efuse.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * Tmis program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * Tmis program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * tmis program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * Tme full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include <linux/export.h>
  30. #include "wifi.h"
  31. #include "efuse.h"
  32. static const u8 MAX_PGPKT_SIZE = 9;
  33. static const u8 PGPKT_DATA_SIZE = 8;
  34. static const int EFUSE_MAX_SIZE = 512;
  35. static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
  36. {0, 0, 0, 2},
  37. {0, 1, 0, 2},
  38. {0, 2, 0, 2},
  39. {1, 0, 0, 1},
  40. {1, 0, 1, 1},
  41. {1, 1, 0, 1},
  42. {1, 1, 1, 3},
  43. {1, 3, 0, 17},
  44. {3, 3, 1, 48},
  45. {10, 0, 0, 6},
  46. {10, 3, 0, 1},
  47. {10, 3, 1, 1},
  48. {11, 0, 0, 28}
  49. };
  50. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
  51. u8 *value);
  52. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
  53. u16 *value);
  54. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
  55. u32 *value);
  56. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
  57. u8 value);
  58. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
  59. u16 value);
  60. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
  61. u32 value);
  62. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
  63. u8 *data);
  64. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
  65. u8 data);
  66. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
  67. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
  68. u8 *data);
  69. static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
  70. u8 word_en, u8 *data);
  71. static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
  72. u8 *targetdata);
  73. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  74. u16 efuse_addr, u8 word_en, u8 *data);
  75. static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
  76. u8 pwrstate);
  77. static u16 efuse_get_current_size(struct ieee80211_hw *hw);
  78. static u8 efuse_calculate_word_cnts(u8 word_en);
  79. void efuse_initialize(struct ieee80211_hw *hw)
  80. {
  81. struct rtl_priv *rtlpriv = rtl_priv(hw);
  82. u8 bytetemp;
  83. u8 temp;
  84. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
  85. temp = bytetemp | 0x20;
  86. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
  87. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
  88. temp = bytetemp & 0xFE;
  89. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
  90. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
  91. temp = bytetemp | 0x80;
  92. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
  93. rtl_write_byte(rtlpriv, 0x2F8, 0x3);
  94. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  95. }
  96. u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
  97. {
  98. struct rtl_priv *rtlpriv = rtl_priv(hw);
  99. u8 data;
  100. u8 bytetemp;
  101. u8 temp;
  102. u32 k = 0;
  103. const u32 efuse_len =
  104. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  105. if (address < efuse_len) {
  106. temp = address & 0xFF;
  107. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  108. temp);
  109. bytetemp = rtl_read_byte(rtlpriv,
  110. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  111. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  112. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  113. temp);
  114. bytetemp = rtl_read_byte(rtlpriv,
  115. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  116. temp = bytetemp & 0x7F;
  117. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  118. temp);
  119. bytetemp = rtl_read_byte(rtlpriv,
  120. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  121. while (!(bytetemp & 0x80)) {
  122. bytetemp = rtl_read_byte(rtlpriv,
  123. rtlpriv->cfg->
  124. maps[EFUSE_CTRL] + 3);
  125. k++;
  126. if (k == 1000) {
  127. k = 0;
  128. break;
  129. }
  130. }
  131. data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  132. return data;
  133. } else
  134. return 0xFF;
  135. }
  136. EXPORT_SYMBOL(efuse_read_1byte);
  137. void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
  138. {
  139. struct rtl_priv *rtlpriv = rtl_priv(hw);
  140. u8 bytetemp;
  141. u8 temp;
  142. u32 k = 0;
  143. const u32 efuse_len =
  144. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  145. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
  146. address, value);
  147. if (address < efuse_len) {
  148. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
  149. temp = address & 0xFF;
