amd64_edac.c 94 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306
  1. #include "amd64_edac.h"
  2. #include <asm/k8.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. /* Lookup table for all possible MC control instances */
  13. struct amd64_pvt;
  14. static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
  15. static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
  16. /*
  17. * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
  18. * for DDR2 DRAM mapping.
  19. */
  20. u32 revf_quad_ddr2_shift[] = {
  21. 0, /* 0000b NULL DIMM (128mb) */
  22. 28, /* 0001b 256mb */
  23. 29, /* 0010b 512mb */
  24. 29, /* 0011b 512mb */
  25. 29, /* 0100b 512mb */
  26. 30, /* 0101b 1gb */
  27. 30, /* 0110b 1gb */
  28. 31, /* 0111b 2gb */
  29. 31, /* 1000b 2gb */
  30. 32, /* 1001b 4gb */
  31. 32, /* 1010b 4gb */
  32. 33, /* 1011b 8gb */
  33. 0, /* 1100b future */
  34. 0, /* 1101b future */
  35. 0, /* 1110b future */
  36. 0 /* 1111b future */
  37. };
  38. /*
  39. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  40. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  41. * or higher value'.
  42. *
  43. *FIXME: Produce a better mapping/linearisation.
  44. */
  45. struct scrubrate scrubrates[] = {
  46. { 0x01, 1600000000UL},
  47. { 0x02, 800000000UL},
  48. { 0x03, 400000000UL},
  49. { 0x04, 200000000UL},
  50. { 0x05, 100000000UL},
  51. { 0x06, 50000000UL},
  52. { 0x07, 25000000UL},
  53. { 0x08, 12284069UL},
  54. { 0x09, 6274509UL},
  55. { 0x0A, 3121951UL},
  56. { 0x0B, 1560975UL},
  57. { 0x0C, 781440UL},
  58. { 0x0D, 390720UL},
  59. { 0x0E, 195300UL},
  60. { 0x0F, 97650UL},
  61. { 0x10, 48854UL},
  62. { 0x11, 24427UL},
  63. { 0x12, 12213UL},
  64. { 0x13, 6101UL},
  65. { 0x14, 3051UL},
  66. { 0x15, 1523UL},
  67. { 0x16, 761UL},
  68. { 0x00, 0UL}, /* scrubbing off */
  69. };
  70. /*
  71. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  72. * hardware and can involve L2 cache, dcache as well as the main memory. With
  73. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  74. * functionality.
  75. *
  76. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  77. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  78. * bytes/sec for the setting.
  79. *
  80. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  81. * other archs, we might not have access to the caches directly.
  82. */
  83. /*
  84. * scan the scrub rate mapping table for a close or matching bandwidth value to
  85. * issue. If requested is too big, then use last maximum value found.
  86. */
  87. static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
  88. u32 min_scrubrate)
  89. {
  90. u32 scrubval;
  91. int i;
  92. /*
  93. * map the configured rate (new_bw) to a value specific to the AMD64
  94. * memory controller and apply to register. Search for the first
  95. * bandwidth entry that is greater or equal than the setting requested
  96. * and program that. If at last entry, turn off DRAM scrubbing.
  97. */
  98. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  99. /*
  100. * skip scrub rates which aren't recommended
  101. * (see F10 BKDG, F3x58)
  102. */
  103. if (scrubrates[i].scrubval < min_scrubrate)
  104. continue;
  105. if (scrubrates[i].bandwidth <= new_bw)
  106. break;
  107. /*
  108. * if no suitable bandwidth found, turn off DRAM scrubbing
  109. * entirely by falling back to the last element in the
  110. * scrubrates array.
  111. */
  112. }
  113. scrubval = scrubrates[i].scrubval;
  114. if (scrubval)
  115. edac_printk(KERN_DEBUG, EDAC_MC,
  116. "Setting scrub rate bandwidth: %u\n",
  117. scrubrates[i].bandwidth);
  118. else
  119. edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
  120. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  121. return 0;
  122. }
  123. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
  124. {
  125. struct amd64_pvt *pvt = mci->pvt_info;
  126. u32 min_scrubrate = 0x0;
  127. switch (boot_cpu_data.x86) {
  128. case 0xf:
  129. min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  130. break;
  131. case 0x10:
  132. min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  133. break;
  134. case 0x11:
  135. min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
  136. break;
  137. default:
  138. amd64_printk(KERN_ERR, "Unsupported family!\n");
  139. break;
  140. }
  141. return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
  142. min_scrubrate);
  143. }
  144. static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
  145. {
  146. struct amd64_pvt *pvt = mci->pvt_info;
  147. u32 scrubval = 0;
  148. int status = -1, i, ret = 0;
  149. ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
  150. if (ret)
  151. debugf0("Reading K8_SCRCTRL failed\n");
  152. scrubval = scrubval & 0x001F;
  153. edac_printk(KERN_DEBUG, EDAC_MC,
  154. "pci-read, sdram scrub control value: %d \n", scrubval);
  155. for (i = 0; ARRAY_SIZE(scrubrates); i++) {
  156. if (scrubrates[i].scrubval == scrubval) {
  157. *bw = scrubrates[i].bandwidth;
  158. status = 0;
  159. break;
  160. }
  161. }
  162. return status;
  163. }
  164. /* Map from a CSROW entry to the mask entry that operates on it */
  165. static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
  166. {
  167. return csrow >> (pvt->num_dcsm >> 3);
  168. }
  169. /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
  170. static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
  171. {
  172. if (dct == 0)
  173. return pvt->dcsb0[csrow];
  174. else
  175. return pvt->dcsb1[csrow];
  176. }
  177. /*
  178. * Return the 'mask' address the i'th CS entry. This function is needed because
  179. * there number of DCSM registers on Rev E and prior vs Rev F and later is
  180. * different.
  181. */
  182. static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
  183. {
  184. if (dct == 0)
  185. return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
  186. else
  187. return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
  188. }
  189. /*
  190. * In *base and *limit, pass back the full 40-bit base and limit physical
  191. * addresses for the node given by node_id. This information is obtained from
  192. * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
  193. * base and limit addresses are of type SysAddr, as defined at the start of
  194. * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
  195. * in the address range they represent.
  196. */
  197. static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
  198. u64 *base, u64 *limit)
  199. {
  200. *base = pvt->dram_base[node_id];
  201. *limit = pvt->dram_limit[node_id];
  202. }
  203. /*
  204. * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
  205. * with node_id
  206. */
  207. static int amd64_base_limit_match(struct amd64_pvt *pvt,
  208. u64 sys_addr, int node_id)
  209. {
  210. u64 base, limit, addr;
  211. amd64_get_base_and_limit(pvt, node_id, &base, &limit);
  212. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  213. * all ones if the most significant implemented address bit is 1.
  214. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  215. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  216. * Application Programming.
  217. */
  218. addr = sys_addr & 0x000000ffffffffffull;
  219. return (addr >= base) && (addr <= limit);
  220. }
  221. /*
  222. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  223. * mem_ctl_info structure for the node that the SysAddr maps to.
  224. *
  225. * On failure, return NULL.
  226. */
  227. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  228. u64 sys_addr)
  229. {
  230. struct amd64_pvt *pvt;
  231. int node_id;
  232. u32 intlv_en, bits;
  233. /*
  234. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  235. * 3.4.4.2) registers to map the SysAddr to a node ID.
  236. */
  237. pvt = mci->pvt_info;
  238. /*
  239. * The value of this field should be the same for all DRAM Base
  240. * registers. Therefore we arbitrarily choose to read it from the
  241. * register for node 0.
  242. */
  243. intlv_en = pvt->dram_IntlvEn[0];
  244. if (intlv_en == 0) {
  245. for (node_id = 0; ; ) {
  246. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  247. break;
  248. if (++node_id >= DRAM_REG_COUNT)
  249. goto err_no_match;
  250. }
  251. goto found;
  252. }
  253. if (unlikely((intlv_en != (0x01 << 8)) &&
  254. (intlv_en != (0x03 << 8)) &&
  255. (intlv_en != (0x07 << 8)))) {
  256. amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
  257. "IntlvEn field of DRAM Base Register for node 0: "
  258. "This probably indicates a BIOS bug.\n", intlv_en);
  259. return NULL;
  260. }
  261. bits = (((u32) sys_addr) >> 12) & intlv_en;
  262. for (node_id = 0; ; ) {
  263. if ((pvt->dram_limit[node_id] & intlv_en) == bits)
  264. break; /* intlv_sel field matches */
  265. if (++node_id >= DRAM_REG_COUNT)
  266. goto err_no_match;
  267. }
  268. /* sanity test for sys_addr */
  269. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  270. amd64_printk(KERN_WARNING,
  271. "%s(): sys_addr 0x%lx falls outside base/limit "
  272. "address range for node %d with node interleaving "
  273. "enabled.\n", __func__, (unsigned long)sys_addr,
  274. node_id);
  275. return NULL;
  276. }
  277. found:
  278. return edac_mc_find(node_id);
  279. err_no_match:
  280. debugf2("sys_addr 0x%lx doesn't match any node\n",
  281. (unsigned long)sys_addr);
  282. return NULL;
  283. }
  284. /*
  285. * Extract the DRAM CS base address from selected csrow register.
  286. */
  287. static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
  288. {
  289. return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
  290. pvt->dcs_shift;
  291. }
  292. /*
  293. * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
  294. */
  295. static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
  296. {
  297. u64 dcsm_bits, other_bits;
  298. u64 mask;
  299. /* Extract bits from DRAM CS Mask. */
  300. dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
  301. other_bits = pvt->dcsm_mask;
  302. other_bits = ~(other_bits << pvt->dcs_shift);
  303. /*
  304. * The extracted bits from DCSM belong in the spaces represented by
  305. * the cleared bits in other_bits.
  306. */
  307. mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
  308. return mask;
  309. }
  310. /*
  311. * @input_addr is an InputAddr associated with the node given by mci. Return the
  312. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  313. */
  314. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  315. {
  316. struct amd64_pvt *pvt;
  317. int csrow;
  318. u64 base, mask;
  319. pvt = mci->pvt_info;
  320. /*
  321. * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
  322. * base/mask register pair, test the condition shown near the start of
  323. * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
  324. */
  325. for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
  326. /* This DRAM chip select is disabled on this node */
  327. if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
  328. continue;
  329. base = base_from_dct_base(pvt, csrow);
  330. mask = ~mask_from_dct_mask(pvt, csrow);
  331. if ((input_addr & mask) == (base & mask)) {
  332. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  333. (unsigned long)input_addr, csrow,
  334. pvt->mc_node_id);
  335. return csrow;
  336. }
  337. }
  338. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  339. (unsigned long)input_addr, pvt->mc_node_id);
  340. return -1;
  341. }
  342. /*
  343. * Return the base value defined by the DRAM Base register for the node
  344. * represented by mci. This function returns the full 40-bit value despite the
  345. * fact that the register only stores bits 39-24 of the value. See section
  346. * 3.4.4.1 (BKDG #26094, K8, revA-E)
  347. */
  348. static inline u64 get_dram_base(struct mem_ctl_info *mci)
  349. {
  350. struct amd64_pvt *pvt = mci->pvt_info;
  351. return pvt->dram_base[pvt->mc_node_id];
  352. }
  353. /*
  354. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  355. * for the node represented by mci. Info is passed back in *hole_base,
  356. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  357. * info is invalid. Info may be invalid for either of the following reasons:
  358. *
  359. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  360. * Address Register does not exist.
  361. *
  362. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  363. * indicating that its contents are not valid.
  364. *
  365. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  366. * complete 32-bit values despite the fact that the bitfields in the DHAR
  367. * only represent bits 31-24 of the base and offset values.
