rt2800pci.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213
  1. /*
  2. Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/crc-ccitt.h>
  30. #include <linux/delay.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/init.h>
  33. #include <linux/kernel.h>
  34. #include <linux/module.h>
  35. #include <linux/pci.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/eeprom_93cx6.h>
  38. #include "rt2x00.h"
  39. #include "rt2x00pci.h"
  40. #include "rt2x00soc.h"
  41. #include "rt2800lib.h"
  42. #include "rt2800.h"
  43. #include "rt2800pci.h"
  44. /*
  45. * Allow hardware encryption to be disabled.
  46. */
  47. static int modparam_nohwcrypt = 1;
  48. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  49. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  50. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  51. {
  52. unsigned int i;
  53. u32 reg;
  54. /*
  55. * SOC devices don't support MCU requests.
  56. */
  57. if (rt2x00_is_soc(rt2x00dev))
  58. return;
  59. for (i = 0; i < 200; i++) {
  60. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  61. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  64. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  65. break;
  66. udelay(REGISTER_BUSY_DELAY);
  67. }
  68. if (i == 200)
  69. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  71. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  72. }
  73. #ifdef CONFIG_RT2800PCI_SOC
  74. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  75. {
  76. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  77. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  78. }
  79. #else
  80. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  81. {
  82. }
  83. #endif /* CONFIG_RT2800PCI_SOC */
  84. #ifdef CONFIG_RT2800PCI_PCI
  85. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  86. {
  87. struct rt2x00_dev *rt2x00dev = eeprom->data;
  88. u32 reg;
  89. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  90. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  91. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  92. eeprom->reg_data_clock =
  93. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  94. eeprom->reg_chip_select =
  95. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  96. }
  97. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  98. {
  99. struct rt2x00_dev *rt2x00dev = eeprom->data;
  100. u32 reg = 0;
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  103. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  104. !!eeprom->reg_data_clock);
  105. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  106. !!eeprom->reg_chip_select);
  107. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  108. }
  109. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  110. {
  111. struct eeprom_93cx6 eeprom;
  112. u32 reg;
  113. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  114. eeprom.data = rt2x00dev;
  115. eeprom.register_read = rt2800pci_eepromregister_read;
  116. eeprom.register_write = rt2800pci_eepromregister_write;
  117. eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
  118. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  119. eeprom.reg_data_in = 0;
  120. eeprom.reg_data_out = 0;
  121. eeprom.reg_data_clock = 0;
  122. eeprom.reg_chip_select = 0;
  123. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  124. EEPROM_SIZE / sizeof(u16));
  125. }
  126. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  127. {
  128. return rt2800_efuse_detect(rt2x00dev);
  129. }
  130. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  131. {
  132. rt2800_read_eeprom_efuse(rt2x00dev);
  133. }
  134. #else
  135. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  136. {
  137. }
  138. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  139. {
  140. return 0;
  141. }
  142. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  143. {
  144. }
  145. #endif /* CONFIG_RT2800PCI_PCI */
  146. /*
  147. * Firmware functions
  148. */
  149. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  150. {
  151. return FIRMWARE_RT2860;
  152. }
  153. static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
  154. const u8 *data, const size_t len)
  155. {
  156. u16 fw_crc;
  157. u16 crc;
  158. /*
  159. * Only support 8kb firmware files.
  160. */
  161. if (len != 8192)
  162. return FW_BAD_LENGTH;
  163. /*
  164. * The last 2 bytes in the firmware array are the crc checksum itself,
  165. * this means that we should never pass those 2 bytes to the crc
  166. * algorithm.
  167. */
  168. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  169. /*
  170. * Use the crc ccitt algorithm.
  171. * This will return the same value as the legacy driver which
  172. * used bit ordering reversion on the both the firmware bytes
  173. * before input input as well as on the final output.
  174. * Obviously using crc ccitt directly is much more efficient.
  175. */
  176. crc = crc_ccitt(~0, data, len - 2);
  177. /*
  178. * There is a small difference between the crc-itu-t + bitrev and
  179. * the crc-ccitt crc calculation. In the latter method the 2 bytes
  180. * will be swapped, use swab16 to convert the crc to the correct
  181. * value.