  150. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  151. temp);
  152. bytetemp = rtl_read_byte(rtlpriv,
  153. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  154. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  155. rtl_write_byte(rtlpriv,
  156. rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
  157. bytetemp = rtl_read_byte(rtlpriv,
  158. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  159. temp = bytetemp | 0x80;
  160. rtl_write_byte(rtlpriv,
  161. rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
  162. bytetemp = rtl_read_byte(rtlpriv,
  163. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  164. while (bytetemp & 0x80) {
  165. bytetemp = rtl_read_byte(rtlpriv,
  166. rtlpriv->cfg->
  167. maps[EFUSE_CTRL] + 3);
  168. k++;
  169. if (k == 100) {
  170. k = 0;
  171. break;
  172. }
  173. }
  174. }
  175. }
  176. void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
  177. {
  178. struct rtl_priv *rtlpriv = rtl_priv(hw);
  179. u32 value32;
  180. u8 readbyte;
  181. u16 retry;
  182. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  183. (_offset & 0xff));
  184. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  185. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  186. ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
  187. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  188. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  189. (readbyte & 0x7f));
  190. retry = 0;
  191. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  192. while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
  193. value32 = rtl_read_dword(rtlpriv,
  194. rtlpriv->cfg->maps[EFUSE_CTRL]);
  195. retry++;
  196. }
  197. udelay(50);
  198. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  199. *pbuf = (u8) (value32 & 0xff);
  200. }
  201. void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
  202. {
  203. struct rtl_priv *rtlpriv = rtl_priv(hw);
  204. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  205. u8 *efuse_tbl;
  206. u8 rtemp8[1];
  207. u16 efuse_addr = 0;
  208. u8 offset, wren;
  209. u8 u1temp = 0;
  210. u16 i;
  211. u16 j;
  212. const u16 efuse_max_section =
  213. rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
  214. const u32 efuse_len =
  215. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  216. u16 **efuse_word;
  217. u16 efuse_utilized = 0;
  218. u8 efuse_usage;
  219. if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
  220. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  221. "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
  222. _offset, _size_byte);
  223. return;
  224. }
  225. /* allocate memory for efuse_tbl and efuse_word */
  226. efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
  227. sizeof(u8), GFP_ATOMIC);
  228. if (!efuse_tbl)
  229. return;
  230. efuse_word = kmalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
  231. if (!efuse_word)
  232. goto done;
  233. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  234. efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
  235. GFP_ATOMIC);
  236. if (!efuse_word[i])
  237. goto done;
  238. }
  239. for (i = 0; i < efuse_max_section; i++)
  240. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
  241. efuse_word[j][i] = 0xFFFF;
  242. read_efuse_byte(hw, efuse_addr, rtemp8);
  243. if (*rtemp8 != 0xFF) {
  244. efuse_utilized++;
  245. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  246. "Addr=%d\n", efuse_addr);
  247. efuse_addr++;
  248. }
  249. while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
  250. /* Check PG header for section num. */
  251. if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
  252. u1temp = ((*rtemp8 & 0xE0) >> 5);
  253. read_efuse_byte(hw, efuse_addr, rtemp8);
  254. if ((*rtemp8 & 0x0F) == 0x0F) {
  255. efuse_addr++;
  256. read_efuse_byte(hw, efuse_addr, rtemp8);
  257. if (*rtemp8 != 0xFF &&
  258. (efuse_addr < efuse_len)) {
  259. efuse_addr++;
  260. }
  261. continue;
  262. } else {
  263. offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
  264. wren = (*rtemp8 & 0x0F);
  265. efuse_addr++;
  266. }
  267. } else {
  268. offset = ((*rtemp8 >> 4) & 0x0f);
  269. wren = (*rtemp8 & 0x0f);
  270. }
  271. if (offset < efuse_max_section) {
  272. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  273. "offset-%d Worden=%x\n", offset, wren);
  274. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  275. if (!(wren & 0x01)) {
  276. RTPRINT(rtlpriv, FEEPROM,
  277. EFUSE_READ_ALL,
  278. "Addr=%d\n", efuse_addr);
