mvneta.c 75 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839
  1. /*
  2. * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
  3. *
  4. * Copyright (C) 2012 Marvell
  5. *
  6. * Rami Rosen <rosenr@marvell.com>
  7. * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
  8. *
  9. * This file is licensed under the terms of the GNU General Public
  10. * License version 2. This program is licensed "as is" without any
  11. * warranty of any kind, whether express or implied.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/version.h>
  15. #include <linux/netdevice.h>
  16. #include <linux/etherdevice.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/skbuff.h>
  19. #include <linux/inetdevice.h>
  20. #include <linux/mbus.h>
  21. #include <linux/module.h>
  22. #include <linux/interrupt.h>
  23. #include <net/ip.h>
  24. #include <net/ipv6.h>
  25. #include <linux/of.h>
  26. #include <linux/of_irq.h>
  27. #include <linux/of_mdio.h>
  28. #include <linux/of_net.h>
  29. #include <linux/of_address.h>
  30. #include <linux/phy.h>
  31. /* Registers */
  32. #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
  33. #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
  34. #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
  35. #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
  36. #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
  37. #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
  38. #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
  39. #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
  40. #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
  41. #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
  42. #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
  43. #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
  44. #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
  45. #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
  46. #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
  47. #define MVNETA_PORT_RX_RESET 0x1cc0
  48. #define MVNETA_PORT_RX_DMA_RESET BIT(0)
  49. #define MVNETA_PHY_ADDR 0x2000
  50. #define MVNETA_PHY_ADDR_MASK 0x1f
  51. #define MVNETA_MBUS_RETRY 0x2010
  52. #define MVNETA_UNIT_INTR_CAUSE 0x2080
  53. #define MVNETA_UNIT_CONTROL 0x20B0
  54. #define MVNETA_PHY_POLLING_ENABLE BIT(1)
  55. #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
  56. #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
  57. #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
  58. #define MVNETA_BASE_ADDR_ENABLE 0x2290
  59. #define MVNETA_PORT_CONFIG 0x2400
  60. #define MVNETA_UNI_PROMISC_MODE BIT(0)
  61. #define MVNETA_DEF_RXQ(q) ((q) << 1)
  62. #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
  63. #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
  64. #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
  65. #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
  66. #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
  67. #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
  68. #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
  69. MVNETA_DEF_RXQ_ARP(q) | \
  70. MVNETA_DEF_RXQ_TCP(q) | \
  71. MVNETA_DEF_RXQ_UDP(q) | \
  72. MVNETA_DEF_RXQ_BPDU(q) | \
  73. MVNETA_TX_UNSET_ERR_SUM | \
  74. MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  75. #define MVNETA_PORT_CONFIG_EXTEND 0x2404
  76. #define MVNETA_MAC_ADDR_LOW 0x2414
  77. #define MVNETA_MAC_ADDR_HIGH 0x2418
  78. #define MVNETA_SDMA_CONFIG 0x241c
  79. #define MVNETA_SDMA_BRST_SIZE_16 4
  80. #define MVNETA_NO_DESC_SWAP 0x0
  81. #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
  82. #define MVNETA_RX_NO_DATA_SWAP BIT(4)
  83. #define MVNETA_TX_NO_DATA_SWAP BIT(5)
  84. #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
  85. #define MVNETA_PORT_STATUS 0x2444
  86. #define MVNETA_TX_IN_PRGRS BIT(1)
  87. #define MVNETA_TX_FIFO_EMPTY BIT(8)
  88. #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
  89. #define MVNETA_TYPE_PRIO 0x24bc
  90. #define MVNETA_FORCE_UNI BIT(21)
  91. #define MVNETA_TXQ_CMD_1 0x24e4
  92. #define MVNETA_TXQ_CMD 0x2448
  93. #define MVNETA_TXQ_DISABLE_SHIFT 8
  94. #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
  95. #define MVNETA_ACC_MODE 0x2500
  96. #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
  97. #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
  98. #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
  99. #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
  100. #define MVNETA_INTR_NEW_CAUSE 0x25a0
  101. #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
  102. #define MVNETA_INTR_NEW_MASK 0x25a4
  103. #define MVNETA_INTR_OLD_CAUSE 0x25a8
  104. #define MVNETA_INTR_OLD_MASK 0x25ac
  105. #define MVNETA_INTR_MISC_CAUSE 0x25b0
  106. #define MVNETA_INTR_MISC_MASK 0x25b4
  107. #define MVNETA_INTR_ENABLE 0x25b8
  108. #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
  109. #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000
  110. #define MVNETA_RXQ_CMD 0x2680
  111. #define MVNETA_RXQ_DISABLE_SHIFT 8
  112. #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
  113. #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
  114. #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
  115. #define MVNETA_GMAC_CTRL_0 0x2c00
  116. #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
  117. #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
  118. #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
  119. #define MVNETA_GMAC_CTRL_2 0x2c08
  120. #define MVNETA_GMAC2_PSC_ENABLE BIT(3)
  121. #define MVNETA_GMAC2_PORT_RGMII BIT(4)
  122. #define MVNETA_GMAC2_PORT_RESET BIT(6)
  123. #define MVNETA_GMAC_STATUS 0x2c10
  124. #define MVNETA_GMAC_LINK_UP BIT(0)
  125. #define MVNETA_GMAC_SPEED_1000 BIT(1)
  126. #define MVNETA_GMAC_SPEED_100 BIT(2)
  127. #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
  128. #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
  129. #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
  130. #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
  131. #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
  132. #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
  133. #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
  134. #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
  135. #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
  136. #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
  137. #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
  138. #define MVNETA_MIB_COUNTERS_BASE 0x3080
  139. #define MVNETA_MIB_LATE_COLLISION 0x7c
  140. #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
  141. #define MVNETA_DA_FILT_OTH_MCAST 0x3500
  142. #define MVNETA_DA_FILT_UCAST_BASE 0x3600
  143. #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
  144. #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
  145. #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
  146. #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
  147. #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
  148. #define MVNETA_TXQ_DEC_SENT_SHIFT 16
  149. #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
  150. #define MVNETA_TXQ_SENT_DESC_SHIFT 16
  151. #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
  152. #define MVNETA_PORT_TX_RESET 0x3cf0
  153. #define MVNETA_PORT_TX_DMA_RESET BIT(0)
  154. #define MVNETA_TX_MTU 0x3e0c
  155. #define MVNETA_TX_TOKEN_SIZE 0x3e14
  156. #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
  157. #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
  158. #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
  159. #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
  160. /* Descriptor ring Macros */
  161. #define MVNETA_QUEUE_NEXT_DESC(q, index) \
  162. (((index) < (q)->last_desc) ? ((index) + 1) : 0)
  163. /* Various constants */
  164. /* Coalescing */
  165. #define MVNETA_TXDONE_COAL_PKTS 16
  166. #define MVNETA_RX_COAL_PKTS 32
  167. #define MVNETA_RX_COAL_USEC 100
  168. /* Timer */
  169. #define MVNETA_TX_DONE_TIMER_PERIOD 10
  170. /* Napi polling weight */
  171. #define MVNETA_RX_POLL_WEIGHT 64
  172. /* The two bytes Marvell header. Either contains a special value used
  173. * by Marvell switches when a specific hardware mode is enabled (not
  174. * supported by this driver) or is filled automatically by zeroes on
  175. * the RX side. Those two bytes being at the front of the Ethernet
  176. * header, they allow to have the IP header aligned on a 4 bytes
  177. * boundary automatically: the hardware skips those two bytes on its
  178. * own.
  179. */
  180. #define MVNETA_MH_SIZE 2
  181. #define MVNETA_VLAN_TAG_LEN 4
  182. #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
  183. #define MVNETA_TX_CSUM_MAX_SIZE 9800
  184. #define MVNETA_ACC_MODE_EXT 1
  185. /* Timeout constants */
  186. #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
  187. #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
  188. #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
  189. #define MVNETA_TX_MTU_MAX 0x3ffff
  190. /* Max number of Rx descriptors */
  191. #define MVNETA_MAX_RXD 128
  192. /* Max number of Tx descriptors */
  193. #define MVNETA_MAX_TXD 532
  194. /* descriptor aligned size */
  195. #define MVNETA_DESC_ALIGNED_SIZE 32
  196. #define MVNETA_RX_PKT_SIZE(mtu) \
  197. ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
  198. ETH_HLEN + ETH_FCS_LEN, \
  199. MVNETA_CPU_D_CACHE_LINE_SIZE)
  200. #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
  201. struct mvneta_stats {
  202. struct u64_stats_sync syncp;
  203. u64 packets;
  204. u64 bytes;
  205. };
  206. struct mvneta_port {
  207. int pkt_size;
  208. void __iomem *base;
  209. struct mvneta_rx_queue *rxqs;
  210. struct mvneta_tx_queue *txqs;
  211. struct timer_list tx_done_timer;
  212. struct net_device *dev;
  213. u32 cause_rx_tx;
  214. struct napi_struct napi;
  215. /* Flags */
  216. unsigned long flags;
  217. #define MVNETA_F_TX_DONE_TIMER_BIT 0
  218. /* Napi weight */
  219. int weight;
  220. /* Core clock */
  221. unsigned int clk_rate_hz;
  222. u8 mcast_count[256];
  223. u16 tx_ring_size;
  224. u16 rx_ring_size;
  225. struct mvneta_stats tx_stats;
  226. struct mvneta_stats rx_stats;
  227. struct mii_bus *mii_bus;
  228. struct phy_device *phy_dev;
  229. phy_interface_t phy_interface;
  230. struct device_node *phy_node;
  231. unsigned int link;
  232. unsigned int duplex;
  233. unsigned int speed;
  234. };
  235. /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
  236. * layout of the transmit and reception DMA descriptors, and their
  237. * layout is therefore defined by the hardware design