  368. */
  369. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  370. u64 *hole_offset, u64 *hole_size)
  371. {
  372. struct amd64_pvt *pvt = mci->pvt_info;
  373. u64 base;
  374. /* only revE and later have the DRAM Hole Address Register */
  375. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
  376. debugf1(" revision %d for node %d does not support DHAR\n",
  377. pvt->ext_model, pvt->mc_node_id);
  378. return 1;
  379. }
  380. /* only valid for Fam10h */
  381. if (boot_cpu_data.x86 == 0x10 &&
  382. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
  383. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  384. return 1;
  385. }
  386. if ((pvt->dhar & DHAR_VALID) == 0) {
  387. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  388. pvt->mc_node_id);
  389. return 1;
  390. }
  391. /* This node has Memory Hoisting */
  392. /* +------------------+--------------------+--------------------+-----
  393. * | memory | DRAM hole | relocated |
  394. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  395. * | | | DRAM hole |
  396. * | | | [0x100000000, |
  397. * | | | (0x100000000+ |
  398. * | | | (0xffffffff-x))] |
  399. * +------------------+--------------------+--------------------+-----
  400. *
  401. * Above is a diagram of physical memory showing the DRAM hole and the
  402. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  403. * starts at address x (the base address) and extends through address
  404. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  405. * addresses in the hole so that they start at 0x100000000.
  406. */
  407. base = dhar_base(pvt->dhar);
  408. *hole_base = base;
  409. *hole_size = (0x1ull << 32) - base;
  410. if (boot_cpu_data.x86 > 0xf)
  411. *hole_offset = f10_dhar_offset(pvt->dhar);
  412. else
  413. *hole_offset = k8_dhar_offset(pvt->dhar);
  414. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  415. pvt->mc_node_id, (unsigned long)*hole_base,
  416. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  417. return 0;
  418. }
  419. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  420. /*
  421. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  422. * assumed that sys_addr maps to the node given by mci.
  423. *
  424. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  425. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  426. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  427. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  428. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  429. * These parts of the documentation are unclear. I interpret them as follows:
  430. *
  431. * When node n receives a SysAddr, it processes the SysAddr as follows:
  432. *
  433. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  434. * Limit registers for node n. If the SysAddr is not within the range
  435. * specified by the base and limit values, then node n ignores the Sysaddr
  436. * (since it does not map to node n). Otherwise continue to step 2 below.
  437. *
  438. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  439. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  440. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  441. * hole. If not, skip to step 3 below. Else get the value of the
  442. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  443. * offset defined by this value from the SysAddr.
  444. *
  445. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  446. * Base register for node n. To obtain the DramAddr, subtract the base
  447. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  448. */
  449. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  450. {
  451. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  452. int ret = 0;
  453. dram_base = get_dram_base(mci);
  454. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  455. &hole_size);
  456. if (!ret) {
  457. if ((sys_addr >= (1ull << 32)) &&
  458. (sys_addr < ((1ull << 32) + hole_size))) {
  459. /* use DHAR to translate SysAddr to DramAddr */
  460. dram_addr = sys_addr - hole_offset;
  461. debugf2("using DHAR to translate SysAddr 0x%lx to "
  462. "DramAddr 0x%lx\n",
  463. (unsigned long)sys_addr,
  464. (unsigned long)dram_addr);
  465. return dram_addr;
  466. }
  467. }
  468. /*
  469. * Translate the SysAddr to a DramAddr as shown near the start of
  470. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  471. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  472. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  473. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  474. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  475. * Programmer's Manual Volume 1 Application Programming.
  476. */
  477. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  478. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  479. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  480. (unsigned long)dram_addr);
  481. return dram_addr;
  482. }
  483. /*
  484. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  485. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  486. * for node interleaving.
  487. */
  488. static int num_node_interleave_bits(unsigned intlv_en)
  489. {
  490. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  491. int n;
  492. BUG_ON(intlv_en > 7);
  493. n = intlv_shift_table[intlv_en];
  494. return n;
  495. }
  496. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  497. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  498. {
  499. struct amd64_pvt *pvt;
  500. int intlv_shift;
  501. u64 input_addr;
  502. pvt = mci->pvt_info;
  503. /*
  504. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  505. * concerning translating a DramAddr to an InputAddr.
  506. */
  507. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  508. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  509. (dram_addr & 0xfff);
  510. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  511. intlv_shift, (unsigned long)dram_addr,
  512. (unsigned long)input_addr);
  513. return input_addr;
  514. }
  515. /*
  516. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  517. * assumed that @sys_addr maps to the node given by mci.
  518. */
  519. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  520. {
  521. u64 input_addr;
  522. input_addr =
  523. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  524. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  525. (unsigned long)sys_addr, (unsigned long)input_addr);
  526. return input_addr;
  527. }
  528. /*
  529. * @input_addr is an InputAddr associated with the node represented by mci.
  530. * Translate @input_addr to a DramAddr and return the result.
  531. */
  532. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  533. {
  534. struct amd64_pvt *pvt;
  535. int node_id, intlv_shift;
  536. u64 bits, dram_addr;
  537. u32 intlv_sel;
  538. /*
  539. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  540. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  541. * this procedure. When translating from a DramAddr to an InputAddr, the
  542. * bits used for node interleaving are discarded. Here we recover these
  543. * bits from the IntlvSel field of the DRAM Limit register (section
  544. * 3.4.4.2) for the node that input_addr is associated with.
  545. */
  546. pvt = mci->pvt_info;
  547. node_id = pvt->mc_node_id;
  548. BUG_ON((node_id < 0) || (node_id > 7));
  549. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  550. if (intlv_shift == 0) {
  551. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  552. "same value\n", (unsigned long)input_addr);
  553. return input_addr;
  554. }
  555. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  556. (input_addr & 0xfff);
  557. intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
  558. dram_addr = bits + (intlv_sel << 12);
  559. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  560. "(%d node interleave bits)\n", (unsigned long)input_addr,
  561. (unsigned long)dram_addr, intlv_shift);
  562. return dram_addr;
  563. }
  564. /*
  565. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  566. * @dram_addr to a SysAddr.
  567. */
  568. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  569. {
  570. struct amd64_pvt *pvt = mci->pvt_info;
  571. u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
  572. int ret = 0;
  573. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  574. &hole_size);
  575. if (!ret) {
  576. if ((dram_addr >= hole_base) &&
  577. (dram_addr < (hole_base + hole_size))) {
  578. sys_addr = dram_addr + hole_offset;
  579. debugf1("using DHAR to translate DramAddr 0x%lx to "
  580. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  581. (unsigned long)sys_addr);
  582. return sys_addr;
  583. }
  584. }
  585. amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
  586. sys_addr = dram_addr + base;
  587. /*
  588. * The sys_addr we have computed up to this point is a 40-bit value
  589. * because the k8 deals with 40-bit values. However, the value we are
  590. * supposed to return is a full 64-bit physical address. The AMD
  591. * x86-64 architecture specifies that the most significant implemented
  592. * address bit through bit 63 of a physical address must be either all
  593. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  594. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  595. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  596. * Programming.
  597. */
  598. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  599. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  600. pvt->mc_node_id, (unsigned long)dram_addr,
  601. (unsigned long)sys_addr);
  602. return sys_addr;
  603. }
  604. /*
  605. * @input_addr is an InputAddr associated with the node given by mci. Translate
  606. * @input_addr to a SysAddr.
  607. */
  608. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  609. u64 input_addr)
  610. {
  611. return dram_addr_to_sys_addr(mci,
  612. input_addr_to_dram_addr(mci, input_addr));
  613. }
  614. /*
  615. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  616. * Pass back these values in *input_addr_min and *input_addr_max.
  617. */
  618. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  619. u64 *input_addr_min, u64 *input_addr_max)
  620. {
  621. struct amd64_pvt *pvt;
  622. u64 base, mask;
  623. pvt = mci->pvt_info;
  624. BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
  625. base = base_from_dct_base(pvt, csrow);
  626. mask = mask_from_dct_mask(pvt, csrow);
  627. *input_addr_min = base & ~mask;
  628. *input_addr_max = base | mask | pvt->dcs_mask_notused;
  629. }
  630. /*
  631. * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
  632. * Address High (section 3.6.4.6) register values and return the result. Address
  633. * is located in the info structure (nbeah and nbeal), the encoding is device
  634. * specific.
  635. */
  636. static u64 extract_error_address(struct mem_ctl_info *mci,
  637. struct err_regs *info)
  638. {
  639. struct amd64_pvt *pvt = mci->pvt_info;
  640. return pvt->ops->get_error_address(mci, info);
  641. }
  642. /* Map the Error address to a PAGE and PAGE OFFSET. */
  643. static inline void error_address_to_page_and_offset(u64 error_address,
  644. u32 *page, u32 *offset)
  645. {
  646. *page = (u32) (error_address >> PAGE_SHIFT);
  647. *offset = ((u32) error_address) & ~PAGE_MASK;
  648. }
  649. /*
  650. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  651. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  652. * of a node that detected an ECC memory error. mci represents the node that
  653. * the error address maps to (possibly different from the node that detected
  654. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  655. * error.
  656. */
  657. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  658. {
  659. int csrow;
  660. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  661. if (csrow == -1)
  662. amd64_mc_printk(mci, KERN_ERR,
  663. "Failed to translate InputAddr to csrow for "
  664. "address 0x%lx\n", (unsigned long)sys_addr);
  665. return csrow;
  666. }
  667. static int get_channel_from_ecc_syndrome(unsigned short syndrome);
  668. static void amd64_cpu_display_info(struct amd64_pvt *pvt)
  669. {
  670. if (boot_cpu_data.x86 == 0x11)
  671. edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
  672. else if (boot_cpu_data.x86 == 0x10)
  673. edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
  674. else if (boot_cpu_data.x86 == 0xf)
  675. edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
  676. (pvt->ext_model >= OPTERON_CPU_REV_F) ?
  677. "Rev F or later" : "Rev E or earlier");
  678. else
  679. /* we'll hardly ever ever get here */
  680. edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
  681. }
  682. /*
  683. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  684. * are ECC capable.
  685. */
  686. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  687. {
  688. int bit;
  689. enum dev_type edac_cap = EDAC_FLAG_NONE;
  690. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
  691. ? 19
  692. : 17;
  693. if (pvt->dclr0 & BIT(bit))
  694. edac_cap = EDAC_FLAG_SECDED;
  695. return edac_cap;
  696. }
  697. static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
  698. int ganged);
  699. /* Display and decode various NB registers for debug purposes. */
  700. static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
  701. {
  702. int ganged;
  703. debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
  704. pvt->nbcap,
  705. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
  706. (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
  707. (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
  708. debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
  709. (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
  710. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
  711. debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
  712. pvt->dclr0,
  713. (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
  714. (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
  715. (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
  716. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
  717. (pvt->dclr0 & BIT(12)) ? "Y" : "N",
  718. (pvt->dclr0 & BIT(13)) ? "Y" : "N",
  719. (pvt->dclr0 & BIT(14)) ? "Y" : "N",
  720. (pvt->dclr0 & BIT(15)) ? "Y" : "N",
  721. (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
  722. debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
  723. if (boot_cpu_data.x86 == 0xf) {
  724. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  725. pvt->dhar, dhar_base(pvt->dhar),
  726. k8_dhar_offset(pvt->dhar));
  727. debugf1(" DramHoleValid=%s\n",
  728. (pvt->dhar & DHAR_VALID) ? "True" : "False");
  729. debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
  730. /* everything below this point is Fam10h and above */
  731. return;
  732. } else {
  733. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  734. pvt->dhar, dhar_base(pvt->dhar),
  735. f10_dhar_offset(pvt->dhar));
  736. debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
  737. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
  738. "True" : "False",
  739. (pvt->dhar & DHAR_VALID) ?
  740. "True" : "False");
  741. }
  742. /* Only if NOT ganged does dcl1 have valid info */
  743. if (!dct_ganging_enabled(pvt)) {
  744. debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
  745. "Width=%s\n", pvt->dclr1,
  746. (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
  747. (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
  748. (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
  749. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
  750. "DIMM Type=%s\n",
  751. (pvt->dclr1 & BIT(12)) ? "Y" : "N",
  752. (pvt->dclr1 & BIT(13)) ? "Y" : "N",
  753. (pvt->dclr1 & BIT(14)) ? "Y" : "N",
  754. (pvt->dclr1 & BIT(15)) ? "Y" : "N",
  755. (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
  756. }
  757. /*
  758. * Determine if ganged and then dump memory sizes for first controller,
  759. * and if NOT ganged dump info for 2nd controller.
