sched.c 269 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/mm.h>
  30. #include <linux/module.h>
  31. #include <linux/nmi.h>
  32. #include <linux/init.h>
  33. #include <linux/uaccess.h>
  34. #include <linux/highmem.h>
  35. #include <linux/smp_lock.h>
  36. #include <asm/mmu_context.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/capability.h>
  39. #include <linux/completion.h>
  40. #include <linux/kernel_stat.h>
  41. #include <linux/debug_locks.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/security.h>
  44. #include <linux/notifier.h>
  45. #include <linux/profile.h>
  46. #include <linux/freezer.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/blkdev.h>
  49. #include <linux/delay.h>
  50. #include <linux/pid_namespace.h>
  51. #include <linux/smp.h>
  52. #include <linux/threads.h>
  53. #include <linux/timer.h>
  54. #include <linux/rcupdate.h>
  55. #include <linux/cpu.h>
  56. #include <linux/cpuset.h>
  57. #include <linux/percpu.h>
  58. #include <linux/kthread.h>
  59. #include <linux/proc_fs.h>
  60. #include <linux/seq_file.h>
  61. #include <linux/sysctl.h>
  62. #include <linux/syscalls.h>
  63. #include <linux/times.h>
  64. #include <linux/tsacct_kern.h>
  65. #include <linux/kprobes.h>
  66. #include <linux/delayacct.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. raw_spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. raw_spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. raw_spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_GROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. #ifdef CONFIG_CGROUP_SCHED
  209. struct cgroup_subsys_state css;
  210. #endif
  211. #ifdef CONFIG_USER_SCHED
  212. uid_t uid;
  213. #endif
  214. #ifdef CONFIG_FAIR_GROUP_SCHED
  215. /* schedulable entities of this group on each cpu */
  216. struct sched_entity **se;
  217. /* runqueue "owned" by this group on each cpu */
  218. struct cfs_rq **cfs_rq;
  219. unsigned long shares;
  220. #endif
  221. #ifdef CONFIG_RT_GROUP_SCHED
  222. struct sched_rt_entity **rt_se;
  223. struct rt_rq **rt_rq;
  224. struct rt_bandwidth rt_bandwidth;
  225. #endif
  226. struct rcu_head rcu;
  227. struct list_head list;
  228. struct task_group *parent;
  229. struct list_head siblings;
  230. struct list_head children;
  231. };
  232. #ifdef CONFIG_USER_SCHED
  233. /* Helper function to pass uid information to create_sched_user() */
  234. void set_tg_uid(struct user_struct *user)
  235. {
  236. user->tg->uid = user->uid;
  237. }
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_USER_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_USER_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_SMP
  263. static int root_task_group_empty(void)
  264. {
  265. return list_empty(&root_task_group.children);
  266. }
  267. #endif
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. rcu_read_lock();
  295. tg = __task_cred(p)->user->tg;
  296. rcu_read_unlock();
  297. #elif defined(CONFIG_CGROUP_SCHED)
  298. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  299. struct task_group, css);
  300. #else
  301. tg = &init_task_group;
  302. #endif
  303. return tg;
  304. }
  305. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  306. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  307. {
  308. #ifdef CONFIG_FAIR_GROUP_SCHED
  309. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  310. p->se.parent = task_group(p)->se[cpu];
  311. #endif
  312. #ifdef CONFIG_RT_GROUP_SCHED
  313. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  314. p->rt.parent = task_group(p)->rt_se[cpu];
  315. #endif
  316. }
  317. #else
  318. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  319. static inline struct task_group *task_group(struct task_struct *p)
  320. {
  321. return NULL;
  322. }
  323. #endif /* CONFIG_GROUP_SCHED */
  324. /* CFS-related fields in a runqueue */
  325. struct cfs_rq {
  326. struct load_weight load;
  327. unsigned long nr_running;
  328. u64 exec_clock;
  329. u64 min_vruntime;
  330. struct rb_root tasks_timeline;
  331. struct rb_node *rb_leftmost;
  332. struct list_head tasks;
  333. struct list_head *balance_iterator;
  334. /*
  335. * 'curr' points to currently running entity on this cfs_rq.
  336. * It is set to NULL otherwise (i.e when none are currently running).
  337. */
  338. struct sched_entity *curr, *next, *last;
  339. unsigned int nr_spread_over;
  340. #ifdef CONFIG_FAIR_GROUP_SCHED
  341. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  342. /*
  343. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  344. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  345. * (like users, containers etc.)
  346. *
  347. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  348. * list is used during load balance.
  349. */
  350. struct list_head leaf_cfs_rq_list;
  351. struct task_group *tg; /* group that "owns" this runqueue */
  352. #ifdef CONFIG_SMP
  353. /*
  354. * the part of load.weight contributed by tasks
  355. */
  356. unsigned long task_weight;
  357. /*
  358. * h_load = weight * f(tg)
  359. *
  360. * Where f(tg) is the recursive weight fraction assigned to
  361. * this group.
  362. */
  363. unsigned long h_load;
  364. /*
  365. * this cpu's part of tg->shares
  366. */
  367. unsigned long shares;
  368. /*
  369. * load.weight at the time we set shares
  370. */
  371. unsigned long rq_weight;
  372. #endif
  373. #endif
  374. };
  375. /* Real-Time classes' related field in a runqueue: */
  376. struct rt_rq {
  377. struct rt_prio_array active;
  378. unsigned long rt_nr_running;
  379. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  380. struct {
  381. int curr; /* highest queued rt task prio */
  382. #ifdef CONFIG_SMP
  383. int next; /* next highest */
  384. #endif
  385. } highest_prio;
  386. #endif
  387. #ifdef CONFIG_SMP
  388. unsigned long rt_nr_migratory;
  389. unsigned long rt_nr_total;
  390. int overloaded;
  391. struct plist_head pushable_tasks;
  392. #endif
  393. int rt_throttled;
  394. u64 rt_time;
  395. u64 rt_runtime;
  396. /* Nests inside the rq lock: */
  397. raw_spinlock_t rt_runtime_lock;
  398. #ifdef CONFIG_RT_GROUP_SCHED
  399. unsigned long rt_nr_boosted;
  400. struct rq *rq;
  401. struct list_head leaf_rt_rq_list;
  402. struct task_group *tg;
  403. struct sched_rt_entity *rt_se;
  404. #endif
  405. };
  406. #ifdef CONFIG_SMP
  407. /*
  408. * We add the notion of a root-domain which will be used to define per-domain
  409. * variables. Each exclusive cpuset essentially defines an island domain by
  410. * fully partitioning the member cpus from any other cpuset. Whenever a new
  411. * exclusive cpuset is created, we also create and attach a new root-domain
  412. * object.
  413. *
  414. */
  415. struct root_domain {
  416. atomic_t refcount;
  417. cpumask_var_t span;
  418. cpumask_var_t online;
  419. /*
  420. * The "RT overload" flag: it gets set if a CPU has more than
  421. * one runnable RT task.
  422. */
  423. cpumask_var_t rto_mask;
  424. atomic_t rto_count;
  425. #ifdef CONFIG_SMP
  426. struct cpupri cpupri;
  427. #endif
  428. };
  429. /*
  430. * By default the system creates a single root-domain with all cpus as
  431. * members (mimicking the global state we have today).
  432. */
  433. static struct root_domain def_root_domain;
  434. #endif
  435. /*
  436. * This is the main, per-CPU runqueue data structure.
  437. *
  438. * Locking rule: those places that want to lock multiple runqueues
  439. * (such as the load balancing or the thread migration code), lock
  440. * acquire operations must be ordered by ascending &runqueue.
  441. */
  442. struct rq {
  443. /* runqueue lock: */
  444. raw_spinlock_t lock;
  445. /*
  446. * nr_running and cpu_load should be in the same cacheline because
  447. * remote CPUs use both these fields when doing load calculation.
  448. */
  449. unsigned long nr_running;
  450. #define CPU_LOAD_IDX_MAX 5
  451. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  452. #ifdef CONFIG_NO_HZ
  453. unsigned char in_nohz_recently;
  454. #endif
  455. /* capture load from *all* tasks on this cpu: */
  456. struct load_weight load;
  457. unsigned long nr_load_updates;
  458. u64 nr_switches;
  459. struct cfs_rq cfs;
  460. struct rt_rq rt;
  461. #ifdef CONFIG_FAIR_GROUP_SCHED
  462. /* list of leaf cfs_rq on this cpu: */
  463. struct list_head leaf_cfs_rq_list;
  464. #endif
  465. #ifdef CONFIG_RT_GROUP_SCHED
  466. struct list_head leaf_rt_rq_list;
  467. #endif
  468. /*
  469. * This is part of a global counter where only the total sum
  470. * over all CPUs matters. A task can increase this counter on
  471. * one CPU and if it got migrated afterwards it may decrease
  472. * it on another CPU. Always updated under the runqueue lock:
  473. */
  474. unsigned long nr_uninterruptible;
  475. struct task_struct *curr, *idle;
  476. unsigned long next_balance;
  477. struct mm_struct *prev_mm;
  478. u64 clock;
  479. atomic_t nr_iowait;
  480. #ifdef CONFIG_SMP
  481. struct root_domain *rd;
  482. struct sched_domain *sd;
  483. unsigned char idle_at_tick;
  484. /* For active balancing */
  485. int post_schedule;
  486. int active_balance;
  487. int push_cpu;
  488. /* cpu of this runqueue: */
  489. int cpu;
  490. int online;
  491. unsigned long avg_load_per_task;
  492. struct task_struct *migration_thread;
  493. struct list_head migration_queue;
  494. u64 rt_avg;
  495. u64 age_stamp;
  496. u64 idle_stamp;
  497. u64 avg_idle;
  498. #endif
  499. /* calc_load related fields */
  500. unsigned long calc_load_update;
  501. long calc_load_active;
  502. #ifdef CONFIG_SCHED_HRTICK
  503. #ifdef CONFIG_SMP
  504. int hrtick_csd_pending;
  505. struct call_single_data hrtick_csd;
  506. #endif
  507. struct hrtimer hrtick_timer;
  508. #endif
  509. #ifdef CONFIG_SCHEDSTATS
  510. /* latency stats */
  511. struct sched_info rq_sched_info;
  512. unsigned long long rq_cpu_time;
  513. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  514. /* sys_sched_yield() stats */
  515. unsigned int yld_count;
  516. /* schedule() stats */
  517. unsigned int sched_switch;
  518. unsigned int sched_count;
  519. unsigned int sched_goidle;
  520. /* try_to_wake_up() stats */
  521. unsigned int ttwu_count;
  522. unsigned int ttwu_local;
  523. /* BKL stats */
  524. unsigned int bkl_count;
  525. #endif
  526. };
  527. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  528. static inline
  529. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  530. {
  531. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  532. }
  533. static inline int cpu_of(struct rq *rq)
  534. {
  535. #ifdef CONFIG_SMP
  536. return rq->cpu;
  537. #else
  538. return 0;
  539. #endif
  540. }
  541. /*
  542. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  543. * See detach_destroy_domains: synchronize_sched for details.
  544. *
  545. * The domain tree of any CPU may only be accessed from within
  546. * preempt-disabled sections.
  547. */
  548. #define for_each_domain(cpu, __sd) \
  549. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  550. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  551. #define this_rq() (&__get_cpu_var(runqueues))
  552. #define task_rq(p) cpu_rq(task_cpu(p))
  553. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  554. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  555. inline void update_rq_clock(struct rq *rq)
  556. {
  557. rq->clock = sched_clock_cpu(cpu_of(rq));
  558. }
  559. /*
  560. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  561. */
  562. #ifdef CONFIG_SCHED_DEBUG
  563. # define const_debug __read_mostly
  564. #else
  565. # define const_debug static const
  566. #endif
  567. /**
  568. * runqueue_is_locked
  569. * @cpu: the processor in question.
  570. *
  571. * Returns true if the current cpu runqueue is locked.
  572. * This interface allows printk to be called with the runqueue lock
  573. * held and know whether or not it is OK to wake up the klogd.
  574. */
  575. int runqueue_is_locked(int cpu)
  576. {
  577. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  578. }
  579. /*
  580. * Debugging: various feature bits
  581. */
  582. #define SCHED_FEAT(name, enabled) \
  583. __SCHED_FEAT_##name ,
  584. enum {
  585. #include "sched_features.h"
  586. };
  587. #undef SCHED_FEAT
  588. #define SCHED_FEAT(name, enabled) \
  589. (1UL << __SCHED_FEAT_##name) * enabled |
  590. const_debug unsigned int sysctl_sched_features =
  591. #include "sched_features.h"
  592. 0;
  593. #undef SCHED_FEAT
  594. #ifdef CONFIG_SCHED_DEBUG
  595. #define SCHED_FEAT(name, enabled) \
  596. #name ,
  597. static __read_mostly char *sched_feat_names[] = {
  598. #include "sched_features.h"
  599. NULL
  600. };
  601. #undef SCHED_FEAT
  602. static int sched_feat_show(struct seq_file *m, void *v)
  603. {
  604. int i;
  605. for (i = 0; sched_feat_names[i]; i++) {
  606. if (!(sysctl_sched_features & (1UL << i)))
  607. seq_puts(m, "NO_");
  608. seq_printf(m, "%s ", sched_feat_names[i]);
  609. }
  610. seq_puts(m, "\n");
  611. return 0;
  612. }
  613. static ssize_t
  614. sched_feat_write(struct file *filp, const char __user *ubuf,
  615. size_t cnt, loff_t *ppos)
  616. {
  617. char buf[64];
  618. char *cmp = buf;
  619. int neg = 0;
  620. int i;
  621. if (cnt > 63)
  622. cnt = 63;
  623. if (copy_from_user(&buf, ubuf, cnt))
  624. return -EFAULT;
  625. buf[cnt] = 0;
  626. if (strncmp(buf, "NO_", 3) == 0) {
  627. neg = 1;
  628. cmp += 3;
  629. }
  630. for (i = 0; sched_feat_names[i]; i++) {
  631. int len = strlen(sched_feat_names[i]);
  632. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  633. if (neg)
  634. sysctl_sched_features &= ~(1UL << i);
  635. else
  636. sysctl_sched_features |= (1UL << i);
  637. break;
  638. }
  639. }
  640. if (!sched_feat_names[i])
  641. return -EINVAL;
  642. *ppos += cnt;
  643. return cnt;
  644. }
  645. static int sched_feat_open(struct inode *inode, struct file *filp)
  646. {
  647. return single_open(filp, sched_feat_show, NULL);
  648. }
  649. static const struct file_operations sched_feat_fops = {
  650. .open = sched_feat_open,
  651. .write = sched_feat_write,
  652. .read = seq_read,
  653. .llseek = seq_lseek,
  654. .release = single_release,
  655. };
  656. static __init int sched_init_debug(void)
  657. {
  658. debugfs_create_file("sched_features", 0644, NULL, NULL,
  659. &sched_feat_fops);
  660. return 0;
  661. }
  662. late_initcall(sched_init_debug);
  663. #endif
  664. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  665. /*
  666. * Number of tasks to iterate in a single balance run.
  667. * Limited because this is done with IRQs disabled.
  668. */
  669. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  670. /*
  671. * ratelimit for updating the group shares.
  672. * default: 0.25ms
  673. */
  674. unsigned int sysctl_sched_shares_ratelimit = 250000;
  675. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  676. /*
  677. * Inject some fuzzyness into changing the per-cpu group shares
  678. * this avoids remote rq-locks at the expense of fairness.
  679. * default: 4
  680. */
  681. unsigned int sysctl_sched_shares_thresh = 4;
  682. /*
  683. * period over which we average the RT time consumption, measured
  684. * in ms.
  685. *
  686. * default: 1s
  687. */
  688. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  689. /*
  690. * period over which we measure -rt task cpu usage in us.
  691. * default: 1s
  692. */
  693. unsigned int sysctl_sched_rt_period = 1000000;
  694. static __read_mostly int scheduler_running;
  695. /*
  696. * part of the period that we allow rt tasks to run in us.
  697. * default: 0.95s
  698. */
  699. int sysctl_sched_rt_runtime = 950000;
  700. static inline u64 global_rt_period(void)
  701. {
  702. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  703. }
  704. static inline u64 global_rt_runtime(void)
  705. {
  706. if (sysctl_sched_rt_runtime < 0)
  707. return RUNTIME_INF;
  708. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  709. }
  710. #ifndef prepare_arch_switch
  711. # define prepare_arch_switch(next) do { } while (0)
  712. #endif
  713. #ifndef finish_arch_switch
  714. # define finish_arch_switch(prev) do { } while (0)
  715. #endif
  716. static inline int task_current(struct rq *rq, struct task_struct *p)
  717. {
  718. return rq->curr == p;
  719. }
  720. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  721. static inline int task_running(struct rq *rq, struct task_struct *p)
  722. {
  723. return task_current(rq, p);
  724. }
  725. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  726. {
  727. }
  728. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  729. {
  730. #ifdef CONFIG_DEBUG_SPINLOCK
  731. /* this is a valid case when another task releases the spinlock */
  732. rq->lock.owner = current;
  733. #endif
  734. /*
  735. * If we are tracking spinlock dependencies then we have to
  736. * fix up the runqueue lock - which gets 'carried over' from
  737. * prev into current:
  738. */
  739. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  740. raw_spin_unlock_irq(&rq->lock);
  741. }
  742. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  743. static inline int task_running(struct rq *rq, struct task_struct *p)
  744. {
  745. #ifdef CONFIG_SMP
  746. return p->oncpu;
  747. #else
  748. return task_current(rq, p);
  749. #endif
  750. }
  751. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * We can optimise this out completely for !SMP, because the
  756. * SMP rebalancing from interrupt is the only thing that cares
  757. * here.
  758. */
  759. next->oncpu = 1;
  760. #endif
  761. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  762. raw_spin_unlock_irq(&rq->lock);
  763. #else
  764. raw_spin_unlock(&rq->lock);
  765. #endif
  766. }
  767. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  768. {
  769. #ifdef CONFIG_SMP
  770. /*
  771. * After ->oncpu is cleared, the task can be moved to a different CPU.
  772. * We must ensure this doesn't happen until the switch is completely
  773. * finished.
  774. */
  775. smp_wmb();
  776. prev->oncpu = 0;
  777. #endif
  778. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  779. local_irq_enable();
  780. #endif
  781. }
  782. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  783. /*
  784. * __task_rq_lock - lock the runqueue a given task resides on.
  785. * Must be called interrupts disabled.
  786. */
  787. static inline struct rq *__task_rq_lock(struct task_struct *p)
  788. __acquires(rq->lock)
  789. {
  790. for (;;) {
  791. struct rq *rq = task_rq(p);
  792. raw_spin_lock(&rq->lock);
  793. if (likely(rq == task_rq(p)))
  794. return rq;
  795. raw_spin_unlock(&rq->lock);
  796. }
  797. }
  798. /*
  799. * task_rq_lock - lock the runqueue a given task resides on and disable
  800. * interrupts. Note the ordering: we can safely lookup the task_rq without
  801. * explicitly disabling preemption.
  802. */
  803. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  804. __acquires(rq->lock)
  805. {
  806. struct rq *rq;
  807. for (;;) {
  808. local_irq_save(*flags);
  809. rq = task_rq(p);
  810. raw_spin_lock(&rq->lock);
  811. if (likely(rq == task_rq(p)))
  812. return rq;
  813. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  814. }
  815. }
  816. void task_rq_unlock_wait(struct task_struct *p)
  817. {
  818. struct rq *rq = task_rq(p);
  819. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  820. raw_spin_unlock_wait(&rq->lock);
  821. }
  822. static void __task_rq_unlock(struct rq *rq)
  823. __releases(rq->lock)
  824. {
  825. raw_spin_unlock(&rq->lock);
  826. }
  827. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  828. __releases(rq->lock)
  829. {
  830. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  831. }
  832. /*
  833. * this_rq_lock - lock this runqueue and disable interrupts.
  834. */
  835. static struct rq *this_rq_lock(void)
  836. __acquires(rq->lock)
  837. {
  838. struct rq *rq;
  839. local_irq_disable();
  840. rq = this_rq();
  841. raw_spin_lock(&rq->lock);
  842. return rq;
  843. }
  844. #ifdef CONFIG_SCHED_HRTICK
  845. /*
  846. * Use HR-timers to deliver accurate preemption points.
  847. *
  848. * Its all a bit involved since we cannot program an hrt while holding the
  849. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  850. * reschedule event.
  851. *
  852. * When we get rescheduled we reprogram the hrtick_timer outside of the
  853. * rq->lock.
  854. */
  855. /*
  856. * Use hrtick when:
  857. * - enabled by features
  858. * - hrtimer is actually high res
  859. */
  860. static inline int hrtick_enabled(struct rq *rq)
  861. {
  862. if (!sched_feat(HRTICK))
  863. return 0;
  864. if (!cpu_active(cpu_of(rq)))
  865. return 0;
  866. return hrtimer_is_hres_active(&rq->hrtick_timer);
  867. }
  868. static void hrtick_clear(struct rq *rq)
  869. {
  870. if (hrtimer_active(&rq->hrtick_timer))
  871. hrtimer_cancel(&rq->hrtick_timer);
  872. }
  873. /*
  874. * High-resolution timer tick.
  875. * Runs from hardirq context with interrupts disabled.
  876. */
  877. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  878. {
  879. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  880. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  881. raw_spin_lock(&rq->lock);
  882. update_rq_clock(rq);
  883. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  884. raw_spin_unlock(&rq->lock);
  885. return HRTIMER_NORESTART;
  886. }
  887. #ifdef CONFIG_SMP
  888. /*
  889. * called from hardirq (IPI) context
  890. */
  891. static void __hrtick_start(void *arg)
  892. {
  893. struct rq *rq = arg;
  894. raw_spin_lock(&rq->lock);
  895. hrtimer_restart(&rq->hrtick_timer);
  896. rq->hrtick_csd_pending = 0;
  897. raw_spin_unlock(&rq->lock);
  898. }
  899. /*
  900. * Called to set the hrtick timer state.
  901. *
  902. * called with rq->lock held and irqs disabled
  903. */
  904. static void hrtick_start(struct rq *rq, u64 delay)
  905. {
  906. struct hrtimer *timer = &rq->hrtick_timer;
  907. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  908. hrtimer_set_expires(timer, time);
  909. if (rq == this_rq()) {
  910. hrtimer_restart(timer);
  911. } else if (!rq->hrtick_csd_pending) {
  912. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  913. rq->hrtick_csd_pending = 1;
  914. }
  915. }
  916. static int
  917. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  918. {
  919. int cpu = (int)(long)hcpu;
  920. switch (action) {
  921. case CPU_UP_CANCELED:
  922. case CPU_UP_CANCELED_FROZEN:
  923. case CPU_DOWN_PREPARE:
  924. case CPU_DOWN_PREPARE_FROZEN:
  925. case CPU_DEAD:
  926. case CPU_DEAD_FROZEN:
  927. hrtick_clear(cpu_rq(cpu));
  928. return NOTIFY_OK;
  929. }
  930. return NOTIFY_DONE;
  931. }
  932. static __init void init_hrtick(void)
  933. {
  934. hotcpu_notifier(hotplug_hrtick, 0);
  935. }
  936. #else
  937. /*
  938. * Called to set the hrtick timer state.