  238. */
  239. struct mvneta_tx_desc {
  240. u32 command; /* Options used by HW for packet transmitting.*/
  241. #define MVNETA_TX_L3_OFF_SHIFT 0
  242. #define MVNETA_TX_IP_HLEN_SHIFT 8
  243. #define MVNETA_TX_L4_UDP BIT(16)
  244. #define MVNETA_TX_L3_IP6 BIT(17)
  245. #define MVNETA_TXD_IP_CSUM BIT(18)
  246. #define MVNETA_TXD_Z_PAD BIT(19)
  247. #define MVNETA_TXD_L_DESC BIT(20)
  248. #define MVNETA_TXD_F_DESC BIT(21)
  249. #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
  250. MVNETA_TXD_L_DESC | \
  251. MVNETA_TXD_F_DESC)
  252. #define MVNETA_TX_L4_CSUM_FULL BIT(30)
  253. #define MVNETA_TX_L4_CSUM_NOT BIT(31)
  254. u16 reserverd1; /* csum_l4 (for future use) */
  255. u16 data_size; /* Data size of transmitted packet in bytes */
  256. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  257. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  258. u32 reserved3[4]; /* Reserved - (for future use) */
  259. };
  260. struct mvneta_rx_desc {
  261. u32 status; /* Info about received packet */
  262. #define MVNETA_RXD_ERR_CRC 0x0
  263. #define MVNETA_RXD_ERR_SUMMARY BIT(16)
  264. #define MVNETA_RXD_ERR_OVERRUN BIT(17)
  265. #define MVNETA_RXD_ERR_LEN BIT(18)
  266. #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
  267. #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
  268. #define MVNETA_RXD_L3_IP4 BIT(25)
  269. #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
  270. #define MVNETA_RXD_L4_CSUM_OK BIT(30)
  271. u16 reserved1; /* pnc_info - (for future use, PnC) */
  272. u16 data_size; /* Size of received packet in bytes */
  273. u32 buf_phys_addr; /* Physical address of the buffer */
  274. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  275. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  276. u16 reserved3; /* prefetch_cmd, for future use */
  277. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  278. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  279. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  280. };
  281. struct mvneta_tx_queue {
  282. /* Number of this TX queue, in the range 0-7 */
  283. u8 id;
  284. /* Number of TX DMA descriptors in the descriptor ring */
  285. int size;
  286. /* Number of currently used TX DMA descriptor in the
  287. * descriptor ring
  288. */
  289. int count;
  290. /* Array of transmitted skb */
  291. struct sk_buff **tx_skb;
  292. /* Index of last TX DMA descriptor that was inserted */
  293. int txq_put_index;
  294. /* Index of the TX DMA descriptor to be cleaned up */
  295. int txq_get_index;
  296. u32 done_pkts_coal;
  297. /* Virtual address of the TX DMA descriptors array */
  298. struct mvneta_tx_desc *descs;
  299. /* DMA address of the TX DMA descriptors array */
  300. dma_addr_t descs_phys;
  301. /* Index of the last TX DMA descriptor */
  302. int last_desc;
  303. /* Index of the next TX DMA descriptor to process */
  304. int next_desc_to_proc;
  305. };
  306. struct mvneta_rx_queue {
  307. /* rx queue number, in the range 0-7 */
  308. u8 id;
  309. /* num of rx descriptors in the rx descriptor ring */
  310. int size;
  311. /* counter of times when mvneta_refill() failed */
  312. int missed;
  313. u32 pkts_coal;
  314. u32 time_coal;
  315. /* Virtual address of the RX DMA descriptors array */
  316. struct mvneta_rx_desc *descs;
  317. /* DMA address of the RX DMA descriptors array */
  318. dma_addr_t descs_phys;
  319. /* Index of the last RX DMA descriptor */
  320. int last_desc;
  321. /* Index of the next RX DMA descriptor to process */
  322. int next_desc_to_proc;
  323. };
  324. static int rxq_number = 8;
  325. static int txq_number = 8;
  326. static int rxq_def;
  327. static int txq_def;
  328. #define MVNETA_DRIVER_NAME "mvneta"
  329. #define MVNETA_DRIVER_VERSION "1.0"
  330. /* Utility/helper methods */
  331. /* Write helper method */
  332. static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
  333. {
  334. writel(data, pp->base + offset);
  335. }
  336. /* Read helper method */
  337. static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
  338. {
  339. return readl(pp->base + offset);
  340. }
  341. /* Increment txq get counter */
  342. static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
  343. {
  344. txq->txq_get_index++;
  345. if (txq->txq_get_index == txq->size)
  346. txq->txq_get_index = 0;
  347. }
  348. /* Increment txq put counter */
  349. static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
  350. {
  351. txq->txq_put_index++;
  352. if (txq->txq_put_index == txq->size)
  353. txq->txq_put_index = 0;
  354. }
  355. /* Clear all MIB counters */
  356. static void mvneta_mib_counters_clear(struct mvneta_port *pp)
  357. {
  358. int i;
  359. u32 dummy;
  360. /* Perform dummy reads from MIB counters */
  361. for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
  362. dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
  363. }
  364. /* Get System Network Statistics */
  365. struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
  366. struct rtnl_link_stats64 *stats)
  367. {
  368. struct mvneta_port *pp = netdev_priv(dev);
  369. unsigned int start;
  370. memset(stats, 0, sizeof(struct rtnl_link_stats64));
  371. do {
  372. start = u64_stats_fetch_begin_bh(&pp->rx_stats.syncp);
  373. stats->rx_packets = pp->rx_stats.packets;
  374. stats->rx_bytes = pp->rx_stats.bytes;
  375. } while (u64_stats_fetch_retry_bh(&pp->rx_stats.syncp, start));
  376. do {
  377. start = u64_stats_fetch_begin_bh(&pp->tx_stats.syncp);
  378. stats->tx_packets = pp->tx_stats.packets;
  379. stats->tx_bytes = pp->tx_stats.bytes;
  380. } while (u64_stats_fetch_retry_bh(&pp->tx_stats.syncp, start));
  381. stats->rx_errors = dev->stats.rx_errors;
  382. stats->rx_dropped = dev->stats.rx_dropped;
  383. stats->tx_dropped = dev->stats.tx_dropped;
  384. return stats;
  385. }
  386. /* Rx descriptors helper methods */
  387. /* Checks whether the given RX descriptor is both the first and the
  388. * last descriptor for the RX packet. Each RX packet is currently
  389. * received through a single RX descriptor, so not having each RX
  390. * descriptor with its first and last bits set is an error
  391. */
  392. static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc)
  393. {
  394. return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) ==
  395. MVNETA_RXD_FIRST_LAST_DESC;
  396. }
  397. /* Add number of descriptors ready to receive new packets */
  398. static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
  399. struct mvneta_rx_queue *rxq,
  400. int ndescs)
  401. {
  402. /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
  403. * be added at once
  404. */
  405. while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
  406. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  407. (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
  408. MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  409. ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
  410. }
  411. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  412. (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  413. }
  414. /* Get number of RX descriptors occupied by received packets */
  415. static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
  416. struct mvneta_rx_queue *rxq)
  417. {
  418. u32 val;
  419. val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
  420. return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
  421. }
  422. /* Update num of rx desc called upon return from rx path or
  423. * from mvneta_rxq_drop_pkts().
  424. */
  425. static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
  426. struct mvneta_rx_queue *rxq,
  427. int rx_done, int rx_filled)
  428. {
  429. u32 val;
  430. if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
  431. val = rx_done |
  432. (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
  433. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  434. return;
  435. }
  436. /* Only 255 descriptors can be added at once */
  437. while ((rx_done > 0) || (rx_filled > 0)) {
  438. if (rx_done <= 0xff) {
  439. val = rx_done;
  440. rx_done = 0;
  441. } else {
  442. val = 0xff;
  443. rx_done -= 0xff;
  444. }
  445. if (rx_filled <= 0xff) {
  446. val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  447. rx_filled = 0;
  448. } else {
  449. val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  450. rx_filled -= 0xff;
  451. }
  452. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  453. }
  454. }
  455. /* Get pointer to next RX descriptor to be processed by SW */
  456. static struct mvneta_rx_desc *
  457. mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
  458. {
  459. int rx_desc = rxq->next_desc_to_proc;
  460. rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
  461. return rxq->descs + rx_desc;
  462. }
  463. /* Change maximum receive size of the port. */
  464. static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
  465. {
  466. u32 val;
  467. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  468. val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
  469. val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
  470. MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
  471. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  472. }
  473. /* Set rx queue offset */
  474. static void mvneta_rxq_offset_set(struct mvneta_port *pp,
  475. struct mvneta_rx_queue *rxq,
  476. int offset)
  477. {
  478. u32 val;
  479. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  480. val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
  481. /* Offset is in */
  482. val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
  483. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  484. }
  485. /* Tx descriptors helper methods */
  486. /* Update HW with number of TX descriptors to be sent */
  487. static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
  488. struct mvneta_tx_queue *txq,
  489. int pend_desc)
  490. {
  491. u32 val;
  492. /* Only 255 descriptors can be added at once ; Assume caller
  493. * process TX desriptors in quanta less than 256
  494. */
  495. val = pend_desc;
  496. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  497. }
  498. /* Get pointer to next TX descriptor to be processed (send) by HW */
  499. static struct mvneta_tx_desc *
  500. mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
  501. {
  502. int tx_desc = txq->next_desc_to_proc;
  503. txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
  504. return txq->descs + tx_desc;
  505. }
  506. /* Release the last allocated TX descriptor. Useful to handle DMA
  507. * mapping failures in the TX path.