  760. */
  761. ganged = dct_ganging_enabled(pvt);
  762. f10_debug_display_dimm_sizes(0, pvt, ganged);
  763. if (!ganged)
  764. f10_debug_display_dimm_sizes(1, pvt, ganged);
  765. }
  766. /* Read in both of DBAM registers */
  767. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  768. {
  769. int err = 0;
  770. unsigned int reg;
  771. reg = DBAM0;
  772. err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
  773. if (err)
  774. goto err_reg;
  775. if (boot_cpu_data.x86 >= 0x10) {
  776. reg = DBAM1;
  777. err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
  778. if (err)
  779. goto err_reg;
  780. }
  781. return;
  782. err_reg:
  783. debugf0("Error reading F2x%03x.\n", reg);
  784. }
  785. /*
  786. * NOTE: CPU Revision Dependent code: Rev E and Rev F
  787. *
  788. * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
  789. * set the shift factor for the DCSB and DCSM values.
  790. *
  791. * ->dcs_mask_notused, RevE:
  792. *
  793. * To find the max InputAddr for the csrow, start with the base address and set
  794. * all bits that are "don't care" bits in the test at the start of section
  795. * 3.5.4 (p. 84).
  796. *
  797. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  798. * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
  799. * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
  800. * gaps.
  801. *
  802. * ->dcs_mask_notused, RevF and later:
  803. *
  804. * To find the max InputAddr for the csrow, start with the base address and set
  805. * all bits that are "don't care" bits in the test at the start of NPT section
  806. * 4.5.4 (p. 87).
  807. *
  808. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  809. * between bit ranges [36:27] and [21:13].
  810. *
  811. * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
  812. * which are all bits in the above-mentioned gaps.
  813. */
  814. static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
  815. {
  816. if (pvt->ext_model >= OPTERON_CPU_REV_F) {
  817. pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
  818. pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
  819. pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
  820. pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
  821. switch (boot_cpu_data.x86) {
  822. case 0xf:
  823. pvt->num_dcsm = REV_F_DCSM_COUNT;
  824. break;
  825. case 0x10:
  826. pvt->num_dcsm = F10_DCSM_COUNT;
  827. break;
  828. case 0x11:
  829. pvt->num_dcsm = F11_DCSM_COUNT;
  830. break;
  831. default:
  832. amd64_printk(KERN_ERR, "Unsupported family!\n");
  833. break;
  834. }
  835. } else {
  836. pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
  837. pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
  838. pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
  839. pvt->dcs_shift = REV_E_DCS_SHIFT;
  840. pvt->num_dcsm = REV_E_DCSM_COUNT;
  841. }
  842. }
  843. /*
  844. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
  845. */
  846. static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
  847. {
  848. int cs, reg, err = 0;
  849. amd64_set_dct_base_and_mask(pvt);
  850. for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
  851. reg = K8_DCSB0 + (cs * 4);
  852. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  853. &pvt->dcsb0[cs]);
  854. if (unlikely(err))
  855. debugf0("Reading K8_DCSB0[%d] failed\n", cs);
  856. else
  857. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  858. cs, pvt->dcsb0[cs], reg);
  859. /* If DCT are NOT ganged, then read in DCT1's base */
  860. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  861. reg = F10_DCSB1 + (cs * 4);
  862. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  863. &pvt->dcsb1[cs]);
  864. if (unlikely(err))
  865. debugf0("Reading F10_DCSB1[%d] failed\n", cs);
  866. else
  867. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  868. cs, pvt->dcsb1[cs], reg);
  869. } else {
  870. pvt->dcsb1[cs] = 0;
  871. }
  872. }
  873. for (cs = 0; cs < pvt->num_dcsm; cs++) {
  874. reg = K8_DCSM0 + (cs * 4);
  875. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  876. &pvt->dcsm0[cs]);
  877. if (unlikely(err))
  878. debugf0("Reading K8_DCSM0 failed\n");
  879. else
  880. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  881. cs, pvt->dcsm0[cs], reg);
  882. /* If DCT are NOT ganged, then read in DCT1's mask */
  883. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  884. reg = F10_DCSM1 + (cs * 4);
  885. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  886. &pvt->dcsm1[cs]);
  887. if (unlikely(err))
  888. debugf0("Reading F10_DCSM1[%d] failed\n", cs);
  889. else
  890. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  891. cs, pvt->dcsm1[cs], reg);
  892. } else
  893. pvt->dcsm1[cs] = 0;
  894. }
  895. }
  896. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
  897. {
  898. enum mem_type type;
  899. if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
  900. /* Rev F and later */
  901. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  902. } else {
  903. /* Rev E and earlier */
  904. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  905. }
  906. debugf1(" Memory type is: %s\n",
  907. (type == MEM_DDR2) ? "MEM_DDR2" :
  908. (type == MEM_RDDR2) ? "MEM_RDDR2" :
  909. (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
  910. return type;
  911. }
  912. /*
  913. * Read the DRAM Configuration Low register. It differs between CG, D & E revs
  914. * and the later RevF memory controllers (DDR vs DDR2)
  915. *
  916. * Return:
  917. * number of memory channels in operation
  918. * Pass back:
  919. * contents of the DCL0_LOW register
  920. */
  921. static int k8_early_channel_count(struct amd64_pvt *pvt)
  922. {
  923. int flag, err = 0;
  924. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  925. if (err)
  926. return err;
  927. if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
  928. /* RevF (NPT) and later */
  929. flag = pvt->dclr0 & F10_WIDTH_128;
  930. } else {
  931. /* RevE and earlier */
  932. flag = pvt->dclr0 & REVE_WIDTH_128;
  933. }
  934. /* not used */
  935. pvt->dclr1 = 0;
  936. return (flag) ? 2 : 1;
  937. }
  938. /* extract the ERROR ADDRESS for the K8 CPUs */
  939. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  940. struct err_regs *info)
  941. {
  942. return (((u64) (info->nbeah & 0xff)) << 32) +
  943. (info->nbeal & ~0x03);
  944. }
  945. /*
  946. * Read the Base and Limit registers for K8 based Memory controllers; extract
  947. * fields from the 'raw' reg into separate data fields
  948. *
  949. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
  950. */
  951. static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  952. {
  953. u32 low;
  954. u32 off = dram << 3; /* 8 bytes between DRAM entries */
  955. int err;
  956. err = pci_read_config_dword(pvt->addr_f1_ctl,
  957. K8_DRAM_BASE_LOW + off, &low);
  958. if (err)
  959. debugf0("Reading K8_DRAM_BASE_LOW failed\n");
  960. /* Extract parts into separate data entries */
  961. pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
  962. pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
  963. pvt->dram_rw_en[dram] = (low & 0x3);
  964. err = pci_read_config_dword(pvt->addr_f1_ctl,
  965. K8_DRAM_LIMIT_LOW + off, &low);
  966. if (err)
  967. debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
  968. /*
  969. * Extract parts into separate data entries. Limit is the HIGHEST memory
  970. * location of the region, so lower 24 bits need to be all ones
  971. */
  972. pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
  973. pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
  974. pvt->dram_DstNode[dram] = (low & 0x7);
  975. }
  976. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  977. struct err_regs *info,
  978. u64 SystemAddress)
  979. {
  980. struct mem_ctl_info *src_mci;
  981. unsigned short syndrome;
  982. int channel, csrow;
  983. u32 page, offset;
  984. /* Extract the syndrome parts and form a 16-bit syndrome */
  985. syndrome = HIGH_SYNDROME(info->nbsl) << 8;
  986. syndrome |= LOW_SYNDROME(info->nbsh);
  987. /* CHIPKILL enabled */
  988. if (info->nbcfg & K8_NBCFG_CHIPKILL) {
  989. channel = get_channel_from_ecc_syndrome(syndrome);
  990. if (channel < 0) {
  991. /*
  992. * Syndrome didn't map, so we don't know which of the
  993. * 2 DIMMs is in error. So we need to ID 'both' of them
  994. * as suspect.
  995. */
  996. amd64_mc_printk(mci, KERN_WARNING,
  997. "unknown syndrome 0x%x - possible error "
  998. "reporting race\n", syndrome);
  999. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1000. return;
  1001. }
  1002. } else {
  1003. /*
  1004. * non-chipkill ecc mode
  1005. *
  1006. * The k8 documentation is unclear about how to determine the
  1007. * channel number when using non-chipkill memory. This method
  1008. * was obtained from email communication with someone at AMD.
  1009. * (Wish the email was placed in this comment - norsk)
  1010. */
  1011. channel = ((SystemAddress & BIT(3)) != 0);
  1012. }
  1013. /*
  1014. * Find out which node the error address belongs to. This may be
  1015. * different from the node that detected the error.
  1016. */
  1017. src_mci = find_mc_by_sys_addr(mci, SystemAddress);
  1018. if (src_mci) {
  1019. amd64_mc_printk(mci, KERN_ERR,
  1020. "failed to map error address 0x%lx to a node\n",
  1021. (unsigned long)SystemAddress);
  1022. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1023. return;
  1024. }
  1025. /* Now map the SystemAddress to a CSROW */
  1026. csrow = sys_addr_to_csrow(src_mci, SystemAddress);
  1027. if (csrow < 0) {
  1028. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  1029. } else {
  1030. error_address_to_page_and_offset(SystemAddress, &page, &offset);
  1031. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  1032. channel, EDAC_MOD_STR);
  1033. }
  1034. }
  1035. /*
  1036. * determrine the number of PAGES in for this DIMM's size based on its DRAM
  1037. * Address Mapping.
  1038. *
  1039. * First step is to calc the number of bits to shift a value of 1 left to
  1040. * indicate show many pages. Start with the DBAM value as the starting bits,
  1041. * then proceed to adjust those shift bits, based on CPU rev and the table.
  1042. * See BKDG on the DBAM
  1043. */
  1044. static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
  1045. {
  1046. int nr_pages;
  1047. if (pvt->ext_model >= OPTERON_CPU_REV_F) {
  1048. nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
  1049. } else {
  1050. /*
  1051. * RevE and less section; this line is tricky. It collapses the
  1052. * table used by RevD and later to one that matches revisions CG
  1053. * and earlier.
  1054. */
  1055. dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
  1056. (dram_map > 8 ? 4 : (dram_map > 5 ?
  1057. 3 : (dram_map > 2 ? 1 : 0))) : 0;
  1058. /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
  1059. nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
  1060. }
  1061. return nr_pages;
  1062. }
  1063. /*
  1064. * Get the number of DCT channels in use.
  1065. *
  1066. * Return:
  1067. * number of Memory Channels in operation
  1068. * Pass back:
  1069. * contents of the DCL0_LOW register
  1070. */
  1071. static int f10_early_channel_count(struct amd64_pvt *pvt)
  1072. {
  1073. int err = 0, channels = 0;
  1074. u32 dbam;
  1075. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  1076. if (err)
  1077. goto err_reg;
  1078. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
  1079. if (err)
  1080. goto err_reg;
  1081. /* If we are in 128 bit mode, then we are using 2 channels */
  1082. if (pvt->dclr0 & F10_WIDTH_128) {
  1083. debugf0("Data WIDTH is 128 bits - 2 channels\n");
  1084. channels = 2;
  1085. return channels;
  1086. }
  1087. /*
  1088. * Need to check if in UN-ganged mode: In such, there are 2 channels,
  1089. * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
  1090. * will be OFF.
  1091. *
  1092. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  1093. * their CSEnable bit on. If so, then SINGLE DIMM case.
  1094. */
  1095. debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
  1096. /*
  1097. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  1098. * is more than just one DIMM present in unganged mode. Need to check
  1099. * both controllers since DIMMs can be placed in either one.