  182. */
  183. crc = swab16(crc);
  184. return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
  185. }
  186. static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
  187. const u8 *data, const size_t len)
  188. {
  189. unsigned int i;
  190. u32 reg;
  191. /*
  192. * Wait for stable hardware.
  193. */
  194. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  195. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  196. if (reg && reg != ~0)
  197. break;
  198. msleep(1);
  199. }
  200. if (i == REGISTER_BUSY_COUNT) {
  201. ERROR(rt2x00dev, "Unstable hardware.\n");
  202. return -EBUSY;
  203. }
  204. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
  205. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  206. /*
  207. * Disable DMA, will be reenabled later when enabling
  208. * the radio.
  209. */
  210. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  211. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  212. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  213. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  214. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  215. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  216. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  217. /*
  218. * enable Host program ram write selection
  219. */
  220. reg = 0;
  221. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  222. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  223. /*
  224. * Write firmware to device.
  225. */
  226. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  227. data, len);
  228. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  229. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  230. /*
  231. * Wait for device to stabilize.
  232. */
  233. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  234. rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
  235. if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
  236. break;
  237. msleep(1);
  238. }
  239. if (i == REGISTER_BUSY_COUNT) {
  240. ERROR(rt2x00dev, "PBF system register not ready.\n");
  241. return -EBUSY;
  242. }
  243. /*
  244. * Disable interrupts
  245. */
  246. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  247. /*
  248. * Initialize BBP R/W access agent
  249. */
  250. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  251. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  252. return 0;
  253. }
  254. /*
  255. * Initialization functions.
  256. */
  257. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  258. {
  259. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  260. u32 word;
  261. if (entry->queue->qid == QID_RX) {
  262. rt2x00_desc_read(entry_priv->desc, 1, &word);
  263. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  264. } else {
  265. rt2x00_desc_read(entry_priv->desc, 1, &word);
  266. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  267. }
  268. }
  269. static void rt2800pci_clear_entry(struct queue_entry *entry)
  270. {
  271. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  272. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  273. u32 word;
  274. if (entry->queue->qid == QID_RX) {
  275. rt2x00_desc_read(entry_priv->desc, 0, &word);
  276. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  277. rt2x00_desc_write(entry_priv->desc, 0, word);
  278. rt2x00_desc_read(entry_priv->desc, 1, &word);
  279. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  280. rt2x00_desc_write(entry_priv->desc, 1, word);
  281. } else {
  282. rt2x00_desc_read(entry_priv->desc, 1, &word);
  283. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  284. rt2x00_desc_write(entry_priv->desc, 1, word);
  285. }
  286. }
  287. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  288. {
  289. struct queue_entry_priv_pci *entry_priv;
  290. u32 reg;
  291. /*
  292. * Initialize registers.
  293. */
  294. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  295. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  296. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  297. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  298. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  299. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  300. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  301. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  302. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  303. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  304. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  305. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  306. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  307. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  308. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  309. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  310. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  311. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  312. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  313. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  314. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  315. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  316. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  317. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  318. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  319. /*
  320. * Enable global DMA configuration
  321. */
  322. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  323. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  324. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  325. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  326. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  327. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  328. return 0;
  329. }
  330. /*
  331. * Device state switch handlers.
  332. */
  333. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  334. enum dev_state state)
  335. {
  336. u32 reg;
  337. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  338. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  339. (state == STATE_RADIO_RX_ON) ||
  340. (state == STATE_RADIO_RX_ON_LINK));
  341. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  342. }
  343. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  344. enum dev_state state)
  345. {
  346. int mask = (state == STATE_RADIO_IRQ_ON);
  347. u32 reg;
  348. /*
  349. * When interrupts are being enabled, the interrupt registers
  350. * should clear the register to assure a clean state.