  508. */
  509. static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
  510. {
  511. if (txq->next_desc_to_proc == 0)
  512. txq->next_desc_to_proc = txq->last_desc - 1;
  513. else
  514. txq->next_desc_to_proc--;
  515. }
  516. /* Set rxq buf size */
  517. static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
  518. struct mvneta_rx_queue *rxq,
  519. int buf_size)
  520. {
  521. u32 val;
  522. val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
  523. val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
  524. val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
  525. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
  526. }
  527. /* Disable buffer management (BM) */
  528. static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
  529. struct mvneta_rx_queue *rxq)
  530. {
  531. u32 val;
  532. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  533. val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
  534. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  535. }
  536. /* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */
  537. static void __devinit mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable)
  538. {
  539. u32 val;
  540. val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  541. if (enable)
  542. val |= MVNETA_GMAC2_PORT_RGMII;
  543. else
  544. val &= ~MVNETA_GMAC2_PORT_RGMII;
  545. mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
  546. }
  547. /* Config SGMII port */
  548. static void __devinit mvneta_port_sgmii_config(struct mvneta_port *pp)
  549. {
  550. u32 val;
  551. val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  552. val |= MVNETA_GMAC2_PSC_ENABLE;
  553. mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
  554. }
  555. /* Start the Ethernet port RX and TX activity */
  556. static void mvneta_port_up(struct mvneta_port *pp)
  557. {
  558. int queue;
  559. u32 q_map;
  560. /* Enable all initialized TXs. */
  561. mvneta_mib_counters_clear(pp);
  562. q_map = 0;
  563. for (queue = 0; queue < txq_number; queue++) {
  564. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  565. if (txq->descs != NULL)
  566. q_map |= (1 << queue);
  567. }
  568. mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
  569. /* Enable all initialized RXQs. */
  570. q_map = 0;
  571. for (queue = 0; queue < rxq_number; queue++) {
  572. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  573. if (rxq->descs != NULL)
  574. q_map |= (1 << queue);
  575. }
  576. mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
  577. }
  578. /* Stop the Ethernet port activity */
  579. static void mvneta_port_down(struct mvneta_port *pp)
  580. {
  581. u32 val;
  582. int count;
  583. /* Stop Rx port activity. Check port Rx activity. */
  584. val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
  585. /* Issue stop command for active channels only */
  586. if (val != 0)
  587. mvreg_write(pp, MVNETA_RXQ_CMD,
  588. val << MVNETA_RXQ_DISABLE_SHIFT);
  589. /* Wait for all Rx activity to terminate. */
  590. count = 0;
  591. do {
  592. if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
  593. netdev_warn(pp->dev,
  594. "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
  595. val);
  596. break;
  597. }
  598. mdelay(1);
  599. val = mvreg_read(pp, MVNETA_RXQ_CMD);
  600. } while (val & 0xff);
  601. /* Stop Tx port activity. Check port Tx activity. Issue stop
  602. * command for active channels only
  603. */
  604. val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
  605. if (val != 0)
  606. mvreg_write(pp, MVNETA_TXQ_CMD,
  607. (val << MVNETA_TXQ_DISABLE_SHIFT));
  608. /* Wait for all Tx activity to terminate. */
  609. count = 0;
  610. do {
  611. if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
  612. netdev_warn(pp->dev,
  613. "TIMEOUT for TX stopped status=0x%08x\n",
  614. val);
  615. break;
  616. }
  617. mdelay(1);
  618. /* Check TX Command reg that all Txqs are stopped */
  619. val = mvreg_read(pp, MVNETA_TXQ_CMD);
  620. } while (val & 0xff);
  621. /* Double check to verify that TX FIFO is empty */
  622. count = 0;
  623. do {
  624. if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
  625. netdev_warn(pp->dev,
  626. "TX FIFO empty timeout status=0x08%x\n",
  627. val);
  628. break;
  629. }
  630. mdelay(1);
  631. val = mvreg_read(pp, MVNETA_PORT_STATUS);
  632. } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
  633. (val & MVNETA_TX_IN_PRGRS));
  634. udelay(200);
  635. }
  636. /* Enable the port by setting the port enable bit of the MAC control register */
  637. static void mvneta_port_enable(struct mvneta_port *pp)
  638. {
  639. u32 val;
  640. /* Enable port */
  641. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  642. val |= MVNETA_GMAC0_PORT_ENABLE;
  643. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  644. }
  645. /* Disable the port and wait for about 200 usec before retuning */
  646. static void mvneta_port_disable(struct mvneta_port *pp)
  647. {
  648. u32 val;
  649. /* Reset the Enable bit in the Serial Control Register */
  650. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  651. val &= ~MVNETA_GMAC0_PORT_ENABLE;
  652. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  653. udelay(200);
  654. }
  655. /* Multicast tables methods */
  656. /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
  657. static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
  658. {
  659. int offset;
  660. u32 val;
  661. if (queue == -1) {
  662. val = 0;
  663. } else {
  664. val = 0x1 | (queue << 1);
  665. val |= (val << 24) | (val << 16) | (val << 8);
  666. }
  667. for (offset = 0; offset <= 0xc; offset += 4)
  668. mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
  669. }
  670. /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
  671. static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
  672. {
  673. int offset;
  674. u32 val;
  675. if (queue == -1) {
  676. val = 0;
  677. } else {
  678. val = 0x1 | (queue << 1);
  679. val |= (val << 24) | (val << 16) | (val << 8);
  680. }
  681. for (offset = 0; offset <= 0xfc; offset += 4)
  682. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
  683. }
  684. /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
  685. static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
  686. {
  687. int offset;
  688. u32 val;
  689. if (queue == -1) {
  690. memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
  691. val = 0;
  692. } else {
  693. memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
  694. val = 0x1 | (queue << 1);
  695. val |= (val << 24) | (val << 16) | (val << 8);
  696. }
  697. for (offset = 0; offset <= 0xfc; offset += 4)
  698. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
  699. }
  700. /* This method sets defaults to the NETA port:
  701. * Clears interrupt Cause and Mask registers.
  702. * Clears all MAC tables.
  703. * Sets defaults to all registers.
  704. * Resets RX and TX descriptor rings.
  705. * Resets PHY.
  706. * This method can be called after mvneta_port_down() to return the port
  707. * settings to defaults.
  708. */
  709. static void mvneta_defaults_set(struct mvneta_port *pp)
  710. {
  711. int cpu;
  712. int queue;
  713. u32 val;
  714. /* Clear all Cause registers */
  715. mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
  716. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  717. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  718. /* Mask all interrupts */
  719. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  720. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  721. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  722. mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
  723. /* Enable MBUS Retry bit16 */
  724. mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
  725. /* Set CPU queue access map - all CPUs have access to all RX
  726. * queues and to all TX queues
  727. */
  728. for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
  729. mvreg_write(pp, MVNETA_CPU_MAP(cpu),
  730. (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
  731. MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
  732. /* Reset RX and TX DMAs */
  733. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  734. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  735. /* Disable Legacy WRR, Disable EJP, Release from reset */
  736. mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
  737. for (queue = 0; queue < txq_number; queue++) {
  738. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
  739. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
  740. }
  741. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  742. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  743. /* Set Port Acceleration Mode */
  744. val = MVNETA_ACC_MODE_EXT;
  745. mvreg_write(pp, MVNETA_ACC_MODE, val);
  746. /* Update val of portCfg register accordingly with all RxQueue types */
  747. val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
  748. mvreg_write(pp, MVNETA_PORT_CONFIG, val);
  749. val = 0;
  750. mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
  751. mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
  752. /* Build PORT_SDMA_CONFIG_REG */
  753. val = 0;
  754. /* Default burst size */
  755. val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  756. val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  757. val |= (MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP |
  758. MVNETA_NO_DESC_SWAP);
  759. /* Assign port SDMA configuration */
  760. mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
  761. mvneta_set_ucast_table(pp, -1);
  762. mvneta_set_special_mcast_table(pp, -1);
  763. mvneta_set_other_mcast_table(pp, -1);
  764. /* Set port interrupt enable register - default enable all */
  765. mvreg_write(pp, MVNETA_INTR_ENABLE,
  766. (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
  767. | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
  768. }
  769. /* Set max sizes for tx queues */
  770. static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
  771. {
  772. u32 val, size, mtu;
  773. int queue;
  774. mtu = max_tx_size * 8;
  775. if (mtu > MVNETA_TX_MTU_MAX)
  776. mtu = MVNETA_TX_MTU_MAX;
  777. /* Set MTU */
  778. val = mvreg_read(pp, MVNETA_TX_MTU);
  779. val &= ~MVNETA_TX_MTU_MAX;
  780. val |= mtu;
  781. mvreg_write(pp, MVNETA_TX_MTU, val);
  782. /* TX token size and all TXQs token size must be larger that MTU */
  783. val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
  784. size = val & MVNETA_TX_TOKEN_SIZE_MAX;
  785. if (size < mtu) {
  786. size = mtu;
  787. val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
  788. val |= size;
  789. mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
  790. }
  791. for (queue = 0; queue < txq_number; queue++) {
  792. val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
  793. size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
  794. if (size < mtu) {
  795. size = mtu;
  796. val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
  797. val |= size;
  798. mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
  799. }
  800. }
  801. }
  802. /* Set unicast address */
  803. static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
  804. int queue)
  805. {
  806. unsigned int unicast_reg;
  807. unsigned int tbl_offset;
  808. unsigned int reg_offset;
  809. /* Locate the Unicast table entry */
  810. last_nibble = (0xf & last_nibble);
  811. /* offset from unicast tbl base */
  812. tbl_offset = (last_nibble / 4) * 4;
  813. /* offset within the above reg */
  814. reg_offset = last_nibble % 4;
  815. unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
  816. if (queue == -1) {
  817. /* Clear accepts frame bit at specified unicast DA tbl entry */
  818. unicast_reg &= ~(0xff << (8 * reg_offset));
  819. } else {
  820. unicast_reg &= ~(0xff << (8 * reg_offset));
  821. unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  822. }
  823. mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
  824. }
  825. /* Set mac address */
  826. static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
  827. int queue)
  828. {
  829. unsigned int mac_h;
  830. unsigned int mac_l;
  831. if (queue != -1) {
  832. mac_l = (addr[4] << 8) | (addr[5]);
  833. mac_h = (addr[0] << 24) | (addr[1] << 16) |
  834. (addr[2] << 8) | (addr[3] << 0);
  835. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
  836. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
  837. }
  838. /* Accept frames of this address */
  839. mvneta_set_ucast_addr(pp, addr[5], queue);
  840. }
  841. /* Set the number of packets that will be received before RX interrupt
  842. * will be generated by HW.
  843. */
  844. static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
  845. struct mvneta_rx_queue *rxq, u32 value)
  846. {
  847. mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
  848. value | MVNETA_RXQ_NON_OCCUPIED(0));
  849. rxq->pkts_coal = value;
  850. }
  851. /* Set the time delay in usec before RX interrupt will be generated by
  852. * HW.
  853. */
  854. static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
  855. struct mvneta_rx_queue *rxq, u32 value)
  856. {
  857. u32 val = (pp->clk_rate_hz / 1000000) * value;
  858. mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
  859. rxq->time_coal = value;
  860. }
  861. /* Set threshold for TX_DONE pkts coalescing */
  862. static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
  863. struct mvneta_tx_queue *txq, u32 value)
  864. {
  865. u32 val;
  866. val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
  867. val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
  868. val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
  869. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
  870. txq->done_pkts_coal = value;
  871. }
  872. /* Trigger tx done timer in MVNETA_TX_DONE_TIMER_PERIOD msecs */
  873. static void mvneta_add_tx_done_timer(struct mvneta_port *pp)
  874. {
  875. if (test_and_set_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags) == 0) {
  876. pp->tx_done_timer.expires = jiffies +
  877. msecs_to_jiffies(MVNETA_TX_DONE_TIMER_PERIOD);
  878. add_timer(&pp->tx_done_timer);
  879. }
  880. }
  881. /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
  882. static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
  883. u32 phys_addr, u32 cookie)
  884. {
  885. rx_desc->buf_cookie = cookie;
  886. rx_desc->buf_phys_addr = phys_addr;
  887. }
  888. /* Decrement sent descriptors counter */
  889. static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
  890. struct mvneta_tx_queue *txq,
  891. int sent_desc)
  892. {
  893. u32 val;
  894. /* Only 255 TX descriptors can be updated at once */
  895. while (sent_desc > 0xff) {
  896. val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
  897. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  898. sent_desc = sent_desc - 0xff;
  899. }
  900. val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
  901. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  902. }
  903. /* Get number of TX descriptors already sent by HW */
  904. static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
  905. struct mvneta_tx_queue *txq)
  906. {
  907. u32 val;
  908. int sent_desc;
  909. val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
  910. sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
  911. MVNETA_TXQ_SENT_DESC_SHIFT;
  912. return sent_desc;
  913. }
  914. /* Get number of sent descriptors and decrement counter.
  915. * The number of sent descriptors is returned.