  939. *
  940. * called with rq->lock held and irqs disabled
  941. */
  942. static void hrtick_start(struct rq *rq, u64 delay)
  943. {
  944. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  945. HRTIMER_MODE_REL_PINNED, 0);
  946. }
  947. static inline void init_hrtick(void)
  948. {
  949. }
  950. #endif /* CONFIG_SMP */
  951. static void init_rq_hrtick(struct rq *rq)
  952. {
  953. #ifdef CONFIG_SMP
  954. rq->hrtick_csd_pending = 0;
  955. rq->hrtick_csd.flags = 0;
  956. rq->hrtick_csd.func = __hrtick_start;
  957. rq->hrtick_csd.info = rq;
  958. #endif
  959. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  960. rq->hrtick_timer.function = hrtick;
  961. }
  962. #else /* CONFIG_SCHED_HRTICK */
  963. static inline void hrtick_clear(struct rq *rq)
  964. {
  965. }
  966. static inline void init_rq_hrtick(struct rq *rq)
  967. {
  968. }
  969. static inline void init_hrtick(void)
  970. {
  971. }
  972. #endif /* CONFIG_SCHED_HRTICK */
  973. /*
  974. * resched_task - mark a task 'to be rescheduled now'.
  975. *
  976. * On UP this means the setting of the need_resched flag, on SMP it
  977. * might also involve a cross-CPU call to trigger the scheduler on
  978. * the target CPU.
  979. */
  980. #ifdef CONFIG_SMP
  981. #ifndef tsk_is_polling
  982. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  983. #endif
  984. static void resched_task(struct task_struct *p)
  985. {
  986. int cpu;
  987. assert_raw_spin_locked(&task_rq(p)->lock);
  988. if (test_tsk_need_resched(p))
  989. return;
  990. set_tsk_need_resched(p);
  991. cpu = task_cpu(p);
  992. if (cpu == smp_processor_id())
  993. return;
  994. /* NEED_RESCHED must be visible before we test polling */
  995. smp_mb();
  996. if (!tsk_is_polling(p))
  997. smp_send_reschedule(cpu);
  998. }
  999. static void resched_cpu(int cpu)
  1000. {
  1001. struct rq *rq = cpu_rq(cpu);
  1002. unsigned long flags;
  1003. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  1004. return;
  1005. resched_task(cpu_curr(cpu));
  1006. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1007. }
  1008. #ifdef CONFIG_NO_HZ
  1009. /*
  1010. * When add_timer_on() enqueues a timer into the timer wheel of an
  1011. * idle CPU then this timer might expire before the next timer event
  1012. * which is scheduled to wake up that CPU. In case of a completely
  1013. * idle system the next event might even be infinite time into the
  1014. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1015. * leaves the inner idle loop so the newly added timer is taken into
  1016. * account when the CPU goes back to idle and evaluates the timer
  1017. * wheel for the next timer event.
  1018. */
  1019. void wake_up_idle_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. if (cpu == smp_processor_id())
  1023. return;
  1024. /*
  1025. * This is safe, as this function is called with the timer
  1026. * wheel base lock of (cpu) held. When the CPU is on the way
  1027. * to idle and has not yet set rq->curr to idle then it will
  1028. * be serialized on the timer wheel base lock and take the new
  1029. * timer into account automatically.
  1030. */
  1031. if (rq->curr != rq->idle)
  1032. return;
  1033. /*
  1034. * We can set TIF_RESCHED on the idle task of the other CPU
  1035. * lockless. The worst case is that the other CPU runs the
  1036. * idle task through an additional NOOP schedule()
  1037. */
  1038. set_tsk_need_resched(rq->idle);
  1039. /* NEED_RESCHED must be visible before we test polling */
  1040. smp_mb();
  1041. if (!tsk_is_polling(rq->idle))
  1042. smp_send_reschedule(cpu);
  1043. }
  1044. #endif /* CONFIG_NO_HZ */
  1045. static u64 sched_avg_period(void)
  1046. {
  1047. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1048. }
  1049. static void sched_avg_update(struct rq *rq)
  1050. {
  1051. s64 period = sched_avg_period();
  1052. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1053. rq->age_stamp += period;
  1054. rq->rt_avg /= 2;
  1055. }
  1056. }
  1057. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1058. {
  1059. rq->rt_avg += rt_delta;
  1060. sched_avg_update(rq);
  1061. }
  1062. #else /* !CONFIG_SMP */
  1063. static void resched_task(struct task_struct *p)
  1064. {
  1065. assert_raw_spin_locked(&task_rq(p)->lock);
  1066. set_tsk_need_resched(p);
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. /*
  1119. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1120. * of tasks with abnormal "nice" values across CPUs the contribution that
  1121. * each task makes to its run queue's load is weighted according to its
  1122. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1123. * scaled version of the new time slice allocation that they receive on time
  1124. * slice expiry etc.
  1125. */
  1126. #define WEIGHT_IDLEPRIO 3
  1127. #define WMULT_IDLEPRIO 1431655765
  1128. /*
  1129. * Nice levels are multiplicative, with a gentle 10% change for every
  1130. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1131. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1132. * that remained on nice 0.
  1133. *
  1134. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1135. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1136. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1137. * If a task goes up by ~10% and another task goes down by ~10% then
  1138. * the relative distance between them is ~25%.)
  1139. */
  1140. static const int prio_to_weight[40] = {
  1141. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1142. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1143. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1144. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1145. /* 0 */ 1024, 820, 655, 526, 423,
  1146. /* 5 */ 335, 272, 215, 172, 137,
  1147. /* 10 */ 110, 87, 70, 56, 45,
  1148. /* 15 */ 36, 29, 23, 18, 15,
  1149. };
  1150. /*
  1151. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1152. *
  1153. * In cases where the weight does not change often, we can use the
  1154. * precalculated inverse to speed up arithmetics by turning divisions
  1155. * into multiplications:
  1156. */
  1157. static const u32 prio_to_wmult[40] = {
  1158. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1159. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1160. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1161. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1162. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1163. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1164. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1165. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1166. };
  1167. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1168. /*
  1169. * runqueue iterator, to support SMP load-balancing between different
  1170. * scheduling classes, without having to expose their internal data
  1171. * structures to the load-balancing proper:
  1172. */
  1173. struct rq_iterator {
  1174. void *arg;
  1175. struct task_struct *(*start)(void *);
  1176. struct task_struct *(*next)(void *);
  1177. };
  1178. #ifdef CONFIG_SMP
  1179. static unsigned long
  1180. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. unsigned long max_load_move, struct sched_domain *sd,
  1182. enum cpu_idle_type idle, int *all_pinned,
  1183. int *this_best_prio, struct rq_iterator *iterator);
  1184. static int
  1185. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1186. struct sched_domain *sd, enum cpu_idle_type idle,
  1187. struct rq_iterator *iterator);
  1188. #endif
  1189. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1190. enum cpuacct_stat_index {
  1191. CPUACCT_STAT_USER, /* ... user mode */
  1192. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1193. CPUACCT_STAT_NSTATS,
  1194. };
  1195. #ifdef CONFIG_CGROUP_CPUACCT
  1196. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1197. static void cpuacct_update_stats(struct task_struct *tsk,
  1198. enum cpuacct_stat_index idx, cputime_t val);
  1199. #else
  1200. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1201. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val) {}
  1203. #endif
  1204. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1205. {
  1206. update_load_add(&rq->load, load);
  1207. }
  1208. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_sub(&rq->load, load);
  1211. }
  1212. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1213. typedef int (*tg_visitor)(struct task_group *, void *);
  1214. /*
  1215. * Iterate the full tree, calling @down when first entering a node and @up when
  1216. * leaving it for the final time.
  1217. */
  1218. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1219. {
  1220. struct task_group *parent, *child;
  1221. int ret;
  1222. rcu_read_lock();
  1223. parent = &root_task_group;
  1224. down:
  1225. ret = (*down)(parent, data);
  1226. if (ret)
  1227. goto out_unlock;
  1228. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1229. parent = child;
  1230. goto down;
  1231. up:
  1232. continue;
  1233. }
  1234. ret = (*up)(parent, data);
  1235. if (ret)
  1236. goto out_unlock;
  1237. child = parent;
  1238. parent = parent->parent;
  1239. if (parent)
  1240. goto up;
  1241. out_unlock:
  1242. rcu_read_unlock();
  1243. return ret;
  1244. }
  1245. static int tg_nop(struct task_group *tg, void *data)
  1246. {
  1247. return 0;
  1248. }
  1249. #endif
  1250. #ifdef CONFIG_SMP
  1251. /* Used instead of source_load when we know the type == 0 */
  1252. static unsigned long weighted_cpuload(const int cpu)
  1253. {
  1254. return cpu_rq(cpu)->load.weight;
  1255. }
  1256. /*
  1257. * Return a low guess at the load of a migration-source cpu weighted
  1258. * according to the scheduling class and "nice" value.
  1259. *
  1260. * We want to under-estimate the load of migration sources, to
  1261. * balance conservatively.
  1262. */
  1263. static unsigned long source_load(int cpu, int type)
  1264. {
  1265. struct rq *rq = cpu_rq(cpu);
  1266. unsigned long total = weighted_cpuload(cpu);
  1267. if (type == 0 || !sched_feat(LB_BIAS))
  1268. return total;
  1269. return min(rq->cpu_load[type-1], total);
  1270. }
  1271. /*
  1272. * Return a high guess at the load of a migration-target cpu weighted
  1273. * according to the scheduling class and "nice" value.
  1274. */
  1275. static unsigned long target_load(int cpu, int type)
  1276. {
  1277. struct rq *rq = cpu_rq(cpu);
  1278. unsigned long total = weighted_cpuload(cpu);
  1279. if (type == 0 || !sched_feat(LB_BIAS))
  1280. return total;
  1281. return max(rq->cpu_load[type-1], total);
  1282. }
  1283. static struct sched_group *group_of(int cpu)
  1284. {
  1285. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1286. if (!sd)
  1287. return NULL;
  1288. return sd->groups;
  1289. }
  1290. static unsigned long power_of(int cpu)
  1291. {
  1292. struct sched_group *group = group_of(cpu);
  1293. if (!group)
  1294. return SCHED_LOAD_SCALE;
  1295. return group->cpu_power;
  1296. }
  1297. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1298. static unsigned long cpu_avg_load_per_task(int cpu)
  1299. {
  1300. struct rq *rq = cpu_rq(cpu);
  1301. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1302. if (nr_running)
  1303. rq->avg_load_per_task = rq->load.weight / nr_running;
  1304. else
  1305. rq->avg_load_per_task = 0;
  1306. return rq->avg_load_per_task;
  1307. }
  1308. #ifdef CONFIG_FAIR_GROUP_SCHED
  1309. static __read_mostly unsigned long *update_shares_data;
  1310. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1311. /*
  1312. * Calculate and set the cpu's group shares.
  1313. */
  1314. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1315. unsigned long sd_shares,
  1316. unsigned long sd_rq_weight,
  1317. unsigned long *usd_rq_weight)
  1318. {
  1319. unsigned long shares, rq_weight;
  1320. int boost = 0;
  1321. rq_weight = usd_rq_weight[cpu];
  1322. if (!rq_weight) {
  1323. boost = 1;
  1324. rq_weight = NICE_0_LOAD;
  1325. }
  1326. /*
  1327. * \Sum_j shares_j * rq_weight_i
  1328. * shares_i = -----------------------------
  1329. * \Sum_j rq_weight_j
  1330. */
  1331. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1332. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1333. if (abs(shares - tg->se[cpu]->load.weight) >
  1334. sysctl_sched_shares_thresh) {
  1335. struct rq *rq = cpu_rq(cpu);
  1336. unsigned long flags;
  1337. raw_spin_lock_irqsave(&rq->lock, flags);
  1338. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1339. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1340. __set_se_shares(tg->se[cpu], shares);
  1341. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1342. }
  1343. }
  1344. /*
  1345. * Re-compute the task group their per cpu shares over the given domain.
  1346. * This needs to be done in a bottom-up fashion because the rq weight of a
  1347. * parent group depends on the shares of its child groups.
  1348. */
  1349. static int tg_shares_up(struct task_group *tg, void *data)
  1350. {
  1351. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1352. unsigned long *usd_rq_weight;
  1353. struct sched_domain *sd = data;
  1354. unsigned long flags;
  1355. int i;
  1356. if (!tg->se[0])
  1357. return 0;
  1358. local_irq_save(flags);
  1359. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1360. for_each_cpu(i, sched_domain_span(sd)) {
  1361. weight = tg->cfs_rq[i]->load.weight;
  1362. usd_rq_weight[i] = weight;
  1363. rq_weight += weight;
  1364. /*
  1365. * If there are currently no tasks on the cpu pretend there
  1366. * is one of average load so that when a new task gets to
  1367. * run here it will not get delayed by group starvation.
  1368. */
  1369. if (!weight)
  1370. weight = NICE_0_LOAD;
  1371. sum_weight += weight;
  1372. shares += tg->cfs_rq[i]->shares;
  1373. }
  1374. if (!rq_weight)
  1375. rq_weight = sum_weight;
  1376. if ((!shares && rq_weight) || shares > tg->shares)
  1377. shares = tg->shares;
  1378. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1379. shares = tg->shares;
  1380. for_each_cpu(i, sched_domain_span(sd))
  1381. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1382. local_irq_restore(flags);
  1383. return 0;
  1384. }
  1385. /*
  1386. * Compute the cpu's hierarchical load factor for each task group.
  1387. * This needs to be done in a top-down fashion because the load of a child
  1388. * group is a fraction of its parents load.
  1389. */
  1390. static int tg_load_down(struct task_group *tg, void *data)
  1391. {
  1392. unsigned long load;
  1393. long cpu = (long)data;
  1394. if (!tg->parent) {
  1395. load = cpu_rq(cpu)->load.weight;
  1396. } else {
  1397. load = tg->parent->cfs_rq[cpu]->h_load;
  1398. load *= tg->cfs_rq[cpu]->shares;
  1399. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1400. }
  1401. tg->cfs_rq[cpu]->h_load = load;
  1402. return 0;
  1403. }
  1404. static void update_shares(struct sched_domain *sd)
  1405. {
  1406. s64 elapsed;
  1407. u64 now;
  1408. if (root_task_group_empty())
  1409. return;
  1410. now = cpu_clock(raw_smp_processor_id());
  1411. elapsed = now - sd->last_update;
  1412. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1413. sd->last_update = now;
  1414. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1415. }
  1416. }
  1417. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1418. {
  1419. if (root_task_group_empty())
  1420. return;
  1421. raw_spin_unlock(&rq->lock);
  1422. update_shares(sd);
  1423. raw_spin_lock(&rq->lock);
  1424. }
  1425. static void update_h_load(long cpu)
  1426. {
  1427. if (root_task_group_empty())
  1428. return;
  1429. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1430. }
  1431. #else
  1432. static inline void update_shares(struct sched_domain *sd)
  1433. {
  1434. }
  1435. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1436. {
  1437. }
  1438. #endif
  1439. #ifdef CONFIG_PREEMPT
  1440. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1441. /*
  1442. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1443. * way at the expense of forcing extra atomic operations in all
  1444. * invocations. This assures that the double_lock is acquired using the
  1445. * same underlying policy as the spinlock_t on this architecture, which
  1446. * reduces latency compared to the unfair variant below. However, it
  1447. * also adds more overhead and therefore may reduce throughput.
  1448. */
  1449. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1450. __releases(this_rq->lock)
  1451. __acquires(busiest->lock)
  1452. __acquires(this_rq->lock)
  1453. {
  1454. raw_spin_unlock(&this_rq->lock);
  1455. double_rq_lock(this_rq, busiest);
  1456. return 1;
  1457. }
  1458. #else
  1459. /*
  1460. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1461. * latency by eliminating extra atomic operations when the locks are
  1462. * already in proper order on entry. This favors lower cpu-ids and will
  1463. * grant the double lock to lower cpus over higher ids under contention,
  1464. * regardless of entry order into the function.
  1465. */
  1466. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1467. __releases(this_rq->lock)
  1468. __acquires(busiest->lock)
  1469. __acquires(this_rq->lock)
  1470. {
  1471. int ret = 0;
  1472. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1473. if (busiest < this_rq) {
  1474. raw_spin_unlock(&this_rq->lock);
  1475. raw_spin_lock(&busiest->lock);
  1476. raw_spin_lock_nested(&this_rq->lock,
  1477. SINGLE_DEPTH_NESTING);
  1478. ret = 1;
  1479. } else
  1480. raw_spin_lock_nested(&busiest->lock,
  1481. SINGLE_DEPTH_NESTING);
  1482. }
  1483. return ret;
  1484. }
  1485. #endif /* CONFIG_PREEMPT */
  1486. /*
  1487. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1488. */
  1489. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1490. {
  1491. if (unlikely(!irqs_disabled())) {
  1492. /* printk() doesn't work good under rq->lock */
  1493. raw_spin_unlock(&this_rq->lock);
  1494. BUG_ON(1);
  1495. }
  1496. return _double_lock_balance(this_rq, busiest);
  1497. }
  1498. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1499. __releases(busiest->lock)
  1500. {
  1501. raw_spin_unlock(&busiest->lock);
  1502. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1503. }
  1504. #endif
  1505. #ifdef CONFIG_FAIR_GROUP_SCHED
  1506. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1507. {
  1508. #ifdef CONFIG_SMP
  1509. cfs_rq->shares = shares;
  1510. #endif
  1511. }
  1512. #endif
  1513. static void calc_load_account_active(struct rq *this_rq);
  1514. static void update_sysctl(void);
  1515. static int get_update_sysctl_factor(void);
  1516. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1517. {
  1518. set_task_rq(p, cpu);
  1519. #ifdef CONFIG_SMP
  1520. /*
  1521. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1522. * successfuly executed on another CPU. We must ensure that updates of
  1523. * per-task data have been completed by this moment.
  1524. */
  1525. smp_wmb();
  1526. task_thread_info(p)->cpu = cpu;
  1527. #endif
  1528. }
  1529. #include "sched_stats.h"
  1530. #include "sched_idletask.c"
  1531. #include "sched_fair.c"
  1532. #include "sched_rt.c"
  1533. #ifdef CONFIG_SCHED_DEBUG
  1534. # include "sched_debug.c"
  1535. #endif
  1536. #define sched_class_highest (&rt_sched_class)
  1537. #define for_each_class(class) \
  1538. for (class = sched_class_highest; class; class = class->next)
  1539. static void inc_nr_running(struct rq *rq)
  1540. {
  1541. rq->nr_running++;
  1542. }
  1543. static void dec_nr_running(struct rq *rq)
  1544. {
  1545. rq->nr_running--;
  1546. }
  1547. static void set_load_weight(struct task_struct *p)
  1548. {
  1549. if (task_has_rt_policy(p)) {
  1550. p->se.load.weight = prio_to_weight[0] * 2;
  1551. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1552. return;
  1553. }
  1554. /*
  1555. * SCHED_IDLE tasks get minimal weight:
  1556. */
  1557. if (p->policy == SCHED_IDLE) {
  1558. p->se.load.weight = WEIGHT_IDLEPRIO;
  1559. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1560. return;
  1561. }
  1562. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1563. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1564. }
  1565. static void update_avg(u64 *avg, u64 sample)
  1566. {
  1567. s64 diff = sample - *avg;
  1568. *avg += diff >> 3;
  1569. }
  1570. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1571. {
  1572. if (wakeup)
  1573. p->se.start_runtime = p->se.sum_exec_runtime;
  1574. sched_info_queued(p);
  1575. p->sched_class->enqueue_task(rq, p, wakeup);
  1576. p->se.on_rq = 1;
  1577. }
  1578. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1579. {
  1580. if (sleep) {
  1581. if (p->se.last_wakeup) {
  1582. update_avg(&p->se.avg_overlap,
  1583. p->se.sum_exec_runtime - p->se.last_wakeup);
  1584. p->se.last_wakeup = 0;
  1585. } else {
  1586. update_avg(&p->se.avg_wakeup,
  1587. sysctl_sched_wakeup_granularity);
  1588. }
  1589. }
  1590. sched_info_dequeued(p);
  1591. p->sched_class->dequeue_task(rq, p, sleep);
  1592. p->se.on_rq = 0;
  1593. }
  1594. /*
  1595. * __normal_prio - return the priority that is based on the static prio
  1596. */
  1597. static inline int __normal_prio(struct task_struct *p)
  1598. {
  1599. return p->static_prio;
  1600. }
  1601. /*
  1602. * Calculate the expected normal priority: i.e. priority
  1603. * without taking RT-inheritance into account. Might be
  1604. * boosted by interactivity modifiers. Changes upon fork,
  1605. * setprio syscalls, and whenever the interactivity
  1606. * estimator recalculates.
  1607. */
  1608. static inline int normal_prio(struct task_struct *p)
  1609. {
  1610. int prio;
  1611. if (task_has_rt_policy(p))
  1612. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1613. else
  1614. prio = __normal_prio(p);
  1615. return prio;
  1616. }
  1617. /*
  1618. * Calculate the current priority, i.e. the priority
  1619. * taken into account by the scheduler. This value might
  1620. * be boosted by RT tasks, or might be boosted by
  1621. * interactivity modifiers. Will be RT if the task got
  1622. * RT-boosted. If not then it returns p->normal_prio.
  1623. */
  1624. static int effective_prio(struct task_struct *p)
  1625. {
  1626. p->normal_prio = normal_prio(p);
  1627. /*
  1628. * If we are RT tasks or we were boosted to RT priority,
  1629. * keep the priority unchanged. Otherwise, update priority
  1630. * to the normal priority:
  1631. */
  1632. if (!rt_prio(p->prio))
  1633. return p->normal_prio;
  1634. return p->prio;
  1635. }
  1636. /*
  1637. * activate_task - move a task to the runqueue.
  1638. */
  1639. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1640. {
  1641. if (task_contributes_to_load(p))
  1642. rq->nr_uninterruptible--;
  1643. enqueue_task(rq, p, wakeup);
  1644. inc_nr_running(rq);
  1645. }
  1646. /*
  1647. * deactivate_task - remove a task from the runqueue.
  1648. */
  1649. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1650. {
  1651. if (task_contributes_to_load(p))
  1652. rq->nr_uninterruptible++;
  1653. dequeue_task(rq, p, sleep);
  1654. dec_nr_running(rq);
  1655. }
  1656. /**
  1657. * task_curr - is this task currently executing on a CPU?
  1658. * @p: the task in question.