  1100. */
  1101. channels = 0;
  1102. err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
  1103. if (err)
  1104. goto err_reg;
  1105. if (DBAM_DIMM(0, dbam) > 0)
  1106. channels++;
  1107. if (DBAM_DIMM(1, dbam) > 0)
  1108. channels++;
  1109. if (DBAM_DIMM(2, dbam) > 0)
  1110. channels++;
  1111. if (DBAM_DIMM(3, dbam) > 0)
  1112. channels++;
  1113. /* If more than 2 DIMMs are present, then we have 2 channels */
  1114. if (channels > 2)
  1115. channels = 2;
  1116. else if (channels == 0) {
  1117. /* No DIMMs on DCT0, so look at DCT1 */
  1118. err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
  1119. if (err)
  1120. goto err_reg;
  1121. if (DBAM_DIMM(0, dbam) > 0)
  1122. channels++;
  1123. if (DBAM_DIMM(1, dbam) > 0)
  1124. channels++;
  1125. if (DBAM_DIMM(2, dbam) > 0)
  1126. channels++;
  1127. if (DBAM_DIMM(3, dbam) > 0)
  1128. channels++;
  1129. if (channels > 2)
  1130. channels = 2;
  1131. }
  1132. /* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
  1133. if (channels == 0)
  1134. channels = 1;
  1135. debugf0("MCT channel count: %d\n", channels);
  1136. return channels;
  1137. err_reg:
  1138. return -1;
  1139. }
  1140. static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
  1141. {
  1142. return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
  1143. }
  1144. /* Enable extended configuration access via 0xCF8 feature */
  1145. static void amd64_setup(struct amd64_pvt *pvt)
  1146. {
  1147. u32 reg;
  1148. pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1149. pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
  1150. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1151. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1152. }
  1153. /* Restore the extended configuration access via 0xCF8 feature */
  1154. static void amd64_teardown(struct amd64_pvt *pvt)
  1155. {
  1156. u32 reg;
  1157. pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1158. reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1159. if (pvt->flags.cf8_extcfg)
  1160. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1161. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1162. }
  1163. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  1164. struct err_regs *info)
  1165. {
  1166. return (((u64) (info->nbeah & 0xffff)) << 32) +
  1167. (info->nbeal & ~0x01);
  1168. }
  1169. /*
  1170. * Read the Base and Limit registers for F10 based Memory controllers. Extract
  1171. * fields from the 'raw' reg into separate data fields.
  1172. *
  1173. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
  1174. */
  1175. static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  1176. {
  1177. u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
  1178. low_offset = K8_DRAM_BASE_LOW + (dram << 3);
  1179. high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
  1180. /* read the 'raw' DRAM BASE Address register */
  1181. pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
  1182. /* Read from the ECS data register */
  1183. pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
  1184. /* Extract parts into separate data entries */
  1185. pvt->dram_rw_en[dram] = (low_base & 0x3);
  1186. if (pvt->dram_rw_en[dram] == 0)
  1187. return;
  1188. pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
  1189. pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
  1190. ((u64) low_base & 0xFFFF0000))) << 8;
  1191. low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
  1192. high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
  1193. /* read the 'raw' LIMIT registers */
  1194. pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
  1195. /* Read from the ECS data register for the HIGH portion */
  1196. pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
  1197. debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
  1198. high_base, low_base, high_limit, low_limit);
  1199. pvt->dram_DstNode[dram] = (low_limit & 0x7);
  1200. pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
  1201. /*
  1202. * Extract address values and form a LIMIT address. Limit is the HIGHEST
  1203. * memory location of the region, so low 24 bits need to be all ones.
  1204. */
  1205. low_limit |= 0x0000FFFF;
  1206. pvt->dram_limit[dram] =
  1207. ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
  1208. }
  1209. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  1210. {
  1211. int err = 0;
  1212. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
  1213. &pvt->dram_ctl_select_low);
  1214. if (err) {
  1215. debugf0("Reading F10_DCTL_SEL_LOW failed\n");
  1216. } else {
  1217. debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
  1218. pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
  1219. debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
  1220. "sel-hi-range=%s\n",
  1221. (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
  1222. (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
  1223. (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
  1224. debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
  1225. (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
  1226. (dct_memory_cleared(pvt) ? "True " : "False "),
  1227. dct_sel_interleave_addr(pvt));
  1228. }
  1229. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
  1230. &pvt->dram_ctl_select_high);
  1231. if (err)
  1232. debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
  1233. }
  1234. /*
  1235. * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1236. * Interleaving Modes.
  1237. */
  1238. static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1239. int hi_range_sel, u32 intlv_en)
  1240. {
  1241. u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
  1242. if (dct_ganging_enabled(pvt))
  1243. cs = 0;
  1244. else if (hi_range_sel)
  1245. cs = dct_sel_high;
  1246. else if (dct_interleave_enabled(pvt)) {
  1247. /*
  1248. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1249. */
  1250. if (dct_sel_interleave_addr(pvt) == 0)
  1251. cs = sys_addr >> 6 & 1;
  1252. else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
  1253. temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1254. if (dct_sel_interleave_addr(pvt) & 1)
  1255. cs = (sys_addr >> 9 & 1) ^ temp;
  1256. else
  1257. cs = (sys_addr >> 6 & 1) ^ temp;
  1258. } else if (intlv_en & 4)
  1259. cs = sys_addr >> 15 & 1;
  1260. else if (intlv_en & 2)
  1261. cs = sys_addr >> 14 & 1;
  1262. else if (intlv_en & 1)
  1263. cs = sys_addr >> 13 & 1;
  1264. else
  1265. cs = sys_addr >> 12 & 1;
  1266. } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
  1267. cs = ~dct_sel_high & 1;
  1268. else
  1269. cs = 0;
  1270. return cs;
  1271. }
  1272. static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
  1273. {
  1274. if (intlv_en == 1)
  1275. return 1;
  1276. else if (intlv_en == 3)
  1277. return 2;
  1278. else if (intlv_en == 7)
  1279. return 3;
  1280. return 0;
  1281. }
  1282. /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
  1283. static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
  1284. u32 dct_sel_base_addr,
  1285. u64 dct_sel_base_off,
  1286. u32 hole_valid, u32 hole_off,
  1287. u64 dram_base)
  1288. {
  1289. u64 chan_off;
  1290. if (hi_range_sel) {
  1291. if (!(dct_sel_base_addr & 0xFFFFF800) &&
  1292. hole_valid && (sys_addr >= 0x100000000ULL))
  1293. chan_off = hole_off << 16;
  1294. else
  1295. chan_off = dct_sel_base_off;
  1296. } else {
  1297. if (hole_valid && (sys_addr >= 0x100000000ULL))
  1298. chan_off = hole_off << 16;
  1299. else
  1300. chan_off = dram_base & 0xFFFFF8000000ULL;
  1301. }
  1302. return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
  1303. (chan_off & 0x0000FFFFFF800000ULL);
  1304. }
  1305. /* Hack for the time being - Can we get this from BIOS?? */
  1306. #define CH0SPARE_RANK 0
  1307. #define CH1SPARE_RANK 1
  1308. /*
  1309. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1310. * spare row
  1311. */
  1312. static inline int f10_process_possible_spare(int csrow,
  1313. u32 cs, struct amd64_pvt *pvt)
  1314. {
  1315. u32 swap_done;
  1316. u32 bad_dram_cs;
  1317. /* Depending on channel, isolate respective SPARING info */
  1318. if (cs) {
  1319. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1320. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1321. if (swap_done && (csrow == bad_dram_cs))
  1322. csrow = CH1SPARE_RANK;
  1323. } else {
  1324. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1325. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1326. if (swap_done && (csrow == bad_dram_cs))
  1327. csrow = CH0SPARE_RANK;
  1328. }
  1329. return csrow;
  1330. }
  1331. /*
  1332. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1333. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1334. *
  1335. * Return:
  1336. * -EINVAL: NOT FOUND
  1337. * 0..csrow = Chip-Select Row
  1338. */
  1339. static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
  1340. {
  1341. struct mem_ctl_info *mci;
  1342. struct amd64_pvt *pvt;
  1343. u32 cs_base, cs_mask;
  1344. int cs_found = -EINVAL;
  1345. int csrow;
  1346. mci = mci_lookup[nid];
  1347. if (!mci)
  1348. return cs_found;
  1349. pvt = mci->pvt_info;
  1350. debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
  1351. for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
  1352. cs_base = amd64_get_dct_base(pvt, cs, csrow);
  1353. if (!(cs_base & K8_DCSB_CS_ENABLE))
  1354. continue;
  1355. /*
  1356. * We have an ENABLED CSROW, Isolate just the MASK bits of the
  1357. * target: [28:19] and [13:5], which map to [36:27] and [21:13]
  1358. * of the actual address.
  1359. */
  1360. cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
  1361. /*
  1362. * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
  1363. * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
  1364. */
  1365. cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
  1366. debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
  1367. csrow, cs_base, cs_mask);
  1368. cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
  1369. debugf1(" Final CSMask=0x%x\n", cs_mask);
  1370. debugf1(" (InputAddr & ~CSMask)=0x%x "
  1371. "(CSBase & ~CSMask)=0x%x\n",
  1372. (in_addr & ~cs_mask), (cs_base & ~cs_mask));
  1373. if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
  1374. cs_found = f10_process_possible_spare(csrow, cs, pvt);
  1375. debugf1(" MATCH csrow=%d\n", cs_found);
  1376. break;
  1377. }
  1378. }
  1379. return cs_found;
  1380. }
  1381. /* For a given @dram_range, check if @sys_addr falls within it. */
  1382. static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
  1383. u64 sys_addr, int *nid, int *chan_sel)
  1384. {
  1385. int node_id, cs_found = -EINVAL, high_range = 0;
  1386. u32 intlv_en, intlv_sel, intlv_shift, hole_off;
  1387. u32 hole_valid, tmp, dct_sel_base, channel;
  1388. u64 dram_base, chan_addr, dct_sel_base_off;
  1389. dram_base = pvt->dram_base[dram_range];
  1390. intlv_en = pvt->dram_IntlvEn[dram_range];
  1391. node_id = pvt->dram_DstNode[dram_range];
  1392. intlv_sel = pvt->dram_IntlvSel[dram_range];
  1393. debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
  1394. dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
  1395. /*
  1396. * This assumes that one node's DHAR is the same as all the other
  1397. * nodes' DHAR.
  1398. */
  1399. hole_off = (pvt->dhar & 0x0000FF80);
  1400. hole_valid = (pvt->dhar & 0x1);
  1401. dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
  1402. debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
  1403. hole_off, hole_valid, intlv_sel);
  1404. if (intlv_en ||
  1405. (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1406. return -EINVAL;
  1407. dct_sel_base = dct_sel_baseaddr(pvt);
  1408. /*
  1409. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1410. * select between DCT0 and DCT1.
  1411. */
  1412. if (dct_high_range_enabled(pvt) &&
  1413. !dct_ganging_enabled(pvt) &&
  1414. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1415. high_range = 1;
  1416. channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1417. chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
  1418. dct_sel_base_off, hole_valid,
  1419. hole_off, dram_base);
  1420. intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
  1421. /* remove Node ID (in case of memory interleaving) */
  1422. tmp = chan_addr & 0xFC0;
  1423. chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
  1424. /* remove channel interleave and hash */
  1425. if (dct_interleave_enabled(pvt) &&
  1426. !dct_high_range_enabled(pvt) &&
  1427. !dct_ganging_enabled(pvt)) {
  1428. if (dct_sel_interleave_addr(pvt) != 1)
  1429. chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
  1430. else {
  1431. tmp = chan_addr & 0xFC0;
  1432. chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
  1433. | tmp;
  1434. }
  1435. }
  1436. debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
  1437. chan_addr, (u32)(chan_addr >> 8));
  1438. cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
  1439. if (cs_found >= 0) {
  1440. *nid = node_id;
  1441. *chan_sel = channel;
  1442. }
  1443. return cs_found;
  1444. }
  1445. static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1446. int *node, int *chan_sel)
  1447. {
  1448. int dram_range, cs_found = -EINVAL;
  1449. u64 dram_base, dram_limit;
  1450. for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
  1451. if (!pvt->dram_rw_en[dram_range])
  1452. continue;
  1453. dram_base = pvt->dram_base[dram_range];
  1454. dram_limit = pvt->dram_limit[dram_range];
  1455. if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
  1456. cs_found = f10_match_to_this_node(pvt, dram_range,
  1457. sys_addr, node,
  1458. chan_sel);
  1459. if (cs_found >= 0)
  1460. break;
  1461. }
  1462. }
  1463. return cs_found;
  1464. }
  1465. /*
  1466. * This the F10h reference code from AMD to map a @sys_addr to NodeID,
  1467. * CSROW, Channel.
  1468. *
  1469. * The @sys_addr is usually an error address received from the hardware.