  916. */
  917. static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
  918. struct mvneta_tx_queue *txq)
  919. {
  920. int sent_desc;
  921. /* Get number of sent descriptors */
  922. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  923. /* Decrement sent descriptors counter */
  924. if (sent_desc)
  925. mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
  926. return sent_desc;
  927. }
  928. /* Set TXQ descriptors fields relevant for CSUM calculation */
  929. static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
  930. int ip_hdr_len, int l4_proto)
  931. {
  932. u32 command;
  933. /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
  934. * G_L4_chk, L4_type; required only for checksum
  935. * calculation
  936. */
  937. command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
  938. command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
  939. if (l3_proto == swab16(ETH_P_IP))
  940. command |= MVNETA_TXD_IP_CSUM;
  941. else
  942. command |= MVNETA_TX_L3_IP6;
  943. if (l4_proto == IPPROTO_TCP)
  944. command |= MVNETA_TX_L4_CSUM_FULL;
  945. else if (l4_proto == IPPROTO_UDP)
  946. command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
  947. else
  948. command |= MVNETA_TX_L4_CSUM_NOT;
  949. return command;
  950. }
  951. /* Display more error info */
  952. static void mvneta_rx_error(struct mvneta_port *pp,
  953. struct mvneta_rx_desc *rx_desc)
  954. {
  955. u32 status = rx_desc->status;
  956. if (!mvneta_rxq_desc_is_first_last(rx_desc)) {
  957. netdev_err(pp->dev,
  958. "bad rx status %08x (buffer oversize), size=%d\n",
  959. rx_desc->status, rx_desc->data_size);
  960. return;
  961. }
  962. switch (status & MVNETA_RXD_ERR_CODE_MASK) {
  963. case MVNETA_RXD_ERR_CRC:
  964. netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
  965. status, rx_desc->data_size);
  966. break;
  967. case MVNETA_RXD_ERR_OVERRUN:
  968. netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
  969. status, rx_desc->data_size);
  970. break;
  971. case MVNETA_RXD_ERR_LEN:
  972. netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
  973. status, rx_desc->data_size);
  974. break;
  975. case MVNETA_RXD_ERR_RESOURCE:
  976. netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
  977. status, rx_desc->data_size);
  978. break;
  979. }
  980. }
  981. /* Handle RX checksum offload */
  982. static void mvneta_rx_csum(struct mvneta_port *pp,
  983. struct mvneta_rx_desc *rx_desc,
  984. struct sk_buff *skb)
  985. {
  986. if ((rx_desc->status & MVNETA_RXD_L3_IP4) &&
  987. (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) {
  988. skb->csum = 0;
  989. skb->ip_summed = CHECKSUM_UNNECESSARY;
  990. return;
  991. }
  992. skb->ip_summed = CHECKSUM_NONE;
  993. }
  994. /* Return tx queue pointer (find last set bit) according to causeTxDone reg */
  995. static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
  996. u32 cause)
  997. {
  998. int queue = fls(cause) - 1;
  999. return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue];
  1000. }
  1001. /* Free tx queue skbuffs */
  1002. static void mvneta_txq_bufs_free(struct mvneta_port *pp,
  1003. struct mvneta_tx_queue *txq, int num)
  1004. {
  1005. int i;
  1006. for (i = 0; i < num; i++) {
  1007. struct mvneta_tx_desc *tx_desc = txq->descs +
  1008. txq->txq_get_index;
  1009. struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
  1010. mvneta_txq_inc_get(txq);
  1011. if (!skb)
  1012. continue;
  1013. dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
  1014. tx_desc->data_size, DMA_TO_DEVICE);
  1015. dev_kfree_skb_any(skb);
  1016. }
  1017. }
  1018. /* Handle end of transmission */
  1019. static int mvneta_txq_done(struct mvneta_port *pp,
  1020. struct mvneta_tx_queue *txq)
  1021. {
  1022. struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
  1023. int tx_done;
  1024. tx_done = mvneta_txq_sent_desc_proc(pp, txq);
  1025. if (tx_done == 0)
  1026. return tx_done;
  1027. mvneta_txq_bufs_free(pp, txq, tx_done);
  1028. txq->count -= tx_done;
  1029. if (netif_tx_queue_stopped(nq)) {
  1030. if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
  1031. netif_tx_wake_queue(nq);
  1032. }
  1033. return tx_done;
  1034. }
  1035. /* Refill processing */
  1036. static int mvneta_rx_refill(struct mvneta_port *pp,
  1037. struct mvneta_rx_desc *rx_desc)
  1038. {
  1039. dma_addr_t phys_addr;
  1040. struct sk_buff *skb;
  1041. skb = netdev_alloc_skb(pp->dev, pp->pkt_size);
  1042. if (!skb)
  1043. return -ENOMEM;
  1044. phys_addr = dma_map_single(pp->dev->dev.parent, skb->head,
  1045. MVNETA_RX_BUF_SIZE(pp->pkt_size),
  1046. DMA_FROM_DEVICE);
  1047. if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
  1048. dev_kfree_skb(skb);
  1049. return -ENOMEM;
  1050. }
  1051. mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
  1052. return 0;
  1053. }
  1054. /* Handle tx checksum */
  1055. static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
  1056. {
  1057. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1058. int ip_hdr_len = 0;
  1059. u8 l4_proto;
  1060. if (skb->protocol == htons(ETH_P_IP)) {
  1061. struct iphdr *ip4h = ip_hdr(skb);
  1062. /* Calculate IPv4 checksum and L4 checksum */
  1063. ip_hdr_len = ip4h->ihl;
  1064. l4_proto = ip4h->protocol;
  1065. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1066. struct ipv6hdr *ip6h = ipv6_hdr(skb);
  1067. /* Read l4_protocol from one of IPv6 extra headers */
  1068. if (skb_network_header_len(skb) > 0)
  1069. ip_hdr_len = (skb_network_header_len(skb) >> 2);
  1070. l4_proto = ip6h->nexthdr;
  1071. } else
  1072. return MVNETA_TX_L4_CSUM_NOT;
  1073. return mvneta_txq_desc_csum(skb_network_offset(skb),
  1074. skb->protocol, ip_hdr_len, l4_proto);
  1075. }
  1076. return MVNETA_TX_L4_CSUM_NOT;
  1077. }
  1078. /* Returns rx queue pointer (find last set bit) according to causeRxTx
  1079. * value
  1080. */
  1081. static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
  1082. u32 cause)
  1083. {
  1084. int queue = fls(cause >> 8) - 1;
  1085. return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
  1086. }
  1087. /* Drop packets received by the RXQ and free buffers */
  1088. static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
  1089. struct mvneta_rx_queue *rxq)
  1090. {
  1091. int rx_done, i;
  1092. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1093. for (i = 0; i < rxq->size; i++) {
  1094. struct mvneta_rx_desc *rx_desc = rxq->descs + i;
  1095. struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie;
  1096. dev_kfree_skb_any(skb);
  1097. dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
  1098. rx_desc->data_size, DMA_FROM_DEVICE);
  1099. }
  1100. if (rx_done)
  1101. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
  1102. }
  1103. /* Main rx processing */
  1104. static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
  1105. struct mvneta_rx_queue *rxq)
  1106. {
  1107. struct net_device *dev = pp->dev;
  1108. int rx_done, rx_filled;
  1109. /* Get number of received packets */
  1110. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1111. if (rx_todo > rx_done)
  1112. rx_todo = rx_done;
  1113. rx_done = 0;
  1114. rx_filled = 0;
  1115. /* Fairness NAPI loop */
  1116. while (rx_done < rx_todo) {
  1117. struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
  1118. struct sk_buff *skb;
  1119. u32 rx_status;
  1120. int rx_bytes, err;
  1121. prefetch(rx_desc);
  1122. rx_done++;
  1123. rx_filled++;
  1124. rx_status = rx_desc->status;
  1125. skb = (struct sk_buff *)rx_desc->buf_cookie;
  1126. if (!mvneta_rxq_desc_is_first_last(rx_desc) ||
  1127. (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
  1128. dev->stats.rx_errors++;
  1129. mvneta_rx_error(pp, rx_desc);
  1130. mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr,
  1131. (u32)skb);
  1132. continue;
  1133. }
  1134. dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
  1135. rx_desc->data_size, DMA_FROM_DEVICE);
  1136. rx_bytes = rx_desc->data_size -
  1137. (ETH_FCS_LEN + MVNETA_MH_SIZE);
  1138. u64_stats_update_begin(&pp->rx_stats.syncp);
  1139. pp->rx_stats.packets++;
  1140. pp->rx_stats.bytes += rx_bytes;
  1141. u64_stats_update_end(&pp->rx_stats.syncp);
  1142. /* Linux processing */
  1143. skb_reserve(skb, MVNETA_MH_SIZE);
  1144. skb_put(skb, rx_bytes);
  1145. skb->protocol = eth_type_trans(skb, dev);
  1146. mvneta_rx_csum(pp, rx_desc, skb);
  1147. napi_gro_receive(&pp->napi, skb);
  1148. /* Refill processing */
  1149. err = mvneta_rx_refill(pp, rx_desc);
  1150. if (err) {
  1151. netdev_err(pp->dev, "Linux processing - Can't refill\n");
  1152. rxq->missed++;
  1153. rx_filled--;
  1154. }
  1155. }
  1156. /* Update rxq management counters */
  1157. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
  1158. return rx_done;
  1159. }
  1160. /* Handle tx fragmentation processing */
  1161. static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
  1162. struct mvneta_tx_queue *txq)
  1163. {
  1164. struct mvneta_tx_desc *tx_desc;
  1165. int i;
  1166. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1167. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1168. void *addr = page_address(frag->page.p) + frag->page_offset;
  1169. tx_desc = mvneta_txq_next_desc_get(txq);
  1170. tx_desc->data_size = frag->size;
  1171. tx_desc->buf_phys_addr =
  1172. dma_map_single(pp->dev->dev.parent, addr,
  1173. tx_desc->data_size, DMA_TO_DEVICE);
  1174. if (dma_mapping_error(pp->dev->dev.parent,
  1175. tx_desc->buf_phys_addr)) {
  1176. mvneta_txq_desc_put(txq);
  1177. goto error;
  1178. }
  1179. if (i == (skb_shinfo(skb)->nr_frags - 1)) {
  1180. /* Last descriptor */
  1181. tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
  1182. txq->tx_skb[txq->txq_put_index] = skb;
  1183. mvneta_txq_inc_put(txq);
  1184. } else {
  1185. /* Descriptor in the middle: Not First, Not Last */
  1186. tx_desc->command = 0;
  1187. txq->tx_skb[txq->txq_put_index] = NULL;
  1188. mvneta_txq_inc_put(txq);
  1189. }
  1190. }
  1191. return 0;
  1192. error:
  1193. /* Release all descriptors that were used to map fragments of
  1194. * this packet, as well as the corresponding DMA mappings
  1195. */