  1659. */
  1660. inline int task_curr(const struct task_struct *p)
  1661. {
  1662. return cpu_curr(task_cpu(p)) == p;
  1663. }
  1664. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1665. const struct sched_class *prev_class,
  1666. int oldprio, int running)
  1667. {
  1668. if (prev_class != p->sched_class) {
  1669. if (prev_class->switched_from)
  1670. prev_class->switched_from(rq, p, running);
  1671. p->sched_class->switched_to(rq, p, running);
  1672. } else
  1673. p->sched_class->prio_changed(rq, p, oldprio, running);
  1674. }
  1675. #ifdef CONFIG_SMP
  1676. /*
  1677. * Is this task likely cache-hot:
  1678. */
  1679. static int
  1680. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1681. {
  1682. s64 delta;
  1683. if (p->sched_class != &fair_sched_class)
  1684. return 0;
  1685. /*
  1686. * Buddy candidates are cache hot:
  1687. */
  1688. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1689. (&p->se == cfs_rq_of(&p->se)->next ||
  1690. &p->se == cfs_rq_of(&p->se)->last))
  1691. return 1;
  1692. if (sysctl_sched_migration_cost == -1)
  1693. return 1;
  1694. if (sysctl_sched_migration_cost == 0)
  1695. return 0;
  1696. delta = now - p->se.exec_start;
  1697. return delta < (s64)sysctl_sched_migration_cost;
  1698. }
  1699. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1700. {
  1701. #ifdef CONFIG_SCHED_DEBUG
  1702. /*
  1703. * We should never call set_task_cpu() on a blocked task,
  1704. * ttwu() will sort out the placement.
  1705. */
  1706. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1707. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1708. #endif
  1709. trace_sched_migrate_task(p, new_cpu);
  1710. if (task_cpu(p) == new_cpu)
  1711. return;
  1712. p->se.nr_migrations++;
  1713. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1714. __set_task_cpu(p, new_cpu);
  1715. }
  1716. struct migration_req {
  1717. struct list_head list;
  1718. struct task_struct *task;
  1719. int dest_cpu;
  1720. struct completion done;
  1721. };
  1722. /*
  1723. * The task's runqueue lock must be held.
  1724. * Returns true if you have to wait for migration thread.
  1725. */
  1726. static int
  1727. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1728. {
  1729. struct rq *rq = task_rq(p);
  1730. /*
  1731. * If the task is not on a runqueue (and not running), then
  1732. * the next wake-up will properly place the task.
  1733. */
  1734. if (!p->se.on_rq && !task_running(rq, p))
  1735. return 0;
  1736. init_completion(&req->done);
  1737. req->task = p;
  1738. req->dest_cpu = dest_cpu;
  1739. list_add(&req->list, &rq->migration_queue);
  1740. return 1;
  1741. }
  1742. /*
  1743. * wait_task_context_switch - wait for a thread to complete at least one
  1744. * context switch.
  1745. *
  1746. * @p must not be current.
  1747. */
  1748. void wait_task_context_switch(struct task_struct *p)
  1749. {
  1750. unsigned long nvcsw, nivcsw, flags;
  1751. int running;
  1752. struct rq *rq;
  1753. nvcsw = p->nvcsw;
  1754. nivcsw = p->nivcsw;
  1755. for (;;) {
  1756. /*
  1757. * The runqueue is assigned before the actual context
  1758. * switch. We need to take the runqueue lock.
  1759. *
  1760. * We could check initially without the lock but it is
  1761. * very likely that we need to take the lock in every
  1762. * iteration.
  1763. */
  1764. rq = task_rq_lock(p, &flags);
  1765. running = task_running(rq, p);
  1766. task_rq_unlock(rq, &flags);
  1767. if (likely(!running))
  1768. break;
  1769. /*
  1770. * The switch count is incremented before the actual
  1771. * context switch. We thus wait for two switches to be
  1772. * sure at least one completed.
  1773. */
  1774. if ((p->nvcsw - nvcsw) > 1)
  1775. break;
  1776. if ((p->nivcsw - nivcsw) > 1)
  1777. break;
  1778. cpu_relax();
  1779. }
  1780. }
  1781. /*
  1782. * wait_task_inactive - wait for a thread to unschedule.
  1783. *
  1784. * If @match_state is nonzero, it's the @p->state value just checked and
  1785. * not expected to change. If it changes, i.e. @p might have woken up,
  1786. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1787. * we return a positive number (its total switch count). If a second call
  1788. * a short while later returns the same number, the caller can be sure that
  1789. * @p has remained unscheduled the whole time.
  1790. *
  1791. * The caller must ensure that the task *will* unschedule sometime soon,
  1792. * else this function might spin for a *long* time. This function can't
  1793. * be called with interrupts off, or it may introduce deadlock with
  1794. * smp_call_function() if an IPI is sent by the same process we are
  1795. * waiting to become inactive.
  1796. */
  1797. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1798. {
  1799. unsigned long flags;
  1800. int running, on_rq;
  1801. unsigned long ncsw;
  1802. struct rq *rq;
  1803. for (;;) {
  1804. /*
  1805. * We do the initial early heuristics without holding
  1806. * any task-queue locks at all. We'll only try to get
  1807. * the runqueue lock when things look like they will
  1808. * work out!
  1809. */
  1810. rq = task_rq(p);
  1811. /*
  1812. * If the task is actively running on another CPU
  1813. * still, just relax and busy-wait without holding
  1814. * any locks.
  1815. *
  1816. * NOTE! Since we don't hold any locks, it's not
  1817. * even sure that "rq" stays as the right runqueue!
  1818. * But we don't care, since "task_running()" will
  1819. * return false if the runqueue has changed and p
  1820. * is actually now running somewhere else!
  1821. */
  1822. while (task_running(rq, p)) {
  1823. if (match_state && unlikely(p->state != match_state))
  1824. return 0;
  1825. cpu_relax();
  1826. }
  1827. /*
  1828. * Ok, time to look more closely! We need the rq
  1829. * lock now, to be *sure*. If we're wrong, we'll
  1830. * just go back and repeat.
  1831. */
  1832. rq = task_rq_lock(p, &flags);
  1833. trace_sched_wait_task(rq, p);
  1834. running = task_running(rq, p);
  1835. on_rq = p->se.on_rq;
  1836. ncsw = 0;
  1837. if (!match_state || p->state == match_state)
  1838. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1839. task_rq_unlock(rq, &flags);
  1840. /*
  1841. * If it changed from the expected state, bail out now.
  1842. */
  1843. if (unlikely(!ncsw))
  1844. break;
  1845. /*
  1846. * Was it really running after all now that we
  1847. * checked with the proper locks actually held?
  1848. *
  1849. * Oops. Go back and try again..
  1850. */
  1851. if (unlikely(running)) {
  1852. cpu_relax();
  1853. continue;
  1854. }
  1855. /*
  1856. * It's not enough that it's not actively running,
  1857. * it must be off the runqueue _entirely_, and not
  1858. * preempted!
  1859. *
  1860. * So if it was still runnable (but just not actively
  1861. * running right now), it's preempted, and we should
  1862. * yield - it could be a while.
  1863. */
  1864. if (unlikely(on_rq)) {
  1865. schedule_timeout_uninterruptible(1);
  1866. continue;
  1867. }
  1868. /*
  1869. * Ahh, all good. It wasn't running, and it wasn't
  1870. * runnable, which means that it will never become
  1871. * running in the future either. We're all done!
  1872. */
  1873. break;
  1874. }
  1875. return ncsw;
  1876. }
  1877. /***
  1878. * kick_process - kick a running thread to enter/exit the kernel
  1879. * @p: the to-be-kicked thread
  1880. *
  1881. * Cause a process which is running on another CPU to enter
  1882. * kernel-mode, without any delay. (to get signals handled.)
  1883. *
  1884. * NOTE: this function doesnt have to take the runqueue lock,
  1885. * because all it wants to ensure is that the remote task enters
  1886. * the kernel. If the IPI races and the task has been migrated
  1887. * to another CPU then no harm is done and the purpose has been
  1888. * achieved as well.
  1889. */
  1890. void kick_process(struct task_struct *p)
  1891. {
  1892. int cpu;
  1893. preempt_disable();
  1894. cpu = task_cpu(p);
  1895. if ((cpu != smp_processor_id()) && task_curr(p))
  1896. smp_send_reschedule(cpu);
  1897. preempt_enable();
  1898. }
  1899. EXPORT_SYMBOL_GPL(kick_process);
  1900. #endif /* CONFIG_SMP */
  1901. /**
  1902. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1903. * @p: the task to evaluate
  1904. * @func: the function to be called
  1905. * @info: the function call argument
  1906. *
  1907. * Calls the function @func when the task is currently running. This might
  1908. * be on the current CPU, which just calls the function directly
  1909. */
  1910. void task_oncpu_function_call(struct task_struct *p,
  1911. void (*func) (void *info), void *info)
  1912. {
  1913. int cpu;
  1914. preempt_disable();
  1915. cpu = task_cpu(p);
  1916. if (task_curr(p))
  1917. smp_call_function_single(cpu, func, info, 1);
  1918. preempt_enable();
  1919. }
  1920. #ifdef CONFIG_SMP
  1921. static int select_fallback_rq(int cpu, struct task_struct *p)
  1922. {
  1923. int dest_cpu;
  1924. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1925. /* Look for allowed, online CPU in same node. */
  1926. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1927. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1928. return dest_cpu;
  1929. /* Any allowed, online CPU? */
  1930. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1931. if (dest_cpu < nr_cpu_ids)
  1932. return dest_cpu;
  1933. /* No more Mr. Nice Guy. */
  1934. if (dest_cpu >= nr_cpu_ids) {
  1935. rcu_read_lock();
  1936. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  1937. rcu_read_unlock();
  1938. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  1939. /*
  1940. * Don't tell them about moving exiting tasks or
  1941. * kernel threads (both mm NULL), since they never
  1942. * leave kernel.
  1943. */
  1944. if (p->mm && printk_ratelimit()) {
  1945. printk(KERN_INFO "process %d (%s) no "
  1946. "longer affine to cpu%d\n",
  1947. task_pid_nr(p), p->comm, cpu);
  1948. }
  1949. }
  1950. return dest_cpu;
  1951. }
  1952. /*
  1953. * Called from:
  1954. *
  1955. * - fork, @p is stable because it isn't on the tasklist yet
  1956. *
  1957. * - exec, @p is unstable, retry loop
  1958. *
  1959. * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
  1960. * we should be good.
  1961. */
  1962. static inline
  1963. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1964. {
  1965. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1966. /*
  1967. * In order not to call set_task_cpu() on a blocking task we need
  1968. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1969. * cpu.
  1970. *
  1971. * Since this is common to all placement strategies, this lives here.
  1972. *
  1973. * [ this allows ->select_task() to simply return task_cpu(p) and
  1974. * not worry about this generic constraint ]
  1975. */
  1976. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1977. !cpu_active(cpu)))
  1978. cpu = select_fallback_rq(task_cpu(p), p);
  1979. return cpu;
  1980. }
  1981. #endif
  1982. /***
  1983. * try_to_wake_up - wake up a thread
  1984. * @p: the to-be-woken-up thread
  1985. * @state: the mask of task states that can be woken
  1986. * @sync: do a synchronous wakeup?
  1987. *
  1988. * Put it on the run-queue if it's not already there. The "current"
  1989. * thread is always on the run-queue (except when the actual
  1990. * re-schedule is in progress), and as such you're allowed to do
  1991. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1992. * runnable without the overhead of this.
  1993. *
  1994. * returns failure only if the task is already active.
  1995. */
  1996. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1997. int wake_flags)
  1998. {
  1999. int cpu, orig_cpu, this_cpu, success = 0;
  2000. unsigned long flags;
  2001. struct rq *rq, *orig_rq;
  2002. if (!sched_feat(SYNC_WAKEUPS))
  2003. wake_flags &= ~WF_SYNC;
  2004. this_cpu = get_cpu();
  2005. smp_wmb();
  2006. rq = orig_rq = task_rq_lock(p, &flags);
  2007. update_rq_clock(rq);
  2008. if (!(p->state & state))
  2009. goto out;
  2010. if (p->se.on_rq)
  2011. goto out_running;
  2012. cpu = task_cpu(p);
  2013. orig_cpu = cpu;
  2014. #ifdef CONFIG_SMP
  2015. if (unlikely(task_running(rq, p)))
  2016. goto out_activate;
  2017. /*
  2018. * In order to handle concurrent wakeups and release the rq->lock
  2019. * we put the task in TASK_WAKING state.
  2020. *
  2021. * First fix up the nr_uninterruptible count:
  2022. */
  2023. if (task_contributes_to_load(p))
  2024. rq->nr_uninterruptible--;
  2025. p->state = TASK_WAKING;
  2026. if (p->sched_class->task_waking)
  2027. p->sched_class->task_waking(rq, p);
  2028. __task_rq_unlock(rq);
  2029. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2030. if (cpu != orig_cpu)
  2031. set_task_cpu(p, cpu);
  2032. rq = __task_rq_lock(p);
  2033. update_rq_clock(rq);
  2034. WARN_ON(p->state != TASK_WAKING);
  2035. cpu = task_cpu(p);
  2036. #ifdef CONFIG_SCHEDSTATS
  2037. schedstat_inc(rq, ttwu_count);
  2038. if (cpu == this_cpu)
  2039. schedstat_inc(rq, ttwu_local);
  2040. else {
  2041. struct sched_domain *sd;
  2042. for_each_domain(this_cpu, sd) {
  2043. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2044. schedstat_inc(sd, ttwu_wake_remote);
  2045. break;
  2046. }
  2047. }
  2048. }
  2049. #endif /* CONFIG_SCHEDSTATS */
  2050. out_activate:
  2051. #endif /* CONFIG_SMP */
  2052. schedstat_inc(p, se.nr_wakeups);
  2053. if (wake_flags & WF_SYNC)
  2054. schedstat_inc(p, se.nr_wakeups_sync);
  2055. if (orig_cpu != cpu)
  2056. schedstat_inc(p, se.nr_wakeups_migrate);
  2057. if (cpu == this_cpu)
  2058. schedstat_inc(p, se.nr_wakeups_local);
  2059. else
  2060. schedstat_inc(p, se.nr_wakeups_remote);
  2061. activate_task(rq, p, 1);
  2062. success = 1;
  2063. /*
  2064. * Only attribute actual wakeups done by this task.
  2065. */
  2066. if (!in_interrupt()) {
  2067. struct sched_entity *se = &current->se;
  2068. u64 sample = se->sum_exec_runtime;
  2069. if (se->last_wakeup)
  2070. sample -= se->last_wakeup;
  2071. else
  2072. sample -= se->start_runtime;
  2073. update_avg(&se->avg_wakeup, sample);
  2074. se->last_wakeup = se->sum_exec_runtime;
  2075. }
  2076. out_running:
  2077. trace_sched_wakeup(rq, p, success);
  2078. check_preempt_curr(rq, p, wake_flags);
  2079. p->state = TASK_RUNNING;
  2080. #ifdef CONFIG_SMP
  2081. if (p->sched_class->task_woken)
  2082. p->sched_class->task_woken(rq, p);
  2083. if (unlikely(rq->idle_stamp)) {
  2084. u64 delta = rq->clock - rq->idle_stamp;
  2085. u64 max = 2*sysctl_sched_migration_cost;
  2086. if (delta > max)
  2087. rq->avg_idle = max;
  2088. else
  2089. update_avg(&rq->avg_idle, delta);
  2090. rq->idle_stamp = 0;
  2091. }
  2092. #endif
  2093. out:
  2094. task_rq_unlock(rq, &flags);
  2095. put_cpu();
  2096. return success;
  2097. }
  2098. /**
  2099. * wake_up_process - Wake up a specific process
  2100. * @p: The process to be woken up.
  2101. *
  2102. * Attempt to wake up the nominated process and move it to the set of runnable
  2103. * processes. Returns 1 if the process was woken up, 0 if it was already
  2104. * running.
  2105. *
  2106. * It may be assumed that this function implies a write memory barrier before
  2107. * changing the task state if and only if any tasks are woken up.
  2108. */
  2109. int wake_up_process(struct task_struct *p)
  2110. {
  2111. return try_to_wake_up(p, TASK_ALL, 0);
  2112. }
  2113. EXPORT_SYMBOL(wake_up_process);
  2114. int wake_up_state(struct task_struct *p, unsigned int state)
  2115. {
  2116. return try_to_wake_up(p, state, 0);
  2117. }
  2118. /*
  2119. * Perform scheduler related setup for a newly forked process p.
  2120. * p is forked by current.
  2121. *
  2122. * __sched_fork() is basic setup used by init_idle() too:
  2123. */
  2124. static void __sched_fork(struct task_struct *p)
  2125. {
  2126. p->se.exec_start = 0;
  2127. p->se.sum_exec_runtime = 0;
  2128. p->se.prev_sum_exec_runtime = 0;
  2129. p->se.nr_migrations = 0;
  2130. p->se.last_wakeup = 0;
  2131. p->se.avg_overlap = 0;
  2132. p->se.start_runtime = 0;
  2133. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2134. #ifdef CONFIG_SCHEDSTATS
  2135. p->se.wait_start = 0;
  2136. p->se.wait_max = 0;
  2137. p->se.wait_count = 0;
  2138. p->se.wait_sum = 0;
  2139. p->se.sleep_start = 0;
  2140. p->se.sleep_max = 0;
  2141. p->se.sum_sleep_runtime = 0;
  2142. p->se.block_start = 0;
  2143. p->se.block_max = 0;
  2144. p->se.exec_max = 0;
  2145. p->se.slice_max = 0;
  2146. p->se.nr_migrations_cold = 0;
  2147. p->se.nr_failed_migrations_affine = 0;
  2148. p->se.nr_failed_migrations_running = 0;
  2149. p->se.nr_failed_migrations_hot = 0;
  2150. p->se.nr_forced_migrations = 0;
  2151. p->se.nr_wakeups = 0;
  2152. p->se.nr_wakeups_sync = 0;
  2153. p->se.nr_wakeups_migrate = 0;
  2154. p->se.nr_wakeups_local = 0;
  2155. p->se.nr_wakeups_remote = 0;
  2156. p->se.nr_wakeups_affine = 0;
  2157. p->se.nr_wakeups_affine_attempts = 0;
  2158. p->se.nr_wakeups_passive = 0;
  2159. p->se.nr_wakeups_idle = 0;
  2160. #endif
  2161. INIT_LIST_HEAD(&p->rt.run_list);
  2162. p->se.on_rq = 0;
  2163. INIT_LIST_HEAD(&p->se.group_node);
  2164. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2165. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2166. #endif
  2167. }
  2168. /*
  2169. * fork()/clone()-time setup:
  2170. */
  2171. void sched_fork(struct task_struct *p, int clone_flags)
  2172. {
  2173. int cpu = get_cpu();
  2174. __sched_fork(p);
  2175. /*
  2176. * We mark the process as waking here. This guarantees that
  2177. * nobody will actually run it, and a signal or other external
  2178. * event cannot wake it up and insert it on the runqueue either.
  2179. */
  2180. p->state = TASK_WAKING;
  2181. /*
  2182. * Revert to default priority/policy on fork if requested.
  2183. */
  2184. if (unlikely(p->sched_reset_on_fork)) {
  2185. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2186. p->policy = SCHED_NORMAL;
  2187. p->normal_prio = p->static_prio;
  2188. }
  2189. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2190. p->static_prio = NICE_TO_PRIO(0);
  2191. p->normal_prio = p->static_prio;
  2192. set_load_weight(p);
  2193. }
  2194. /*
  2195. * We don't need the reset flag anymore after the fork. It has
  2196. * fulfilled its duty:
  2197. */
  2198. p->sched_reset_on_fork = 0;
  2199. }
  2200. /*
  2201. * Make sure we do not leak PI boosting priority to the child.
  2202. */
  2203. p->prio = current->normal_prio;
  2204. if (!rt_prio(p->prio))
  2205. p->sched_class = &fair_sched_class;
  2206. if (p->sched_class->task_fork)
  2207. p->sched_class->task_fork(p);
  2208. #ifdef CONFIG_SMP
  2209. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2210. #endif
  2211. set_task_cpu(p, cpu);
  2212. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2213. if (likely(sched_info_on()))
  2214. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2215. #endif
  2216. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2217. p->oncpu = 0;
  2218. #endif
  2219. #ifdef CONFIG_PREEMPT
  2220. /* Want to start with kernel preemption disabled. */
  2221. task_thread_info(p)->preempt_count = 1;
  2222. #endif
  2223. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2224. put_cpu();
  2225. }
  2226. /*
  2227. * wake_up_new_task - wake up a newly created task for the first time.
  2228. *
  2229. * This function will do some initial scheduler statistics housekeeping
  2230. * that must be done for every newly created context, then puts the task
  2231. * on the runqueue and wakes it.
  2232. */
  2233. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2234. {
  2235. unsigned long flags;
  2236. struct rq *rq;
  2237. rq = task_rq_lock(p, &flags);
  2238. BUG_ON(p->state != TASK_WAKING);
  2239. p->state = TASK_RUNNING;
  2240. update_rq_clock(rq);
  2241. activate_task(rq, p, 0);
  2242. trace_sched_wakeup_new(rq, p, 1);
  2243. check_preempt_curr(rq, p, WF_FORK);
  2244. #ifdef CONFIG_SMP
  2245. if (p->sched_class->task_woken)
  2246. p->sched_class->task_woken(rq, p);
  2247. #endif
  2248. task_rq_unlock(rq, &flags);
  2249. }
  2250. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2251. /**
  2252. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2253. * @notifier: notifier struct to register
  2254. */
  2255. void preempt_notifier_register(struct preempt_notifier *notifier)
  2256. {
  2257. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2258. }
  2259. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2260. /**
  2261. * preempt_notifier_unregister - no longer interested in preemption notifications
  2262. * @notifier: notifier struct to unregister
  2263. *
  2264. * This is safe to call from within a preemption notifier.
  2265. */
  2266. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2267. {
  2268. hlist_del(&notifier->link);
  2269. }
  2270. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2271. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2272. {
  2273. struct preempt_notifier *notifier;
  2274. struct hlist_node *node;
  2275. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2276. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2277. }
  2278. static void
  2279. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2280. struct task_struct *next)
  2281. {
  2282. struct preempt_notifier *notifier;
  2283. struct hlist_node *node;
  2284. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2285. notifier->ops->sched_out(notifier, next);
  2286. }
  2287. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2288. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2289. {
  2290. }
  2291. static void
  2292. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2293. struct task_struct *next)
  2294. {
  2295. }
  2296. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2297. /**
  2298. * prepare_task_switch - prepare to switch tasks
  2299. * @rq: the runqueue preparing to switch
  2300. * @prev: the current task that is being switched out
  2301. * @next: the task we are going to switch to.
  2302. *
  2303. * This is called with the rq lock held and interrupts off. It must
  2304. * be paired with a subsequent finish_task_switch after the context
  2305. * switch.
  2306. *
  2307. * prepare_task_switch sets up locking and calls architecture specific
  2308. * hooks.
  2309. */
  2310. static inline void
  2311. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2312. struct task_struct *next)
  2313. {
  2314. fire_sched_out_preempt_notifiers(prev, next);
  2315. prepare_lock_switch(rq, next);
  2316. prepare_arch_switch(next);
  2317. }
  2318. /**
  2319. * finish_task_switch - clean up after a task-switch
  2320. * @rq: runqueue associated with task-switch
  2321. * @prev: the thread we just switched away from.
  2322. *
  2323. * finish_task_switch must be called after the context switch, paired
  2324. * with a prepare_task_switch call before the context switch.
  2325. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2326. * and do any other architecture-specific cleanup actions.
  2327. *
  2328. * Note that we may have delayed dropping an mm in context_switch(). If
  2329. * so, we finish that here outside of the runqueue lock. (Doing it
  2330. * with the lock held can cause deadlocks; see schedule() for
  2331. * details.)