  279. read_efuse_byte(hw, efuse_addr, rtemp8);
  280. efuse_addr++;
  281. efuse_utilized++;
  282. efuse_word[i][offset] =
  283. (*rtemp8 & 0xff);
  284. if (efuse_addr >= efuse_len)
  285. break;
  286. RTPRINT(rtlpriv, FEEPROM,
  287. EFUSE_READ_ALL,
  288. "Addr=%d\n", efuse_addr);
  289. read_efuse_byte(hw, efuse_addr, rtemp8);
  290. efuse_addr++;
  291. efuse_utilized++;
  292. efuse_word[i][offset] |=
  293. (((u16)*rtemp8 << 8) & 0xff00);
  294. if (efuse_addr >= efuse_len)
  295. break;
  296. }
  297. wren >>= 1;
  298. }
  299. }
  300. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  301. "Addr=%d\n", efuse_addr);
  302. read_efuse_byte(hw, efuse_addr, rtemp8);
  303. if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
  304. efuse_utilized++;
  305. efuse_addr++;
  306. }
  307. }
  308. for (i = 0; i < efuse_max_section; i++) {
  309. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
  310. efuse_tbl[(i * 8) + (j * 2)] =
  311. (efuse_word[j][i] & 0xff);
  312. efuse_tbl[(i * 8) + ((j * 2) + 1)] =
  313. ((efuse_word[j][i] >> 8) & 0xff);
  314. }
  315. }
  316. for (i = 0; i < _size_byte; i++)
  317. pbuf[i] = efuse_tbl[_offset + i];
  318. rtlefuse->efuse_usedbytes = efuse_utilized;
  319. efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
  320. rtlefuse->efuse_usedpercentage = efuse_usage;
  321. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
  322. (u8 *)&efuse_utilized);
  323. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
  324. &efuse_usage);
  325. done:
  326. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
  327. kfree(efuse_word[i]);
  328. kfree(efuse_word);
  329. kfree(efuse_tbl);
  330. }
  331. bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
  332. {
  333. struct rtl_priv *rtlpriv = rtl_priv(hw);
  334. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  335. u8 section_idx, i, Base;
  336. u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
  337. bool wordchanged, result = true;
  338. for (section_idx = 0; section_idx < 16; section_idx++) {
  339. Base = section_idx * 8;
  340. wordchanged = false;
  341. for (i = 0; i < 8; i = i + 2) {
  342. if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
  343. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
  344. (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
  345. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
  346. 1])) {
  347. words_need++;
  348. wordchanged = true;
  349. }
  350. }
  351. if (wordchanged)
  352. hdr_num++;
  353. }
  354. totalbytes = hdr_num + words_need * 2;
  355. efuse_used = rtlefuse->efuse_usedbytes;
  356. if ((totalbytes + efuse_used) >=
  357. (EFUSE_MAX_SIZE -
  358. rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
  359. result = false;
  360. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  361. "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
  362. totalbytes, hdr_num, words_need, efuse_used);
  363. return result;
  364. }
  365. void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
  366. u16 offset, u32 *value)
  367. {
  368. if (type == 1)
  369. efuse_shadow_read_1byte(hw, offset, (u8 *) value);
  370. else if (type == 2)
  371. efuse_shadow_read_2byte(hw, offset, (u16 *) value);
  372. else if (type == 4)
  373. efuse_shadow_read_4byte(hw, offset, value);
  374. }
  375. void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
  376. u32 value)
  377. {
  378. if (type == 1)
  379. efuse_shadow_write_1byte(hw, offset, (u8) value);
  380. else if (type == 2)
  381. efuse_shadow_write_2byte(hw, offset, (u16) value);
  382. else if (type == 4)
  383. efuse_shadow_write_4byte(hw, offset, value);
  384. }
  385. bool efuse_shadow_update(struct ieee80211_hw *hw)
  386. {
  387. struct rtl_priv *rtlpriv = rtl_priv(hw);
  388. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  389. u16 i, offset, base;
  390. u8 word_en = 0x0F;
  391. u8 first_pg = false;
  392. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "--->\n");
  393. if (!efuse_shadow_update_chk(hw)) {
  394. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  395. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  396. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  397. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  398. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  399. "<---efuse out of capacity!!\n");
  400. return false;
  401. }
  402. efuse_power_switch(hw, true, true);
  403. for (offset = 0; offset < 16; offset++) {
  404. word_en = 0x0F;
  405. base = offset * 8;