  1196. for (i = i - 1; i >= 0; i--) {
  1197. tx_desc = txq->descs + i;
  1198. dma_unmap_single(pp->dev->dev.parent,
  1199. tx_desc->buf_phys_addr,
  1200. tx_desc->data_size,
  1201. DMA_TO_DEVICE);
  1202. mvneta_txq_desc_put(txq);
  1203. }
  1204. return -ENOMEM;
  1205. }
  1206. /* Main tx processing */
  1207. static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
  1208. {
  1209. struct mvneta_port *pp = netdev_priv(dev);
  1210. struct mvneta_tx_queue *txq = &pp->txqs[txq_def];
  1211. struct mvneta_tx_desc *tx_desc;
  1212. struct netdev_queue *nq;
  1213. int frags = 0;
  1214. u32 tx_cmd;
  1215. if (!netif_running(dev))
  1216. goto out;
  1217. frags = skb_shinfo(skb)->nr_frags + 1;
  1218. nq = netdev_get_tx_queue(dev, txq_def);
  1219. /* Get a descriptor for the first part of the packet */
  1220. tx_desc = mvneta_txq_next_desc_get(txq);
  1221. tx_cmd = mvneta_skb_tx_csum(pp, skb);
  1222. tx_desc->data_size = skb_headlen(skb);
  1223. tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
  1224. tx_desc->data_size,
  1225. DMA_TO_DEVICE);
  1226. if (unlikely(dma_mapping_error(dev->dev.parent,
  1227. tx_desc->buf_phys_addr))) {
  1228. mvneta_txq_desc_put(txq);
  1229. frags = 0;
  1230. goto out;
  1231. }
  1232. if (frags == 1) {
  1233. /* First and Last descriptor */
  1234. tx_cmd |= MVNETA_TXD_FLZ_DESC;
  1235. tx_desc->command = tx_cmd;
  1236. txq->tx_skb[txq->txq_put_index] = skb;
  1237. mvneta_txq_inc_put(txq);
  1238. } else {
  1239. /* First but not Last */
  1240. tx_cmd |= MVNETA_TXD_F_DESC;
  1241. txq->tx_skb[txq->txq_put_index] = NULL;
  1242. mvneta_txq_inc_put(txq);
  1243. tx_desc->command = tx_cmd;
  1244. /* Continue with other skb fragments */
  1245. if (mvneta_tx_frag_process(pp, skb, txq)) {
  1246. dma_unmap_single(dev->dev.parent,
  1247. tx_desc->buf_phys_addr,
  1248. tx_desc->data_size,
  1249. DMA_TO_DEVICE);
  1250. mvneta_txq_desc_put(txq);
  1251. frags = 0;
  1252. goto out;
  1253. }
  1254. }
  1255. txq->count += frags;
  1256. mvneta_txq_pend_desc_add(pp, txq, frags);
  1257. if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
  1258. netif_tx_stop_queue(nq);
  1259. out:
  1260. if (frags > 0) {
  1261. u64_stats_update_begin(&pp->tx_stats.syncp);
  1262. pp->tx_stats.packets++;
  1263. pp->tx_stats.bytes += skb->len;
  1264. u64_stats_update_end(&pp->tx_stats.syncp);
  1265. } else {
  1266. dev->stats.tx_dropped++;
  1267. dev_kfree_skb_any(skb);
  1268. }
  1269. if (txq->count >= MVNETA_TXDONE_COAL_PKTS)
  1270. mvneta_txq_done(pp, txq);
  1271. /* If after calling mvneta_txq_done, count equals
  1272. * frags, we need to set the timer
  1273. */
  1274. if (txq->count == frags && frags > 0)
  1275. mvneta_add_tx_done_timer(pp);
  1276. return NETDEV_TX_OK;
  1277. }
  1278. /* Free tx resources, when resetting a port */
  1279. static void mvneta_txq_done_force(struct mvneta_port *pp,
  1280. struct mvneta_tx_queue *txq)
  1281. {
  1282. int tx_done = txq->count;
  1283. mvneta_txq_bufs_free(pp, txq, tx_done);
  1284. /* reset txq */
  1285. txq->count = 0;
  1286. txq->txq_put_index = 0;
  1287. txq->txq_get_index = 0;
  1288. }
  1289. /* handle tx done - called from tx done timer callback */
  1290. static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done,
  1291. int *tx_todo)
  1292. {
  1293. struct mvneta_tx_queue *txq;
  1294. u32 tx_done = 0;
  1295. struct netdev_queue *nq;
  1296. *tx_todo = 0;
  1297. while (cause_tx_done != 0) {
  1298. txq = mvneta_tx_done_policy(pp, cause_tx_done);
  1299. if (!txq)
  1300. break;
  1301. nq = netdev_get_tx_queue(pp->dev, txq->id);
  1302. __netif_tx_lock(nq, smp_processor_id());
  1303. if (txq->count) {
  1304. tx_done += mvneta_txq_done(pp, txq);
  1305. *tx_todo += txq->count;
  1306. }
  1307. __netif_tx_unlock(nq);
  1308. cause_tx_done &= ~((1 << txq->id));
  1309. }
  1310. return tx_done;
  1311. }
  1312. /* Compute crc8 of the specified address, using a unique algorithm ,
  1313. * according to hw spec, different than generic crc8 algorithm
  1314. */
  1315. static int mvneta_addr_crc(unsigned char *addr)
  1316. {
  1317. int crc = 0;
  1318. int i;
  1319. for (i = 0; i < ETH_ALEN; i++) {
  1320. int j;
  1321. crc = (crc ^ addr[i]) << 8;
  1322. for (j = 7; j >= 0; j--) {
  1323. if (crc & (0x100 << j))
  1324. crc ^= 0x107 << j;
  1325. }
  1326. }
  1327. return crc;
  1328. }
  1329. /* This method controls the net device special MAC multicast support.
  1330. * The Special Multicast Table for MAC addresses supports MAC of the form
  1331. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1332. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1333. * Table entries in the DA-Filter table. This method set the Special
  1334. * Multicast Table appropriate entry.
  1335. */
  1336. static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
  1337. unsigned char last_byte,
  1338. int queue)
  1339. {
  1340. unsigned int smc_table_reg;
  1341. unsigned int tbl_offset;
  1342. unsigned int reg_offset;
  1343. /* Register offset from SMC table base */
  1344. tbl_offset = (last_byte / 4);
  1345. /* Entry offset within the above reg */
  1346. reg_offset = last_byte % 4;
  1347. smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
  1348. + tbl_offset * 4));
  1349. if (queue == -1)
  1350. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1351. else {
  1352. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1353. smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1354. }
  1355. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
  1356. smc_table_reg);
  1357. }
  1358. /* This method controls the network device Other MAC multicast support.
  1359. * The Other Multicast Table is used for multicast of another type.
  1360. * A CRC-8 is used as an index to the Other Multicast Table entries
  1361. * in the DA-Filter table.
  1362. * The method gets the CRC-8 value from the calling routine and
  1363. * sets the Other Multicast Table appropriate entry according to the
  1364. * specified CRC-8 .
  1365. */
  1366. static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
  1367. unsigned char crc8,
  1368. int queue)
  1369. {
  1370. unsigned int omc_table_reg;
  1371. unsigned int tbl_offset;
  1372. unsigned int reg_offset;
  1373. tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
  1374. reg_offset = crc8 % 4; /* Entry offset within the above reg */
  1375. omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
  1376. if (queue == -1) {
  1377. /* Clear accepts frame bit at specified Other DA table entry */
  1378. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1379. } else {
  1380. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1381. omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1382. }
  1383. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
  1384. }
  1385. /* The network device supports multicast using two tables:
  1386. * 1) Special Multicast Table for MAC addresses of the form
  1387. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1388. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1389. * Table entries in the DA-Filter table.
  1390. * 2) Other Multicast Table for multicast of another type. A CRC-8 value
  1391. * is used as an index to the Other Multicast Table entries in the
  1392. * DA-Filter table.
  1393. */
  1394. static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
  1395. int queue)
  1396. {
  1397. unsigned char crc_result = 0;
  1398. if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
  1399. mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
  1400. return 0;
  1401. }
  1402. crc_result = mvneta_addr_crc(p_addr);
  1403. if (queue == -1) {
  1404. if (pp->mcast_count[crc_result] == 0) {
  1405. netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
  1406. crc_result);
  1407. return -EINVAL;
  1408. }
  1409. pp->mcast_count[crc_result]--;
  1410. if (pp->mcast_count[crc_result] != 0) {
  1411. netdev_info(pp->dev,
  1412. "After delete there are %d valid Mcast for crc8=0x%02x\n",
  1413. pp->mcast_count[crc_result], crc_result);
  1414. return -EINVAL;
  1415. }
  1416. } else
  1417. pp->mcast_count[crc_result]++;
  1418. mvneta_set_other_mcast_addr(pp, crc_result, queue);
  1419. return 0;
  1420. }
  1421. /* Configure Fitering mode of Ethernet port */
  1422. static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
  1423. int is_promisc)
  1424. {
  1425. u32 port_cfg_reg, val;
  1426. port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
  1427. val = mvreg_read(pp, MVNETA_TYPE_PRIO);
  1428. /* Set / Clear UPM bit in port configuration register */
  1429. if (is_promisc) {
  1430. /* Accept all Unicast addresses */
  1431. port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
  1432. val |= MVNETA_FORCE_UNI;
  1433. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
  1434. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
  1435. } else {
  1436. /* Reject all Unicast addresses */
  1437. port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
  1438. val &= ~MVNETA_FORCE_UNI;
  1439. }
  1440. mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
  1441. mvreg_write(pp, MVNETA_TYPE_PRIO, val);
  1442. }
  1443. /* register unicast and multicast addresses */
  1444. static void mvneta_set_rx_mode(struct net_device *dev)
  1445. {
  1446. struct mvneta_port *pp = netdev_priv(dev);
  1447. struct netdev_hw_addr *ha;
  1448. if (dev->flags & IFF_PROMISC) {
  1449. /* Accept all: Multicast + Unicast */
  1450. mvneta_rx_unicast_promisc_set(pp, 1);
  1451. mvneta_set_ucast_table(pp, rxq_def);
  1452. mvneta_set_special_mcast_table(pp, rxq_def);
  1453. mvneta_set_other_mcast_table(pp, rxq_def);
  1454. } else {
  1455. /* Accept single Unicast */
  1456. mvneta_rx_unicast_promisc_set(pp, 0);
  1457. mvneta_set_ucast_table(pp, -1);
  1458. mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
  1459. if (dev->flags & IFF_ALLMULTI) {
  1460. /* Accept all multicast */
  1461. mvneta_set_special_mcast_table(pp, rxq_def);
  1462. mvneta_set_other_mcast_table(pp, rxq_def);
  1463. } else {
  1464. /* Accept only initialized multicast */
  1465. mvneta_set_special_mcast_table(pp, -1);
  1466. mvneta_set_other_mcast_table(pp, -1);
  1467. if (!netdev_mc_empty(dev)) {