  2332. */
  2333. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2334. __releases(rq->lock)
  2335. {
  2336. struct mm_struct *mm = rq->prev_mm;
  2337. long prev_state;
  2338. rq->prev_mm = NULL;
  2339. /*
  2340. * A task struct has one reference for the use as "current".
  2341. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2342. * schedule one last time. The schedule call will never return, and
  2343. * the scheduled task must drop that reference.
  2344. * The test for TASK_DEAD must occur while the runqueue locks are
  2345. * still held, otherwise prev could be scheduled on another cpu, die
  2346. * there before we look at prev->state, and then the reference would
  2347. * be dropped twice.
  2348. * Manfred Spraul <manfred@colorfullife.com>
  2349. */
  2350. prev_state = prev->state;
  2351. finish_arch_switch(prev);
  2352. perf_event_task_sched_in(current, cpu_of(rq));
  2353. finish_lock_switch(rq, prev);
  2354. fire_sched_in_preempt_notifiers(current);
  2355. if (mm)
  2356. mmdrop(mm);
  2357. if (unlikely(prev_state == TASK_DEAD)) {
  2358. /*
  2359. * Remove function-return probe instances associated with this
  2360. * task and put them back on the free list.
  2361. */
  2362. kprobe_flush_task(prev);
  2363. put_task_struct(prev);
  2364. }
  2365. }
  2366. #ifdef CONFIG_SMP
  2367. /* assumes rq->lock is held */
  2368. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2369. {
  2370. if (prev->sched_class->pre_schedule)
  2371. prev->sched_class->pre_schedule(rq, prev);
  2372. }
  2373. /* rq->lock is NOT held, but preemption is disabled */
  2374. static inline void post_schedule(struct rq *rq)
  2375. {
  2376. if (rq->post_schedule) {
  2377. unsigned long flags;
  2378. raw_spin_lock_irqsave(&rq->lock, flags);
  2379. if (rq->curr->sched_class->post_schedule)
  2380. rq->curr->sched_class->post_schedule(rq);
  2381. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2382. rq->post_schedule = 0;
  2383. }
  2384. }
  2385. #else
  2386. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2387. {
  2388. }
  2389. static inline void post_schedule(struct rq *rq)
  2390. {
  2391. }
  2392. #endif
  2393. /**
  2394. * schedule_tail - first thing a freshly forked thread must call.
  2395. * @prev: the thread we just switched away from.
  2396. */
  2397. asmlinkage void schedule_tail(struct task_struct *prev)
  2398. __releases(rq->lock)
  2399. {
  2400. struct rq *rq = this_rq();
  2401. finish_task_switch(rq, prev);
  2402. /*
  2403. * FIXME: do we need to worry about rq being invalidated by the
  2404. * task_switch?
  2405. */
  2406. post_schedule(rq);
  2407. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2408. /* In this case, finish_task_switch does not reenable preemption */
  2409. preempt_enable();
  2410. #endif
  2411. if (current->set_child_tid)
  2412. put_user(task_pid_vnr(current), current->set_child_tid);
  2413. }
  2414. /*
  2415. * context_switch - switch to the new MM and the new
  2416. * thread's register state.
  2417. */
  2418. static inline void
  2419. context_switch(struct rq *rq, struct task_struct *prev,
  2420. struct task_struct *next)
  2421. {
  2422. struct mm_struct *mm, *oldmm;
  2423. prepare_task_switch(rq, prev, next);
  2424. trace_sched_switch(rq, prev, next);
  2425. mm = next->mm;
  2426. oldmm = prev->active_mm;
  2427. /*
  2428. * For paravirt, this is coupled with an exit in switch_to to
  2429. * combine the page table reload and the switch backend into
  2430. * one hypercall.
  2431. */
  2432. arch_start_context_switch(prev);
  2433. if (likely(!mm)) {
  2434. next->active_mm = oldmm;
  2435. atomic_inc(&oldmm->mm_count);
  2436. enter_lazy_tlb(oldmm, next);
  2437. } else
  2438. switch_mm(oldmm, mm, next);
  2439. if (likely(!prev->mm)) {
  2440. prev->active_mm = NULL;
  2441. rq->prev_mm = oldmm;
  2442. }
  2443. /*
  2444. * Since the runqueue lock will be released by the next
  2445. * task (which is an invalid locking op but in the case
  2446. * of the scheduler it's an obvious special-case), so we
  2447. * do an early lockdep release here:
  2448. */
  2449. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2450. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2451. #endif
  2452. /* Here we just switch the register state and the stack. */
  2453. switch_to(prev, next, prev);
  2454. barrier();
  2455. /*
  2456. * this_rq must be evaluated again because prev may have moved
  2457. * CPUs since it called schedule(), thus the 'rq' on its stack
  2458. * frame will be invalid.
  2459. */
  2460. finish_task_switch(this_rq(), prev);
  2461. }
  2462. /*
  2463. * nr_running, nr_uninterruptible and nr_context_switches:
  2464. *
  2465. * externally visible scheduler statistics: current number of runnable
  2466. * threads, current number of uninterruptible-sleeping threads, total
  2467. * number of context switches performed since bootup.
  2468. */
  2469. unsigned long nr_running(void)
  2470. {
  2471. unsigned long i, sum = 0;
  2472. for_each_online_cpu(i)
  2473. sum += cpu_rq(i)->nr_running;
  2474. return sum;
  2475. }
  2476. unsigned long nr_uninterruptible(void)
  2477. {
  2478. unsigned long i, sum = 0;
  2479. for_each_possible_cpu(i)
  2480. sum += cpu_rq(i)->nr_uninterruptible;
  2481. /*
  2482. * Since we read the counters lockless, it might be slightly
  2483. * inaccurate. Do not allow it to go below zero though:
  2484. */
  2485. if (unlikely((long)sum < 0))
  2486. sum = 0;
  2487. return sum;
  2488. }
  2489. unsigned long long nr_context_switches(void)
  2490. {
  2491. int i;
  2492. unsigned long long sum = 0;
  2493. for_each_possible_cpu(i)
  2494. sum += cpu_rq(i)->nr_switches;
  2495. return sum;
  2496. }
  2497. unsigned long nr_iowait(void)
  2498. {
  2499. unsigned long i, sum = 0;
  2500. for_each_possible_cpu(i)
  2501. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2502. return sum;
  2503. }
  2504. unsigned long nr_iowait_cpu(void)
  2505. {
  2506. struct rq *this = this_rq();
  2507. return atomic_read(&this->nr_iowait);
  2508. }
  2509. unsigned long this_cpu_load(void)
  2510. {
  2511. struct rq *this = this_rq();
  2512. return this->cpu_load[0];
  2513. }
  2514. /* Variables and functions for calc_load */
  2515. static atomic_long_t calc_load_tasks;
  2516. static unsigned long calc_load_update;
  2517. unsigned long avenrun[3];
  2518. EXPORT_SYMBOL(avenrun);
  2519. /**
  2520. * get_avenrun - get the load average array
  2521. * @loads: pointer to dest load array
  2522. * @offset: offset to add
  2523. * @shift: shift count to shift the result left
  2524. *
  2525. * These values are estimates at best, so no need for locking.
  2526. */
  2527. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2528. {
  2529. loads[0] = (avenrun[0] + offset) << shift;
  2530. loads[1] = (avenrun[1] + offset) << shift;
  2531. loads[2] = (avenrun[2] + offset) << shift;
  2532. }
  2533. static unsigned long
  2534. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2535. {
  2536. load *= exp;
  2537. load += active * (FIXED_1 - exp);
  2538. return load >> FSHIFT;
  2539. }
  2540. /*
  2541. * calc_load - update the avenrun load estimates 10 ticks after the
  2542. * CPUs have updated calc_load_tasks.
  2543. */
  2544. void calc_global_load(void)
  2545. {
  2546. unsigned long upd = calc_load_update + 10;
  2547. long active;
  2548. if (time_before(jiffies, upd))
  2549. return;
  2550. active = atomic_long_read(&calc_load_tasks);
  2551. active = active > 0 ? active * FIXED_1 : 0;
  2552. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2553. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2554. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2555. calc_load_update += LOAD_FREQ;
  2556. }
  2557. /*
  2558. * Either called from update_cpu_load() or from a cpu going idle
  2559. */
  2560. static void calc_load_account_active(struct rq *this_rq)
  2561. {
  2562. long nr_active, delta;
  2563. nr_active = this_rq->nr_running;
  2564. nr_active += (long) this_rq->nr_uninterruptible;
  2565. if (nr_active != this_rq->calc_load_active) {
  2566. delta = nr_active - this_rq->calc_load_active;
  2567. this_rq->calc_load_active = nr_active;
  2568. atomic_long_add(delta, &calc_load_tasks);
  2569. }
  2570. }
  2571. /*
  2572. * Update rq->cpu_load[] statistics. This function is usually called every
  2573. * scheduler tick (TICK_NSEC).
  2574. */
  2575. static void update_cpu_load(struct rq *this_rq)
  2576. {
  2577. unsigned long this_load = this_rq->load.weight;
  2578. int i, scale;
  2579. this_rq->nr_load_updates++;
  2580. /* Update our load: */
  2581. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2582. unsigned long old_load, new_load;
  2583. /* scale is effectively 1 << i now, and >> i divides by scale */
  2584. old_load = this_rq->cpu_load[i];
  2585. new_load = this_load;
  2586. /*
  2587. * Round up the averaging division if load is increasing. This
  2588. * prevents us from getting stuck on 9 if the load is 10, for
  2589. * example.
  2590. */
  2591. if (new_load > old_load)
  2592. new_load += scale-1;
  2593. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2594. }
  2595. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2596. this_rq->calc_load_update += LOAD_FREQ;
  2597. calc_load_account_active(this_rq);
  2598. }
  2599. }
  2600. #ifdef CONFIG_SMP
  2601. /*
  2602. * double_rq_lock - safely lock two runqueues
  2603. *
  2604. * Note this does not disable interrupts like task_rq_lock,
  2605. * you need to do so manually before calling.
  2606. */
  2607. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2608. __acquires(rq1->lock)
  2609. __acquires(rq2->lock)
  2610. {
  2611. BUG_ON(!irqs_disabled());
  2612. if (rq1 == rq2) {
  2613. raw_spin_lock(&rq1->lock);
  2614. __acquire(rq2->lock); /* Fake it out ;) */
  2615. } else {
  2616. if (rq1 < rq2) {
  2617. raw_spin_lock(&rq1->lock);
  2618. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2619. } else {
  2620. raw_spin_lock(&rq2->lock);
  2621. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2622. }
  2623. }
  2624. update_rq_clock(rq1);
  2625. update_rq_clock(rq2);
  2626. }
  2627. /*
  2628. * double_rq_unlock - safely unlock two runqueues
  2629. *
  2630. * Note this does not restore interrupts like task_rq_unlock,
  2631. * you need to do so manually after calling.
  2632. */
  2633. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2634. __releases(rq1->lock)
  2635. __releases(rq2->lock)
  2636. {
  2637. raw_spin_unlock(&rq1->lock);
  2638. if (rq1 != rq2)
  2639. raw_spin_unlock(&rq2->lock);
  2640. else
  2641. __release(rq2->lock);
  2642. }
  2643. /*
  2644. * sched_exec - execve() is a valuable balancing opportunity, because at
  2645. * this point the task has the smallest effective memory and cache footprint.
  2646. */
  2647. void sched_exec(void)
  2648. {
  2649. struct task_struct *p = current;
  2650. struct migration_req req;
  2651. int dest_cpu, this_cpu;
  2652. unsigned long flags;
  2653. struct rq *rq;
  2654. again:
  2655. this_cpu = get_cpu();
  2656. dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
  2657. if (dest_cpu == this_cpu) {
  2658. put_cpu();
  2659. return;
  2660. }
  2661. rq = task_rq_lock(p, &flags);
  2662. put_cpu();
  2663. /*
  2664. * select_task_rq() can race against ->cpus_allowed
  2665. */
  2666. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2667. || unlikely(!cpu_active(dest_cpu))) {
  2668. task_rq_unlock(rq, &flags);
  2669. goto again;
  2670. }
  2671. /* force the process onto the specified CPU */
  2672. if (migrate_task(p, dest_cpu, &req)) {
  2673. /* Need to wait for migration thread (might exit: take ref). */
  2674. struct task_struct *mt = rq->migration_thread;
  2675. get_task_struct(mt);
  2676. task_rq_unlock(rq, &flags);
  2677. wake_up_process(mt);
  2678. put_task_struct(mt);
  2679. wait_for_completion(&req.done);
  2680. return;
  2681. }
  2682. task_rq_unlock(rq, &flags);
  2683. }
  2684. /*
  2685. * pull_task - move a task from a remote runqueue to the local runqueue.
  2686. * Both runqueues must be locked.
  2687. */
  2688. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2689. struct rq *this_rq, int this_cpu)
  2690. {
  2691. deactivate_task(src_rq, p, 0);
  2692. set_task_cpu(p, this_cpu);
  2693. activate_task(this_rq, p, 0);
  2694. check_preempt_curr(this_rq, p, 0);
  2695. }
  2696. /*
  2697. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2698. */
  2699. static
  2700. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2701. struct sched_domain *sd, enum cpu_idle_type idle,
  2702. int *all_pinned)
  2703. {
  2704. int tsk_cache_hot = 0;
  2705. /*
  2706. * We do not migrate tasks that are:
  2707. * 1) running (obviously), or
  2708. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2709. * 3) are cache-hot on their current CPU.
  2710. */
  2711. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2712. schedstat_inc(p, se.nr_failed_migrations_affine);
  2713. return 0;
  2714. }
  2715. *all_pinned = 0;
  2716. if (task_running(rq, p)) {
  2717. schedstat_inc(p, se.nr_failed_migrations_running);
  2718. return 0;
  2719. }
  2720. /*
  2721. * Aggressive migration if:
  2722. * 1) task is cache cold, or
  2723. * 2) too many balance attempts have failed.
  2724. */
  2725. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2726. if (!tsk_cache_hot ||
  2727. sd->nr_balance_failed > sd->cache_nice_tries) {
  2728. #ifdef CONFIG_SCHEDSTATS
  2729. if (tsk_cache_hot) {
  2730. schedstat_inc(sd, lb_hot_gained[idle]);
  2731. schedstat_inc(p, se.nr_forced_migrations);
  2732. }
  2733. #endif
  2734. return 1;
  2735. }
  2736. if (tsk_cache_hot) {
  2737. schedstat_inc(p, se.nr_failed_migrations_hot);
  2738. return 0;
  2739. }
  2740. return 1;
  2741. }
  2742. static unsigned long
  2743. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2744. unsigned long max_load_move, struct sched_domain *sd,
  2745. enum cpu_idle_type idle, int *all_pinned,
  2746. int *this_best_prio, struct rq_iterator *iterator)
  2747. {
  2748. int loops = 0, pulled = 0, pinned = 0;
  2749. struct task_struct *p;
  2750. long rem_load_move = max_load_move;
  2751. if (max_load_move == 0)
  2752. goto out;
  2753. pinned = 1;
  2754. /*
  2755. * Start the load-balancing iterator:
  2756. */
  2757. p = iterator->start(iterator->arg);
  2758. next:
  2759. if (!p || loops++ > sysctl_sched_nr_migrate)
  2760. goto out;
  2761. if ((p->se.load.weight >> 1) > rem_load_move ||
  2762. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2763. p = iterator->next(iterator->arg);
  2764. goto next;
  2765. }
  2766. pull_task(busiest, p, this_rq, this_cpu);
  2767. pulled++;
  2768. rem_load_move -= p->se.load.weight;
  2769. #ifdef CONFIG_PREEMPT
  2770. /*
  2771. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2772. * will stop after the first task is pulled to minimize the critical
  2773. * section.
  2774. */
  2775. if (idle == CPU_NEWLY_IDLE)
  2776. goto out;
  2777. #endif
  2778. /*
  2779. * We only want to steal up to the prescribed amount of weighted load.
  2780. */
  2781. if (rem_load_move > 0) {
  2782. if (p->prio < *this_best_prio)
  2783. *this_best_prio = p->prio;
  2784. p = iterator->next(iterator->arg);
  2785. goto next;
  2786. }
  2787. out:
  2788. /*
  2789. * Right now, this is one of only two places pull_task() is called,
  2790. * so we can safely collect pull_task() stats here rather than
  2791. * inside pull_task().
  2792. */
  2793. schedstat_add(sd, lb_gained[idle], pulled);
  2794. if (all_pinned)
  2795. *all_pinned = pinned;
  2796. return max_load_move - rem_load_move;
  2797. }
  2798. /*
  2799. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2800. * this_rq, as part of a balancing operation within domain "sd".
  2801. * Returns 1 if successful and 0 otherwise.
  2802. *
  2803. * Called with both runqueues locked.
  2804. */
  2805. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2806. unsigned long max_load_move,
  2807. struct sched_domain *sd, enum cpu_idle_type idle,
  2808. int *all_pinned)
  2809. {
  2810. const struct sched_class *class = sched_class_highest;
  2811. unsigned long total_load_moved = 0;
  2812. int this_best_prio = this_rq->curr->prio;
  2813. do {
  2814. total_load_moved +=
  2815. class->load_balance(this_rq, this_cpu, busiest,
  2816. max_load_move - total_load_moved,
  2817. sd, idle, all_pinned, &this_best_prio);
  2818. class = class->next;
  2819. #ifdef CONFIG_PREEMPT
  2820. /*
  2821. * NEWIDLE balancing is a source of latency, so preemptible
  2822. * kernels will stop after the first task is pulled to minimize
  2823. * the critical section.
  2824. */
  2825. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2826. break;
  2827. #endif
  2828. } while (class && max_load_move > total_load_moved);
  2829. return total_load_moved > 0;
  2830. }
  2831. static int
  2832. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2833. struct sched_domain *sd, enum cpu_idle_type idle,
  2834. struct rq_iterator *iterator)
  2835. {
  2836. struct task_struct *p = iterator->start(iterator->arg);
  2837. int pinned = 0;
  2838. while (p) {
  2839. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2840. pull_task(busiest, p, this_rq, this_cpu);
  2841. /*
  2842. * Right now, this is only the second place pull_task()
  2843. * is called, so we can safely collect pull_task()
  2844. * stats here rather than inside pull_task().
  2845. */
  2846. schedstat_inc(sd, lb_gained[idle]);
  2847. return 1;
  2848. }
  2849. p = iterator->next(iterator->arg);
  2850. }
  2851. return 0;
  2852. }
  2853. /*
  2854. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2855. * part of active balancing operations within "domain".
  2856. * Returns 1 if successful and 0 otherwise.
  2857. *
  2858. * Called with both runqueues locked.
  2859. */
  2860. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2861. struct sched_domain *sd, enum cpu_idle_type idle)
  2862. {
  2863. const struct sched_class *class;
  2864. for_each_class(class) {
  2865. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2866. return 1;
  2867. }
  2868. return 0;
  2869. }
  2870. /********** Helpers for find_busiest_group ************************/
  2871. /*
  2872. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2873. * during load balancing.
  2874. */
  2875. struct sd_lb_stats {
  2876. struct sched_group *busiest; /* Busiest group in this sd */
  2877. struct sched_group *this; /* Local group in this sd */
  2878. unsigned long total_load; /* Total load of all groups in sd */
  2879. unsigned long total_pwr; /* Total power of all groups in sd */
  2880. unsigned long avg_load; /* Average load across all groups in sd */
  2881. /** Statistics of this group */
  2882. unsigned long this_load;
  2883. unsigned long this_load_per_task;
  2884. unsigned long this_nr_running;
  2885. /* Statistics of the busiest group */
  2886. unsigned long max_load;
  2887. unsigned long busiest_load_per_task;
  2888. unsigned long busiest_nr_running;
  2889. int group_imb; /* Is there imbalance in this sd */
  2890. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2891. int power_savings_balance; /* Is powersave balance needed for this sd */
  2892. struct sched_group *group_min; /* Least loaded group in sd */
  2893. struct sched_group *group_leader; /* Group which relieves group_min */
  2894. unsigned long min_load_per_task; /* load_per_task in group_min */
  2895. unsigned long leader_nr_running; /* Nr running of group_leader */
  2896. unsigned long min_nr_running; /* Nr running of group_min */
  2897. #endif
  2898. };
  2899. /*
  2900. * sg_lb_stats - stats of a sched_group required for load_balancing
  2901. */
  2902. struct sg_lb_stats {
  2903. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2904. unsigned long group_load; /* Total load over the CPUs of the group */
  2905. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2906. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2907. unsigned long group_capacity;
  2908. int group_imb; /* Is there an imbalance in the group ? */
  2909. };
  2910. /**
  2911. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2912. * @group: The group whose first cpu is to be returned.
  2913. */
  2914. static inline unsigned int group_first_cpu(struct sched_group *group)
  2915. {
  2916. return cpumask_first(sched_group_cpus(group));
  2917. }
  2918. /**
  2919. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2920. * @sd: The sched_domain whose load_idx is to be obtained.
  2921. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2922. */
  2923. static inline int get_sd_load_idx(struct sched_domain *sd,
  2924. enum cpu_idle_type idle)
  2925. {
  2926. int load_idx;
  2927. switch (idle) {
  2928. case CPU_NOT_IDLE:
  2929. load_idx = sd->busy_idx;
  2930. break;
  2931. case CPU_NEWLY_IDLE:
  2932. load_idx = sd->newidle_idx;
  2933. break;
  2934. default:
  2935. load_idx = sd->idle_idx;
  2936. break;
  2937. }
  2938. return load_idx;
  2939. }
  2940. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2941. /**
  2942. * init_sd_power_savings_stats - Initialize power savings statistics for
  2943. * the given sched_domain, during load balancing.
  2944. *
  2945. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2946. * @sds: Variable containing the statistics for sd.
  2947. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2948. */
  2949. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2950. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2951. {
  2952. /*
  2953. * Busy processors will not participate in power savings
  2954. * balance.
  2955. */
  2956. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2957. sds->power_savings_balance = 0;
  2958. else {
  2959. sds->power_savings_balance = 1;
  2960. sds->min_nr_running = ULONG_MAX;
  2961. sds->leader_nr_running = 0;
  2962. }
  2963. }
  2964. /**
  2965. * update_sd_power_savings_stats - Update the power saving stats for a
  2966. * sched_domain while performing load balancing.
  2967. *
  2968. * @group: sched_group belonging to the sched_domain under consideration.
  2969. * @sds: Variable containing the statistics of the sched_domain
  2970. * @local_group: Does group contain the CPU for which we're performing
  2971. * load balancing ?
  2972. * @sgs: Variable containing the statistics of the group.
  2973. */
  2974. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2975. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2976. {
  2977. if (!sds->power_savings_balance)
  2978. return;
  2979. /*
  2980. * If the local group is idle or completely loaded
  2981. * no need to do power savings balance at this domain
  2982. */
  2983. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2984. !sds->this_nr_running))
  2985. sds->power_savings_balance = 0;
  2986. /*
  2987. * If a group is already running at full capacity or idle,
  2988. * don't include that group in power savings calculations
  2989. */
  2990. if (!sds->power_savings_balance ||
  2991. sgs->sum_nr_running >= sgs->group_capacity ||
  2992. !sgs->sum_nr_running)
  2993. return;
  2994. /*
  2995. * Calculate the group which has the least non-idle load.