  406. for (i = 0; i < 8; i++) {
  407. if (first_pg) {
  408. word_en &= ~(BIT(i / 2));
  409. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  410. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  411. } else {
  412. if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
  413. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
  414. word_en &= ~(BIT(i / 2));
  415. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  416. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  417. }
  418. }
  419. }
  420. if (word_en != 0x0F) {
  421. u8 tmpdata[8];
  422. memcpy(tmpdata,
  423. &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
  424. 8);
  425. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
  426. "U-efuse", tmpdata, 8);
  427. if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
  428. tmpdata)) {
  429. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  430. "PG section(%#x) fail!!\n", offset);
  431. break;
  432. }
  433. }
  434. }
  435. efuse_power_switch(hw, true, false);
  436. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  437. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  438. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  439. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  440. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "<---\n");
  441. return true;
  442. }
  443. void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
  444. {
  445. struct rtl_priv *rtlpriv = rtl_priv(hw);
  446. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  447. if (rtlefuse->autoload_failflag)
  448. memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
  449. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  450. else
  451. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  452. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  453. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  454. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  455. }
  456. EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
  457. void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
  458. {
  459. u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
  460. efuse_power_switch(hw, true, true);
  461. efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
  462. efuse_power_switch(hw, true, false);
  463. }
  464. void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
  465. {
  466. }
  467. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
  468. u16 offset, u8 *value)
  469. {
  470. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  471. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  472. }
  473. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
  474. u16 offset, u16 *value)
  475. {
  476. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  477. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  478. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  479. }
  480. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
  481. u16 offset, u32 *value)
  482. {
  483. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  484. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  485. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  486. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
  487. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
  488. }
  489. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
  490. u16 offset, u8 value)
  491. {
  492. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  493. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
  494. }
  495. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
  496. u16 offset, u16 value)
  497. {
  498. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  499. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
  500. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
  501. }
  502. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
  503. u16 offset, u32 value)
  504. {
  505. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  506. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
  507. (u8) (value & 0x000000FF);
  508. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
  509. (u8) ((value >> 8) & 0x0000FF);
  510. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
  511. (u8) ((value >> 16) & 0x00FF);
  512. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
  513. (u8) ((value >> 24) & 0xFF);
  514. }
  515. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
  516. {
  517. struct rtl_priv *rtlpriv = rtl_priv(hw);
  518. u8 tmpidx = 0;
  519. int result;
  520. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  521. (u8) (addr & 0xff));