  1468. netdev_for_each_mc_addr(ha, dev) {
  1469. mvneta_mcast_addr_set(pp, ha->addr,
  1470. rxq_def);
  1471. }
  1472. }
  1473. }
  1474. }
  1475. }
  1476. /* Interrupt handling - the callback for request_irq() */
  1477. static irqreturn_t mvneta_isr(int irq, void *dev_id)
  1478. {
  1479. struct mvneta_port *pp = (struct mvneta_port *)dev_id;
  1480. /* Mask all interrupts */
  1481. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1482. napi_schedule(&pp->napi);
  1483. return IRQ_HANDLED;
  1484. }
  1485. /* NAPI handler
  1486. * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
  1487. * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
  1488. * Bits 8 -15 of the cause Rx Tx register indicate that are received
  1489. * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
  1490. * Each CPU has its own causeRxTx register
  1491. */
  1492. static int mvneta_poll(struct napi_struct *napi, int budget)
  1493. {
  1494. int rx_done = 0;
  1495. u32 cause_rx_tx;
  1496. unsigned long flags;
  1497. struct mvneta_port *pp = netdev_priv(napi->dev);
  1498. if (!netif_running(pp->dev)) {
  1499. napi_complete(napi);
  1500. return rx_done;
  1501. }
  1502. /* Read cause register */
  1503. cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
  1504. MVNETA_RX_INTR_MASK(rxq_number);
  1505. /* For the case where the last mvneta_poll did not process all
  1506. * RX packets
  1507. */
  1508. cause_rx_tx |= pp->cause_rx_tx;
  1509. if (rxq_number > 1) {
  1510. while ((cause_rx_tx != 0) && (budget > 0)) {
  1511. int count;
  1512. struct mvneta_rx_queue *rxq;
  1513. /* get rx queue number from cause_rx_tx */
  1514. rxq = mvneta_rx_policy(pp, cause_rx_tx);
  1515. if (!rxq)
  1516. break;
  1517. /* process the packet in that rx queue */
  1518. count = mvneta_rx(pp, budget, rxq);
  1519. rx_done += count;
  1520. budget -= count;
  1521. if (budget > 0) {
  1522. /* set off the rx bit of the
  1523. * corresponding bit in the cause rx
  1524. * tx register, so that next iteration
  1525. * will find the next rx queue where
  1526. * packets are received on
  1527. */
  1528. cause_rx_tx &= ~((1 << rxq->id) << 8);
  1529. }
  1530. }
  1531. } else {
  1532. rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
  1533. budget -= rx_done;
  1534. }
  1535. if (budget > 0) {
  1536. cause_rx_tx = 0;
  1537. napi_complete(napi);
  1538. local_irq_save(flags);
  1539. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1540. MVNETA_RX_INTR_MASK(rxq_number));
  1541. local_irq_restore(flags);
  1542. }
  1543. pp->cause_rx_tx = cause_rx_tx;
  1544. return rx_done;
  1545. }
  1546. /* tx done timer callback */
  1547. static void mvneta_tx_done_timer_callback(unsigned long data)
  1548. {
  1549. struct net_device *dev = (struct net_device *)data;
  1550. struct mvneta_port *pp = netdev_priv(dev);
  1551. int tx_done = 0, tx_todo = 0;
  1552. if (!netif_running(dev))
  1553. return ;
  1554. clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
  1555. tx_done = mvneta_tx_done_gbe(pp,
  1556. (((1 << txq_number) - 1) &
  1557. MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK),
  1558. &tx_todo);
  1559. if (tx_todo > 0)
  1560. mvneta_add_tx_done_timer(pp);
  1561. }
  1562. /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
  1563. static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
  1564. int num)
  1565. {
  1566. struct net_device *dev = pp->dev;
  1567. int i;
  1568. for (i = 0; i < num; i++) {
  1569. struct sk_buff *skb;
  1570. struct mvneta_rx_desc *rx_desc;
  1571. unsigned long phys_addr;
  1572. skb = dev_alloc_skb(pp->pkt_size);
  1573. if (!skb) {
  1574. netdev_err(dev, "%s:rxq %d, %d of %d buffs filled\n",
  1575. __func__, rxq->id, i, num);
  1576. break;
  1577. }
  1578. rx_desc = rxq->descs + i;
  1579. memset(rx_desc, 0, sizeof(struct mvneta_rx_desc));
  1580. phys_addr = dma_map_single(dev->dev.parent, skb->head,
  1581. MVNETA_RX_BUF_SIZE(pp->pkt_size),
  1582. DMA_FROM_DEVICE);
  1583. if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) {
  1584. dev_kfree_skb(skb);
  1585. break;
  1586. }
  1587. mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
  1588. }
  1589. /* Add this number of RX descriptors as non occupied (ready to
  1590. * get packets)
  1591. */
  1592. mvneta_rxq_non_occup_desc_add(pp, rxq, i);
  1593. return i;
  1594. }
  1595. /* Free all packets pending transmit from all TXQs and reset TX port */
  1596. static void mvneta_tx_reset(struct mvneta_port *pp)
  1597. {
  1598. int queue;
  1599. /* free the skb's in the hal tx ring */
  1600. for (queue = 0; queue < txq_number; queue++)
  1601. mvneta_txq_done_force(pp, &pp->txqs[queue]);
  1602. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  1603. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  1604. }
  1605. static void mvneta_rx_reset(struct mvneta_port *pp)
  1606. {
  1607. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  1608. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  1609. }
  1610. /* Rx/Tx queue initialization/cleanup methods */
  1611. /* Create a specified RX queue */
  1612. static int mvneta_rxq_init(struct mvneta_port *pp,
  1613. struct mvneta_rx_queue *rxq)
  1614. {
  1615. rxq->size = pp->rx_ring_size;
  1616. /* Allocate memory for RX descriptors */
  1617. rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1618. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1619. &rxq->descs_phys, GFP_KERNEL);
  1620. if (rxq->descs == NULL) {
  1621. netdev_err(pp->dev,
  1622. "rxq=%d: Can't allocate %d bytes for %d RX descr\n",
  1623. rxq->id, rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1624. rxq->size);
  1625. return -ENOMEM;
  1626. }
  1627. BUG_ON(rxq->descs !=
  1628. PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1629. rxq->last_desc = rxq->size - 1;
  1630. /* Set Rx descriptors queue starting address */
  1631. mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
  1632. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
  1633. /* Set Offset */
  1634. mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
  1635. /* Set coalescing pkts and time */
  1636. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  1637. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  1638. /* Fill RXQ with buffers from RX pool */
  1639. mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
  1640. mvneta_rxq_bm_disable(pp, rxq);
  1641. mvneta_rxq_fill(pp, rxq, rxq->size);
  1642. return 0;
  1643. }
  1644. /* Cleanup Rx queue */
  1645. static void mvneta_rxq_deinit(struct mvneta_port *pp,
  1646. struct mvneta_rx_queue *rxq)
  1647. {
  1648. mvneta_rxq_drop_pkts(pp, rxq);
  1649. if (rxq->descs)
  1650. dma_free_coherent(pp->dev->dev.parent,
  1651. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1652. rxq->descs,
  1653. rxq->descs_phys);
  1654. rxq->descs = NULL;
  1655. rxq->last_desc = 0;
  1656. rxq->next_desc_to_proc = 0;
  1657. rxq->descs_phys = 0;
  1658. }
  1659. /* Create and initialize a tx queue */
  1660. static int mvneta_txq_init(struct mvneta_port *pp,
  1661. struct mvneta_tx_queue *txq)
  1662. {
  1663. txq->size = pp->tx_ring_size;
  1664. /* Allocate memory for TX descriptors */
  1665. txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1666. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1667. &txq->descs_phys, GFP_KERNEL);
  1668. if (txq->descs == NULL) {
  1669. netdev_err(pp->dev,
  1670. "txQ=%d: Can't allocate %d bytes for %d TX descr\n",
  1671. txq->id, txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1672. txq->size);
  1673. return -ENOMEM;
  1674. }
  1675. /* Make sure descriptor address is cache line size aligned */
  1676. BUG_ON(txq->descs !=
  1677. PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1678. txq->last_desc = txq->size - 1;
  1679. /* Set maximum bandwidth for enabled TXQs */
  1680. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
  1681. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
  1682. /* Set Tx descriptors queue starting address */
  1683. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
  1684. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
  1685. txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
  1686. if (txq->tx_skb == NULL) {
  1687. dma_free_coherent(pp->dev->dev.parent,
  1688. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1689. txq->descs, txq->descs_phys);
  1690. return -ENOMEM;
  1691. }
  1692. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  1693. return 0;
  1694. }
  1695. /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
  1696. static void mvneta_txq_deinit(struct mvneta_port *pp,
  1697. struct mvneta_tx_queue *txq)
  1698. {
  1699. kfree(txq->tx_skb);
  1700. if (txq->descs)
  1701. dma_free_coherent(pp->dev->dev.parent,
  1702. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1703. txq->descs, txq->descs_phys);
  1704. txq->descs = NULL;
  1705. txq->last_desc = 0;
  1706. txq->next_desc_to_proc = 0;
  1707. txq->descs_phys = 0;
  1708. /* Set minimum bandwidth for disabled TXQs */
  1709. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
  1710. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
  1711. /* Set Tx descriptors queue starting address and size */
  1712. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
  1713. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
  1714. }
  1715. /* Cleanup all Tx queues */
  1716. static void mvneta_cleanup_txqs(struct mvneta_port *pp)
  1717. {
  1718. int queue;
  1719. for (queue = 0; queue < txq_number; queue++)
  1720. mvneta_txq_deinit(pp, &pp->txqs[queue]);
  1721. }
  1722. /* Cleanup all Rx queues */
  1723. static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
  1724. {
  1725. int queue;
  1726. for (queue = 0; queue < rxq_number; queue++)
  1727. mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
  1728. }
  1729. /* Init all Rx queues */
  1730. static int mvneta_setup_rxqs(struct mvneta_port *pp)
  1731. {
  1732. int queue;
  1733. for (queue = 0; queue < rxq_number; queue++) {
  1734. int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
  1735. if (err) {
  1736. netdev_err(pp->dev, "%s: can't create rxq=%d\n",
  1737. __func__, queue);
  1738. mvneta_cleanup_rxqs(pp);