  2996. * This is the group from where we need to pick up the load
  2997. * for saving power
  2998. */
  2999. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3000. (sgs->sum_nr_running == sds->min_nr_running &&
  3001. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3002. sds->group_min = group;
  3003. sds->min_nr_running = sgs->sum_nr_running;
  3004. sds->min_load_per_task = sgs->sum_weighted_load /
  3005. sgs->sum_nr_running;
  3006. }
  3007. /*
  3008. * Calculate the group which is almost near its
  3009. * capacity but still has some space to pick up some load
  3010. * from other group and save more power
  3011. */
  3012. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3013. return;
  3014. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3015. (sgs->sum_nr_running == sds->leader_nr_running &&
  3016. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3017. sds->group_leader = group;
  3018. sds->leader_nr_running = sgs->sum_nr_running;
  3019. }
  3020. }
  3021. /**
  3022. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3023. * @sds: Variable containing the statistics of the sched_domain
  3024. * under consideration.
  3025. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3026. * @imbalance: Variable to store the imbalance.
  3027. *
  3028. * Description:
  3029. * Check if we have potential to perform some power-savings balance.
  3030. * If yes, set the busiest group to be the least loaded group in the
  3031. * sched_domain, so that it's CPUs can be put to idle.
  3032. *
  3033. * Returns 1 if there is potential to perform power-savings balance.
  3034. * Else returns 0.
  3035. */
  3036. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3037. int this_cpu, unsigned long *imbalance)
  3038. {
  3039. if (!sds->power_savings_balance)
  3040. return 0;
  3041. if (sds->this != sds->group_leader ||
  3042. sds->group_leader == sds->group_min)
  3043. return 0;
  3044. *imbalance = sds->min_load_per_task;
  3045. sds->busiest = sds->group_min;
  3046. return 1;
  3047. }
  3048. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3049. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3050. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3051. {
  3052. return;
  3053. }
  3054. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3055. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3056. {
  3057. return;
  3058. }
  3059. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3060. int this_cpu, unsigned long *imbalance)
  3061. {
  3062. return 0;
  3063. }
  3064. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3065. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3066. {
  3067. return SCHED_LOAD_SCALE;
  3068. }
  3069. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3070. {
  3071. return default_scale_freq_power(sd, cpu);
  3072. }
  3073. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3074. {
  3075. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3076. unsigned long smt_gain = sd->smt_gain;
  3077. smt_gain /= weight;
  3078. return smt_gain;
  3079. }
  3080. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3081. {
  3082. return default_scale_smt_power(sd, cpu);
  3083. }
  3084. unsigned long scale_rt_power(int cpu)
  3085. {
  3086. struct rq *rq = cpu_rq(cpu);
  3087. u64 total, available;
  3088. sched_avg_update(rq);
  3089. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3090. available = total - rq->rt_avg;
  3091. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3092. total = SCHED_LOAD_SCALE;
  3093. total >>= SCHED_LOAD_SHIFT;
  3094. return div_u64(available, total);
  3095. }
  3096. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3097. {
  3098. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3099. unsigned long power = SCHED_LOAD_SCALE;
  3100. struct sched_group *sdg = sd->groups;
  3101. if (sched_feat(ARCH_POWER))
  3102. power *= arch_scale_freq_power(sd, cpu);
  3103. else
  3104. power *= default_scale_freq_power(sd, cpu);
  3105. power >>= SCHED_LOAD_SHIFT;
  3106. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3107. if (sched_feat(ARCH_POWER))
  3108. power *= arch_scale_smt_power(sd, cpu);
  3109. else
  3110. power *= default_scale_smt_power(sd, cpu);
  3111. power >>= SCHED_LOAD_SHIFT;
  3112. }
  3113. power *= scale_rt_power(cpu);
  3114. power >>= SCHED_LOAD_SHIFT;
  3115. if (!power)
  3116. power = 1;
  3117. sdg->cpu_power = power;
  3118. }
  3119. static void update_group_power(struct sched_domain *sd, int cpu)
  3120. {
  3121. struct sched_domain *child = sd->child;
  3122. struct sched_group *group, *sdg = sd->groups;
  3123. unsigned long power;
  3124. if (!child) {
  3125. update_cpu_power(sd, cpu);
  3126. return;
  3127. }
  3128. power = 0;
  3129. group = child->groups;
  3130. do {
  3131. power += group->cpu_power;
  3132. group = group->next;
  3133. } while (group != child->groups);
  3134. sdg->cpu_power = power;
  3135. }
  3136. /**
  3137. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3138. * @sd: The sched_domain whose statistics are to be updated.
  3139. * @group: sched_group whose statistics are to be updated.
  3140. * @this_cpu: Cpu for which load balance is currently performed.
  3141. * @idle: Idle status of this_cpu
  3142. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3143. * @sd_idle: Idle status of the sched_domain containing group.
  3144. * @local_group: Does group contain this_cpu.
  3145. * @cpus: Set of cpus considered for load balancing.
  3146. * @balance: Should we balance.
  3147. * @sgs: variable to hold the statistics for this group.
  3148. */
  3149. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3150. struct sched_group *group, int this_cpu,
  3151. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3152. int local_group, const struct cpumask *cpus,
  3153. int *balance, struct sg_lb_stats *sgs)
  3154. {
  3155. unsigned long load, max_cpu_load, min_cpu_load;
  3156. int i;
  3157. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3158. unsigned long sum_avg_load_per_task;
  3159. unsigned long avg_load_per_task;
  3160. if (local_group) {
  3161. balance_cpu = group_first_cpu(group);
  3162. if (balance_cpu == this_cpu)
  3163. update_group_power(sd, this_cpu);
  3164. }
  3165. /* Tally up the load of all CPUs in the group */
  3166. sum_avg_load_per_task = avg_load_per_task = 0;
  3167. max_cpu_load = 0;
  3168. min_cpu_load = ~0UL;
  3169. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3170. struct rq *rq = cpu_rq(i);
  3171. if (*sd_idle && rq->nr_running)
  3172. *sd_idle = 0;
  3173. /* Bias balancing toward cpus of our domain */
  3174. if (local_group) {
  3175. if (idle_cpu(i) && !first_idle_cpu) {
  3176. first_idle_cpu = 1;
  3177. balance_cpu = i;
  3178. }
  3179. load = target_load(i, load_idx);
  3180. } else {
  3181. load = source_load(i, load_idx);
  3182. if (load > max_cpu_load)
  3183. max_cpu_load = load;
  3184. if (min_cpu_load > load)
  3185. min_cpu_load = load;
  3186. }
  3187. sgs->group_load += load;
  3188. sgs->sum_nr_running += rq->nr_running;
  3189. sgs->sum_weighted_load += weighted_cpuload(i);
  3190. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3191. }
  3192. /*
  3193. * First idle cpu or the first cpu(busiest) in this sched group
  3194. * is eligible for doing load balancing at this and above
  3195. * domains. In the newly idle case, we will allow all the cpu's
  3196. * to do the newly idle load balance.
  3197. */
  3198. if (idle != CPU_NEWLY_IDLE && local_group &&
  3199. balance_cpu != this_cpu && balance) {
  3200. *balance = 0;
  3201. return;
  3202. }
  3203. /* Adjust by relative CPU power of the group */
  3204. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3205. /*
  3206. * Consider the group unbalanced when the imbalance is larger
  3207. * than the average weight of two tasks.
  3208. *
  3209. * APZ: with cgroup the avg task weight can vary wildly and
  3210. * might not be a suitable number - should we keep a
  3211. * normalized nr_running number somewhere that negates
  3212. * the hierarchy?
  3213. */
  3214. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3215. group->cpu_power;
  3216. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3217. sgs->group_imb = 1;
  3218. sgs->group_capacity =
  3219. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3220. }
  3221. /**
  3222. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3223. * @sd: sched_domain whose statistics are to be updated.
  3224. * @this_cpu: Cpu for which load balance is currently performed.
  3225. * @idle: Idle status of this_cpu
  3226. * @sd_idle: Idle status of the sched_domain containing group.
  3227. * @cpus: Set of cpus considered for load balancing.
  3228. * @balance: Should we balance.
  3229. * @sds: variable to hold the statistics for this sched_domain.
  3230. */
  3231. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3232. enum cpu_idle_type idle, int *sd_idle,
  3233. const struct cpumask *cpus, int *balance,
  3234. struct sd_lb_stats *sds)
  3235. {
  3236. struct sched_domain *child = sd->child;
  3237. struct sched_group *group = sd->groups;
  3238. struct sg_lb_stats sgs;
  3239. int load_idx, prefer_sibling = 0;
  3240. if (child && child->flags & SD_PREFER_SIBLING)
  3241. prefer_sibling = 1;
  3242. init_sd_power_savings_stats(sd, sds, idle);
  3243. load_idx = get_sd_load_idx(sd, idle);
  3244. do {
  3245. int local_group;
  3246. local_group = cpumask_test_cpu(this_cpu,
  3247. sched_group_cpus(group));
  3248. memset(&sgs, 0, sizeof(sgs));
  3249. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3250. local_group, cpus, balance, &sgs);
  3251. if (local_group && balance && !(*balance))
  3252. return;
  3253. sds->total_load += sgs.group_load;
  3254. sds->total_pwr += group->cpu_power;
  3255. /*
  3256. * In case the child domain prefers tasks go to siblings
  3257. * first, lower the group capacity to one so that we'll try
  3258. * and move all the excess tasks away.
  3259. */
  3260. if (prefer_sibling)
  3261. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3262. if (local_group) {
  3263. sds->this_load = sgs.avg_load;
  3264. sds->this = group;
  3265. sds->this_nr_running = sgs.sum_nr_running;
  3266. sds->this_load_per_task = sgs.sum_weighted_load;
  3267. } else if (sgs.avg_load > sds->max_load &&
  3268. (sgs.sum_nr_running > sgs.group_capacity ||
  3269. sgs.group_imb)) {
  3270. sds->max_load = sgs.avg_load;
  3271. sds->busiest = group;
  3272. sds->busiest_nr_running = sgs.sum_nr_running;
  3273. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3274. sds->group_imb = sgs.group_imb;
  3275. }
  3276. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3277. group = group->next;
  3278. } while (group != sd->groups);
  3279. }
  3280. /**
  3281. * fix_small_imbalance - Calculate the minor imbalance that exists
  3282. * amongst the groups of a sched_domain, during
  3283. * load balancing.
  3284. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3285. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3286. * @imbalance: Variable to store the imbalance.
  3287. */
  3288. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3289. int this_cpu, unsigned long *imbalance)
  3290. {
  3291. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3292. unsigned int imbn = 2;
  3293. if (sds->this_nr_running) {
  3294. sds->this_load_per_task /= sds->this_nr_running;
  3295. if (sds->busiest_load_per_task >
  3296. sds->this_load_per_task)
  3297. imbn = 1;
  3298. } else
  3299. sds->this_load_per_task =
  3300. cpu_avg_load_per_task(this_cpu);
  3301. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3302. sds->busiest_load_per_task * imbn) {
  3303. *imbalance = sds->busiest_load_per_task;
  3304. return;
  3305. }
  3306. /*
  3307. * OK, we don't have enough imbalance to justify moving tasks,
  3308. * however we may be able to increase total CPU power used by
  3309. * moving them.
  3310. */
  3311. pwr_now += sds->busiest->cpu_power *
  3312. min(sds->busiest_load_per_task, sds->max_load);
  3313. pwr_now += sds->this->cpu_power *
  3314. min(sds->this_load_per_task, sds->this_load);
  3315. pwr_now /= SCHED_LOAD_SCALE;
  3316. /* Amount of load we'd subtract */
  3317. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3318. sds->busiest->cpu_power;
  3319. if (sds->max_load > tmp)
  3320. pwr_move += sds->busiest->cpu_power *
  3321. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3322. /* Amount of load we'd add */
  3323. if (sds->max_load * sds->busiest->cpu_power <
  3324. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3325. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3326. sds->this->cpu_power;
  3327. else
  3328. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3329. sds->this->cpu_power;
  3330. pwr_move += sds->this->cpu_power *
  3331. min(sds->this_load_per_task, sds->this_load + tmp);
  3332. pwr_move /= SCHED_LOAD_SCALE;
  3333. /* Move if we gain throughput */
  3334. if (pwr_move > pwr_now)
  3335. *imbalance = sds->busiest_load_per_task;
  3336. }
  3337. /**
  3338. * calculate_imbalance - Calculate the amount of imbalance present within the
  3339. * groups of a given sched_domain during load balance.
  3340. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3341. * @this_cpu: Cpu for which currently load balance is being performed.
  3342. * @imbalance: The variable to store the imbalance.
  3343. */
  3344. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3345. unsigned long *imbalance)
  3346. {
  3347. unsigned long max_pull;
  3348. /*
  3349. * In the presence of smp nice balancing, certain scenarios can have
  3350. * max load less than avg load(as we skip the groups at or below
  3351. * its cpu_power, while calculating max_load..)
  3352. */
  3353. if (sds->max_load < sds->avg_load) {
  3354. *imbalance = 0;
  3355. return fix_small_imbalance(sds, this_cpu, imbalance);
  3356. }
  3357. /* Don't want to pull so many tasks that a group would go idle */
  3358. max_pull = min(sds->max_load - sds->avg_load,
  3359. sds->max_load - sds->busiest_load_per_task);
  3360. /* How much load to actually move to equalise the imbalance */
  3361. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3362. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3363. / SCHED_LOAD_SCALE;
  3364. /*
  3365. * if *imbalance is less than the average load per runnable task
  3366. * there is no gaurantee that any tasks will be moved so we'll have
  3367. * a think about bumping its value to force at least one task to be
  3368. * moved
  3369. */
  3370. if (*imbalance < sds->busiest_load_per_task)
  3371. return fix_small_imbalance(sds, this_cpu, imbalance);
  3372. }
  3373. /******* find_busiest_group() helpers end here *********************/
  3374. /**
  3375. * find_busiest_group - Returns the busiest group within the sched_domain
  3376. * if there is an imbalance. If there isn't an imbalance, and
  3377. * the user has opted for power-savings, it returns a group whose
  3378. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3379. * such a group exists.
  3380. *
  3381. * Also calculates the amount of weighted load which should be moved
  3382. * to restore balance.
  3383. *
  3384. * @sd: The sched_domain whose busiest group is to be returned.
  3385. * @this_cpu: The cpu for which load balancing is currently being performed.
  3386. * @imbalance: Variable which stores amount of weighted load which should
  3387. * be moved to restore balance/put a group to idle.
  3388. * @idle: The idle status of this_cpu.
  3389. * @sd_idle: The idleness of sd
  3390. * @cpus: The set of CPUs under consideration for load-balancing.
  3391. * @balance: Pointer to a variable indicating if this_cpu
  3392. * is the appropriate cpu to perform load balancing at this_level.
  3393. *
  3394. * Returns: - the busiest group if imbalance exists.
  3395. * - If no imbalance and user has opted for power-savings balance,
  3396. * return the least loaded group whose CPUs can be
  3397. * put to idle by rebalancing its tasks onto our group.
  3398. */
  3399. static struct sched_group *
  3400. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3401. unsigned long *imbalance, enum cpu_idle_type idle,
  3402. int *sd_idle, const struct cpumask *cpus, int *balance)
  3403. {
  3404. struct sd_lb_stats sds;
  3405. memset(&sds, 0, sizeof(sds));
  3406. /*
  3407. * Compute the various statistics relavent for load balancing at
  3408. * this level.
  3409. */
  3410. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3411. balance, &sds);
  3412. /* Cases where imbalance does not exist from POV of this_cpu */
  3413. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3414. * at this level.
  3415. * 2) There is no busy sibling group to pull from.
  3416. * 3) This group is the busiest group.
  3417. * 4) This group is more busy than the avg busieness at this
  3418. * sched_domain.
  3419. * 5) The imbalance is within the specified limit.
  3420. * 6) Any rebalance would lead to ping-pong
  3421. */
  3422. if (balance && !(*balance))
  3423. goto ret;
  3424. if (!sds.busiest || sds.busiest_nr_running == 0)
  3425. goto out_balanced;
  3426. if (sds.this_load >= sds.max_load)
  3427. goto out_balanced;
  3428. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3429. if (sds.this_load >= sds.avg_load)
  3430. goto out_balanced;
  3431. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3432. goto out_balanced;
  3433. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3434. if (sds.group_imb)
  3435. sds.busiest_load_per_task =
  3436. min(sds.busiest_load_per_task, sds.avg_load);
  3437. /*
  3438. * We're trying to get all the cpus to the average_load, so we don't
  3439. * want to push ourselves above the average load, nor do we wish to
  3440. * reduce the max loaded cpu below the average load, as either of these
  3441. * actions would just result in more rebalancing later, and ping-pong
  3442. * tasks around. Thus we look for the minimum possible imbalance.
  3443. * Negative imbalances (*we* are more loaded than anyone else) will
  3444. * be counted as no imbalance for these purposes -- we can't fix that
  3445. * by pulling tasks to us. Be careful of negative numbers as they'll
  3446. * appear as very large values with unsigned longs.
  3447. */
  3448. if (sds.max_load <= sds.busiest_load_per_task)
  3449. goto out_balanced;
  3450. /* Looks like there is an imbalance. Compute it */
  3451. calculate_imbalance(&sds, this_cpu, imbalance);
  3452. return sds.busiest;
  3453. out_balanced:
  3454. /*
  3455. * There is no obvious imbalance. But check if we can do some balancing
  3456. * to save power.
  3457. */
  3458. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3459. return sds.busiest;
  3460. ret:
  3461. *imbalance = 0;
  3462. return NULL;
  3463. }
  3464. /*
  3465. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3466. */
  3467. static struct rq *
  3468. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3469. unsigned long imbalance, const struct cpumask *cpus)
  3470. {
  3471. struct rq *busiest = NULL, *rq;
  3472. unsigned long max_load = 0;
  3473. int i;
  3474. for_each_cpu(i, sched_group_cpus(group)) {
  3475. unsigned long power = power_of(i);
  3476. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3477. unsigned long wl;
  3478. if (!cpumask_test_cpu(i, cpus))
  3479. continue;
  3480. rq = cpu_rq(i);
  3481. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3482. wl /= power;
  3483. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3484. continue;
  3485. if (wl > max_load) {
  3486. max_load = wl;
  3487. busiest = rq;
  3488. }
  3489. }
  3490. return busiest;
  3491. }
  3492. /*
  3493. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3494. * so long as it is large enough.
  3495. */
  3496. #define MAX_PINNED_INTERVAL 512
  3497. /* Working cpumask for load_balance and load_balance_newidle. */
  3498. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3499. /*
  3500. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3501. * tasks if there is an imbalance.
  3502. */
  3503. static int load_balance(int this_cpu, struct rq *this_rq,
  3504. struct sched_domain *sd, enum cpu_idle_type idle,
  3505. int *balance)
  3506. {
  3507. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3508. struct sched_group *group;
  3509. unsigned long imbalance;
  3510. struct rq *busiest;
  3511. unsigned long flags;
  3512. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3513. cpumask_copy(cpus, cpu_active_mask);
  3514. /*
  3515. * When power savings policy is enabled for the parent domain, idle
  3516. * sibling can pick up load irrespective of busy siblings. In this case,
  3517. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3518. * portraying it as CPU_NOT_IDLE.
  3519. */
  3520. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3521. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3522. sd_idle = 1;
  3523. schedstat_inc(sd, lb_count[idle]);
  3524. redo:
  3525. update_shares(sd);
  3526. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3527. cpus, balance);
  3528. if (*balance == 0)
  3529. goto out_balanced;
  3530. if (!group) {
  3531. schedstat_inc(sd, lb_nobusyg[idle]);
  3532. goto out_balanced;
  3533. }
  3534. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3535. if (!busiest) {
  3536. schedstat_inc(sd, lb_nobusyq[idle]);
  3537. goto out_balanced;
  3538. }
  3539. BUG_ON(busiest == this_rq);
  3540. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3541. ld_moved = 0;
  3542. if (busiest->nr_running > 1) {
  3543. /*
  3544. * Attempt to move tasks. If find_busiest_group has found
  3545. * an imbalance but busiest->nr_running <= 1, the group is
  3546. * still unbalanced. ld_moved simply stays zero, so it is
  3547. * correctly treated as an imbalance.
  3548. */
  3549. local_irq_save(flags);
  3550. double_rq_lock(this_rq, busiest);
  3551. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3552. imbalance, sd, idle, &all_pinned);
  3553. double_rq_unlock(this_rq, busiest);
  3554. local_irq_restore(flags);
  3555. /*
  3556. * some other cpu did the load balance for us.
  3557. */
  3558. if (ld_moved && this_cpu != smp_processor_id())
  3559. resched_cpu(this_cpu);
  3560. /* All tasks on this runqueue were pinned by CPU affinity */
  3561. if (unlikely(all_pinned)) {
  3562. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3563. if (!cpumask_empty(cpus))
  3564. goto redo;
  3565. goto out_balanced;
  3566. }
  3567. }
  3568. if (!ld_moved) {
  3569. schedstat_inc(sd, lb_failed[idle]);
  3570. sd->nr_balance_failed++;
  3571. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3572. raw_spin_lock_irqsave(&busiest->lock, flags);
  3573. /* don't kick the migration_thread, if the curr
  3574. * task on busiest cpu can't be moved to this_cpu
  3575. */
  3576. if (!cpumask_test_cpu(this_cpu,
  3577. &busiest->curr->cpus_allowed)) {
  3578. raw_spin_unlock_irqrestore(&busiest->lock,
  3579. flags);
  3580. all_pinned = 1;
  3581. goto out_one_pinned;
  3582. }
  3583. if (!busiest->active_balance) {
  3584. busiest->active_balance = 1;
  3585. busiest->push_cpu = this_cpu;
  3586. active_balance = 1;
  3587. }
  3588. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3589. if (active_balance)
  3590. wake_up_process(busiest->migration_thread);
  3591. /*
  3592. * We've kicked active balancing, reset the failure
  3593. * counter.
  3594. */
  3595. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3596. }
  3597. } else
  3598. sd->nr_balance_failed = 0;
  3599. if (likely(!active_balance)) {
  3600. /* We were unbalanced, so reset the balancing interval */
  3601. sd->balance_interval = sd->min_interval;
  3602. } else {
  3603. /*
  3604. * If we've begun active balancing, start to back off. This
  3605. * case may not be covered by the all_pinned logic if there
  3606. * is only 1 task on the busy runqueue (because we don't call
  3607. * move_tasks).
  3608. */
  3609. if (sd->balance_interval < sd->max_interval)
  3610. sd->balance_interval *= 2;
  3611. }
  3612. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3613. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3614. ld_moved = -1;
  3615. goto out;
  3616. out_balanced:
  3617. schedstat_inc(sd, lb_balanced[idle]);
  3618. sd->nr_balance_failed = 0;
  3619. out_one_pinned:
  3620. /* tune up the balancing interval */
  3621. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3622. (sd->balance_interval < sd->max_interval))
  3623. sd->balance_interval *= 2;
  3624. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3625. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3626. ld_moved = -1;
  3627. else
  3628. ld_moved = 0;
  3629. out:
  3630. if (ld_moved)
  3631. update_shares(sd);
  3632. return ld_moved;
  3633. }
  3634. /*
  3635. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3636. * tasks if there is an imbalance.