  522. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  523. ((u8) ((addr >> 8) & 0x03)) |
  524. (rtl_read_byte(rtlpriv,
  525. rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
  526. 0xFC));
  527. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  528. while (!(0x80 & rtl_read_byte(rtlpriv,
  529. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  530. && (tmpidx < 100)) {
  531. tmpidx++;
  532. }
  533. if (tmpidx < 100) {
  534. *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  535. result = true;
  536. } else {
  537. *data = 0xff;
  538. result = false;
  539. }
  540. return result;
  541. }
  542. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
  543. {
  544. struct rtl_priv *rtlpriv = rtl_priv(hw);
  545. u8 tmpidx = 0;
  546. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr = %x Data=%x\n",
  547. addr, data);
  548. rtl_write_byte(rtlpriv,
  549. rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
  550. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  551. (rtl_read_byte(rtlpriv,
  552. rtlpriv->cfg->maps[EFUSE_CTRL] +
  553. 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
  554. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
  555. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
  556. while ((0x80 & rtl_read_byte(rtlpriv,
  557. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  558. && (tmpidx < 100)) {
  559. tmpidx++;
  560. }
  561. if (tmpidx < 100)
  562. return true;
  563. return false;
  564. }
  565. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
  566. {
  567. struct rtl_priv *rtlpriv = rtl_priv(hw);
  568. efuse_power_switch(hw, false, true);
  569. read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
  570. efuse_power_switch(hw, false, false);
  571. }
  572. static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  573. u8 efuse_data, u8 offset, u8 *tmpdata,
  574. u8 *readstate)
  575. {
  576. bool dataempty = true;
  577. u8 hoffset;
  578. u8 tmpidx;
  579. u8 hworden;
  580. u8 word_cnts;
  581. hoffset = (efuse_data >> 4) & 0x0F;
  582. hworden = efuse_data & 0x0F;
  583. word_cnts = efuse_calculate_word_cnts(hworden);
  584. if (hoffset == offset) {
  585. for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
  586. if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
  587. &efuse_data)) {
  588. tmpdata[tmpidx] = efuse_data;
  589. if (efuse_data != 0xff)
  590. dataempty = true;
  591. }
  592. }
  593. if (dataempty) {
  594. *readstate = PG_STATE_DATA;
  595. } else {
  596. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  597. *readstate = PG_STATE_HEADER;
  598. }
  599. } else {
  600. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  601. *readstate = PG_STATE_HEADER;
  602. }
  603. }
  604. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
  605. {
  606. u8 readstate = PG_STATE_HEADER;
  607. bool continual = true;
  608. u8 efuse_data, word_cnts = 0;
  609. u16 efuse_addr = 0;
  610. u8 tmpdata[8];
  611. if (data == NULL)
  612. return false;
  613. if (offset > 15)
  614. return false;
  615. memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  616. memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  617. while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
  618. if (readstate & PG_STATE_HEADER) {
  619. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  620. && (efuse_data != 0xFF))
  621. efuse_read_data_case1(hw, &efuse_addr,
  622. efuse_data,
  623. offset, tmpdata,
  624. &readstate);
  625. else
  626. continual = false;
  627. } else if (readstate & PG_STATE_DATA) {
  628. efuse_word_enable_data_read(0, tmpdata, data);
  629. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  630. readstate = PG_STATE_HEADER;
  631. }
  632. }
  633. if ((data[0] == 0xff) && (data[1] == 0xff) &&
  634. (data[2] == 0xff) && (data[3] == 0xff) &&
  635. (data[4] == 0xff) && (data[5] == 0xff) &&
  636. (data[6] == 0xff) && (data[7] == 0xff))
  637. return false;
  638. else
  639. return true;
  640. }
  641. static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  642. u8 efuse_data, u8 offset, int *continual,
  643. u8 *write_state, struct pgpkt_struct *target_pkt,
  644. int *repeat_times, int *result, u8 word_en)
  645. {
  646. struct rtl_priv *rtlpriv = rtl_priv(hw);
  647. struct pgpkt_struct tmp_pkt;
  648. bool dataempty = true;
  649. u8 originaldata[8 * sizeof(u8)];
  650. u8 badworden = 0x0F;
  651. u8 match_word_en, tmp_word_en;
  652. u8 tmpindex;
  653. u8 tmp_header = efuse_data;