  351. */
  352. if (state == STATE_RADIO_IRQ_ON) {
  353. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  354. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  355. }
  356. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  357. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
  358. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
  359. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  360. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
  361. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
  362. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
  363. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
  364. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
  365. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
  366. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
  367. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
  368. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  369. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  370. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  371. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  372. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
  373. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
  374. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
  375. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  376. }
  377. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  378. {
  379. u32 reg;
  380. /*
  381. * Reset DMA indexes
  382. */
  383. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  384. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  385. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  386. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  387. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  388. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  389. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  390. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  391. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  392. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  393. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  394. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  395. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  396. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  397. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  398. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  399. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  400. return 0;
  401. }
  402. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  403. {
  404. u32 reg;
  405. u16 word;
  406. /*
  407. * Initialize all registers.
  408. */
  409. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  410. rt2800pci_init_queues(rt2x00dev) ||
  411. rt2800_init_registers(rt2x00dev) ||
  412. rt2800_wait_wpdma_ready(rt2x00dev) ||
  413. rt2800_init_bbp(rt2x00dev) ||
  414. rt2800_init_rfcsr(rt2x00dev)))
  415. return -EIO;
  416. /*
  417. * Send signal to firmware during boot time.
  418. */
  419. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
  420. /*
  421. * Enable RX.
  422. */
  423. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  424. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  425. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  426. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  427. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  428. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  429. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  430. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  431. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  432. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  433. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  434. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  435. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  436. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  437. /*
  438. * Initialize LED control
  439. */
  440. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
  441. rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
  442. word & 0xff, (word >> 8) & 0xff);
  443. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
  444. rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
  445. word & 0xff, (word >> 8) & 0xff);
  446. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
  447. rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
  448. word & 0xff, (word >> 8) & 0xff);
  449. return 0;
  450. }
  451. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  452. {
  453. u32 reg;
  454. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  455. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  456. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  457. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  458. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  459. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  460. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  461. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
  462. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  463. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  464. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  465. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  466. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  467. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  468. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  469. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  470. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  471. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  472. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  473. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  474. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  475. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  476. /* Wait for DMA, ignore error */
  477. rt2800_wait_wpdma_ready(rt2x00dev);
  478. }
  479. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  480. enum dev_state state)
  481. {
  482. /*
  483. * Always put the device to sleep (even when we intend to wakeup!)
  484. * if the device is booting and wasn't asleep it will return
  485. * failure when attempting to wakeup.
  486. */
  487. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  488. if (state == STATE_AWAKE) {
  489. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  490. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  491. }
  492. return 0;
  493. }
  494. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  495. enum dev_state state)
  496. {
  497. int retval = 0;
  498. switch (state) {
  499. case STATE_RADIO_ON:
  500. /*
  501. * Before the radio can be enabled, the device first has
  502. * to be woken up. After that it needs a bit of time
  503. * to be fully awake and then the radio can be enabled.
  504. */
  505. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  506. msleep(1);
  507. retval = rt2800pci_enable_radio(rt2x00dev);
  508. break;
  509. case STATE_RADIO_OFF:
  510. /*
  511. * After the radio has been disabled, the device should
  512. * be put to sleep for powersaving.
  513. */
  514. rt2800pci_disable_radio(rt2x00dev);
  515. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  516. break;
  517. case STATE_RADIO_RX_ON:
  518. case STATE_RADIO_RX_ON_LINK:
  519. case STATE_RADIO_RX_OFF:
  520. case STATE_RADIO_RX_OFF_LINK:
  521. rt2800pci_toggle_rx(rt2x00dev, state);
  522. break;
  523. case STATE_RADIO_IRQ_ON:
  524. case STATE_RADIO_IRQ_OFF:
  525. rt2800pci_toggle_irq(rt2x00dev, state);
  526. break;
  527. case STATE_DEEP_SLEEP:
  528. case STATE_SLEEP:
  529. case STATE_STANDBY:
  530. case STATE_AWAKE:
  531. retval = rt2800pci_set_state(rt2x00dev, state);
  532. break;
  533. default:
  534. retval = -ENOTSUPP;
  535. break;
  536. }
  537. if (unlikely(retval))
  538. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  539. state, retval);
  540. return retval;
  541. }
  542. /*
  543. * TX descriptor initialization
  544. */
  545. static void rt2800pci_write_tx_datadesc(struct queue_entry* entry,
  546. struct txentry_desc *txdesc)
  547. {
  548. rt2800_write_txwi((__le32 *) entry->skb->data, txdesc);
  549. }
  550. static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  551. struct sk_buff *skb,
  552. struct txentry_desc *txdesc)
  553. {
  554. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  555. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  556. __le32 *txd = entry_priv->desc;
  557. u32 word;
  558. /*
  559. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  560. * must contains a TXWI structure + 802.11 header + padding + 802.11
  561. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  562. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  563. * data. It means that LAST_SEC0 is always 0.