  3637. *
  3638. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3639. * this_rq is locked.
  3640. */
  3641. static int
  3642. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3643. {
  3644. struct sched_group *group;
  3645. struct rq *busiest = NULL;
  3646. unsigned long imbalance;
  3647. int ld_moved = 0;
  3648. int sd_idle = 0;
  3649. int all_pinned = 0;
  3650. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3651. cpumask_copy(cpus, cpu_active_mask);
  3652. /*
  3653. * When power savings policy is enabled for the parent domain, idle
  3654. * sibling can pick up load irrespective of busy siblings. In this case,
  3655. * let the state of idle sibling percolate up as IDLE, instead of
  3656. * portraying it as CPU_NOT_IDLE.
  3657. */
  3658. if (sd->flags & SD_SHARE_CPUPOWER &&
  3659. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3660. sd_idle = 1;
  3661. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3662. redo:
  3663. update_shares_locked(this_rq, sd);
  3664. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3665. &sd_idle, cpus, NULL);
  3666. if (!group) {
  3667. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3668. goto out_balanced;
  3669. }
  3670. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3671. if (!busiest) {
  3672. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3673. goto out_balanced;
  3674. }
  3675. BUG_ON(busiest == this_rq);
  3676. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3677. ld_moved = 0;
  3678. if (busiest->nr_running > 1) {
  3679. /* Attempt to move tasks */
  3680. double_lock_balance(this_rq, busiest);
  3681. /* this_rq->clock is already updated */
  3682. update_rq_clock(busiest);
  3683. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3684. imbalance, sd, CPU_NEWLY_IDLE,
  3685. &all_pinned);
  3686. double_unlock_balance(this_rq, busiest);
  3687. if (unlikely(all_pinned)) {
  3688. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3689. if (!cpumask_empty(cpus))
  3690. goto redo;
  3691. }
  3692. }
  3693. if (!ld_moved) {
  3694. int active_balance = 0;
  3695. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3696. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3697. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3698. return -1;
  3699. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3700. return -1;
  3701. if (sd->nr_balance_failed++ < 2)
  3702. return -1;
  3703. /*
  3704. * The only task running in a non-idle cpu can be moved to this
  3705. * cpu in an attempt to completely freeup the other CPU
  3706. * package. The same method used to move task in load_balance()
  3707. * have been extended for load_balance_newidle() to speedup
  3708. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3709. *
  3710. * The package power saving logic comes from
  3711. * find_busiest_group(). If there are no imbalance, then
  3712. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3713. * f_b_g() will select a group from which a running task may be
  3714. * pulled to this cpu in order to make the other package idle.
  3715. * If there is no opportunity to make a package idle and if
  3716. * there are no imbalance, then f_b_g() will return NULL and no
  3717. * action will be taken in load_balance_newidle().
  3718. *
  3719. * Under normal task pull operation due to imbalance, there
  3720. * will be more than one task in the source run queue and
  3721. * move_tasks() will succeed. ld_moved will be true and this
  3722. * active balance code will not be triggered.
  3723. */
  3724. /* Lock busiest in correct order while this_rq is held */
  3725. double_lock_balance(this_rq, busiest);
  3726. /*
  3727. * don't kick the migration_thread, if the curr
  3728. * task on busiest cpu can't be moved to this_cpu
  3729. */
  3730. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3731. double_unlock_balance(this_rq, busiest);
  3732. all_pinned = 1;
  3733. return ld_moved;
  3734. }
  3735. if (!busiest->active_balance) {
  3736. busiest->active_balance = 1;
  3737. busiest->push_cpu = this_cpu;
  3738. active_balance = 1;
  3739. }
  3740. double_unlock_balance(this_rq, busiest);
  3741. /*
  3742. * Should not call ttwu while holding a rq->lock
  3743. */
  3744. raw_spin_unlock(&this_rq->lock);
  3745. if (active_balance)
  3746. wake_up_process(busiest->migration_thread);
  3747. raw_spin_lock(&this_rq->lock);
  3748. } else
  3749. sd->nr_balance_failed = 0;
  3750. update_shares_locked(this_rq, sd);
  3751. return ld_moved;
  3752. out_balanced:
  3753. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3754. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3755. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3756. return -1;
  3757. sd->nr_balance_failed = 0;
  3758. return 0;
  3759. }
  3760. /*
  3761. * idle_balance is called by schedule() if this_cpu is about to become
  3762. * idle. Attempts to pull tasks from other CPUs.
  3763. */
  3764. static void idle_balance(int this_cpu, struct rq *this_rq)
  3765. {
  3766. struct sched_domain *sd;
  3767. int pulled_task = 0;
  3768. unsigned long next_balance = jiffies + HZ;
  3769. this_rq->idle_stamp = this_rq->clock;
  3770. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3771. return;
  3772. for_each_domain(this_cpu, sd) {
  3773. unsigned long interval;
  3774. if (!(sd->flags & SD_LOAD_BALANCE))
  3775. continue;
  3776. if (sd->flags & SD_BALANCE_NEWIDLE)
  3777. /* If we've pulled tasks over stop searching: */
  3778. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3779. sd);
  3780. interval = msecs_to_jiffies(sd->balance_interval);
  3781. if (time_after(next_balance, sd->last_balance + interval))
  3782. next_balance = sd->last_balance + interval;
  3783. if (pulled_task) {
  3784. this_rq->idle_stamp = 0;
  3785. break;
  3786. }
  3787. }
  3788. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3789. /*
  3790. * We are going idle. next_balance may be set based on
  3791. * a busy processor. So reset next_balance.
  3792. */
  3793. this_rq->next_balance = next_balance;
  3794. }
  3795. }
  3796. /*
  3797. * active_load_balance is run by migration threads. It pushes running tasks
  3798. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3799. * running on each physical CPU where possible, and avoids physical /
  3800. * logical imbalances.
  3801. *
  3802. * Called with busiest_rq locked.
  3803. */
  3804. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3805. {
  3806. int target_cpu = busiest_rq->push_cpu;
  3807. struct sched_domain *sd;
  3808. struct rq *target_rq;
  3809. /* Is there any task to move? */
  3810. if (busiest_rq->nr_running <= 1)
  3811. return;
  3812. target_rq = cpu_rq(target_cpu);
  3813. /*
  3814. * This condition is "impossible", if it occurs
  3815. * we need to fix it. Originally reported by
  3816. * Bjorn Helgaas on a 128-cpu setup.
  3817. */
  3818. BUG_ON(busiest_rq == target_rq);
  3819. /* move a task from busiest_rq to target_rq */
  3820. double_lock_balance(busiest_rq, target_rq);
  3821. update_rq_clock(busiest_rq);
  3822. update_rq_clock(target_rq);
  3823. /* Search for an sd spanning us and the target CPU. */
  3824. for_each_domain(target_cpu, sd) {
  3825. if ((sd->flags & SD_LOAD_BALANCE) &&
  3826. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3827. break;
  3828. }
  3829. if (likely(sd)) {
  3830. schedstat_inc(sd, alb_count);
  3831. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3832. sd, CPU_IDLE))
  3833. schedstat_inc(sd, alb_pushed);
  3834. else
  3835. schedstat_inc(sd, alb_failed);
  3836. }
  3837. double_unlock_balance(busiest_rq, target_rq);
  3838. }
  3839. #ifdef CONFIG_NO_HZ
  3840. static struct {
  3841. atomic_t load_balancer;
  3842. cpumask_var_t cpu_mask;
  3843. cpumask_var_t ilb_grp_nohz_mask;
  3844. } nohz ____cacheline_aligned = {
  3845. .load_balancer = ATOMIC_INIT(-1),
  3846. };
  3847. int get_nohz_load_balancer(void)
  3848. {
  3849. return atomic_read(&nohz.load_balancer);
  3850. }
  3851. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3852. /**
  3853. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3854. * @cpu: The cpu whose lowest level of sched domain is to
  3855. * be returned.
  3856. * @flag: The flag to check for the lowest sched_domain
  3857. * for the given cpu.
  3858. *
  3859. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3860. */
  3861. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3862. {
  3863. struct sched_domain *sd;
  3864. for_each_domain(cpu, sd)
  3865. if (sd && (sd->flags & flag))
  3866. break;
  3867. return sd;
  3868. }
  3869. /**
  3870. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3871. * @cpu: The cpu whose domains we're iterating over.
  3872. * @sd: variable holding the value of the power_savings_sd
  3873. * for cpu.
  3874. * @flag: The flag to filter the sched_domains to be iterated.
  3875. *
  3876. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3877. * set, starting from the lowest sched_domain to the highest.
  3878. */
  3879. #define for_each_flag_domain(cpu, sd, flag) \
  3880. for (sd = lowest_flag_domain(cpu, flag); \
  3881. (sd && (sd->flags & flag)); sd = sd->parent)
  3882. /**
  3883. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3884. * @ilb_group: group to be checked for semi-idleness
  3885. *
  3886. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3887. *
  3888. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3889. * and atleast one non-idle CPU. This helper function checks if the given
  3890. * sched_group is semi-idle or not.
  3891. */
  3892. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3893. {
  3894. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3895. sched_group_cpus(ilb_group));
  3896. /*
  3897. * A sched_group is semi-idle when it has atleast one busy cpu
  3898. * and atleast one idle cpu.
  3899. */
  3900. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3901. return 0;
  3902. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3903. return 0;
  3904. return 1;
  3905. }
  3906. /**
  3907. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3908. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3909. *
  3910. * Returns: Returns the id of the idle load balancer if it exists,
  3911. * Else, returns >= nr_cpu_ids.
  3912. *
  3913. * This algorithm picks the idle load balancer such that it belongs to a
  3914. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3915. * completely idle packages/cores just for the purpose of idle load balancing
  3916. * when there are other idle cpu's which are better suited for that job.
  3917. */
  3918. static int find_new_ilb(int cpu)
  3919. {
  3920. struct sched_domain *sd;
  3921. struct sched_group *ilb_group;
  3922. /*
  3923. * Have idle load balancer selection from semi-idle packages only
  3924. * when power-aware load balancing is enabled
  3925. */
  3926. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3927. goto out_done;
  3928. /*
  3929. * Optimize for the case when we have no idle CPUs or only one
  3930. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3931. */
  3932. if (cpumask_weight(nohz.cpu_mask) < 2)
  3933. goto out_done;
  3934. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3935. ilb_group = sd->groups;
  3936. do {
  3937. if (is_semi_idle_group(ilb_group))
  3938. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3939. ilb_group = ilb_group->next;
  3940. } while (ilb_group != sd->groups);
  3941. }
  3942. out_done:
  3943. return cpumask_first(nohz.cpu_mask);
  3944. }
  3945. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3946. static inline int find_new_ilb(int call_cpu)
  3947. {
  3948. return cpumask_first(nohz.cpu_mask);
  3949. }
  3950. #endif
  3951. /*
  3952. * This routine will try to nominate the ilb (idle load balancing)
  3953. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3954. * load balancing on behalf of all those cpus. If all the cpus in the system
  3955. * go into this tickless mode, then there will be no ilb owner (as there is
  3956. * no need for one) and all the cpus will sleep till the next wakeup event
  3957. * arrives...
  3958. *
  3959. * For the ilb owner, tick is not stopped. And this tick will be used
  3960. * for idle load balancing. ilb owner will still be part of
  3961. * nohz.cpu_mask..
  3962. *
  3963. * While stopping the tick, this cpu will become the ilb owner if there
  3964. * is no other owner. And will be the owner till that cpu becomes busy
  3965. * or if all cpus in the system stop their ticks at which point
  3966. * there is no need for ilb owner.
  3967. *
  3968. * When the ilb owner becomes busy, it nominates another owner, during the
  3969. * next busy scheduler_tick()
  3970. */
  3971. int select_nohz_load_balancer(int stop_tick)
  3972. {
  3973. int cpu = smp_processor_id();
  3974. if (stop_tick) {
  3975. cpu_rq(cpu)->in_nohz_recently = 1;
  3976. if (!cpu_active(cpu)) {
  3977. if (atomic_read(&nohz.load_balancer) != cpu)
  3978. return 0;
  3979. /*
  3980. * If we are going offline and still the leader,
  3981. * give up!
  3982. */
  3983. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3984. BUG();
  3985. return 0;
  3986. }
  3987. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3988. /* time for ilb owner also to sleep */
  3989. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  3990. if (atomic_read(&nohz.load_balancer) == cpu)
  3991. atomic_set(&nohz.load_balancer, -1);
  3992. return 0;
  3993. }
  3994. if (atomic_read(&nohz.load_balancer) == -1) {
  3995. /* make me the ilb owner */
  3996. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3997. return 1;
  3998. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3999. int new_ilb;
  4000. if (!(sched_smt_power_savings ||
  4001. sched_mc_power_savings))
  4002. return 1;
  4003. /*
  4004. * Check to see if there is a more power-efficient
  4005. * ilb.
  4006. */
  4007. new_ilb = find_new_ilb(cpu);
  4008. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  4009. atomic_set(&nohz.load_balancer, -1);
  4010. resched_cpu(new_ilb);
  4011. return 0;
  4012. }
  4013. return 1;
  4014. }
  4015. } else {
  4016. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  4017. return 0;
  4018. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4019. if (atomic_read(&nohz.load_balancer) == cpu)
  4020. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4021. BUG();
  4022. }
  4023. return 0;
  4024. }
  4025. #endif
  4026. static DEFINE_SPINLOCK(balancing);
  4027. /*
  4028. * It checks each scheduling domain to see if it is due to be balanced,
  4029. * and initiates a balancing operation if so.
  4030. *
  4031. * Balancing parameters are set up in arch_init_sched_domains.
  4032. */
  4033. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4034. {
  4035. int balance = 1;
  4036. struct rq *rq = cpu_rq(cpu);
  4037. unsigned long interval;
  4038. struct sched_domain *sd;
  4039. /* Earliest time when we have to do rebalance again */
  4040. unsigned long next_balance = jiffies + 60*HZ;
  4041. int update_next_balance = 0;
  4042. int need_serialize;
  4043. for_each_domain(cpu, sd) {
  4044. if (!(sd->flags & SD_LOAD_BALANCE))
  4045. continue;
  4046. interval = sd->balance_interval;
  4047. if (idle != CPU_IDLE)
  4048. interval *= sd->busy_factor;
  4049. /* scale ms to jiffies */
  4050. interval = msecs_to_jiffies(interval);
  4051. if (unlikely(!interval))
  4052. interval = 1;
  4053. if (interval > HZ*NR_CPUS/10)
  4054. interval = HZ*NR_CPUS/10;
  4055. need_serialize = sd->flags & SD_SERIALIZE;
  4056. if (need_serialize) {
  4057. if (!spin_trylock(&balancing))
  4058. goto out;
  4059. }
  4060. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4061. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4062. /*
  4063. * We've pulled tasks over so either we're no
  4064. * longer idle, or one of our SMT siblings is
  4065. * not idle.
  4066. */
  4067. idle = CPU_NOT_IDLE;
  4068. }
  4069. sd->last_balance = jiffies;
  4070. }
  4071. if (need_serialize)
  4072. spin_unlock(&balancing);
  4073. out:
  4074. if (time_after(next_balance, sd->last_balance + interval)) {
  4075. next_balance = sd->last_balance + interval;
  4076. update_next_balance = 1;
  4077. }
  4078. /*
  4079. * Stop the load balance at this level. There is another
  4080. * CPU in our sched group which is doing load balancing more
  4081. * actively.
  4082. */
  4083. if (!balance)
  4084. break;
  4085. }
  4086. /*
  4087. * next_balance will be updated only when there is a need.
  4088. * When the cpu is attached to null domain for ex, it will not be
  4089. * updated.
  4090. */
  4091. if (likely(update_next_balance))
  4092. rq->next_balance = next_balance;
  4093. }
  4094. /*
  4095. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4096. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4097. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4098. */
  4099. static void run_rebalance_domains(struct softirq_action *h)
  4100. {
  4101. int this_cpu = smp_processor_id();
  4102. struct rq *this_rq = cpu_rq(this_cpu);
  4103. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4104. CPU_IDLE : CPU_NOT_IDLE;
  4105. rebalance_domains(this_cpu, idle);
  4106. #ifdef CONFIG_NO_HZ
  4107. /*
  4108. * If this cpu is the owner for idle load balancing, then do the
  4109. * balancing on behalf of the other idle cpus whose ticks are
  4110. * stopped.
  4111. */
  4112. if (this_rq->idle_at_tick &&
  4113. atomic_read(&nohz.load_balancer) == this_cpu) {
  4114. struct rq *rq;
  4115. int balance_cpu;
  4116. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4117. if (balance_cpu == this_cpu)
  4118. continue;
  4119. /*
  4120. * If this cpu gets work to do, stop the load balancing
  4121. * work being done for other cpus. Next load
  4122. * balancing owner will pick it up.
  4123. */
  4124. if (need_resched())
  4125. break;
  4126. rebalance_domains(balance_cpu, CPU_IDLE);
  4127. rq = cpu_rq(balance_cpu);
  4128. if (time_after(this_rq->next_balance, rq->next_balance))
  4129. this_rq->next_balance = rq->next_balance;
  4130. }
  4131. }
  4132. #endif
  4133. }
  4134. static inline int on_null_domain(int cpu)
  4135. {
  4136. return !rcu_dereference(cpu_rq(cpu)->sd);
  4137. }
  4138. /*
  4139. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4140. *
  4141. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4142. * idle load balancing owner or decide to stop the periodic load balancing,
  4143. * if the whole system is idle.
  4144. */
  4145. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4146. {
  4147. #ifdef CONFIG_NO_HZ
  4148. /*
  4149. * If we were in the nohz mode recently and busy at the current
  4150. * scheduler tick, then check if we need to nominate new idle
  4151. * load balancer.
  4152. */
  4153. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4154. rq->in_nohz_recently = 0;
  4155. if (atomic_read(&nohz.load_balancer) == cpu) {
  4156. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4157. atomic_set(&nohz.load_balancer, -1);
  4158. }
  4159. if (atomic_read(&nohz.load_balancer) == -1) {
  4160. int ilb = find_new_ilb(cpu);
  4161. if (ilb < nr_cpu_ids)
  4162. resched_cpu(ilb);
  4163. }
  4164. }
  4165. /*
  4166. * If this cpu is idle and doing idle load balancing for all the
  4167. * cpus with ticks stopped, is it time for that to stop?
  4168. */
  4169. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4170. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4171. resched_cpu(cpu);
  4172. return;
  4173. }
  4174. /*
  4175. * If this cpu is idle and the idle load balancing is done by
  4176. * someone else, then no need raise the SCHED_SOFTIRQ
  4177. */
  4178. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4179. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4180. return;
  4181. #endif
  4182. /* Don't need to rebalance while attached to NULL domain */
  4183. if (time_after_eq(jiffies, rq->next_balance) &&
  4184. likely(!on_null_domain(cpu)))
  4185. raise_softirq(SCHED_SOFTIRQ);
  4186. }
  4187. #else /* CONFIG_SMP */
  4188. /*
  4189. * on UP we do not need to balance between CPUs:
  4190. */
  4191. static inline void idle_balance(int cpu, struct rq *rq)
  4192. {
  4193. }
  4194. #endif
  4195. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4196. EXPORT_PER_CPU_SYMBOL(kstat);
  4197. /*
  4198. * Return any ns on the sched_clock that have not yet been accounted in
  4199. * @p in case that task is currently running.
  4200. *
  4201. * Called with task_rq_lock() held on @rq.
  4202. */
  4203. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4204. {
  4205. u64 ns = 0;
  4206. if (task_current(rq, p)) {
  4207. update_rq_clock(rq);
  4208. ns = rq->clock - p->se.exec_start;
  4209. if ((s64)ns < 0)
  4210. ns = 0;
  4211. }
  4212. return ns;
  4213. }
  4214. unsigned long long task_delta_exec(struct task_struct *p)
  4215. {
  4216. unsigned long flags;
  4217. struct rq *rq;
  4218. u64 ns = 0;
  4219. rq = task_rq_lock(p, &flags);
  4220. ns = do_task_delta_exec(p, rq);
  4221. task_rq_unlock(rq, &flags);
  4222. return ns;
  4223. }
  4224. /*
  4225. * Return accounted runtime for the task.
  4226. * In case the task is currently running, return the runtime plus current's
  4227. * pending runtime that have not been accounted yet.
  4228. */
  4229. unsigned long long task_sched_runtime(struct task_struct *p)
  4230. {
  4231. unsigned long flags;
  4232. struct rq *rq;
  4233. u64 ns = 0;
  4234. rq = task_rq_lock(p, &flags);
  4235. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4236. task_rq_unlock(rq, &flags);
  4237. return ns;
  4238. }
  4239. /*
  4240. * Return sum_exec_runtime for the thread group.
  4241. * In case the task is currently running, return the sum plus current's
  4242. * pending runtime that have not been accounted yet.
  4243. *
  4244. * Note that the thread group might have other running tasks as well,
  4245. * so the return value not includes other pending runtime that other
  4246. * running tasks might have.
  4247. */
  4248. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4249. {
  4250. struct task_cputime totals;
  4251. unsigned long flags;
  4252. struct rq *rq;
  4253. u64 ns;
  4254. rq = task_rq_lock(p, &flags);
  4255. thread_group_cputime(p, &totals);
  4256. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4257. task_rq_unlock(rq, &flags);
  4258. return ns;
  4259. }
  4260. /*
  4261. * Account user cpu time to a process.
  4262. * @p: the process that the cpu time gets accounted to
  4263. * @cputime: the cpu time spent in user space since the last update
  4264. * @cputime_scaled: cputime scaled by cpu frequency
  4265. */
  4266. void account_user_time(struct task_struct *p, cputime_t cputime,
  4267. cputime_t cputime_scaled)
  4268. {
  4269. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4270. cputime64_t tmp;
  4271. /* Add user time to process. */
  4272. p->utime = cputime_add(p->utime, cputime);
  4273. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4274. account_group_user_time(p, cputime);
  4275. /* Add user time to cpustat. */
  4276. tmp = cputime_to_cputime64(cputime);
  4277. if (TASK_NICE(p) > 0)
  4278. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4279. else
  4280. cpustat->user = cputime64_add(cpustat->user, tmp);
  4281. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4282. /* Account for user time used */
  4283. acct_update_integrals(p);
  4284. }
  4285. /*
  4286. * Account guest cpu time to a process.
  4287. * @p: the process that the cpu time gets accounted to
  4288. * @cputime: the cpu time spent in virtual machine since the last update
  4289. * @cputime_scaled: cputime scaled by cpu frequency
  4290. */
  4291. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4292. cputime_t cputime_scaled)
  4293. {
  4294. cputime64_t tmp;
  4295. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4296. tmp = cputime_to_cputime64(cputime);
  4297. /* Add guest time to process. */
  4298. p->utime = cputime_add(p->utime, cputime);
  4299. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4300. account_group_user_time(p, cputime);
  4301. p->gtime = cputime_add(p->gtime, cputime);
  4302. /* Add guest time to cpustat. */
  4303. if (TASK_NICE(p) > 0) {
  4304. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4305. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  4306. } else {
  4307. cpustat->user = cputime64_add(cpustat->user, tmp);
  4308. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4309. }
  4310. }
  4311. /*
  4312. * Account system cpu time to a process.