  654. u8 tmp_word_cnts;
  655. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  656. tmp_pkt.word_en = tmp_header & 0x0F;
  657. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  658. if (tmp_pkt.offset != target_pkt->offset) {
  659. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  660. *write_state = PG_STATE_HEADER;
  661. } else {
  662. for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
  663. u16 address = *efuse_addr + 1 + tmpindex;
  664. if (efuse_one_byte_read(hw, address,
  665. &efuse_data) && (efuse_data != 0xFF))
  666. dataempty = false;
  667. }
  668. if (!dataempty) {
  669. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  670. *write_state = PG_STATE_HEADER;
  671. } else {
  672. match_word_en = 0x0F;
  673. if (!((target_pkt->word_en & BIT(0)) |
  674. (tmp_pkt.word_en & BIT(0))))
  675. match_word_en &= (~BIT(0));
  676. if (!((target_pkt->word_en & BIT(1)) |
  677. (tmp_pkt.word_en & BIT(1))))
  678. match_word_en &= (~BIT(1));
  679. if (!((target_pkt->word_en & BIT(2)) |
  680. (tmp_pkt.word_en & BIT(2))))
  681. match_word_en &= (~BIT(2));
  682. if (!((target_pkt->word_en & BIT(3)) |
  683. (tmp_pkt.word_en & BIT(3))))
  684. match_word_en &= (~BIT(3));
  685. if ((match_word_en & 0x0F) != 0x0F) {
  686. badworden = efuse_word_enable_data_write(
  687. hw, *efuse_addr + 1,
  688. tmp_pkt.word_en,
  689. target_pkt->data);
  690. if (0x0F != (badworden & 0x0F)) {
  691. u8 reorg_offset = offset;
  692. u8 reorg_worden = badworden;
  693. efuse_pg_packet_write(hw, reorg_offset,
  694. reorg_worden,
  695. originaldata);
  696. }
  697. tmp_word_en = 0x0F;
  698. if ((target_pkt->word_en & BIT(0)) ^
  699. (match_word_en & BIT(0)))
  700. tmp_word_en &= (~BIT(0));
  701. if ((target_pkt->word_en & BIT(1)) ^
  702. (match_word_en & BIT(1)))
  703. tmp_word_en &= (~BIT(1));
  704. if ((target_pkt->word_en & BIT(2)) ^
  705. (match_word_en & BIT(2)))
  706. tmp_word_en &= (~BIT(2));
  707. if ((target_pkt->word_en & BIT(3)) ^
  708. (match_word_en & BIT(3)))
  709. tmp_word_en &= (~BIT(3));
  710. if ((tmp_word_en & 0x0F) != 0x0F) {
  711. *efuse_addr = efuse_get_current_size(hw);
  712. target_pkt->offset = offset;
  713. target_pkt->word_en = tmp_word_en;
  714. } else {
  715. *continual = false;
  716. }
  717. *write_state = PG_STATE_HEADER;
  718. *repeat_times += 1;
  719. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  720. *continual = false;
  721. *result = false;
  722. }
  723. } else {
  724. *efuse_addr += (2 * tmp_word_cnts) + 1;
  725. target_pkt->offset = offset;
  726. target_pkt->word_en = word_en;
  727. *write_state = PG_STATE_HEADER;
  728. }
  729. }
  730. }
  731. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
  732. }
  733. static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
  734. int *continual, u8 *write_state,
  735. struct pgpkt_struct target_pkt,
  736. int *repeat_times, int *result)
  737. {
  738. struct rtl_priv *rtlpriv = rtl_priv(hw);
  739. struct pgpkt_struct tmp_pkt;
  740. u8 pg_header;
  741. u8 tmp_header;
  742. u8 originaldata[8 * sizeof(u8)];
  743. u8 tmp_word_cnts;
  744. u8 badworden = 0x0F;
  745. pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
  746. efuse_one_byte_write(hw, *efuse_addr, pg_header);
  747. efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
  748. if (tmp_header == pg_header) {
  749. *write_state = PG_STATE_DATA;
  750. } else if (tmp_header == 0xFF) {
  751. *write_state = PG_STATE_HEADER;
  752. *repeat_times += 1;
  753. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  754. *continual = false;
  755. *result = false;
  756. }
  757. } else {
  758. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  759. tmp_pkt.word_en = tmp_header & 0x0F;
  760. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  761. memset(originaldata, 0xff, 8 * sizeof(u8));
  762. if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
  763. badworden = efuse_word_enable_data_write(hw,
  764. *efuse_addr + 1, tmp_pkt.word_en,
  765. originaldata);
  766. if (0x0F != (badworden & 0x0F)) {
  767. u8 reorg_offset = tmp_pkt.offset;
  768. u8 reorg_worden = badworden;
  769. efuse_pg_packet_write(hw, reorg_offset,
  770. reorg_worden,
  771. originaldata);
  772. *efuse_addr = efuse_get_current_size(hw);
  773. } else {
  774. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
  775. + 1;
  776. }
  777. } else {
  778. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  779. }
  780. *write_state = PG_STATE_HEADER;
  781. *repeat_times += 1;