  564. */
  565. /*
  566. * Initialize TX descriptor
  567. */
  568. rt2x00_desc_read(txd, 0, &word);
  569. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  570. rt2x00_desc_write(txd, 0, word);
  571. rt2x00_desc_read(txd, 1, &word);
  572. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
  573. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  574. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  575. rt2x00_set_field32(&word, TXD_W1_BURST,
  576. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  577. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  578. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  579. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  580. rt2x00_desc_write(txd, 1, word);
  581. rt2x00_desc_read(txd, 2, &word);
  582. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  583. skbdesc->skb_dma + TXWI_DESC_SIZE);
  584. rt2x00_desc_write(txd, 2, word);
  585. rt2x00_desc_read(txd, 3, &word);
  586. rt2x00_set_field32(&word, TXD_W3_WIV,
  587. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  588. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  589. rt2x00_desc_write(txd, 3, word);
  590. /*
  591. * Register descriptor details in skb frame descriptor.
  592. */
  593. skbdesc->desc = txd;
  594. skbdesc->desc_len = TXD_DESC_SIZE;
  595. }
  596. /*
  597. * TX data initialization
  598. */
  599. static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  600. const enum data_queue_qid queue_idx)
  601. {
  602. struct data_queue *queue;
  603. unsigned int idx, qidx = 0;
  604. if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
  605. return;
  606. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  607. idx = queue->index[Q_INDEX];
  608. if (queue_idx == QID_MGMT)
  609. qidx = 5;
  610. else
  611. qidx = queue_idx;
  612. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
  613. }
  614. static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  615. const enum data_queue_qid qid)
  616. {
  617. u32 reg;
  618. if (qid == QID_BEACON) {
  619. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  620. return;
  621. }
  622. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  623. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
  624. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
  625. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
  626. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
  627. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  628. }
  629. /*
  630. * RX control handlers
  631. */
  632. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  633. struct rxdone_entry_desc *rxdesc)
  634. {
  635. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  636. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  637. __le32 *rxd = entry_priv->desc;
  638. u32 word;
  639. rt2x00_desc_read(rxd, 3, &word);
  640. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  641. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  642. /*
  643. * Unfortunately we don't know the cipher type used during
  644. * decryption. This prevents us from correct providing
  645. * correct statistics through debugfs.
  646. */
  647. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  648. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  649. /*
  650. * Hardware has stripped IV/EIV data from 802.11 frame during
  651. * decryption. Unfortunately the descriptor doesn't contain
  652. * any fields with the EIV/IV data either, so they can't
  653. * be restored by rt2x00lib.
  654. */
  655. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  656. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  657. rxdesc->flags |= RX_FLAG_DECRYPTED;
  658. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  659. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  660. }
  661. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  662. rxdesc->dev_flags |= RXDONE_MY_BSS;
  663. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  664. rxdesc->dev_flags |= RXDONE_L2PAD;
  665. /*
  666. * Process the RXWI structure that is at the start of the buffer.
  667. */
  668. rt2800_process_rxwi(entry->skb, rxdesc);
  669. /*
  670. * Set RX IDX in register to inform hardware that we have handled
  671. * this entry and it is available for reuse again.
  672. */
  673. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  674. }
  675. /*
  676. * Interrupt functions.