  4313. * @p: the process that the cpu time gets accounted to
  4314. * @hardirq_offset: the offset to subtract from hardirq_count()
  4315. * @cputime: the cpu time spent in kernel space since the last update
  4316. * @cputime_scaled: cputime scaled by cpu frequency
  4317. */
  4318. void account_system_time(struct task_struct *p, int hardirq_offset,
  4319. cputime_t cputime, cputime_t cputime_scaled)
  4320. {
  4321. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4322. cputime64_t tmp;
  4323. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4324. account_guest_time(p, cputime, cputime_scaled);
  4325. return;
  4326. }
  4327. /* Add system time to process. */
  4328. p->stime = cputime_add(p->stime, cputime);
  4329. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4330. account_group_system_time(p, cputime);
  4331. /* Add system time to cpustat. */
  4332. tmp = cputime_to_cputime64(cputime);
  4333. if (hardirq_count() - hardirq_offset)
  4334. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4335. else if (softirq_count())
  4336. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4337. else
  4338. cpustat->system = cputime64_add(cpustat->system, tmp);
  4339. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4340. /* Account for system time used */
  4341. acct_update_integrals(p);
  4342. }
  4343. /*
  4344. * Account for involuntary wait time.
  4345. * @steal: the cpu time spent in involuntary wait
  4346. */
  4347. void account_steal_time(cputime_t cputime)
  4348. {
  4349. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4350. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4351. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4352. }
  4353. /*
  4354. * Account for idle time.
  4355. * @cputime: the cpu time spent in idle wait
  4356. */
  4357. void account_idle_time(cputime_t cputime)
  4358. {
  4359. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4360. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4361. struct rq *rq = this_rq();
  4362. if (atomic_read(&rq->nr_iowait) > 0)
  4363. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4364. else
  4365. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4366. }
  4367. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4368. /*
  4369. * Account a single tick of cpu time.
  4370. * @p: the process that the cpu time gets accounted to
  4371. * @user_tick: indicates if the tick is a user or a system tick
  4372. */
  4373. void account_process_tick(struct task_struct *p, int user_tick)
  4374. {
  4375. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4376. struct rq *rq = this_rq();
  4377. if (user_tick)
  4378. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4379. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4380. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4381. one_jiffy_scaled);
  4382. else
  4383. account_idle_time(cputime_one_jiffy);
  4384. }
  4385. /*
  4386. * Account multiple ticks of steal time.
  4387. * @p: the process from which the cpu time has been stolen
  4388. * @ticks: number of stolen ticks
  4389. */
  4390. void account_steal_ticks(unsigned long ticks)
  4391. {
  4392. account_steal_time(jiffies_to_cputime(ticks));
  4393. }
  4394. /*
  4395. * Account multiple ticks of idle time.
  4396. * @ticks: number of stolen ticks
  4397. */
  4398. void account_idle_ticks(unsigned long ticks)
  4399. {
  4400. account_idle_time(jiffies_to_cputime(ticks));
  4401. }
  4402. #endif
  4403. /*
  4404. * Use precise platform statistics if available:
  4405. */
  4406. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4407. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4408. {
  4409. *ut = p->utime;
  4410. *st = p->stime;
  4411. }
  4412. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4413. {
  4414. struct task_cputime cputime;
  4415. thread_group_cputime(p, &cputime);
  4416. *ut = cputime.utime;
  4417. *st = cputime.stime;
  4418. }
  4419. #else
  4420. #ifndef nsecs_to_cputime
  4421. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  4422. #endif
  4423. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4424. {
  4425. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  4426. /*
  4427. * Use CFS's precise accounting:
  4428. */
  4429. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  4430. if (total) {
  4431. u64 temp;
  4432. temp = (u64)(rtime * utime);
  4433. do_div(temp, total);
  4434. utime = (cputime_t)temp;
  4435. } else
  4436. utime = rtime;
  4437. /*
  4438. * Compare with previous values, to keep monotonicity:
  4439. */
  4440. p->prev_utime = max(p->prev_utime, utime);
  4441. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  4442. *ut = p->prev_utime;
  4443. *st = p->prev_stime;
  4444. }
  4445. /*
  4446. * Must be called with siglock held.
  4447. */
  4448. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4449. {
  4450. struct signal_struct *sig = p->signal;
  4451. struct task_cputime cputime;
  4452. cputime_t rtime, utime, total;
  4453. thread_group_cputime(p, &cputime);
  4454. total = cputime_add(cputime.utime, cputime.stime);
  4455. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  4456. if (total) {
  4457. u64 temp;
  4458. temp = (u64)(rtime * cputime.utime);
  4459. do_div(temp, total);
  4460. utime = (cputime_t)temp;
  4461. } else
  4462. utime = rtime;
  4463. sig->prev_utime = max(sig->prev_utime, utime);
  4464. sig->prev_stime = max(sig->prev_stime,
  4465. cputime_sub(rtime, sig->prev_utime));
  4466. *ut = sig->prev_utime;
  4467. *st = sig->prev_stime;
  4468. }
  4469. #endif
  4470. /*
  4471. * This function gets called by the timer code, with HZ frequency.
  4472. * We call it with interrupts disabled.
  4473. *
  4474. * It also gets called by the fork code, when changing the parent's
  4475. * timeslices.
  4476. */
  4477. void scheduler_tick(void)
  4478. {
  4479. int cpu = smp_processor_id();
  4480. struct rq *rq = cpu_rq(cpu);
  4481. struct task_struct *curr = rq->curr;
  4482. sched_clock_tick();
  4483. raw_spin_lock(&rq->lock);
  4484. update_rq_clock(rq);
  4485. update_cpu_load(rq);
  4486. curr->sched_class->task_tick(rq, curr, 0);
  4487. raw_spin_unlock(&rq->lock);
  4488. perf_event_task_tick(curr, cpu);
  4489. #ifdef CONFIG_SMP
  4490. rq->idle_at_tick = idle_cpu(cpu);
  4491. trigger_load_balance(rq, cpu);
  4492. #endif
  4493. }
  4494. notrace unsigned long get_parent_ip(unsigned long addr)
  4495. {
  4496. if (in_lock_functions(addr)) {
  4497. addr = CALLER_ADDR2;
  4498. if (in_lock_functions(addr))
  4499. addr = CALLER_ADDR3;
  4500. }
  4501. return addr;
  4502. }
  4503. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4504. defined(CONFIG_PREEMPT_TRACER))
  4505. void __kprobes add_preempt_count(int val)
  4506. {
  4507. #ifdef CONFIG_DEBUG_PREEMPT
  4508. /*
  4509. * Underflow?
  4510. */
  4511. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4512. return;
  4513. #endif
  4514. preempt_count() += val;
  4515. #ifdef CONFIG_DEBUG_PREEMPT
  4516. /*
  4517. * Spinlock count overflowing soon?
  4518. */
  4519. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4520. PREEMPT_MASK - 10);
  4521. #endif
  4522. if (preempt_count() == val)
  4523. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4524. }
  4525. EXPORT_SYMBOL(add_preempt_count);
  4526. void __kprobes sub_preempt_count(int val)
  4527. {
  4528. #ifdef CONFIG_DEBUG_PREEMPT
  4529. /*
  4530. * Underflow?
  4531. */
  4532. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4533. return;
  4534. /*
  4535. * Is the spinlock portion underflowing?
  4536. */
  4537. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4538. !(preempt_count() & PREEMPT_MASK)))
  4539. return;
  4540. #endif
  4541. if (preempt_count() == val)
  4542. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4543. preempt_count() -= val;
  4544. }
  4545. EXPORT_SYMBOL(sub_preempt_count);
  4546. #endif
  4547. /*
  4548. * Print scheduling while atomic bug:
  4549. */
  4550. static noinline void __schedule_bug(struct task_struct *prev)
  4551. {
  4552. struct pt_regs *regs = get_irq_regs();
  4553. pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4554. prev->comm, prev->pid, preempt_count());
  4555. debug_show_held_locks(prev);
  4556. print_modules();
  4557. if (irqs_disabled())
  4558. print_irqtrace_events(prev);
  4559. if (regs)
  4560. show_regs(regs);
  4561. else
  4562. dump_stack();
  4563. }
  4564. /*
  4565. * Various schedule()-time debugging checks and statistics:
  4566. */
  4567. static inline void schedule_debug(struct task_struct *prev)
  4568. {
  4569. /*
  4570. * Test if we are atomic. Since do_exit() needs to call into
  4571. * schedule() atomically, we ignore that path for now.
  4572. * Otherwise, whine if we are scheduling when we should not be.
  4573. */
  4574. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4575. __schedule_bug(prev);
  4576. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4577. schedstat_inc(this_rq(), sched_count);
  4578. #ifdef CONFIG_SCHEDSTATS
  4579. if (unlikely(prev->lock_depth >= 0)) {
  4580. schedstat_inc(this_rq(), bkl_count);
  4581. schedstat_inc(prev, sched_info.bkl_count);
  4582. }
  4583. #endif
  4584. }
  4585. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4586. {
  4587. if (prev->state == TASK_RUNNING) {
  4588. u64 runtime = prev->se.sum_exec_runtime;
  4589. runtime -= prev->se.prev_sum_exec_runtime;
  4590. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4591. /*
  4592. * In order to avoid avg_overlap growing stale when we are
  4593. * indeed overlapping and hence not getting put to sleep, grow
  4594. * the avg_overlap on preemption.
  4595. *
  4596. * We use the average preemption runtime because that
  4597. * correlates to the amount of cache footprint a task can
  4598. * build up.
  4599. */
  4600. update_avg(&prev->se.avg_overlap, runtime);
  4601. }
  4602. prev->sched_class->put_prev_task(rq, prev);
  4603. }
  4604. /*
  4605. * Pick up the highest-prio task:
  4606. */
  4607. static inline struct task_struct *
  4608. pick_next_task(struct rq *rq)
  4609. {
  4610. const struct sched_class *class;
  4611. struct task_struct *p;
  4612. /*
  4613. * Optimization: we know that if all tasks are in
  4614. * the fair class we can call that function directly:
  4615. */
  4616. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4617. p = fair_sched_class.pick_next_task(rq);
  4618. if (likely(p))
  4619. return p;
  4620. }
  4621. class = sched_class_highest;
  4622. for ( ; ; ) {
  4623. p = class->pick_next_task(rq);
  4624. if (p)
  4625. return p;
  4626. /*
  4627. * Will never be NULL as the idle class always
  4628. * returns a non-NULL p:
  4629. */
  4630. class = class->next;
  4631. }
  4632. }
  4633. /*
  4634. * schedule() is the main scheduler function.
  4635. */
  4636. asmlinkage void __sched schedule(void)
  4637. {
  4638. struct task_struct *prev, *next;
  4639. unsigned long *switch_count;
  4640. struct rq *rq;
  4641. int cpu;
  4642. need_resched:
  4643. preempt_disable();
  4644. cpu = smp_processor_id();
  4645. rq = cpu_rq(cpu);
  4646. rcu_sched_qs(cpu);
  4647. prev = rq->curr;
  4648. switch_count = &prev->nivcsw;
  4649. release_kernel_lock(prev);
  4650. need_resched_nonpreemptible:
  4651. schedule_debug(prev);
  4652. if (sched_feat(HRTICK))
  4653. hrtick_clear(rq);
  4654. raw_spin_lock_irq(&rq->lock);
  4655. update_rq_clock(rq);
  4656. clear_tsk_need_resched(prev);
  4657. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4658. if (unlikely(signal_pending_state(prev->state, prev)))
  4659. prev->state = TASK_RUNNING;
  4660. else
  4661. deactivate_task(rq, prev, 1);
  4662. switch_count = &prev->nvcsw;
  4663. }
  4664. pre_schedule(rq, prev);
  4665. if (unlikely(!rq->nr_running))
  4666. idle_balance(cpu, rq);
  4667. put_prev_task(rq, prev);
  4668. next = pick_next_task(rq);
  4669. if (likely(prev != next)) {
  4670. sched_info_switch(prev, next);
  4671. perf_event_task_sched_out(prev, next, cpu);
  4672. rq->nr_switches++;
  4673. rq->curr = next;
  4674. ++*switch_count;
  4675. context_switch(rq, prev, next); /* unlocks the rq */
  4676. /*
  4677. * the context switch might have flipped the stack from under
  4678. * us, hence refresh the local variables.
  4679. */
  4680. cpu = smp_processor_id();
  4681. rq = cpu_rq(cpu);
  4682. } else
  4683. raw_spin_unlock_irq(&rq->lock);
  4684. post_schedule(rq);
  4685. if (unlikely(reacquire_kernel_lock(current) < 0))
  4686. goto need_resched_nonpreemptible;
  4687. preempt_enable_no_resched();
  4688. if (need_resched())
  4689. goto need_resched;
  4690. }
  4691. EXPORT_SYMBOL(schedule);
  4692. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  4693. /*
  4694. * Look out! "owner" is an entirely speculative pointer
  4695. * access and not reliable.
  4696. */
  4697. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4698. {
  4699. unsigned int cpu;
  4700. struct rq *rq;
  4701. if (!sched_feat(OWNER_SPIN))
  4702. return 0;
  4703. #ifdef CONFIG_DEBUG_PAGEALLOC
  4704. /*
  4705. * Need to access the cpu field knowing that
  4706. * DEBUG_PAGEALLOC could have unmapped it if
  4707. * the mutex owner just released it and exited.
  4708. */
  4709. if (probe_kernel_address(&owner->cpu, cpu))
  4710. goto out;
  4711. #else
  4712. cpu = owner->cpu;
  4713. #endif
  4714. /*
  4715. * Even if the access succeeded (likely case),
  4716. * the cpu field may no longer be valid.
  4717. */
  4718. if (cpu >= nr_cpumask_bits)
  4719. goto out;
  4720. /*
  4721. * We need to validate that we can do a
  4722. * get_cpu() and that we have the percpu area.
  4723. */
  4724. if (!cpu_online(cpu))
  4725. goto out;
  4726. rq = cpu_rq(cpu);
  4727. for (;;) {
  4728. /*
  4729. * Owner changed, break to re-assess state.
  4730. */
  4731. if (lock->owner != owner)
  4732. break;
  4733. /*
  4734. * Is that owner really running on that cpu?
  4735. */
  4736. if (task_thread_info(rq->curr) != owner || need_resched())
  4737. return 0;
  4738. cpu_relax();
  4739. }
  4740. out:
  4741. return 1;
  4742. }
  4743. #endif
  4744. #ifdef CONFIG_PREEMPT
  4745. /*
  4746. * this is the entry point to schedule() from in-kernel preemption
  4747. * off of preempt_enable. Kernel preemptions off return from interrupt
  4748. * occur there and call schedule directly.
  4749. */
  4750. asmlinkage void __sched preempt_schedule(void)
  4751. {
  4752. struct thread_info *ti = current_thread_info();
  4753. /*
  4754. * If there is a non-zero preempt_count or interrupts are disabled,
  4755. * we do not want to preempt the current task. Just return..
  4756. */
  4757. if (likely(ti->preempt_count || irqs_disabled()))
  4758. return;
  4759. do {
  4760. add_preempt_count(PREEMPT_ACTIVE);
  4761. schedule();
  4762. sub_preempt_count(PREEMPT_ACTIVE);
  4763. /*
  4764. * Check again in case we missed a preemption opportunity
  4765. * between schedule and now.
  4766. */
  4767. barrier();
  4768. } while (need_resched());
  4769. }
  4770. EXPORT_SYMBOL(preempt_schedule);
  4771. /*
  4772. * this is the entry point to schedule() from kernel preemption
  4773. * off of irq context.
  4774. * Note, that this is called and return with irqs disabled. This will
  4775. * protect us against recursive calling from irq.
  4776. */
  4777. asmlinkage void __sched preempt_schedule_irq(void)
  4778. {
  4779. struct thread_info *ti = current_thread_info();
  4780. /* Catch callers which need to be fixed */
  4781. BUG_ON(ti->preempt_count || !irqs_disabled());
  4782. do {
  4783. add_preempt_count(PREEMPT_ACTIVE);
  4784. local_irq_enable();
  4785. schedule();
  4786. local_irq_disable();
  4787. sub_preempt_count(PREEMPT_ACTIVE);
  4788. /*
  4789. * Check again in case we missed a preemption opportunity
  4790. * between schedule and now.
  4791. */
  4792. barrier();
  4793. } while (need_resched());
  4794. }
  4795. #endif /* CONFIG_PREEMPT */
  4796. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4797. void *key)
  4798. {
  4799. return try_to_wake_up(curr->private, mode, wake_flags);
  4800. }
  4801. EXPORT_SYMBOL(default_wake_function);
  4802. /*
  4803. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4804. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4805. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4806. *
  4807. * There are circumstances in which we can try to wake a task which has already
  4808. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4809. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4810. */
  4811. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4812. int nr_exclusive, int wake_flags, void *key)
  4813. {
  4814. wait_queue_t *curr, *next;
  4815. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4816. unsigned flags = curr->flags;
  4817. if (curr->func(curr, mode, wake_flags, key) &&
  4818. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4819. break;
  4820. }
  4821. }
  4822. /**
  4823. * __wake_up - wake up threads blocked on a waitqueue.
  4824. * @q: the waitqueue
  4825. * @mode: which threads
  4826. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4827. * @key: is directly passed to the wakeup function
  4828. *
  4829. * It may be assumed that this function implies a write memory barrier before
  4830. * changing the task state if and only if any tasks are woken up.
  4831. */
  4832. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4833. int nr_exclusive, void *key)
  4834. {
  4835. unsigned long flags;
  4836. spin_lock_irqsave(&q->lock, flags);
  4837. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4838. spin_unlock_irqrestore(&q->lock, flags);
  4839. }
  4840. EXPORT_SYMBOL(__wake_up);
  4841. /*
  4842. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4843. */
  4844. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4845. {
  4846. __wake_up_common(q, mode, 1, 0, NULL);
  4847. }
  4848. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4849. {
  4850. __wake_up_common(q, mode, 1, 0, key);
  4851. }
  4852. /**
  4853. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4854. * @q: the waitqueue
  4855. * @mode: which threads
  4856. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4857. * @key: opaque value to be passed to wakeup targets
  4858. *
  4859. * The sync wakeup differs that the waker knows that it will schedule
  4860. * away soon, so while the target thread will be woken up, it will not
  4861. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4862. * with each other. This can prevent needless bouncing between CPUs.
  4863. *
  4864. * On UP it can prevent extra preemption.
  4865. *
  4866. * It may be assumed that this function implies a write memory barrier before
  4867. * changing the task state if and only if any tasks are woken up.
  4868. */
  4869. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4870. int nr_exclusive, void *key)
  4871. {
  4872. unsigned long flags;
  4873. int wake_flags = WF_SYNC;
  4874. if (unlikely(!q))
  4875. return;
  4876. if (unlikely(!nr_exclusive))
  4877. wake_flags = 0;
  4878. spin_lock_irqsave(&q->lock, flags);
  4879. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4880. spin_unlock_irqrestore(&q->lock, flags);
  4881. }
  4882. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4883. /*
  4884. * __wake_up_sync - see __wake_up_sync_key()
  4885. */
  4886. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4887. {
  4888. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4889. }
  4890. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4891. /**
  4892. * complete: - signals a single thread waiting on this completion
  4893. * @x: holds the state of this particular completion
  4894. *
  4895. * This will wake up a single thread waiting on this completion. Threads will be
  4896. * awakened in the same order in which they were queued.
  4897. *
  4898. * See also complete_all(), wait_for_completion() and related routines.
  4899. *
  4900. * It may be assumed that this function implies a write memory barrier before
  4901. * changing the task state if and only if any tasks are woken up.
  4902. */
  4903. void complete(struct completion *x)
  4904. {
  4905. unsigned long flags;
  4906. spin_lock_irqsave(&x->wait.lock, flags);
  4907. x->done++;
  4908. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4909. spin_unlock_irqrestore(&x->wait.lock, flags);
  4910. }
  4911. EXPORT_SYMBOL(complete);
  4912. /**
  4913. * complete_all: - signals all threads waiting on this completion
  4914. * @x: holds the state of this particular completion
  4915. *
  4916. * This will wake up all threads waiting on this particular completion event.
  4917. *
  4918. * It may be assumed that this function implies a write memory barrier before
  4919. * changing the task state if and only if any tasks are woken up.
  4920. */
  4921. void complete_all(struct completion *x)
  4922. {
  4923. unsigned long flags;
  4924. spin_lock_irqsave(&x->wait.lock, flags);
  4925. x->done += UINT_MAX/2;
  4926. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4927. spin_unlock_irqrestore(&x->wait.lock, flags);
  4928. }
  4929. EXPORT_SYMBOL(complete_all);
  4930. static inline long __sched
  4931. do_wait_for_common(struct completion *x, long timeout, int state)
  4932. {
  4933. if (!x->done) {
  4934. DECLARE_WAITQUEUE(wait, current);
  4935. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4936. __add_wait_queue_tail(&x->wait, &wait);
  4937. do {
  4938. if (signal_pending_state(state, current)) {
  4939. timeout = -ERESTARTSYS;
  4940. break;
  4941. }
  4942. __set_current_state(state);
  4943. spin_unlock_irq(&x->wait.lock);
  4944. timeout = schedule_timeout(timeout);
  4945. spin_lock_irq(&x->wait.lock);
  4946. } while (!x->done && timeout);
  4947. __remove_wait_queue(&x->wait, &wait);
  4948. if (!x->done)
  4949. return timeout;
  4950. }
  4951. x->done--;
  4952. return timeout ?: 1;
  4953. }
  4954. static long __sched
  4955. wait_for_common(struct completion *x, long timeout, int state)
  4956. {
  4957. might_sleep();
  4958. spin_lock_irq(&x->wait.lock);
  4959. timeout = do_wait_for_common(x, timeout, state);
  4960. spin_unlock_irq(&x->wait.lock);
  4961. return timeout;
  4962. }
  4963. /**
  4964. * wait_for_completion: - waits for completion of a task
  4965. * @x: holds the state of this particular completion
  4966. *
  4967. * This waits to be signaled for completion of a specific task. It is NOT
  4968. * interruptible and there is no timeout.
  4969. *
  4970. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4971. * and interrupt capability. Also see complete().
  4972. */
  4973. void __sched wait_for_completion(struct completion *x)
  4974. {
  4975. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4976. }
  4977. EXPORT_SYMBOL(wait_for_completion);
  4978. /**
  4979. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4980. * @x: holds the state of this particular completion
  4981. * @timeout: timeout value in jiffies
  4982. *
  4983. * This waits for either a completion of a specific task to be signaled or for a
  4984. * specified timeout to expire. The timeout is in jiffies. It is not
  4985. * interruptible.
  4986. */
  4987. unsigned long __sched
  4988. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4989. {
  4990. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4991. }
  4992. EXPORT_SYMBOL(wait_for_completion_timeout);
  4993. /**
  4994. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4995. * @x: holds the state of this particular completion
  4996. *
  4997. * This waits for completion of a specific task to be signaled. It is
  4998. * interruptible.