  782. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  783. *continual = false;
  784. *result = false;
  785. }
  786. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  787. "efuse PG_STATE_HEADER-2\n");
  788. }
  789. }
  790. static int efuse_pg_packet_write(struct ieee80211_hw *hw,
  791. u8 offset, u8 word_en, u8 *data)
  792. {
  793. struct rtl_priv *rtlpriv = rtl_priv(hw);
  794. struct pgpkt_struct target_pkt;
  795. u8 write_state = PG_STATE_HEADER;
  796. int continual = true, result = true;
  797. u16 efuse_addr = 0;
  798. u8 efuse_data;
  799. u8 target_word_cnts = 0;
  800. u8 badworden = 0x0F;
  801. static int repeat_times;
  802. if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
  803. rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
  804. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  805. "efuse_pg_packet_write error\n");
  806. return false;
  807. }
  808. target_pkt.offset = offset;
  809. target_pkt.word_en = word_en;
  810. memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
  811. efuse_word_enable_data_read(word_en, data, target_pkt.data);
  812. target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
  813. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
  814. while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
  815. rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
  816. if (write_state == PG_STATE_HEADER) {
  817. badworden = 0x0F;
  818. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  819. "efuse PG_STATE_HEADER\n");
  820. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
  821. (efuse_data != 0xFF))
  822. efuse_write_data_case1(hw, &efuse_addr,
  823. efuse_data, offset,
  824. &continual,
  825. &write_state, &target_pkt,
  826. &repeat_times, &result,
  827. word_en);
  828. else
  829. efuse_write_data_case2(hw, &efuse_addr,
  830. &continual,
  831. &write_state,
  832. target_pkt,
  833. &repeat_times,
  834. &result);
  835. } else if (write_state == PG_STATE_DATA) {
  836. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  837. "efuse PG_STATE_DATA\n");
  838. badworden =
  839. efuse_word_enable_data_write(hw, efuse_addr + 1,
  840. target_pkt.word_en,
  841. target_pkt.data);
  842. if ((badworden & 0x0F) == 0x0F) {
  843. continual = false;
  844. } else {
  845. efuse_addr += (2 * target_word_cnts) + 1;
  846. target_pkt.offset = offset;
  847. target_pkt.word_en = badworden;
  848. target_word_cnts =
  849. efuse_calculate_word_cnts(target_pkt.
  850. word_en);
  851. write_state = PG_STATE_HEADER;
  852. repeat_times++;
  853. if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  854. continual = false;
  855. result = false;
  856. }
  857. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  858. "efuse PG_STATE_HEADER-3\n");
  859. }
  860. }
  861. }
  862. if (efuse_addr >= (EFUSE_MAX_SIZE -
  863. rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
  864. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  865. "efuse_addr(%#x) Out of size!!\n", efuse_addr);
  866. }
  867. return true;
  868. }
  869. static void efuse_word_enable_data_read(u8 word_en,
  870. u8 *sourdata, u8 *targetdata)
  871. {
  872. if (!(word_en & BIT(0))) {
  873. targetdata[0] = sourdata[0];
  874. targetdata[1] = sourdata[1];
  875. }
  876. if (!(word_en & BIT(1))) {
  877. targetdata[2] = sourdata[2];
  878. targetdata[3] = sourdata[3];
  879. }
  880. if (!(word_en & BIT(2))) {
  881. targetdata[4] = sourdata[4];
  882. targetdata[5] = sourdata[5];
  883. }
  884. if (!(word_en & BIT(3))) {
  885. targetdata[6] = sourdata[6];
  886. targetdata[7] = sourdata[7];
  887. }
  888. }
  889. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  890. u16 efuse_addr, u8 word_en, u8 *data)
  891. {
  892. struct rtl_priv *rtlpriv = rtl_priv(hw);
  893. u16 tmpaddr;
  894. u16 start_addr = efuse_addr;
  895. u8 badworden = 0x0F;
  896. u8 tmpdata[8];
  897. memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
  898. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "word_en = %x efuse_addr=%x\n",
  899. word_en, efuse_addr);
  900. if (!(word_en & BIT(0))) {
  901. tmpaddr = start_addr;
  902. efuse_one_byte_write(hw, start_addr++, data[0]);
  903. efuse_one_byte_write(hw, start_addr++, data[1]);
  904. efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
  905. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
  906. if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
  907. badworden &= (~BIT(0));
  908. }
  909. if (!(word_en & BIT(1))) {
  910. tmpaddr = start_addr;
  911. efuse_one_byte_write(hw, start_addr++, data[2]);