  677. */
  678. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  679. {
  680. struct data_queue *queue;
  681. struct queue_entry *entry;
  682. __le32 *txwi;
  683. struct txdone_entry_desc txdesc;
  684. u32 word;
  685. u32 reg;
  686. u32 old_reg;
  687. int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
  688. u16 mcs, real_mcs;
  689. /*
  690. * During each loop we will compare the freshly read
  691. * TX_STA_FIFO register value with the value read from
  692. * the previous loop. If the 2 values are equal then
  693. * we should stop processing because the chance it
  694. * quite big that the device has been unplugged and
  695. * we risk going into an endless loop.
  696. */
  697. old_reg = 0;
  698. while (1) {
  699. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  700. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  701. break;
  702. if (old_reg == reg)
  703. break;
  704. old_reg = reg;
  705. wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
  706. ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
  707. pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
  708. /*
  709. * Skip this entry when it contains an invalid
  710. * queue identication number.
  711. */
  712. if (pid <= 0 || pid > QID_RX)
  713. continue;
  714. queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
  715. if (unlikely(!queue))
  716. continue;
  717. /*
  718. * Inside each queue, we process each entry in a chronological
  719. * order. We first check that the queue is not empty.
  720. */
  721. if (rt2x00queue_empty(queue))
  722. continue;
  723. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  724. /* Check if we got a match by looking at WCID/ACK/PID
  725. * fields */
  726. txwi = (__le32 *) entry->skb->data;
  727. rt2x00_desc_read(txwi, 1, &word);
  728. tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
  729. tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
  730. tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
  731. if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
  732. WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
  733. /*
  734. * Obtain the status about this packet.
  735. */
  736. txdesc.flags = 0;
  737. rt2x00_desc_read(txwi, 0, &word);
  738. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  739. real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
  740. /*
  741. * Ralink has a retry mechanism using a global fallback
  742. * table. We setup this fallback table to try the immediate
  743. * lower rate for all rates. In the TX_STA_FIFO, the MCS field
  744. * always contains the MCS used for the last transmission, be
  745. * it successful or not.
  746. */
  747. if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
  748. /*
  749. * Transmission succeeded. The number of retries is
  750. * mcs - real_mcs
  751. */
  752. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  753. txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
  754. } else {
  755. /*
  756. * Transmission failed. The number of retries is
  757. * always 7 in this case (for a total number of 8
  758. * frames sent).
  759. */
  760. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  761. txdesc.retry = 7;
  762. }
  763. /*
  764. * the frame was retried at least once
  765. * -> hw used fallback rates
  766. */
  767. if (txdesc.retry)
  768. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  769. rt2x00pci_txdone(entry, &txdesc);
  770. }
  771. }
  772. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  773. {
  774. struct ieee80211_conf conf = { .flags = 0 };
  775. struct rt2x00lib_conf libconf = { .conf = &conf };
  776. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  777. }
  778. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  779. {
  780. struct rt2x00_dev *rt2x00dev = dev_instance;
  781. u32 reg;
  782. /* Read status and ACK all interrupts */
  783. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  784. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  785. if (!reg)
  786. return IRQ_NONE;
  787. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  788. return IRQ_HANDLED;
  789. /*
  790. * 1 - Rx ring done interrupt.
  791. */
  792. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  793. rt2x00pci_rxdone(rt2x00dev);
  794. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  795. rt2800pci_txdone(rt2x00dev);
  796. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  797. rt2800pci_wakeup(rt2x00dev);
  798. return IRQ_HANDLED;
  799. }
  800. /*
  801. * Device probe functions.
  802. */
  803. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  804. {
  805. /*
  806. * Read EEPROM into buffer
  807. */
  808. if (rt2x00_is_soc(rt2x00dev))
  809. rt2800pci_read_eeprom_soc(rt2x00dev);
  810. else if (rt2800pci_efuse_detect(rt2x00dev))
  811. rt2800pci_read_eeprom_efuse(rt2x00dev);
  812. else
  813. rt2800pci_read_eeprom_pci(rt2x00dev);
  814. return rt2800_validate_eeprom(rt2x00dev);
  815. }
  816. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  817. .register_read = rt2x00pci_register_read,
  818. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  819. .register_write = rt2x00pci_register_write,
  820. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  821. .register_multiread = rt2x00pci_register_multiread,
  822. .register_multiwrite = rt2x00pci_register_multiwrite,
  823. .regbusy_read = rt2x00pci_regbusy_read,
  824. .drv_init_registers = rt2800pci_init_registers,
  825. };
  826. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  827. {
  828. int retval;
  829. rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
  830. /*
  831. * Allocate eeprom data.