  1739. return err;
  1740. }
  1741. }
  1742. return 0;
  1743. }
  1744. /* Init all tx queues */
  1745. static int mvneta_setup_txqs(struct mvneta_port *pp)
  1746. {
  1747. int queue;
  1748. for (queue = 0; queue < txq_number; queue++) {
  1749. int err = mvneta_txq_init(pp, &pp->txqs[queue]);
  1750. if (err) {
  1751. netdev_err(pp->dev, "%s: can't create txq=%d\n",
  1752. __func__, queue);
  1753. mvneta_cleanup_txqs(pp);
  1754. return err;
  1755. }
  1756. }
  1757. return 0;
  1758. }
  1759. static void mvneta_start_dev(struct mvneta_port *pp)
  1760. {
  1761. mvneta_max_rx_size_set(pp, pp->pkt_size);
  1762. mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
  1763. /* start the Rx/Tx activity */
  1764. mvneta_port_enable(pp);
  1765. /* Enable polling on the port */
  1766. napi_enable(&pp->napi);
  1767. /* Unmask interrupts */
  1768. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1769. MVNETA_RX_INTR_MASK(rxq_number));
  1770. phy_start(pp->phy_dev);
  1771. netif_tx_start_all_queues(pp->dev);
  1772. }
  1773. static void mvneta_stop_dev(struct mvneta_port *pp)
  1774. {
  1775. phy_stop(pp->phy_dev);
  1776. napi_disable(&pp->napi);
  1777. netif_carrier_off(pp->dev);
  1778. mvneta_port_down(pp);
  1779. netif_tx_stop_all_queues(pp->dev);
  1780. /* Stop the port activity */
  1781. mvneta_port_disable(pp);
  1782. /* Clear all ethernet port interrupts */
  1783. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  1784. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  1785. /* Mask all ethernet port interrupts */
  1786. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1787. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  1788. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  1789. mvneta_tx_reset(pp);
  1790. mvneta_rx_reset(pp);
  1791. }
  1792. /* tx timeout callback - display a message and stop/start the network device */
  1793. static void mvneta_tx_timeout(struct net_device *dev)
  1794. {
  1795. struct mvneta_port *pp = netdev_priv(dev);
  1796. netdev_info(dev, "tx timeout\n");
  1797. mvneta_stop_dev(pp);
  1798. mvneta_start_dev(pp);
  1799. }
  1800. /* Return positive if MTU is valid */
  1801. static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
  1802. {
  1803. if (mtu < 68) {
  1804. netdev_err(dev, "cannot change mtu to less than 68\n");
  1805. return -EINVAL;
  1806. }
  1807. /* 9676 == 9700 - 20 and rounding to 8 */
  1808. if (mtu > 9676) {
  1809. netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
  1810. mtu = 9676;
  1811. }
  1812. if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
  1813. netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
  1814. mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
  1815. mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
  1816. }
  1817. return mtu;
  1818. }
  1819. /* Change the device mtu */
  1820. static int mvneta_change_mtu(struct net_device *dev, int mtu)
  1821. {
  1822. struct mvneta_port *pp = netdev_priv(dev);
  1823. int ret;
  1824. mtu = mvneta_check_mtu_valid(dev, mtu);
  1825. if (mtu < 0)
  1826. return -EINVAL;
  1827. dev->mtu = mtu;
  1828. if (!netif_running(dev))
  1829. return 0;
  1830. /* The interface is running, so we have to force a
  1831. * reallocation of the RXQs
  1832. */
  1833. mvneta_stop_dev(pp);
  1834. mvneta_cleanup_txqs(pp);
  1835. mvneta_cleanup_rxqs(pp);
  1836. pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
  1837. ret = mvneta_setup_rxqs(pp);
  1838. if (ret) {
  1839. netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
  1840. return ret;
  1841. }
  1842. mvneta_setup_txqs(pp);
  1843. mvneta_start_dev(pp);
  1844. mvneta_port_up(pp);
  1845. return 0;
  1846. }
  1847. /* Handle setting mac address */
  1848. static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
  1849. {
  1850. struct mvneta_port *pp = netdev_priv(dev);
  1851. u8 *mac = addr + 2;
  1852. int i;
  1853. if (netif_running(dev))
  1854. return -EBUSY;
  1855. /* Remove previous address table entry */
  1856. mvneta_mac_addr_set(pp, dev->dev_addr, -1);
  1857. /* Set new addr in hw */
  1858. mvneta_mac_addr_set(pp, mac, rxq_def);
  1859. /* Set addr in the device */
  1860. for (i = 0; i < ETH_ALEN; i++)
  1861. dev->dev_addr[i] = mac[i];
  1862. return 0;
  1863. }
  1864. static void mvneta_adjust_link(struct net_device *ndev)
  1865. {
  1866. struct mvneta_port *pp = netdev_priv(ndev);
  1867. struct phy_device *phydev = pp->phy_dev;
  1868. int status_change = 0;
  1869. if (phydev->link) {
  1870. if ((pp->speed != phydev->speed) ||
  1871. (pp->duplex != phydev->duplex)) {
  1872. u32 val;
  1873. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  1874. val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
  1875. MVNETA_GMAC_CONFIG_GMII_SPEED |
  1876. MVNETA_GMAC_CONFIG_FULL_DUPLEX);
  1877. if (phydev->duplex)
  1878. val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
  1879. if (phydev->speed == SPEED_1000)
  1880. val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
  1881. else
  1882. val |= MVNETA_GMAC_CONFIG_MII_SPEED;
  1883. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  1884. pp->duplex = phydev->duplex;
  1885. pp->speed = phydev->speed;
  1886. }
  1887. }
  1888. if (phydev->link != pp->link) {
  1889. if (!phydev->link) {
  1890. pp->duplex = -1;
  1891. pp->speed = 0;
  1892. }
  1893. pp->link = phydev->link;
  1894. status_change = 1;
  1895. }
  1896. if (status_change) {
  1897. if (phydev->link) {
  1898. u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  1899. val |= (MVNETA_GMAC_FORCE_LINK_PASS |
  1900. MVNETA_GMAC_FORCE_LINK_DOWN);
  1901. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  1902. mvneta_port_up(pp);
  1903. netdev_info(pp->dev, "link up\n");
  1904. } else {
  1905. mvneta_port_down(pp);
  1906. netdev_info(pp->dev, "link down\n");
  1907. }
  1908. }
  1909. }
  1910. static int mvneta_mdio_probe(struct mvneta_port *pp)
  1911. {
  1912. struct phy_device *phy_dev;
  1913. phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
  1914. pp->phy_interface);
  1915. if (!phy_dev) {
  1916. netdev_err(pp->dev, "could not find the PHY\n");
  1917. return -ENODEV;
  1918. }
  1919. phy_dev->supported &= PHY_GBIT_FEATURES;
  1920. phy_dev->advertising = phy_dev->supported;
  1921. pp->phy_dev = phy_dev;
  1922. pp->link = 0;
  1923. pp->duplex = 0;
  1924. pp->speed = 0;
  1925. return 0;
  1926. }
  1927. static void mvneta_mdio_remove(struct mvneta_port *pp)
  1928. {
  1929. phy_disconnect(pp->phy_dev);
  1930. pp->phy_dev = NULL;
  1931. }
  1932. static int mvneta_open(struct net_device *dev)
  1933. {
  1934. struct mvneta_port *pp = netdev_priv(dev);
  1935. int ret;
  1936. mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
  1937. pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
  1938. ret = mvneta_setup_rxqs(pp);
  1939. if (ret)
  1940. return ret;
  1941. ret = mvneta_setup_txqs(pp);
  1942. if (ret)
  1943. goto err_cleanup_rxqs;
  1944. /* Connect to port interrupt line */
  1945. ret = request_irq(pp->dev->irq, mvneta_isr, 0,
  1946. MVNETA_DRIVER_NAME, pp);
  1947. if (ret) {
  1948. netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
  1949. goto err_cleanup_txqs;
  1950. }
  1951. /* In default link is down */
  1952. netif_carrier_off(pp->dev);
  1953. ret = mvneta_mdio_probe(pp);
  1954. if (ret < 0) {
  1955. netdev_err(dev, "cannot probe MDIO bus\n");
  1956. goto err_free_irq;
  1957. }
  1958. mvneta_start_dev(pp);
  1959. return 0;
  1960. err_free_irq:
  1961. free_irq(pp->dev->irq, pp);
  1962. err_cleanup_txqs:
  1963. mvneta_cleanup_txqs(pp);
  1964. err_cleanup_rxqs:
  1965. mvneta_cleanup_rxqs(pp);
  1966. return ret;
  1967. }
  1968. /* Stop the port, free port interrupt line */
  1969. static int mvneta_stop(struct net_device *dev)
  1970. {
  1971. struct mvneta_port *pp = netdev_priv(dev);
  1972. mvneta_stop_dev(pp);
  1973. mvneta_mdio_remove(pp);
  1974. free_irq(dev->irq, pp);
  1975. mvneta_cleanup_rxqs(pp);
  1976. mvneta_cleanup_txqs(pp);
  1977. del_timer(&pp->tx_done_timer);
  1978. clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
  1979. return 0;
  1980. }
  1981. /* Ethtool methods */
  1982. /* Get settings (phy address, speed) for ethtools */
  1983. int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1984. {
  1985. struct mvneta_port *pp = netdev_priv(dev);
  1986. if (!pp->phy_dev)
  1987. return -ENODEV;
  1988. return phy_ethtool_gset(pp->phy_dev, cmd);
  1989. }
  1990. /* Set settings (phy address, speed) for ethtools */
  1991. int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1992. {
  1993. struct mvneta_port *pp = netdev_priv(dev);
  1994. if (!pp->phy_dev)
  1995. return -ENODEV;
  1996. return phy_ethtool_sset(pp->phy_dev, cmd);
  1997. }
  1998. /* Set interrupt coalescing for ethtools */
  1999. static int mvneta_ethtool_set_coalesce(struct net_device *dev,
  2000. struct ethtool_coalesce *c)
  2001. {
  2002. struct mvneta_port *pp = netdev_priv(dev);
  2003. int queue;
  2004. for (queue = 0; queue < rxq_number; queue++) {
  2005. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2006. rxq->time_coal = c->rx_coalesce_usecs;
  2007. rxq->pkts_coal = c->rx_max_coalesced_frames;
  2008. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  2009. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  2010. }
  2011. for (queue = 0; queue < txq_number; queue++) {
  2012. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2013. txq->done_pkts_coal = c->tx_max_coalesced_frames;
  2014. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  2015. }
  2016. return 0;
  2017. }
  2018. /* get coalescing for ethtools */
  2019. static int mvneta_ethtool_get_coalesce(struct net_device *dev,
  2020. struct ethtool_coalesce *c)
  2021. {
  2022. struct mvneta_port *pp = netdev_priv(dev);
  2023. c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
  2024. c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
  2025. c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
  2026. return 0;
  2027. }
  2028. static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
  2029. struct ethtool_drvinfo *drvinfo)
  2030. {
  2031. strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