  1470. */
  1471. static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  1472. struct err_regs *info,
  1473. u64 sys_addr)
  1474. {
  1475. struct amd64_pvt *pvt = mci->pvt_info;
  1476. u32 page, offset;
  1477. unsigned short syndrome;
  1478. int nid, csrow, chan = 0;
  1479. csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1480. if (csrow >= 0) {
  1481. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1482. syndrome = HIGH_SYNDROME(info->nbsl) << 8;
  1483. syndrome |= LOW_SYNDROME(info->nbsh);
  1484. /*
  1485. * Is CHIPKILL on? If so, then we can attempt to use the
  1486. * syndrome to isolate which channel the error was on.
  1487. */
  1488. if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
  1489. chan = get_channel_from_ecc_syndrome(syndrome);
  1490. if (chan >= 0) {
  1491. edac_mc_handle_ce(mci, page, offset, syndrome,
  1492. csrow, chan, EDAC_MOD_STR);
  1493. } else {
  1494. /*
  1495. * Channel unknown, report all channels on this
  1496. * CSROW as failed.
  1497. */
  1498. for (chan = 0; chan < mci->csrows[csrow].nr_channels;
  1499. chan++) {
  1500. edac_mc_handle_ce(mci, page, offset,
  1501. syndrome,
  1502. csrow, chan,
  1503. EDAC_MOD_STR);
  1504. }
  1505. }
  1506. } else {
  1507. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1508. }
  1509. }
  1510. /*
  1511. * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
  1512. * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
  1513. * indicates an empty DIMM slot, as reported by Hardware on empty slots.
  1514. *
  1515. * Normalize to 128MB by subracting 27 bit shift.
  1516. */
  1517. static int map_dbam_to_csrow_size(int index)
  1518. {
  1519. int mega_bytes = 0;
  1520. if (index > 0 && index <= DBAM_MAX_VALUE)
  1521. mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
  1522. return mega_bytes;
  1523. }
  1524. /*
  1525. * debug routine to display the memory sizes of a DIMM (ganged or not) and it
  1526. * CSROWs as well
  1527. */
  1528. static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
  1529. int ganged)
  1530. {
  1531. int dimm, size0, size1;
  1532. u32 dbam;
  1533. u32 *dcsb;
  1534. debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
  1535. ctrl ? pvt->dbam1 : pvt->dbam0,
  1536. ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
  1537. dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1538. dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
  1539. /* Dump memory sizes for DIMM and its CSROWs */
  1540. for (dimm = 0; dimm < 4; dimm++) {
  1541. size0 = 0;
  1542. if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
  1543. size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
  1544. size1 = 0;
  1545. if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
  1546. size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
  1547. debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
  1548. "CSROW-%d=%5dMB\n",
  1549. ctrl,
  1550. dimm,
  1551. size0 + size1,
  1552. dimm * 2,
  1553. size0,
  1554. dimm * 2 + 1,
  1555. size1);
  1556. }
  1557. }
  1558. /*
  1559. * Very early hardware probe on pci_probe thread to determine if this module
  1560. * supports the hardware.
  1561. *
  1562. * Return:
  1563. * 0 for OK
  1564. * 1 for error
  1565. */
  1566. static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
  1567. {
  1568. int ret = 0;
  1569. /*
  1570. * If we are on a DDR3 machine, we don't know yet if
  1571. * we support that properly at this time
  1572. */
  1573. if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
  1574. (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
  1575. amd64_printk(KERN_WARNING,
  1576. "%s() This machine is running with DDR3 memory. "
  1577. "This is not currently supported. "
  1578. "DCHR0=0x%x DCHR1=0x%x\n",
  1579. __func__, pvt->dchr0, pvt->dchr1);
  1580. amd64_printk(KERN_WARNING,
  1581. " Contact '%s' module MAINTAINER to help add"
  1582. " support.\n",
  1583. EDAC_MOD_STR);
  1584. ret = 1;
  1585. }
  1586. return ret;
  1587. }
  1588. /*
  1589. * There currently are 3 types type of MC devices for AMD Athlon/Opterons
  1590. * (as per PCI DEVICE_IDs):
  1591. *
  1592. * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
  1593. * DEVICE ID, even though there is differences between the different Revisions
  1594. * (CG,D,E,F).
  1595. *
  1596. * Family F10h and F11h.
  1597. *
  1598. */
  1599. static struct amd64_family_type amd64_family_types[] = {
  1600. [K8_CPUS] = {
  1601. .ctl_name = "RevF",
  1602. .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1603. .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1604. .ops = {
  1605. .early_channel_count = k8_early_channel_count,
  1606. .get_error_address = k8_get_error_address,
  1607. .read_dram_base_limit = k8_read_dram_base_limit,
  1608. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1609. .dbam_map_to_pages = k8_dbam_map_to_pages,
  1610. }
  1611. },
  1612. [F10_CPUS] = {
  1613. .ctl_name = "Family 10h",
  1614. .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1615. .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1616. .ops = {
  1617. .probe_valid_hardware = f10_probe_valid_hardware,
  1618. .early_channel_count = f10_early_channel_count,
  1619. .get_error_address = f10_get_error_address,
  1620. .read_dram_base_limit = f10_read_dram_base_limit,
  1621. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1622. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1623. .dbam_map_to_pages = f10_dbam_map_to_pages,
  1624. }
  1625. },
  1626. [F11_CPUS] = {
  1627. .ctl_name = "Family 11h",
  1628. .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
  1629. .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
  1630. .ops = {
  1631. .probe_valid_hardware = f10_probe_valid_hardware,
  1632. .early_channel_count = f10_early_channel_count,
  1633. .get_error_address = f10_get_error_address,
  1634. .read_dram_base_limit = f10_read_dram_base_limit,
  1635. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1636. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1637. .dbam_map_to_pages = f10_dbam_map_to_pages,
  1638. }
  1639. },
  1640. };
  1641. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1642. unsigned int device,
  1643. struct pci_dev *related)
  1644. {
  1645. struct pci_dev *dev = NULL;
  1646. dev = pci_get_device(vendor, device, dev);
  1647. while (dev) {
  1648. if ((dev->bus->number == related->bus->number) &&
  1649. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1650. break;
  1651. dev = pci_get_device(vendor, device, dev);
  1652. }
  1653. return dev;
  1654. }
  1655. /*
  1656. * syndrome mapping table for ECC ChipKill devices
  1657. *
  1658. * The comment in each row is the token (nibble) number that is in error.
  1659. * The least significant nibble of the syndrome is the mask for the bits
  1660. * that are in error (need to be toggled) for the particular nibble.
  1661. *
  1662. * Each row contains 16 entries.
  1663. * The first entry (0th) is the channel number for that row of syndromes.
  1664. * The remaining 15 entries are the syndromes for the respective Error
  1665. * bit mask index.
  1666. *
  1667. * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
  1668. * bit in error.
  1669. * The 2nd index entry is 0x0010 that the second bit is damaged.
  1670. * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
  1671. * are damaged.
  1672. * Thus so on until index 15, 0x1111, whose entry has the syndrome
  1673. * indicating that all 4 bits are damaged.
  1674. *
  1675. * A search is performed on this table looking for a given syndrome.
  1676. *
  1677. * See the AMD documentation for ECC syndromes. This ECC table is valid
  1678. * across all the versions of the AMD64 processors.
  1679. *
  1680. * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
  1681. * COLUMN index, then search all ROWS of that column, looking for a match
  1682. * with the input syndrome. The ROW value will be the token number.
  1683. *
  1684. * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
  1685. * error.
  1686. */
  1687. #define NUMBER_ECC_ROWS 36
  1688. static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
  1689. /* Channel 0 syndromes */
  1690. {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
  1691. 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
  1692. {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
  1693. 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
  1694. {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
  1695. 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
  1696. {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
  1697. 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
  1698. {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
  1699. 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
  1700. {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
  1701. 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
  1702. {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
  1703. 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
  1704. {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
  1705. 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
  1706. {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
  1707. 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
  1708. {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
  1709. 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
  1710. {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
  1711. 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
  1712. {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
  1713. 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
  1714. {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
  1715. 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
  1716. {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
  1717. 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
  1718. {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
  1719. 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
  1720. {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
  1721. 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
  1722. /* Channel 1 syndromes */
  1723. {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
  1724. 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
  1725. {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
  1726. 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
  1727. {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
  1728. 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
  1729. {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
  1730. 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
  1731. {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
  1732. 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
  1733. {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
  1734. 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
  1735. {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
  1736. 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
  1737. {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
  1738. 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
  1739. {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
  1740. 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
  1741. {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
  1742. 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
  1743. {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
  1744. 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
  1745. {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
  1746. 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
  1747. {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
  1748. 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
  1749. {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
  1750. 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
  1751. {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
  1752. 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
  1753. {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
  1754. 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
  1755. /* ECC bits are also in the set of tokens and they too can go bad
  1756. * first 2 cover channel 0, while the second 2 cover channel 1
  1757. */
  1758. {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
  1759. 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
  1760. {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
  1761. 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
  1762. {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
  1763. 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
  1764. {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
  1765. 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
  1766. };
  1767. /*
  1768. * Given the syndrome argument, scan each of the channel tables for a syndrome
  1769. * match. Depending on which table it is found, return the channel number.
  1770. */
  1771. static int get_channel_from_ecc_syndrome(unsigned short syndrome)
  1772. {
  1773. int row;
  1774. int column;
  1775. /* Determine column to scan */
  1776. column = syndrome & 0xF;
  1777. /* Scan all rows, looking for syndrome, or end of table */
  1778. for (row = 0; row < NUMBER_ECC_ROWS; row++) {
  1779. if (ecc_chipkill_syndromes[row][column] == syndrome)
  1780. return ecc_chipkill_syndromes[row][0];
  1781. }
  1782. debugf0("syndrome(%x) not found\n", syndrome);
  1783. return -1;
  1784. }
  1785. /*
  1786. * Check for valid error in the NB Status High register. If so, proceed to read
  1787. * NB Status Low, NB Address Low and NB Address High registers and store data
  1788. * into error structure.
  1789. *
  1790. * Returns:
  1791. * - 1: if hardware regs contains valid error info
  1792. * - 0: if no valid error is indicated
  1793. */
  1794. static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
  1795. struct err_regs *regs)
  1796. {
  1797. struct amd64_pvt *pvt;
  1798. struct pci_dev *misc_f3_ctl;
  1799. int err = 0;
  1800. pvt = mci->pvt_info;
  1801. misc_f3_ctl = pvt->misc_f3_ctl;
  1802. err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
  1803. if (err)
  1804. goto err_reg;
  1805. if (!(regs->nbsh & K8_NBSH_VALID_BIT))
  1806. return 0;
  1807. /* valid error, read remaining error information registers */
  1808. err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
  1809. if (err)
  1810. goto err_reg;
  1811. err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
  1812. if (err)
  1813. goto err_reg;
  1814. err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
  1815. if (err)
  1816. goto err_reg;
  1817. err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
  1818. if (err)
  1819. goto err_reg;
  1820. return 1;
  1821. err_reg:
  1822. debugf0("Reading error info register failed\n");
  1823. return 0;
  1824. }
  1825. /*
  1826. * This function is called to retrieve the error data from hardware and store it
  1827. * in the info structure.
  1828. *
  1829. * Returns:
  1830. * - 1: if a valid error is found
  1831. * - 0: if no error is found
  1832. */
  1833. static int amd64_get_error_info(struct mem_ctl_info *mci,
  1834. struct err_regs *info)
  1835. {
  1836. struct amd64_pvt *pvt;
  1837. struct err_regs regs;
  1838. pvt = mci->pvt_info;
  1839. if (!amd64_get_error_info_regs(mci, info))
  1840. return 0;
  1841. /*
  1842. * Here's the problem with the K8's EDAC reporting: There are four
  1843. * registers which report pieces of error information. They are shared
  1844. * between CEs and UEs. Furthermore, contrary to what is stated in the
  1845. * BKDG, the overflow bit is never used! Every error always updates the
  1846. * reporting registers.
  1847. *
  1848. * Can you see the race condition? All four error reporting registers
  1849. * must be read before a new error updates them! There is no way to read
  1850. * all four registers atomically. The best than can be done is to detect
  1851. * that a race has occured and then report the error without any kind of
  1852. * precision.