  832. */
  833. retval = rt2800pci_validate_eeprom(rt2x00dev);
  834. if (retval)
  835. return retval;
  836. retval = rt2800_init_eeprom(rt2x00dev);
  837. if (retval)
  838. return retval;
  839. /*
  840. * Initialize hw specifications.
  841. */
  842. retval = rt2800_probe_hw_mode(rt2x00dev);
  843. if (retval)
  844. return retval;
  845. /*
  846. * This device has multiple filters for control frames
  847. * and has a separate filter for PS Poll frames.
  848. */
  849. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  850. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  851. /*
  852. * This device requires firmware.
  853. */
  854. if (!rt2x00_is_soc(rt2x00dev))
  855. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  856. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  857. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  858. if (!modparam_nohwcrypt)
  859. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  860. /*
  861. * Set the rssi offset.
  862. */
  863. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  864. return 0;
  865. }
  866. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  867. .irq_handler = rt2800pci_interrupt,
  868. .probe_hw = rt2800pci_probe_hw,
  869. .get_firmware_name = rt2800pci_get_firmware_name,
  870. .check_firmware = rt2800pci_check_firmware,
  871. .load_firmware = rt2800pci_load_firmware,
  872. .initialize = rt2x00pci_initialize,
  873. .uninitialize = rt2x00pci_uninitialize,
  874. .get_entry_state = rt2800pci_get_entry_state,
  875. .clear_entry = rt2800pci_clear_entry,
  876. .set_device_state = rt2800pci_set_device_state,
  877. .rfkill_poll = rt2800_rfkill_poll,
  878. .link_stats = rt2800_link_stats,
  879. .reset_tuner = rt2800_reset_tuner,
  880. .link_tuner = rt2800_link_tuner,
  881. .write_tx_desc = rt2800pci_write_tx_desc,
  882. .write_tx_data = rt2x00pci_write_tx_data,
  883. .write_tx_datadesc = rt2800pci_write_tx_datadesc,
  884. .write_beacon = rt2800_write_beacon,
  885. .kick_tx_queue = rt2800pci_kick_tx_queue,
  886. .kill_tx_queue = rt2800pci_kill_tx_queue,
  887. .fill_rxdone = rt2800pci_fill_rxdone,
  888. .config_shared_key = rt2800_config_shared_key,
  889. .config_pairwise_key = rt2800_config_pairwise_key,
  890. .config_filter = rt2800_config_filter,
  891. .config_intf = rt2800_config_intf,
  892. .config_erp = rt2800_config_erp,
  893. .config_ant = rt2800_config_ant,
  894. .config = rt2800_config,
  895. };
  896. static const struct data_queue_desc rt2800pci_queue_rx = {
  897. .entry_num = RX_ENTRIES,
  898. .data_size = AGGREGATION_SIZE,
  899. .desc_size = RXD_DESC_SIZE,
  900. .priv_size = sizeof(struct queue_entry_priv_pci),
  901. };
  902. static const struct data_queue_desc rt2800pci_queue_tx = {
  903. .entry_num = TX_ENTRIES,
  904. .data_size = AGGREGATION_SIZE,
  905. .desc_size = TXD_DESC_SIZE,
  906. .priv_size = sizeof(struct queue_entry_priv_pci),
  907. };
  908. static const struct data_queue_desc rt2800pci_queue_bcn = {
  909. .entry_num = 8 * BEACON_ENTRIES,
  910. .data_size = 0, /* No DMA required for beacons */
  911. .desc_size = TXWI_DESC_SIZE,
  912. .priv_size = sizeof(struct queue_entry_priv_pci),
  913. };
  914. static const struct rt2x00_ops rt2800pci_ops = {
  915. .name = KBUILD_MODNAME,
  916. .max_sta_intf = 1,
  917. .max_ap_intf = 8,
  918. .eeprom_size = EEPROM_SIZE,
  919. .rf_size = RF_SIZE,
  920. .tx_queues = NUM_TX_QUEUES,
  921. .extra_tx_headroom = TXWI_DESC_SIZE,
  922. .rx = &rt2800pci_queue_rx,
  923. .tx = &rt2800pci_queue_tx,
  924. .bcn = &rt2800pci_queue_bcn,
  925. .lib = &rt2800pci_rt2x00_ops,
  926. .hw = &rt2800_mac80211_ops,
  927. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  928. .debugfs = &rt2800_rt2x00debug,
  929. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  930. };
  931. /*
  932. * RT2800pci module information.