  2032. sizeof(drvinfo->driver));
  2033. strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
  2034. sizeof(drvinfo->version));
  2035. strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
  2036. sizeof(drvinfo->bus_info));
  2037. }
  2038. static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
  2039. struct ethtool_ringparam *ring)
  2040. {
  2041. struct mvneta_port *pp = netdev_priv(netdev);
  2042. ring->rx_max_pending = MVNETA_MAX_RXD;
  2043. ring->tx_max_pending = MVNETA_MAX_TXD;
  2044. ring->rx_pending = pp->rx_ring_size;
  2045. ring->tx_pending = pp->tx_ring_size;
  2046. }
  2047. static int mvneta_ethtool_set_ringparam(struct net_device *dev,
  2048. struct ethtool_ringparam *ring)
  2049. {
  2050. struct mvneta_port *pp = netdev_priv(dev);
  2051. if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
  2052. return -EINVAL;
  2053. pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
  2054. ring->rx_pending : MVNETA_MAX_RXD;
  2055. pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
  2056. ring->tx_pending : MVNETA_MAX_TXD;
  2057. if (netif_running(dev)) {
  2058. mvneta_stop(dev);
  2059. if (mvneta_open(dev)) {
  2060. netdev_err(dev,
  2061. "error on opening device after ring param change\n");
  2062. return -ENOMEM;
  2063. }
  2064. }
  2065. return 0;
  2066. }
  2067. static const struct net_device_ops mvneta_netdev_ops = {
  2068. .ndo_open = mvneta_open,
  2069. .ndo_stop = mvneta_stop,
  2070. .ndo_start_xmit = mvneta_tx,
  2071. .ndo_set_rx_mode = mvneta_set_rx_mode,
  2072. .ndo_set_mac_address = mvneta_set_mac_addr,
  2073. .ndo_change_mtu = mvneta_change_mtu,
  2074. .ndo_tx_timeout = mvneta_tx_timeout,
  2075. .ndo_get_stats64 = mvneta_get_stats64,
  2076. };
  2077. const struct ethtool_ops mvneta_eth_tool_ops = {
  2078. .get_link = ethtool_op_get_link,
  2079. .get_settings = mvneta_ethtool_get_settings,
  2080. .set_settings = mvneta_ethtool_set_settings,
  2081. .set_coalesce = mvneta_ethtool_set_coalesce,
  2082. .get_coalesce = mvneta_ethtool_get_coalesce,
  2083. .get_drvinfo = mvneta_ethtool_get_drvinfo,
  2084. .get_ringparam = mvneta_ethtool_get_ringparam,
  2085. .set_ringparam = mvneta_ethtool_set_ringparam,
  2086. };
  2087. /* Initialize hw */
  2088. static int __devinit mvneta_init(struct mvneta_port *pp, int phy_addr)
  2089. {
  2090. int queue;
  2091. /* Disable port */
  2092. mvneta_port_disable(pp);
  2093. /* Set port default values */
  2094. mvneta_defaults_set(pp);
  2095. pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
  2096. GFP_KERNEL);
  2097. if (!pp->txqs)
  2098. return -ENOMEM;
  2099. /* Initialize TX descriptor rings */
  2100. for (queue = 0; queue < txq_number; queue++) {
  2101. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2102. txq->id = queue;
  2103. txq->size = pp->tx_ring_size;
  2104. txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
  2105. }
  2106. pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
  2107. GFP_KERNEL);
  2108. if (!pp->rxqs) {
  2109. kfree(pp->txqs);
  2110. return -ENOMEM;
  2111. }
  2112. /* Create Rx descriptor rings */
  2113. for (queue = 0; queue < rxq_number; queue++) {
  2114. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2115. rxq->id = queue;
  2116. rxq->size = pp->rx_ring_size;
  2117. rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
  2118. rxq->time_coal = MVNETA_RX_COAL_USEC;
  2119. }
  2120. return 0;
  2121. }
  2122. static void __devexit mvneta_deinit(struct mvneta_port *pp)
  2123. {
  2124. kfree(pp->txqs);
  2125. kfree(pp->rxqs);
  2126. }
  2127. /* platform glue : initialize decoding windows */
  2128. static void __devinit
  2129. mvneta_conf_mbus_windows(struct mvneta_port *pp,
  2130. const struct mbus_dram_target_info *dram)
  2131. {
  2132. u32 win_enable;
  2133. u32 win_protect;
  2134. int i;
  2135. for (i = 0; i < 6; i++) {
  2136. mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
  2137. mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
  2138. if (i < 4)
  2139. mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
  2140. }
  2141. win_enable = 0x3f;
  2142. win_protect = 0;
  2143. for (i = 0; i < dram->num_cs; i++) {
  2144. const struct mbus_dram_window *cs = dram->cs + i;
  2145. mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
  2146. (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
  2147. mvreg_write(pp, MVNETA_WIN_SIZE(i),
  2148. (cs->size - 1) & 0xffff0000);
  2149. win_enable &= ~(1 << i);
  2150. win_protect |= 3 << (2 * i);
  2151. }
  2152. mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
  2153. }
  2154. /* Power up the port */
  2155. static void __devinit mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
  2156. {
  2157. u32 val;
  2158. /* MAC Cause register should be cleared */
  2159. mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
  2160. if (phy_mode == PHY_INTERFACE_MODE_SGMII)
  2161. mvneta_port_sgmii_config(pp);
  2162. mvneta_gmac_rgmii_set(pp, 1);
  2163. /* Cancel Port Reset */
  2164. val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  2165. val &= ~MVNETA_GMAC2_PORT_RESET;
  2166. mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
  2167. while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
  2168. MVNETA_GMAC2_PORT_RESET) != 0)
  2169. continue;
  2170. }
  2171. /* Device initialization routine */
  2172. static int __devinit mvneta_probe(struct platform_device *pdev)
  2173. {
  2174. const struct mbus_dram_target_info *dram_target_info;
  2175. struct device_node *dn = pdev->dev.of_node;
  2176. struct device_node *phy_node;
  2177. u32 phy_addr, clk_rate_hz;
  2178. struct mvneta_port *pp;
  2179. struct net_device *dev;
  2180. const char *mac_addr;
  2181. int phy_mode;
  2182. int err;
  2183. /* Our multiqueue support is not complete, so for now, only
  2184. * allow the usage of the first RX queue
  2185. */
  2186. if (rxq_def != 0) {
  2187. dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
  2188. return -EINVAL;
  2189. }
  2190. dev = alloc_etherdev_mq(sizeof(struct mvneta_port), 8);
  2191. if (!dev)
  2192. return -ENOMEM;
  2193. dev->irq = irq_of_parse_and_map(dn, 0);
  2194. if (dev->irq == 0) {
  2195. err = -EINVAL;
  2196. goto err_free_netdev;
  2197. }
  2198. phy_node = of_parse_phandle(dn, "phy", 0);
  2199. if (!phy_node) {
  2200. dev_err(&pdev->dev, "no associated PHY\n");
  2201. err = -ENODEV;
  2202. goto err_free_irq;
  2203. }
  2204. phy_mode = of_get_phy_mode(dn);
  2205. if (phy_mode < 0) {
  2206. dev_err(&pdev->dev, "incorrect phy-mode\n");
  2207. err = -EINVAL;
  2208. goto err_free_irq;
  2209. }
  2210. if (of_property_read_u32(dn, "clock-frequency", &clk_rate_hz) != 0) {
  2211. dev_err(&pdev->dev, "could not read clock-frequency\n");
  2212. err = -EINVAL;
  2213. goto err_free_irq;
  2214. }
  2215. mac_addr = of_get_mac_address(dn);
  2216. if (!mac_addr || !is_valid_ether_addr(mac_addr))
  2217. eth_hw_addr_random(dev);
  2218. else
  2219. memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
  2220. dev->tx_queue_len = MVNETA_MAX_TXD;
  2221. dev->watchdog_timeo = 5 * HZ;
  2222. dev->netdev_ops = &mvneta_netdev_ops;
  2223. SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
  2224. pp = netdev_priv(dev);
  2225. pp->tx_done_timer.function = mvneta_tx_done_timer_callback;
  2226. init_timer(&pp->tx_done_timer);
  2227. clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
  2228. pp->weight = MVNETA_RX_POLL_WEIGHT;
  2229. pp->clk_rate_hz = clk_rate_hz;
  2230. pp->phy_node = phy_node;
  2231. pp->phy_interface = phy_mode;
  2232. pp->base = of_iomap(dn, 0);
  2233. if (pp->base == NULL) {
  2234. err = -ENOMEM;
  2235. goto err_free_irq;
  2236. }
  2237. pp->tx_done_timer.data = (unsigned long)dev;
  2238. pp->tx_ring_size = MVNETA_MAX_TXD;
  2239. pp->rx_ring_size = MVNETA_MAX_RXD;
  2240. pp->dev = dev;
  2241. SET_NETDEV_DEV(dev, &pdev->dev);
  2242. err = mvneta_init(pp, phy_addr);
  2243. if (err < 0) {
  2244. dev_err(&pdev->dev, "can't init eth hal\n");
  2245. goto err_unmap;
  2246. }
  2247. mvneta_port_power_up(pp, phy_mode);
  2248. dram_target_info = mv_mbus_dram_info();
  2249. if (dram_target_info)
  2250. mvneta_conf_mbus_windows(pp, dram_target_info);
  2251. netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
  2252. err = register_netdev(dev);
  2253. if (err < 0) {
  2254. dev_err(&pdev->dev, "failed to register\n");
  2255. goto err_deinit;
  2256. }
  2257. dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
  2258. dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM;
  2259. dev->priv_flags |= IFF_UNICAST_FLT;
  2260. netdev_info(dev, "mac: %pM\n", dev->dev_addr);
  2261. platform_set_drvdata(pdev, pp->dev);
  2262. return 0;
  2263. err_deinit:
  2264. mvneta_deinit(pp);
  2265. err_unmap:
  2266. iounmap(pp->base);
  2267. err_free_irq:
  2268. irq_dispose_mapping(dev->irq);
  2269. err_free_netdev:
  2270. free_netdev(dev);
  2271. return err;
  2272. }
  2273. /* Device removal routine */
  2274. static int __devexit mvneta_remove(struct platform_device *pdev)
  2275. {
  2276. struct net_device *dev = platform_get_drvdata(pdev);
  2277. struct mvneta_port *pp = netdev_priv(dev);
  2278. unregister_netdev(dev);
  2279. mvneta_deinit(pp);
  2280. iounmap(pp->base);
  2281. irq_dispose_mapping(dev->irq);
  2282. free_netdev(dev);
  2283. platform_set_drvdata(pdev, NULL);
  2284. return 0;
  2285. }
  2286. static const struct of_device_id mvneta_match[] = {
  2287. { .compatible = "marvell,armada-370-neta" },
  2288. { }
  2289. };
  2290. MODULE_DEVICE_TABLE(of, mvneta_match);
  2291. static struct platform_driver mvneta_driver = {
  2292. .probe = mvneta_probe,
  2293. .remove = __devexit_p(mvneta_remove),
  2294. .driver = {
  2295. .name = MVNETA_DRIVER_NAME,
  2296. .of_match_table = mvneta_match,
  2297. },
  2298. };
  2299. module_platform_driver(mvneta_driver);
  2300. MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
  2301. MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
  2302. MODULE_LICENSE("GPL");
  2303. module_param(rxq_number, int, S_IRUGO);
  2304. module_param(txq_number, int, S_IRUGO);
  2305. module_param(rxq_def, int, S_IRUGO);
  2306. module_param(txq_def, int, S_IRUGO);