  1853. *
  1854. * What is still positive is that errors are still reported and thus
  1855. * problems can still be detected - just not localized because the
  1856. * syndrome and address are spread out across registers.
  1857. *
  1858. * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
  1859. * UEs and CEs should have separate register sets with proper overflow
  1860. * bits that are used! At very least the problem can be fixed by
  1861. * honoring the ErrValid bit in 'nbsh' and not updating registers - just
  1862. * set the overflow bit - unless the current error is CE and the new
  1863. * error is UE which would be the only situation for overwriting the
  1864. * current values.
  1865. */
  1866. regs = *info;
  1867. /* Use info from the second read - most current */
  1868. if (unlikely(!amd64_get_error_info_regs(mci, info)))
  1869. return 0;
  1870. /* clear the error bits in hardware */
  1871. pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
  1872. /* Check for the possible race condition */
  1873. if ((regs.nbsh != info->nbsh) ||
  1874. (regs.nbsl != info->nbsl) ||
  1875. (regs.nbeah != info->nbeah) ||
  1876. (regs.nbeal != info->nbeal)) {
  1877. amd64_mc_printk(mci, KERN_WARNING,
  1878. "hardware STATUS read access race condition "
  1879. "detected!\n");
  1880. return 0;
  1881. }
  1882. return 1;
  1883. }
  1884. /*
  1885. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1886. * ADDRESS and process.
  1887. */
  1888. static void amd64_handle_ce(struct mem_ctl_info *mci,
  1889. struct err_regs *info)
  1890. {
  1891. struct amd64_pvt *pvt = mci->pvt_info;
  1892. u64 SystemAddress;
  1893. /* Ensure that the Error Address is VALID */
  1894. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1895. amd64_mc_printk(mci, KERN_ERR,
  1896. "HW has no ERROR_ADDRESS available\n");
  1897. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1898. return;
  1899. }
  1900. SystemAddress = extract_error_address(mci, info);
  1901. amd64_mc_printk(mci, KERN_ERR,
  1902. "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
  1903. pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
  1904. }
  1905. /* Handle any Un-correctable Errors (UEs) */
  1906. static void amd64_handle_ue(struct mem_ctl_info *mci,
  1907. struct err_regs *info)
  1908. {
  1909. int csrow;
  1910. u64 SystemAddress;
  1911. u32 page, offset;
  1912. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1913. log_mci = mci;
  1914. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1915. amd64_mc_printk(mci, KERN_CRIT,
  1916. "HW has no ERROR_ADDRESS available\n");
  1917. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1918. return;
  1919. }
  1920. SystemAddress = extract_error_address(mci, info);
  1921. /*
  1922. * Find out which node the error address belongs to. This may be
  1923. * different from the node that detected the error.
  1924. */
  1925. src_mci = find_mc_by_sys_addr(mci, SystemAddress);
  1926. if (!src_mci) {
  1927. amd64_mc_printk(mci, KERN_CRIT,
  1928. "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
  1929. (unsigned long)SystemAddress);
  1930. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1931. return;
  1932. }
  1933. log_mci = src_mci;
  1934. csrow = sys_addr_to_csrow(log_mci, SystemAddress);
  1935. if (csrow < 0) {
  1936. amd64_mc_printk(mci, KERN_CRIT,
  1937. "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
  1938. (unsigned long)SystemAddress);
  1939. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1940. } else {
  1941. error_address_to_page_and_offset(SystemAddress, &page, &offset);
  1942. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1943. }
  1944. }
  1945. static void amd64_decode_bus_error(struct mem_ctl_info *mci,
  1946. struct err_regs *info, int ecc_type)
  1947. {
  1948. u32 ec = ERROR_CODE(info->nbsl);
  1949. u32 xec = EXT_ERROR_CODE(info->nbsl);
  1950. pr_emerg(" Transaction type: %s(%s), %s, Cache Level: %s, %s\n",
  1951. RRRR_MSG(ec), II_MSG(ec), TO_MSG(ec), LL_MSG(ec), PP_MSG(ec));
  1952. /* Bail early out if this was an 'observed' error */
  1953. if (PP(ec) == K8_NBSL_PP_OBS)
  1954. return;
  1955. /* Do only ECC errors */
  1956. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1957. return;
  1958. if (ecc_type == 2)
  1959. amd64_handle_ce(mci, info);
  1960. else if (ecc_type == 1)
  1961. amd64_handle_ue(mci, info);
  1962. /*
  1963. * If main error is CE then overflow must be CE. If main error is UE
  1964. * then overflow is unknown. We'll call the overflow a CE - if
  1965. * panic_on_ue is set then we're already panic'ed and won't arrive
  1966. * here. Else, then apparently someone doesn't think that UE's are
  1967. * catastrophic.
  1968. */
  1969. if (info->nbsh & K8_NBSH_OVERFLOW)
  1970. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
  1971. }
  1972. void amd64_decode_nb_mce(struct mem_ctl_info *mci, struct err_regs *regs,
  1973. int handle_errors)
  1974. {
  1975. struct amd64_pvt *pvt = mci->pvt_info;
  1976. int ecc;
  1977. u32 ec = ERROR_CODE(regs->nbsl);
  1978. u32 xec = EXT_ERROR_CODE(regs->nbsl);
  1979. if (!handle_errors)
  1980. return;
  1981. pr_emerg(" Northbridge ERROR, mc node %d", pvt->mc_node_id);
  1982. /*
  1983. * F10h, revD can disable ErrCpu[3:0] so check that first and also the
  1984. * value encoding has changed so interpret those differently
  1985. */
  1986. if ((boot_cpu_data.x86 == 0x10) &&
  1987. (boot_cpu_data.x86_model > 8)) {
  1988. if (regs->nbsh & K8_NBSH_ERR_CPU_VAL)
  1989. pr_cont(", core: %u\n", (u8)(regs->nbsh & 0xf));
  1990. } else {
  1991. pr_cont(", core: %d\n", ilog2((regs->nbsh & 0xf)));
  1992. }
  1993. pr_emerg(" Error: %sorrected",
  1994. ((regs->nbsh & K8_NBSH_UC_ERR) ? "Unc" : "C"));
  1995. pr_cont(", Report Error: %s",
  1996. ((regs->nbsh & K8_NBSH_ERR_EN) ? "yes" : "no"));
  1997. pr_cont(", MiscV: %svalid, CPU context corrupt: %s",
  1998. ((regs->nbsh & K8_NBSH_MISCV) ? "" : "In"),
  1999. ((regs->nbsh & K8_NBSH_PCC) ? "yes" : "no"));
  2000. /* do the two bits[14:13] together */
  2001. ecc = regs->nbsh & (0x3 << 13);
  2002. if (ecc)
  2003. pr_cont(", %sECC Error", ((ecc == 2) ? "C" : "U"));
  2004. pr_cont("\n");
  2005. if (TLB_ERROR(ec)) {
  2006. /*
  2007. * GART errors are intended to help graphics driver developers
  2008. * to detect bad GART PTEs. It is recommended by AMD to disable
  2009. * GART table walk error reporting by default[1] (currently
  2010. * being disabled in mce_cpu_quirks()) and according to the
  2011. * comment in mce_cpu_quirks(), such GART errors can be
  2012. * incorrectly triggered. We may see these errors anyway and
  2013. * unless requested by the user, they won't be reported.
  2014. *
  2015. * [1] section 13.10.1 on BIOS and Kernel Developers Guide for
  2016. * AMD NPT family 0Fh processors
  2017. */
  2018. if (!report_gart_errors)
  2019. return;
  2020. pr_emerg(" GART TLB error, Transaction: %s, Cache Level %s\n",
  2021. TT_MSG(ec), LL_MSG(ec));
  2022. } else if (MEM_ERROR(ec)) {
  2023. pr_emerg(" Memory/Cache error, Transaction: %s, Type: %s,"
  2024. " Cache Level: %s",
  2025. RRRR_MSG(ec), TT_MSG(ec), LL_MSG(ec));
  2026. } else if (BUS_ERROR(ec)) {
  2027. pr_emerg(" Bus (Link/DRAM) error\n");
  2028. amd64_decode_bus_error(mci, regs, ecc);
  2029. } else {
  2030. /* shouldn't reach here! */
  2031. amd64_mc_printk(mci, KERN_WARNING,
  2032. "%s(): unknown MCE error 0x%x\n", __func__, ec);
  2033. }
  2034. pr_emerg("%s.\n", EXT_ERR_MSG(xec));
  2035. /*
  2036. * Check the UE bit of the NB status high register, if set generate some
  2037. * logs. If NOT a GART error, then process the event as a NO-INFO event.
  2038. * If it was a GART error, skip that process.
  2039. */
  2040. if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
  2041. edac_mc_handle_ue_no_info(mci, "UE bit is set");
  2042. }
  2043. /*
  2044. * The main polling 'check' function, called FROM the edac core to perform the
  2045. * error checking and if an error is encountered, error processing.
  2046. */
  2047. static void amd64_check(struct mem_ctl_info *mci)
  2048. {
  2049. struct err_regs regs;
  2050. if (amd64_get_error_info(mci, &regs))
  2051. amd64_decode_nb_mce(mci, &regs, 1);
  2052. }
  2053. /*
  2054. * Input:
  2055. * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
  2056. * 2) AMD Family index value
  2057. *
  2058. * Ouput:
  2059. * Upon return of 0, the following filled in:
  2060. *
  2061. * struct pvt->addr_f1_ctl
  2062. * struct pvt->misc_f3_ctl
  2063. *
  2064. * Filled in with related device funcitions of 'dram_f2_ctl'
  2065. * These devices are "reserved" via the pci_get_device()
  2066. *
  2067. * Upon return of 1 (error status):
  2068. *
  2069. * Nothing reserved
  2070. */
  2071. static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
  2072. {
  2073. const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
  2074. /* Reserve the ADDRESS MAP Device */
  2075. pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  2076. amd64_dev->addr_f1_ctl,
  2077. pvt->dram_f2_ctl);
  2078. if (!pvt->addr_f1_ctl) {
  2079. amd64_printk(KERN_ERR, "error address map device not found: "
  2080. "vendor %x device 0x%x (broken BIOS?)\n",
  2081. PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
  2082. return 1;
  2083. }
  2084. /* Reserve the MISC Device */
  2085. pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  2086. amd64_dev->misc_f3_ctl,
  2087. pvt->dram_f2_ctl);
  2088. if (!pvt->misc_f3_ctl) {
  2089. pci_dev_put(pvt->addr_f1_ctl);
  2090. pvt->addr_f1_ctl = NULL;
  2091. amd64_printk(KERN_ERR, "error miscellaneous device not found: "
  2092. "vendor %x device 0x%x (broken BIOS?)\n",
  2093. PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
  2094. return 1;
  2095. }
  2096. debugf1(" Addr Map device PCI Bus ID:\t%s\n",
  2097. pci_name(pvt->addr_f1_ctl));
  2098. debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
  2099. pci_name(pvt->dram_f2_ctl));
  2100. debugf1(" Misc device PCI Bus ID:\t%s\n",
  2101. pci_name(pvt->misc_f3_ctl));
  2102. return 0;
  2103. }
  2104. static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
  2105. {
  2106. pci_dev_put(pvt->addr_f1_ctl);
  2107. pci_dev_put(pvt->misc_f3_ctl);
  2108. }
  2109. /*
  2110. * Retrieve the hardware registers of the memory controller (this includes the
  2111. * 'Address Map' and 'Misc' device regs)
  2112. */
  2113. static void amd64_read_mc_registers(struct amd64_pvt *pvt)
  2114. {
  2115. u64 msr_val;
  2116. int dram, err = 0;
  2117. /*
  2118. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  2119. * those are Read-As-Zero
  2120. */
  2121. rdmsrl(MSR_K8_TOP_MEM1, msr_val);
  2122. pvt->top_mem = msr_val >> 23;
  2123. debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem);
  2124. /* check first whether TOP_MEM2 is enabled */
  2125. rdmsrl(MSR_K8_SYSCFG, msr_val);
  2126. if (msr_val & (1U << 21)) {
  2127. rdmsrl(MSR_K8_TOP_MEM2, msr_val);
  2128. pvt->top_mem2 = msr_val >> 23;
  2129. debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2);
  2130. } else
  2131. debugf0(" TOP_MEM2 disabled.\n");
  2132. amd64_cpu_display_info(pvt);
  2133. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
  2134. if (err)
  2135. goto err_reg;
  2136. if (pvt->ops->read_dram_ctl_register)
  2137. pvt->ops->read_dram_ctl_register(pvt);
  2138. for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
  2139. /*
  2140. * Call CPU specific READ function to get the DRAM Base and
  2141. * Limit values from the DCT.