  933. */
  934. #ifdef CONFIG_RT2800PCI_PCI
  935. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  936. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  937. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  938. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  939. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  940. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  941. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  942. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  943. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  944. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  945. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  946. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  947. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  948. #ifdef CONFIG_RT2800PCI_RT30XX
  949. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  950. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  951. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  952. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  953. #endif
  954. #ifdef CONFIG_RT2800PCI_RT35XX
  955. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  956. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  957. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  958. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  959. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  960. #endif
  961. { 0, }
  962. };
  963. #endif /* CONFIG_RT2800PCI_PCI */
  964. MODULE_AUTHOR(DRV_PROJECT);
  965. MODULE_VERSION(DRV_VERSION);
  966. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  967. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  968. #ifdef CONFIG_RT2800PCI_PCI
  969. MODULE_FIRMWARE(FIRMWARE_RT2860);
  970. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  971. #endif /* CONFIG_RT2800PCI_PCI */
  972. MODULE_LICENSE("GPL");
  973. #ifdef CONFIG_RT2800PCI_SOC
  974. static int rt2800soc_probe(struct platform_device *pdev)
  975. {
  976. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  977. }
  978. static struct platform_driver rt2800soc_driver = {
  979. .driver = {
  980. .name = "rt2800_wmac",
  981. .owner = THIS_MODULE,
  982. .mod_name = KBUILD_MODNAME,
  983. },
  984. .probe = rt2800soc_probe,
  985. .remove = __devexit_p(rt2x00soc_remove),
  986. .suspend = rt2x00soc_suspend,
  987. .resume = rt2x00soc_resume,
  988. };
  989. #endif /* CONFIG_RT2800PCI_SOC */
  990. #ifdef CONFIG_RT2800PCI_PCI
  991. static struct pci_driver rt2800pci_driver = {
  992. .name = KBUILD_MODNAME,
  993. .id_table = rt2800pci_device_table,
  994. .probe = rt2x00pci_probe,
  995. .remove = __devexit_p(rt2x00pci_remove),
  996. .suspend = rt2x00pci_suspend,
  997. .resume = rt2x00pci_resume,
  998. };
  999. #endif /* CONFIG_RT2800PCI_PCI */
  1000. static int __init rt2800pci_init(void)
  1001. {
  1002. int ret = 0;
  1003. #ifdef CONFIG_RT2800PCI_SOC
  1004. ret = platform_driver_register(&rt2800soc_driver);
  1005. if (ret)
  1006. return ret;
  1007. #endif
  1008. #ifdef CONFIG_RT2800PCI_PCI
  1009. ret = pci_register_driver(&rt2800pci_driver);
  1010. if (ret) {
  1011. #ifdef CONFIG_RT2800PCI_SOC
  1012. platform_driver_unregister(&rt2800soc_driver);
  1013. #endif
  1014. return ret;
  1015. }
  1016. #endif
  1017. return ret;
  1018. }
  1019. static void __exit rt2800pci_exit(void)
  1020. {
  1021. #ifdef CONFIG_RT2800PCI_PCI
  1022. pci_unregister_driver(&rt2800pci_driver);
  1023. #endif
  1024. #ifdef CONFIG_RT2800PCI_SOC
  1025. platform_driver_unregister(&rt2800soc_driver);
  1026. #endif
  1027. }
  1028. module_init(rt2800pci_init);
  1029. module_exit(rt2800pci_exit);