  912. efuse_one_byte_write(hw, start_addr++, data[3]);
  913. efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
  914. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
  915. if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
  916. badworden &= (~BIT(1));
  917. }
  918. if (!(word_en & BIT(2))) {
  919. tmpaddr = start_addr;
  920. efuse_one_byte_write(hw, start_addr++, data[4]);
  921. efuse_one_byte_write(hw, start_addr++, data[5]);
  922. efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
  923. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
  924. if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
  925. badworden &= (~BIT(2));
  926. }
  927. if (!(word_en & BIT(3))) {
  928. tmpaddr = start_addr;
  929. efuse_one_byte_write(hw, start_addr++, data[6]);
  930. efuse_one_byte_write(hw, start_addr++, data[7]);
  931. efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
  932. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
  933. if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
  934. badworden &= (~BIT(3));
  935. }
  936. return badworden;
  937. }
  938. static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
  939. {
  940. struct rtl_priv *rtlpriv = rtl_priv(hw);
  941. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  942. u8 tempval;
  943. u16 tmpV16;
  944. if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
  945. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8188EE)
  946. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_ACCESS],
  947. 0x69);
  948. tmpV16 = rtl_read_word(rtlpriv,
  949. rtlpriv->cfg->maps[SYS_ISO_CTRL]);
  950. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
  951. tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
  952. rtl_write_word(rtlpriv,
  953. rtlpriv->cfg->maps[SYS_ISO_CTRL],
  954. tmpV16);
  955. }
  956. tmpV16 = rtl_read_word(rtlpriv,
  957. rtlpriv->cfg->maps[SYS_FUNC_EN]);
  958. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
  959. tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
  960. rtl_write_word(rtlpriv,
  961. rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
  962. }
  963. tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
  964. if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
  965. (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
  966. tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
  967. rtlpriv->cfg->maps[EFUSE_ANA8M]);
  968. rtl_write_word(rtlpriv,
  969. rtlpriv->cfg->maps[SYS_CLK], tmpV16);
  970. }
  971. }
  972. if (pwrstate) {
  973. if (write) {
  974. tempval = rtl_read_byte(rtlpriv,
  975. rtlpriv->cfg->maps[EFUSE_TEST] +
  976. 3);
  977. if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
  978. tempval &= 0x0F;
  979. tempval |= (VOLTAGE_V25 << 4);
  980. }
  981. rtl_write_byte(rtlpriv,
  982. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  983. (tempval | 0x80));
  984. }
  985. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
  986. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
  987. 0x03);
  988. }
  989. } else {
  990. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8188EE)
  991. rtl_write_byte(rtlpriv,
  992. rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
  993. if (write) {
  994. tempval = rtl_read_byte(rtlpriv,
  995. rtlpriv->cfg->maps[EFUSE_TEST] +
  996. 3);
  997. rtl_write_byte(rtlpriv,
  998. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  999. (tempval & 0x7F));
  1000. }
  1001. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
  1002. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
  1003. 0x02);
  1004. }
  1005. }
  1006. }
  1007. static u16 efuse_get_current_size(struct ieee80211_hw *hw)
  1008. {
  1009. int continual = true;
  1010. u16 efuse_addr = 0;
  1011. u8 hworden;
  1012. u8 efuse_data, word_cnts;
  1013. while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  1014. && (efuse_addr < EFUSE_MAX_SIZE)) {
  1015. if (efuse_data != 0xFF) {
  1016. hworden = efuse_data & 0x0F;
  1017. word_cnts = efuse_calculate_word_cnts(hworden);
  1018. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  1019. } else {
  1020. continual = false;
  1021. }
  1022. }
  1023. return efuse_addr;
  1024. }
  1025. static u8 efuse_calculate_word_cnts(u8 word_en)
  1026. {
  1027. u8 word_cnts = 0;
  1028. if (!(word_en & BIT(0)))
  1029. word_cnts++;
  1030. if (!(word_en & BIT(1)))
  1031. word_cnts++;
  1032. if (!(word_en & BIT(2)))
  1033. word_cnts++;
  1034. if (!(word_en & BIT(3)))
  1035. word_cnts++;
  1036. return word_cnts;
  1037. }