  2142. */
  2143. pvt->ops->read_dram_base_limit(pvt, dram);
  2144. /*
  2145. * Only print out debug info on rows with both R and W Enabled.
  2146. * Normal processing, compiler should optimize this whole 'if'
  2147. * debug output block away.
  2148. */
  2149. if (pvt->dram_rw_en[dram] != 0) {
  2150. debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
  2151. "DRAM_LIMIT: 0x%8.08x-%8.08x\n",
  2152. dram,
  2153. (u32)(pvt->dram_base[dram] >> 32),
  2154. (u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
  2155. (u32)(pvt->dram_limit[dram] >> 32),
  2156. (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
  2157. debugf1(" IntlvEn=%s %s %s "
  2158. "IntlvSel=%d DstNode=%d\n",
  2159. pvt->dram_IntlvEn[dram] ?
  2160. "Enabled" : "Disabled",
  2161. (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
  2162. (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
  2163. pvt->dram_IntlvSel[dram],
  2164. pvt->dram_DstNode[dram]);
  2165. }
  2166. }
  2167. amd64_read_dct_base_mask(pvt);
  2168. err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
  2169. if (err)
  2170. goto err_reg;
  2171. amd64_read_dbam_reg(pvt);
  2172. err = pci_read_config_dword(pvt->misc_f3_ctl,
  2173. F10_ONLINE_SPARE, &pvt->online_spare);
  2174. if (err)
  2175. goto err_reg;
  2176. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  2177. if (err)
  2178. goto err_reg;
  2179. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
  2180. if (err)
  2181. goto err_reg;
  2182. if (!dct_ganging_enabled(pvt)) {
  2183. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
  2184. &pvt->dclr1);
  2185. if (err)
  2186. goto err_reg;
  2187. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
  2188. &pvt->dchr1);
  2189. if (err)
  2190. goto err_reg;
  2191. }
  2192. amd64_dump_misc_regs(pvt);
  2193. return;
  2194. err_reg:
  2195. debugf0("Reading an MC register failed\n");
  2196. }
  2197. /*
  2198. * NOTE: CPU Revision Dependent code
  2199. *
  2200. * Input:
  2201. * @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
  2202. * k8 private pointer to -->
  2203. * DRAM Bank Address mapping register
  2204. * node_id
  2205. * DCL register where dual_channel_active is
  2206. *
  2207. * The DBAM register consists of 4 sets of 4 bits each definitions:
  2208. *
  2209. * Bits: CSROWs
  2210. * 0-3 CSROWs 0 and 1
  2211. * 4-7 CSROWs 2 and 3
  2212. * 8-11 CSROWs 4 and 5
  2213. * 12-15 CSROWs 6 and 7
  2214. *
  2215. * Values range from: 0 to 15
  2216. * The meaning of the values depends on CPU revision and dual-channel state,
  2217. * see relevant BKDG more info.
  2218. *
  2219. * The memory controller provides for total of only 8 CSROWs in its current
  2220. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  2221. * single channel or two (2) DIMMs in dual channel mode.
  2222. *
  2223. * The following code logic collapses the various tables for CSROW based on CPU
  2224. * revision.
  2225. *
  2226. * Returns:
  2227. * The number of PAGE_SIZE pages on the specified CSROW number it
  2228. * encompasses
  2229. *
  2230. */
  2231. static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
  2232. {
  2233. u32 dram_map, nr_pages;
  2234. /*
  2235. * The math on this doesn't look right on the surface because x/2*4 can
  2236. * be simplified to x*2 but this expression makes use of the fact that
  2237. * it is integral math where 1/2=0. This intermediate value becomes the
  2238. * number of bits to shift the DBAM register to extract the proper CSROW
  2239. * field.
  2240. */
  2241. dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  2242. nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
  2243. /*
  2244. * If dual channel then double the memory size of single channel.
  2245. * Channel count is 1 or 2
  2246. */
  2247. nr_pages <<= (pvt->channel_count - 1);
  2248. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
  2249. debugf0(" nr_pages= %u channel-count = %d\n",
  2250. nr_pages, pvt->channel_count);
  2251. return nr_pages;
  2252. }
  2253. /*
  2254. * Initialize the array of csrow attribute instances, based on the values
  2255. * from pci config hardware registers.
  2256. */
  2257. static int amd64_init_csrows(struct mem_ctl_info *mci)
  2258. {
  2259. struct csrow_info *csrow;
  2260. struct amd64_pvt *pvt;
  2261. u64 input_addr_min, input_addr_max, sys_addr;
  2262. int i, err = 0, empty = 1;
  2263. pvt = mci->pvt_info;
  2264. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
  2265. if (err)
  2266. debugf0("Reading K8_NBCFG failed\n");
  2267. debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
  2268. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2269. (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
  2270. );
  2271. for (i = 0; i < CHIPSELECT_COUNT; i++) {
  2272. csrow = &mci->csrows[i];
  2273. if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
  2274. debugf1("----CSROW %d EMPTY for node %d\n", i,
  2275. pvt->mc_node_id);
  2276. continue;
  2277. }
  2278. debugf1("----CSROW %d VALID for MC node %d\n",
  2279. i, pvt->mc_node_id);
  2280. empty = 0;
  2281. csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
  2282. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  2283. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  2284. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  2285. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  2286. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  2287. csrow->page_mask = ~mask_from_dct_mask(pvt, i);
  2288. /* 8 bytes of resolution */
  2289. csrow->mtype = amd64_determine_memory_type(pvt);
  2290. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  2291. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  2292. (unsigned long)input_addr_min,
  2293. (unsigned long)input_addr_max);
  2294. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  2295. (unsigned long)sys_addr, csrow->page_mask);
  2296. debugf1(" nr_pages: %u first_page: 0x%lx "
  2297. "last_page: 0x%lx\n",
  2298. (unsigned)csrow->nr_pages,
  2299. csrow->first_page, csrow->last_page);
  2300. /*
  2301. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  2302. */
  2303. if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
  2304. csrow->edac_mode =
  2305. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
  2306. EDAC_S4ECD4ED : EDAC_SECDED;
  2307. else
  2308. csrow->edac_mode = EDAC_NONE;
  2309. }
  2310. return empty;
  2311. }
  2312. /*
  2313. * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
  2314. * enable it.
  2315. */
  2316. static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
  2317. {
  2318. struct amd64_pvt *pvt = mci->pvt_info;
  2319. const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
  2320. int cpu, idx = 0, err = 0;
  2321. struct msr msrs[cpumask_weight(cpumask)];
  2322. u32 value;
  2323. u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2324. if (!ecc_enable_override)
  2325. return;
  2326. memset(msrs, 0, sizeof(msrs));
  2327. amd64_printk(KERN_WARNING,
  2328. "'ecc_enable_override' parameter is active, "
  2329. "Enabling AMD ECC hardware now: CAUTION\n");
  2330. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2331. if (err)
  2332. debugf0("Reading K8_NBCTL failed\n");
  2333. /* turn on UECCn and CECCEn bits */
  2334. pvt->old_nbctl = value & mask;
  2335. pvt->nbctl_mcgctl_saved = 1;
  2336. value |= mask;
  2337. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2338. rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2339. for_each_cpu(cpu, cpumask) {
  2340. if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
  2341. set_bit(idx, &pvt->old_mcgctl);
  2342. msrs[idx].l |= K8_MSR_MCGCTL_NBE;
  2343. idx++;
  2344. }
  2345. wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2346. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2347. if (err)
  2348. debugf0("Reading K8_NBCFG failed\n");
  2349. debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2350. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2351. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2352. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2353. amd64_printk(KERN_WARNING,
  2354. "This node reports that DRAM ECC is "
  2355. "currently Disabled; ENABLING now\n");
  2356. /* Attempt to turn on DRAM ECC Enable */
  2357. value |= K8_NBCFG_ECC_ENABLE;
  2358. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
  2359. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2360. if (err)
  2361. debugf0("Reading K8_NBCFG failed\n");
  2362. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2363. amd64_printk(KERN_WARNING,
  2364. "Hardware rejects Enabling DRAM ECC checking\n"
  2365. "Check memory DIMM configuration\n");
  2366. } else {
  2367. amd64_printk(KERN_DEBUG,
  2368. "Hardware accepted DRAM ECC Enable\n");
  2369. }
  2370. }
  2371. debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2372. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2373. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2374. pvt->ctl_error_info.nbcfg = value;
  2375. }
  2376. static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
  2377. {
  2378. const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
  2379. int cpu, idx = 0, err = 0;
  2380. struct msr msrs[cpumask_weight(cpumask)];
  2381. u32 value;
  2382. u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2383. if (!pvt->nbctl_mcgctl_saved)
  2384. return;
  2385. memset(msrs, 0, sizeof(msrs));
  2386. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2387. if (err)
  2388. debugf0("Reading K8_NBCTL failed\n");
  2389. value &= ~mask;
  2390. value |= pvt->old_nbctl;
  2391. /* restore the NB Enable MCGCTL bit */
  2392. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2393. rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2394. for_each_cpu(cpu, cpumask) {
  2395. msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
  2396. msrs[idx].l |=
  2397. test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
  2398. idx++;
  2399. }
  2400. wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2401. }
  2402. static void check_mcg_ctl(void *ret)
  2403. {
  2404. u64 msr_val = 0;
  2405. u8 nbe;
  2406. rdmsrl(MSR_IA32_MCG_CTL, msr_val);
  2407. nbe = msr_val & K8_MSR_MCGCTL_NBE;
  2408. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  2409. raw_smp_processor_id(), msr_val,
  2410. (nbe ? "enabled" : "disabled"));
  2411. if (!nbe)
  2412. *(int *)ret = 0;
  2413. }
  2414. /* check MCG_CTL on all the cpus on this node */
  2415. static int amd64_mcg_ctl_enabled_on_cpus(const cpumask_t *mask)
  2416. {
  2417. int ret = 1;
  2418. preempt_disable();
  2419. smp_call_function_many(mask, check_mcg_ctl, &ret, 1);
  2420. preempt_enable();
  2421. return ret;
  2422. }
  2423. /*
  2424. * EDAC requires that the BIOS have ECC enabled before taking over the
  2425. * processing of ECC errors. This is because the BIOS can properly initialize
  2426. * the memory system completely. A command line option allows to force-enable
  2427. * hardware ECC later in amd64_enable_ecc_error_reporting().
  2428. */
  2429. static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
  2430. {
  2431. u32 value;
  2432. int err = 0, ret = 0;
  2433. u8 ecc_enabled = 0;
  2434. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2435. if (err)
  2436. debugf0("Reading K8_NBCTL failed\n");
  2437. ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
  2438. ret = amd64_mcg_ctl_enabled_on_cpus(cpumask_of_node(pvt->mc_node_id));
  2439. debugf0("K8_NBCFG=0x%x, DRAM ECC is %s\n", value,
  2440. (value & K8_NBCFG_ECC_ENABLE ? "enabled" : "disabled"));
  2441. if (!ecc_enabled || !ret) {
  2442. if (!ecc_enabled) {
  2443. amd64_printk(KERN_WARNING, "This node reports that "
  2444. "Memory ECC is currently "
  2445. "disabled.\n");
  2446. amd64_printk(KERN_WARNING, "bit 0x%lx in register "
  2447. "F3x%x of the MISC_CONTROL device (%s) "
  2448. "should be enabled\n", K8_NBCFG_ECC_ENABLE,
  2449. K8_NBCFG, pci_name(pvt->misc_f3_ctl));
  2450. }
  2451. if (!ret) {
  2452. amd64_printk(KERN_WARNING, "bit 0x%016lx in MSR 0x%08x "
  2453. "of node %d should be enabled\n",
  2454. K8_MSR_MCGCTL_NBE, MSR_IA32_MCG_CTL,
  2455. pvt->mc_node_id);
  2456. }
  2457. if (!ecc_enable_override) {
  2458. amd64_printk(KERN_WARNING, "WARNING: ECC is NOT "
  2459. "currently enabled by the BIOS. Module "
  2460. "will NOT be loaded.\n"
  2461. " Either Enable ECC in the BIOS, "
  2462. "or use the 'ecc_enable_override' "
  2463. "parameter.\n"
  2464. " Might be a BIOS bug, if BIOS says "
  2465. "ECC is enabled\n"
  2466. " Use of the override can cause "
  2467. "unknown side effects.\n");
  2468. ret = -ENODEV;
  2469. } else
  2470. /*
  2471. * enable further driver loading if ECC enable is
  2472. * overridden.
