(dev)) {
  4008. vlv_force_wake_reset(dev_priv);
  4009. } else if (INTEL_INFO(dev)->gen >= 6) {
  4010. __gen6_gt_force_wake_reset(dev_priv);
  4011. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4012. __gen6_gt_force_wake_mt_reset(dev_priv);
  4013. }
  4014. }
  4015. void intel_gt_init(struct drm_device *dev)
  4016. {
  4017. struct drm_i915_private *dev_priv = dev->dev_private;
  4018. spin_lock_init(&dev_priv->gt_lock);
  4019. intel_gt_reset(dev);
  4020. if (IS_VALLEYVIEW(dev)) {
  4021. dev_priv->gt.force_wake_get = vlv_force_wake_get;
  4022. dev_priv->gt.force_wake_put = vlv_force_wake_put;
  4023. } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  4024. dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
  4025. dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
  4026. } else if (IS_GEN6(dev)) {
  4027. dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
  4028. dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
  4029. }
  4030. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  4031. intel_gen6_powersave_work);
  4032. }
  4033. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  4034. {
  4035. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4036. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4037. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  4038. return -EAGAIN;
  4039. }
  4040. I915_WRITE(GEN6_PCODE_DATA, *val);
  4041. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4042. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4043. 500)) {
  4044. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  4045. return -ETIMEDOUT;
  4046. }
  4047. *val = I915_READ(GEN6_PCODE_DATA);
  4048. I915_WRITE(GEN6_PCODE_DATA, 0);
  4049. return 0;
  4050. }
  4051. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  4052. {
  4053. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4054. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4055. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  4056. return -EAGAIN;
  4057. }
  4058. I915_WRITE(GEN6_PCODE_DATA, val);
  4059. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4060. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4061. 500)) {
  4062. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  4063. return -ETIMEDOUT;
  4064. }
  4065. I915_WRITE(GEN6_PCODE_DATA, 0);
  4066. return 0;
  4067. }
  4068. static int vlv_punit_rw(struct drm_i915_private *dev_priv, u32 port, u8 opcode,
  4069. u8 addr, u32 *val)
  4070. {
  4071. u32 cmd, devfn, be, bar;
  4072. bar = 0;
  4073. be = 0xf;
  4074. devfn = PCI_DEVFN(2, 0);
  4075. cmd = (devfn << IOSF_DEVFN_SHIFT) | (opcode << IOSF_OPCODE_SHIFT) |
  4076. (port << IOSF_PORT_SHIFT) | (be << IOSF_BYTE_ENABLES_SHIFT) |
  4077. (bar << IOSF_BAR_SHIFT);
  4078. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4079. if (I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) {
  4080. DRM_DEBUG_DRIVER("warning: pcode (%s) mailbox access failed\n",
  4081. opcode == PUNIT_OPCODE_REG_READ ?
  4082. "read" : "write");
  4083. return -EAGAIN;
  4084. }
  4085. I915_WRITE(VLV_IOSF_ADDR, addr);
  4086. if (opcode == PUNIT_OPCODE_REG_WRITE)
  4087. I915_WRITE(VLV_IOSF_DATA, *val);
  4088. I915_WRITE(VLV_IOSF_DOORBELL_REQ, cmd);
  4089. if (wait_for((I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) == 0,
  4090. 5)) {
  4091. DRM_ERROR("timeout waiting for pcode %s (%d) to finish\n",
  4092. opcode == PUNIT_OPCODE_REG_READ ? "read" : "write",
  4093. addr);
  4094. return -ETIMEDOUT;
  4095. }
  4096. if (opcode == PUNIT_OPCODE_REG_READ)
  4097. *val = I915_READ(VLV_IOSF_DATA);
  4098. I915_WRITE(VLV_IOSF_DATA, 0);
  4099. return 0;
  4100. }
  4101. int valleyview_punit_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
  4102. {
  4103. return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_READ,
  4104. addr, val);
  4105. }
  4106. int valleyview_punit_write(struct drm_i915_private *dev_priv, u8 addr, u32 val)
  4107. {
  4108. return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_WRITE,
  4109. addr, &val);
  4110. }
  4111. int valleyview_nc_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
  4112. {
  4113. return vlv_punit_rw(dev_priv, IOSF_PORT_NC, PUNIT_OPCODE_REG_READ,
  4114. addr, val);
  4115. }
  4116. int vlv_gpu_freq(int ddr_freq, int val)
  4117. {
  4118. int mult, base;
  4119. switch (ddr_freq) {
  4120. case 800:
  4121. mult = 20;
  4122. base = 120;
  4123. break;
  4124. case 1066:
  4125. mult = 22;
  4126. base = 133;
  4127. break;
  4128. case 1333:
  4129. mult = 21;
  4130. base = 125;
  4131. break;
  4132. default:
  4133. return -1;
  4134. }
  4135. return ((val - 0xbd) * mult) + base;
  4136. }
  4137. int vlv_freq_opcode(int ddr_freq, int val)
  4138. {
  4139. int mult, base;
  4140. switch (ddr_freq) {
  4141. case 800:
  4142. mult = 20;
  4143. base = 120;
  4144. break;
  4145. case 1066:
  4146. mult = 22;
  4147. base = 133;
  4148. break;
  4149. case 1333:
  4150. mult = 21;
  4151. base = 125;
  4152. break;
  4153. default:
  4154. return -1;
  4155. }
  4156. val /= mult;
  4157. val -= base / mult;
  4158. val += 0xbd;
  4159. if (val > 0xea)
  4160. val = 0xea;
  4161. return val;
  4162. }