  2473. */
  2474. ret = 0;
  2475. } else {
  2476. amd64_printk(KERN_INFO,
  2477. "ECC is enabled by BIOS, Proceeding "
  2478. "with EDAC module initialization\n");
  2479. /* Signal good ECC status */
  2480. ret = 0;
  2481. /* CLEAR the override, since BIOS controlled it */
  2482. ecc_enable_override = 0;
  2483. }
  2484. return ret;
  2485. }
  2486. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  2487. ARRAY_SIZE(amd64_inj_attrs) +
  2488. 1];
  2489. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  2490. static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
  2491. {
  2492. unsigned int i = 0, j = 0;
  2493. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  2494. sysfs_attrs[i] = amd64_dbg_attrs[i];
  2495. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  2496. sysfs_attrs[i] = amd64_inj_attrs[j];
  2497. sysfs_attrs[i] = terminator;
  2498. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  2499. }
  2500. static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
  2501. {
  2502. struct amd64_pvt *pvt = mci->pvt_info;
  2503. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2504. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2505. if (pvt->nbcap & K8_NBCAP_SECDED)
  2506. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2507. if (pvt->nbcap & K8_NBCAP_CHIPKILL)
  2508. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2509. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2510. mci->mod_name = EDAC_MOD_STR;
  2511. mci->mod_ver = EDAC_AMD64_VERSION;
  2512. mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
  2513. mci->dev_name = pci_name(pvt->dram_f2_ctl);
  2514. mci->ctl_page_to_phys = NULL;
  2515. /* IMPORTANT: Set the polling 'check' function in this module */
  2516. mci->edac_check = amd64_check;
  2517. /* memory scrubber interface */
  2518. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2519. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2520. }
  2521. /*
  2522. * Init stuff for this DRAM Controller device.
  2523. *
  2524. * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
  2525. * Space feature MUST be enabled on ALL Processors prior to actually reading
  2526. * from the ECS registers. Since the loading of the module can occur on any
  2527. * 'core', and cores don't 'see' all the other processors ECS data when the
  2528. * others are NOT enabled. Our solution is to first enable ECS access in this
  2529. * routine on all processors, gather some data in a amd64_pvt structure and
  2530. * later come back in a finish-setup function to perform that final
  2531. * initialization. See also amd64_init_2nd_stage() for that.
  2532. */
  2533. static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
  2534. int mc_type_index)
  2535. {
  2536. struct amd64_pvt *pvt = NULL;
  2537. int err = 0, ret;
  2538. ret = -ENOMEM;
  2539. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2540. if (!pvt)
  2541. goto err_exit;
  2542. pvt->mc_node_id = get_node_id(dram_f2_ctl);
  2543. pvt->dram_f2_ctl = dram_f2_ctl;
  2544. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2545. pvt->mc_type_index = mc_type_index;
  2546. pvt->ops = family_ops(mc_type_index);
  2547. pvt->old_mcgctl = 0;
  2548. /*
  2549. * We have the dram_f2_ctl device as an argument, now go reserve its
  2550. * sibling devices from the PCI system.
  2551. */
  2552. ret = -ENODEV;
  2553. err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
  2554. if (err)
  2555. goto err_free;
  2556. ret = -EINVAL;
  2557. err = amd64_check_ecc_enabled(pvt);
  2558. if (err)
  2559. goto err_put;
  2560. /*
  2561. * Key operation here: setup of HW prior to performing ops on it. Some
  2562. * setup is required to access ECS data. After this is performed, the
  2563. * 'teardown' function must be called upon error and normal exit paths.
  2564. */
  2565. if (boot_cpu_data.x86 >= 0x10)
  2566. amd64_setup(pvt);
  2567. /*
  2568. * Save the pointer to the private data for use in 2nd initialization
  2569. * stage
  2570. */
  2571. pvt_lookup[pvt->mc_node_id] = pvt;
  2572. return 0;
  2573. err_put:
  2574. amd64_free_mc_sibling_devices(pvt);
  2575. err_free:
  2576. kfree(pvt);
  2577. err_exit:
  2578. return ret;
  2579. }
  2580. /*
  2581. * This is the finishing stage of the init code. Needs to be performed after all
  2582. * MCs' hardware have been prepped for accessing extended config space.
  2583. */
  2584. static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
  2585. {
  2586. int node_id = pvt->mc_node_id;
  2587. struct mem_ctl_info *mci;
  2588. int ret, err = 0;
  2589. amd64_read_mc_registers(pvt);
  2590. ret = -ENODEV;
  2591. if (pvt->ops->probe_valid_hardware) {
  2592. err = pvt->ops->probe_valid_hardware(pvt);
  2593. if (err)
  2594. goto err_exit;
  2595. }
  2596. /*
  2597. * We need to determine how many memory channels there are. Then use
  2598. * that information for calculating the size of the dynamic instance
  2599. * tables in the 'mci' structure
  2600. */
  2601. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2602. if (pvt->channel_count < 0)
  2603. goto err_exit;
  2604. ret = -ENOMEM;
  2605. mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id);
  2606. if (!mci)
  2607. goto err_exit;
  2608. mci->pvt_info = pvt;
  2609. mci->dev = &pvt->dram_f2_ctl->dev;
  2610. amd64_setup_mci_misc_attributes(mci);
  2611. if (amd64_init_csrows(mci))
  2612. mci->edac_cap = EDAC_FLAG_NONE;
  2613. amd64_enable_ecc_error_reporting(mci);
  2614. amd64_set_mc_sysfs_attributes(mci);
  2615. ret = -ENODEV;
  2616. if (edac_mc_add_mc(mci)) {
  2617. debugf1("failed edac_mc_add_mc()\n");
  2618. goto err_add_mc;
  2619. }
  2620. mci_lookup[node_id] = mci;
  2621. pvt_lookup[node_id] = NULL;
  2622. return 0;
  2623. err_add_mc:
  2624. edac_mc_free(mci);
  2625. err_exit:
  2626. debugf0("failure to init 2nd stage: ret=%d\n", ret);
  2627. amd64_restore_ecc_error_reporting(pvt);
  2628. if (boot_cpu_data.x86 > 0xf)
  2629. amd64_teardown(pvt);
  2630. amd64_free_mc_sibling_devices(pvt);
  2631. kfree(pvt_lookup[pvt->mc_node_id]);
  2632. pvt_lookup[node_id] = NULL;
  2633. return ret;
  2634. }
  2635. static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
  2636. const struct pci_device_id *mc_type)
  2637. {
  2638. int ret = 0;
  2639. debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
  2640. get_amd_family_name(mc_type->driver_data));
  2641. ret = pci_enable_device(pdev);
  2642. if (ret < 0)
  2643. ret = -EIO;
  2644. else
  2645. ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
  2646. if (ret < 0)
  2647. debugf0("ret=%d\n", ret);
  2648. return ret;
  2649. }
  2650. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2651. {
  2652. struct mem_ctl_info *mci;
  2653. struct amd64_pvt *pvt;
  2654. /* Remove from EDAC CORE tracking list */
  2655. mci = edac_mc_del_mc(&pdev->dev);
  2656. if (!mci)
  2657. return;
  2658. pvt = mci->pvt_info;
  2659. amd64_restore_ecc_error_reporting(pvt);
  2660. if (boot_cpu_data.x86 > 0xf)
  2661. amd64_teardown(pvt);
  2662. amd64_free_mc_sibling_devices(pvt);
  2663. kfree(pvt);
  2664. mci->pvt_info = NULL;
  2665. mci_lookup[pvt->mc_node_id] = NULL;
  2666. /* Free the EDAC CORE resources */
  2667. edac_mc_free(mci);
  2668. }
  2669. /*
  2670. * This table is part of the interface for loading drivers for PCI devices. The
  2671. * PCI core identifies what devices are on a system during boot, and then
  2672. * inquiry this table to see if this driver is for a given device found.
  2673. */
  2674. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2675. {
  2676. .vendor = PCI_VENDOR_ID_AMD,
  2677. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2678. .subvendor = PCI_ANY_ID,
  2679. .subdevice = PCI_ANY_ID,
  2680. .class = 0,
  2681. .class_mask = 0,
  2682. .driver_data = K8_CPUS
  2683. },
  2684. {
  2685. .vendor = PCI_VENDOR_ID_AMD,
  2686. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2687. .subvendor = PCI_ANY_ID,
  2688. .subdevice = PCI_ANY_ID,
  2689. .class = 0,
  2690. .class_mask = 0,
  2691. .driver_data = F10_CPUS
  2692. },
  2693. {
  2694. .vendor = PCI_VENDOR_ID_AMD,
  2695. .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
  2696. .subvendor = PCI_ANY_ID,
  2697. .subdevice = PCI_ANY_ID,
  2698. .class = 0,
  2699. .class_mask = 0,
  2700. .driver_data = F11_CPUS
  2701. },
  2702. {0, }
  2703. };
  2704. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2705. static struct pci_driver amd64_pci_driver = {
  2706. .name = EDAC_MOD_STR,
  2707. .probe = amd64_init_one_instance,
  2708. .remove = __devexit_p(amd64_remove_one_instance),
  2709. .id_table = amd64_pci_table,
  2710. };
  2711. static void amd64_setup_pci_device(void)
  2712. {
  2713. struct mem_ctl_info *mci;
  2714. struct amd64_pvt *pvt;
  2715. if (amd64_ctl_pci)
  2716. return;
  2717. mci = mci_lookup[0];
  2718. if (mci) {
  2719. pvt = mci->pvt_info;
  2720. amd64_ctl_pci =
  2721. edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
  2722. EDAC_MOD_STR);
  2723. if (!amd64_ctl_pci) {
  2724. pr_warning("%s(): Unable to create PCI control\n",
  2725. __func__);
  2726. pr_warning("%s(): PCI error report via EDAC not set\n",
  2727. __func__);
  2728. }
  2729. }
  2730. }
  2731. static int __init amd64_edac_init(void)
  2732. {
  2733. int nb, err = -ENODEV;
  2734. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2735. opstate_init();
  2736. if (cache_k8_northbridges() < 0)
  2737. goto err_exit;
  2738. err = pci_register_driver(&amd64_pci_driver);
  2739. if (err)
  2740. return err;
  2741. /*
  2742. * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
  2743. * amd64_pvt structs. These will be used in the 2nd stage init function
  2744. * to finish initialization of the MC instances.
  2745. */
  2746. for (nb = 0; nb < num_k8_northbridges; nb++) {
  2747. if (!pvt_lookup[nb])
  2748. continue;
  2749. err = amd64_init_2nd_stage(pvt_lookup[nb]);
  2750. if (err)
  2751. goto err_2nd_stage;
  2752. }
  2753. amd64_setup_pci_device();
  2754. return 0;
  2755. err_2nd_stage:
  2756. debugf0("2nd stage failed\n");
  2757. err_exit:
  2758. pci_unregister_driver(&amd64_pci_driver);
  2759. return err;
  2760. }
  2761. static void __exit amd64_edac_exit(void)
  2762. {
  2763. if (amd64_ctl_pci)
  2764. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2765. pci_unregister_driver(&amd64_pci_driver);
  2766. }
  2767. module_init(amd64_edac_init);
  2768. module_exit(amd64_edac_exit);
  2769. MODULE_LICENSE("GPL");
  2770. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2771. "Dave Peterson, Thayne Harbaugh");
  2772. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2773. EDAC_AMD64_VERSION);
  2774. module_param(edac_op_state, int, 0444);
  2775. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");