  4999. */
  5000. int __sched wait_for_completion_interruptible(struct completion *x)
  5001. {
  5002. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  5003. if (t == -ERESTARTSYS)
  5004. return t;
  5005. return 0;
  5006. }
  5007. EXPORT_SYMBOL(wait_for_completion_interruptible);
  5008. /**
  5009. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  5010. * @x: holds the state of this particular completion
  5011. * @timeout: timeout value in jiffies
  5012. *
  5013. * This waits for either a completion of a specific task to be signaled or for a
  5014. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  5015. */
  5016. unsigned long __sched
  5017. wait_for_completion_interruptible_timeout(struct completion *x,
  5018. unsigned long timeout)
  5019. {
  5020. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  5021. }
  5022. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  5023. /**
  5024. * wait_for_completion_killable: - waits for completion of a task (killable)
  5025. * @x: holds the state of this particular completion
  5026. *
  5027. * This waits to be signaled for completion of a specific task. It can be
  5028. * interrupted by a kill signal.
  5029. */
  5030. int __sched wait_for_completion_killable(struct completion *x)
  5031. {
  5032. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5033. if (t == -ERESTARTSYS)
  5034. return t;
  5035. return 0;
  5036. }
  5037. EXPORT_SYMBOL(wait_for_completion_killable);
  5038. /**
  5039. * try_wait_for_completion - try to decrement a completion without blocking
  5040. * @x: completion structure
  5041. *
  5042. * Returns: 0 if a decrement cannot be done without blocking
  5043. * 1 if a decrement succeeded.
  5044. *
  5045. * If a completion is being used as a counting completion,
  5046. * attempt to decrement the counter without blocking. This
  5047. * enables us to avoid waiting if the resource the completion
  5048. * is protecting is not available.
  5049. */
  5050. bool try_wait_for_completion(struct completion *x)
  5051. {
  5052. unsigned long flags;
  5053. int ret = 1;
  5054. spin_lock_irqsave(&x->wait.lock, flags);
  5055. if (!x->done)
  5056. ret = 0;
  5057. else
  5058. x->done--;
  5059. spin_unlock_irqrestore(&x->wait.lock, flags);
  5060. return ret;
  5061. }
  5062. EXPORT_SYMBOL(try_wait_for_completion);
  5063. /**
  5064. * completion_done - Test to see if a completion has any waiters
  5065. * @x: completion structure
  5066. *
  5067. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5068. * 1 if there are no waiters.
  5069. *
  5070. */
  5071. bool completion_done(struct completion *x)
  5072. {
  5073. unsigned long flags;
  5074. int ret = 1;
  5075. spin_lock_irqsave(&x->wait.lock, flags);
  5076. if (!x->done)
  5077. ret = 0;
  5078. spin_unlock_irqrestore(&x->wait.lock, flags);
  5079. return ret;
  5080. }
  5081. EXPORT_SYMBOL(completion_done);
  5082. static long __sched
  5083. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5084. {
  5085. unsigned long flags;
  5086. wait_queue_t wait;
  5087. init_waitqueue_entry(&wait, current);
  5088. __set_current_state(state);
  5089. spin_lock_irqsave(&q->lock, flags);
  5090. __add_wait_queue(q, &wait);
  5091. spin_unlock(&q->lock);
  5092. timeout = schedule_timeout(timeout);
  5093. spin_lock_irq(&q->lock);
  5094. __remove_wait_queue(q, &wait);
  5095. spin_unlock_irqrestore(&q->lock, flags);
  5096. return timeout;
  5097. }
  5098. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5099. {
  5100. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5101. }
  5102. EXPORT_SYMBOL(interruptible_sleep_on);
  5103. long __sched
  5104. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5105. {
  5106. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5107. }
  5108. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5109. void __sched sleep_on(wait_queue_head_t *q)
  5110. {
  5111. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5112. }
  5113. EXPORT_SYMBOL(sleep_on);
  5114. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5115. {
  5116. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5117. }
  5118. EXPORT_SYMBOL(sleep_on_timeout);
  5119. #ifdef CONFIG_RT_MUTEXES
  5120. /*
  5121. * rt_mutex_setprio - set the current priority of a task
  5122. * @p: task
  5123. * @prio: prio value (kernel-internal form)
  5124. *
  5125. * This function changes the 'effective' priority of a task. It does
  5126. * not touch ->normal_prio like __setscheduler().
  5127. *
  5128. * Used by the rt_mutex code to implement priority inheritance logic.
  5129. */
  5130. void rt_mutex_setprio(struct task_struct *p, int prio)
  5131. {
  5132. unsigned long flags;
  5133. int oldprio, on_rq, running;
  5134. struct rq *rq;
  5135. const struct sched_class *prev_class = p->sched_class;
  5136. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5137. rq = task_rq_lock(p, &flags);
  5138. update_rq_clock(rq);
  5139. oldprio = p->prio;
  5140. on_rq = p->se.on_rq;
  5141. running = task_current(rq, p);
  5142. if (on_rq)
  5143. dequeue_task(rq, p, 0);
  5144. if (running)
  5145. p->sched_class->put_prev_task(rq, p);
  5146. if (rt_prio(prio))
  5147. p->sched_class = &rt_sched_class;
  5148. else
  5149. p->sched_class = &fair_sched_class;
  5150. p->prio = prio;
  5151. if (running)
  5152. p->sched_class->set_curr_task(rq);
  5153. if (on_rq) {
  5154. enqueue_task(rq, p, 0);
  5155. check_class_changed(rq, p, prev_class, oldprio, running);
  5156. }
  5157. task_rq_unlock(rq, &flags);
  5158. }
  5159. #endif
  5160. void set_user_nice(struct task_struct *p, long nice)
  5161. {
  5162. int old_prio, delta, on_rq;
  5163. unsigned long flags;
  5164. struct rq *rq;
  5165. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5166. return;
  5167. /*
  5168. * We have to be careful, if called from sys_setpriority(),
  5169. * the task might be in the middle of scheduling on another CPU.
  5170. */
  5171. rq = task_rq_lock(p, &flags);
  5172. update_rq_clock(rq);
  5173. /*
  5174. * The RT priorities are set via sched_setscheduler(), but we still
  5175. * allow the 'normal' nice value to be set - but as expected
  5176. * it wont have any effect on scheduling until the task is
  5177. * SCHED_FIFO/SCHED_RR:
  5178. */
  5179. if (task_has_rt_policy(p)) {
  5180. p->static_prio = NICE_TO_PRIO(nice);
  5181. goto out_unlock;
  5182. }
  5183. on_rq = p->se.on_rq;
  5184. if (on_rq)
  5185. dequeue_task(rq, p, 0);
  5186. p->static_prio = NICE_TO_PRIO(nice);
  5187. set_load_weight(p);
  5188. old_prio = p->prio;
  5189. p->prio = effective_prio(p);
  5190. delta = p->prio - old_prio;
  5191. if (on_rq) {
  5192. enqueue_task(rq, p, 0);
  5193. /*
  5194. * If the task increased its priority or is running and
  5195. * lowered its priority, then reschedule its CPU:
  5196. */
  5197. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5198. resched_task(rq->curr);
  5199. }
  5200. out_unlock:
  5201. task_rq_unlock(rq, &flags);
  5202. }
  5203. EXPORT_SYMBOL(set_user_nice);
  5204. /*
  5205. * can_nice - check if a task can reduce its nice value
  5206. * @p: task
  5207. * @nice: nice value
  5208. */
  5209. int can_nice(const struct task_struct *p, const int nice)
  5210. {
  5211. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5212. int nice_rlim = 20 - nice;
  5213. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5214. capable(CAP_SYS_NICE));
  5215. }
  5216. #ifdef __ARCH_WANT_SYS_NICE
  5217. /*
  5218. * sys_nice - change the priority of the current process.
  5219. * @increment: priority increment
  5220. *
  5221. * sys_setpriority is a more generic, but much slower function that
  5222. * does similar things.
  5223. */
  5224. SYSCALL_DEFINE1(nice, int, increment)
  5225. {
  5226. long nice, retval;
  5227. /*
  5228. * Setpriority might change our priority at the same moment.
  5229. * We don't have to worry. Conceptually one call occurs first
  5230. * and we have a single winner.
  5231. */
  5232. if (increment < -40)
  5233. increment = -40;
  5234. if (increment > 40)
  5235. increment = 40;
  5236. nice = TASK_NICE(current) + increment;
  5237. if (nice < -20)
  5238. nice = -20;
  5239. if (nice > 19)
  5240. nice = 19;
  5241. if (increment < 0 && !can_nice(current, nice))
  5242. return -EPERM;
  5243. retval = security_task_setnice(current, nice);
  5244. if (retval)
  5245. return retval;
  5246. set_user_nice(current, nice);
  5247. return 0;
  5248. }
  5249. #endif
  5250. /**
  5251. * task_prio - return the priority value of a given task.
  5252. * @p: the task in question.
  5253. *
  5254. * This is the priority value as seen by users in /proc.
  5255. * RT tasks are offset by -200. Normal tasks are centered
  5256. * around 0, value goes from -16 to +15.
  5257. */
  5258. int task_prio(const struct task_struct *p)
  5259. {
  5260. return p->prio - MAX_RT_PRIO;
  5261. }
  5262. /**
  5263. * task_nice - return the nice value of a given task.
  5264. * @p: the task in question.
  5265. */
  5266. int task_nice(const struct task_struct *p)
  5267. {
  5268. return TASK_NICE(p);
  5269. }
  5270. EXPORT_SYMBOL(task_nice);
  5271. /**
  5272. * idle_cpu - is a given cpu idle currently?
  5273. * @cpu: the processor in question.
  5274. */
  5275. int idle_cpu(int cpu)
  5276. {
  5277. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5278. }
  5279. /**
  5280. * idle_task - return the idle task for a given cpu.
  5281. * @cpu: the processor in question.
  5282. */
  5283. struct task_struct *idle_task(int cpu)
  5284. {
  5285. return cpu_rq(cpu)->idle;
  5286. }
  5287. /**
  5288. * find_process_by_pid - find a process with a matching PID value.
  5289. * @pid: the pid in question.
  5290. */
  5291. static struct task_struct *find_process_by_pid(pid_t pid)
  5292. {
  5293. return pid ? find_task_by_vpid(pid) : current;
  5294. }
  5295. /* Actually do priority change: must hold rq lock. */
  5296. static void
  5297. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5298. {
  5299. BUG_ON(p->se.on_rq);
  5300. p->policy = policy;
  5301. p->rt_priority = prio;
  5302. p->normal_prio = normal_prio(p);
  5303. /* we are holding p->pi_lock already */
  5304. p->prio = rt_mutex_getprio(p);
  5305. if (rt_prio(p->prio))
  5306. p->sched_class = &rt_sched_class;
  5307. else
  5308. p->sched_class = &fair_sched_class;
  5309. set_load_weight(p);
  5310. }
  5311. /*
  5312. * check the target process has a UID that matches the current process's
  5313. */
  5314. static bool check_same_owner(struct task_struct *p)
  5315. {
  5316. const struct cred *cred = current_cred(), *pcred;
  5317. bool match;
  5318. rcu_read_lock();
  5319. pcred = __task_cred(p);
  5320. match = (cred->euid == pcred->euid ||
  5321. cred->euid == pcred->uid);
  5322. rcu_read_unlock();
  5323. return match;
  5324. }
  5325. static int __sched_setscheduler(struct task_struct *p, int policy,
  5326. struct sched_param *param, bool user)
  5327. {
  5328. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5329. unsigned long flags;
  5330. const struct sched_class *prev_class = p->sched_class;
  5331. struct rq *rq;
  5332. int reset_on_fork;
  5333. /* may grab non-irq protected spin_locks */
  5334. BUG_ON(in_interrupt());
  5335. recheck:
  5336. /* double check policy once rq lock held */
  5337. if (policy < 0) {
  5338. reset_on_fork = p->sched_reset_on_fork;
  5339. policy = oldpolicy = p->policy;
  5340. } else {
  5341. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5342. policy &= ~SCHED_RESET_ON_FORK;
  5343. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5344. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5345. policy != SCHED_IDLE)
  5346. return -EINVAL;
  5347. }
  5348. /*
  5349. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5350. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5351. * SCHED_BATCH and SCHED_IDLE is 0.
  5352. */
  5353. if (param->sched_priority < 0 ||
  5354. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5355. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5356. return -EINVAL;
  5357. if (rt_policy(policy) != (param->sched_priority != 0))
  5358. return -EINVAL;
  5359. /*
  5360. * Allow unprivileged RT tasks to decrease priority:
  5361. */
  5362. if (user && !capable(CAP_SYS_NICE)) {
  5363. if (rt_policy(policy)) {
  5364. unsigned long rlim_rtprio;
  5365. if (!lock_task_sighand(p, &flags))
  5366. return -ESRCH;
  5367. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5368. unlock_task_sighand(p, &flags);
  5369. /* can't set/change the rt policy */
  5370. if (policy != p->policy && !rlim_rtprio)
  5371. return -EPERM;
  5372. /* can't increase priority */
  5373. if (param->sched_priority > p->rt_priority &&
  5374. param->sched_priority > rlim_rtprio)
  5375. return -EPERM;
  5376. }
  5377. /*
  5378. * Like positive nice levels, dont allow tasks to
  5379. * move out of SCHED_IDLE either:
  5380. */
  5381. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5382. return -EPERM;
  5383. /* can't change other user's priorities */
  5384. if (!check_same_owner(p))
  5385. return -EPERM;
  5386. /* Normal users shall not reset the sched_reset_on_fork flag */
  5387. if (p->sched_reset_on_fork && !reset_on_fork)
  5388. return -EPERM;
  5389. }
  5390. if (user) {
  5391. #ifdef CONFIG_RT_GROUP_SCHED
  5392. /*
  5393. * Do not allow realtime tasks into groups that have no runtime
  5394. * assigned.
  5395. */
  5396. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5397. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5398. return -EPERM;
  5399. #endif
  5400. retval = security_task_setscheduler(p, policy, param);
  5401. if (retval)
  5402. return retval;
  5403. }
  5404. /*
  5405. * make sure no PI-waiters arrive (or leave) while we are
  5406. * changing the priority of the task:
  5407. */
  5408. raw_spin_lock_irqsave(&p->pi_lock, flags);
  5409. /*
  5410. * To be able to change p->policy safely, the apropriate
  5411. * runqueue lock must be held.
  5412. */
  5413. rq = __task_rq_lock(p);
  5414. /* recheck policy now with rq lock held */
  5415. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5416. policy = oldpolicy = -1;
  5417. __task_rq_unlock(rq);
  5418. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5419. goto recheck;
  5420. }
  5421. update_rq_clock(rq);
  5422. on_rq = p->se.on_rq;
  5423. running = task_current(rq, p);
  5424. if (on_rq)
  5425. deactivate_task(rq, p, 0);
  5426. if (running)
  5427. p->sched_class->put_prev_task(rq, p);
  5428. p->sched_reset_on_fork = reset_on_fork;
  5429. oldprio = p->prio;
  5430. __setscheduler(rq, p, policy, param->sched_priority);
  5431. if (running)
  5432. p->sched_class->set_curr_task(rq);
  5433. if (on_rq) {
  5434. activate_task(rq, p, 0);
  5435. check_class_changed(rq, p, prev_class, oldprio, running);
  5436. }
  5437. __task_rq_unlock(rq);
  5438. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5439. rt_mutex_adjust_pi(p);
  5440. return 0;
  5441. }
  5442. /**
  5443. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5444. * @p: the task in question.
  5445. * @policy: new policy.
  5446. * @param: structure containing the new RT priority.
  5447. *
  5448. * NOTE that the task may be already dead.
  5449. */
  5450. int sched_setscheduler(struct task_struct *p, int policy,
  5451. struct sched_param *param)
  5452. {
  5453. return __sched_setscheduler(p, policy, param, true);
  5454. }
  5455. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5456. /**
  5457. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5458. * @p: the task in question.
  5459. * @policy: new policy.
  5460. * @param: structure containing the new RT priority.
  5461. *
  5462. * Just like sched_setscheduler, only don't bother checking if the
  5463. * current context has permission. For example, this is needed in
  5464. * stop_machine(): we create temporary high priority worker threads,
  5465. * but our caller might not have that capability.
  5466. */
  5467. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5468. struct sched_param *param)
  5469. {
  5470. return __sched_setscheduler(p, policy, param, false);
  5471. }
  5472. static int
  5473. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5474. {
  5475. struct sched_param lparam;
  5476. struct task_struct *p;
  5477. int retval;
  5478. if (!param || pid < 0)
  5479. return -EINVAL;
  5480. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5481. return -EFAULT;
  5482. rcu_read_lock();
  5483. retval = -ESRCH;
  5484. p = find_process_by_pid(pid);
  5485. if (p != NULL)
  5486. retval = sched_setscheduler(p, policy, &lparam);
  5487. rcu_read_unlock();
  5488. return retval;
  5489. }
  5490. /**
  5491. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5492. * @pid: the pid in question.
  5493. * @policy: new policy.
  5494. * @param: structure containing the new RT priority.
  5495. */
  5496. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5497. struct sched_param __user *, param)
  5498. {
  5499. /* negative values for policy are not valid */
  5500. if (policy < 0)
  5501. return -EINVAL;
  5502. return do_sched_setscheduler(pid, policy, param);
  5503. }
  5504. /**
  5505. * sys_sched_setparam - set/change the RT priority of a thread
  5506. * @pid: the pid in question.
  5507. * @param: structure containing the new RT priority.
  5508. */
  5509. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5510. {
  5511. return do_sched_setscheduler(pid, -1, param);
  5512. }
  5513. /**
  5514. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5515. * @pid: the pid in question.
  5516. */
  5517. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5518. {
  5519. struct task_struct *p;
  5520. int retval;
  5521. if (pid < 0)
  5522. return -EINVAL;
  5523. retval = -ESRCH;
  5524. rcu_read_lock();
  5525. p = find_process_by_pid(pid);
  5526. if (p) {
  5527. retval = security_task_getscheduler(p);
  5528. if (!retval)
  5529. retval = p->policy
  5530. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5531. }
  5532. rcu_read_unlock();
  5533. return retval;
  5534. }
  5535. /**
  5536. * sys_sched_getparam - get the RT priority of a thread
  5537. * @pid: the pid in question.
  5538. * @param: structure containing the RT priority.
  5539. */
  5540. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5541. {
  5542. struct sched_param lp;
  5543. struct task_struct *p;
  5544. int retval;
  5545. if (!param || pid < 0)
  5546. return -EINVAL;
  5547. rcu_read_lock();
  5548. p = find_process_by_pid(pid);
  5549. retval = -ESRCH;
  5550. if (!p)
  5551. goto out_unlock;
  5552. retval = security_task_getscheduler(p);
  5553. if (retval)
  5554. goto out_unlock;
  5555. lp.sched_priority = p->rt_priority;
  5556. rcu_read_unlock();
  5557. /*
  5558. * This one might sleep, we cannot do it with a spinlock held ...
  5559. */
  5560. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5561. return retval;
  5562. out_unlock:
  5563. rcu_read_unlock();
  5564. return retval;
  5565. }
  5566. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5567. {
  5568. cpumask_var_t cpus_allowed, new_mask;
  5569. struct task_struct *p;
  5570. int retval;
  5571. get_online_cpus();
  5572. rcu_read_lock();
  5573. p = find_process_by_pid(pid);
  5574. if (!p) {
  5575. rcu_read_unlock();
  5576. put_online_cpus();
  5577. return -ESRCH;
  5578. }
  5579. /* Prevent p going away */
  5580. get_task_struct(p);
  5581. rcu_read_unlock();
  5582. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5583. retval = -ENOMEM;
  5584. goto out_put_task;
  5585. }
  5586. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5587. retval = -ENOMEM;
  5588. goto out_free_cpus_allowed;
  5589. }
  5590. retval = -EPERM;
  5591. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5592. goto out_unlock;
  5593. retval = security_task_setscheduler(p, 0, NULL);
  5594. if (retval)
  5595. goto out_unlock;
  5596. cpuset_cpus_allowed(p, cpus_allowed);
  5597. cpumask_and(new_mask, in_mask, cpus_allowed);
  5598. again:
  5599. retval = set_cpus_allowed_ptr(p, new_mask);
  5600. if (!retval) {
  5601. cpuset_cpus_allowed(p, cpus_allowed);
  5602. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5603. /*
  5604. * We must have raced with a concurrent cpuset
  5605. * update. Just reset the cpus_allowed to the
  5606. * cpuset's cpus_allowed
  5607. */
  5608. cpumask_copy(new_mask, cpus_allowed);
  5609. goto again;
  5610. }
  5611. }
  5612. out_unlock:
  5613. free_cpumask_var(new_mask);
  5614. out_free_cpus_allowed:
  5615. free_cpumask_var(cpus_allowed);
  5616. out_put_task:
  5617. put_task_struct(p);
  5618. put_online_cpus();
  5619. return retval;
  5620. }
  5621. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5622. struct cpumask *new_mask)
  5623. {
  5624. if (len < cpumask_size())
  5625. cpumask_clear(new_mask);
  5626. else if (len > cpumask_size())
  5627. len = cpumask_size();
  5628. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5629. }
  5630. /**
  5631. * sys_sched_setaffinity - set the cpu affinity of a process
  5632. * @pid: pid of the process
  5633. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5634. * @user_mask_ptr: user-space pointer to the new cpu mask
  5635. */
  5636. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5637. unsigned long __user *, user_mask_ptr)
  5638. {
  5639. cpumask_var_t new_mask;
  5640. int retval;
  5641. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5642. return -ENOMEM;
  5643. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5644. if (retval == 0)
  5645. retval = sched_setaffinity(pid, new_mask);
  5646. free_cpumask_var(new_mask);
  5647. return retval;
  5648. }
  5649. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5650. {
  5651. struct task_struct *p;
  5652. unsigned long flags;
  5653. struct rq *rq;
  5654. int retval;
  5655. get_online_cpus();
  5656. rcu_read_lock();
  5657. retval = -ESRCH;
  5658. p = find_process_by_pid(pid);
  5659. if (!p)
  5660. goto out_unlock;
  5661. retval = security_task_getscheduler(p);
  5662. if (retval)
  5663. goto out_unlock;
  5664. rq = task_rq_lock(p, &flags);
  5665. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5666. task_rq_unlock(rq, &flags);
  5667. out_unlock:
  5668. rcu_read_unlock();
  5669. put_online_cpus();
  5670. return retval;
  5671. }
  5672. /**
  5673. * sys_sched_getaffinity - get the cpu affinity of a process
  5674. * @pid: pid of the process
  5675. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5676. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5677. */
  5678. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5679. unsigned long __user *, user_mask_ptr)
  5680. {
  5681. int ret;
  5682. cpumask_var_t mask;
  5683. if (len < cpumask_size())
  5684. return -EINVAL;
  5685. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5686. return -ENOMEM;
  5687. ret = sched_getaffinity(pid, mask);
  5688. if (ret == 0) {
  5689. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5690. ret = -EFAULT;
  5691. else
  5692. ret = cpumask_size();
  5693. }
  5694. free_cpumask_var(mask);
  5695. return ret;
  5696. }
  5697. /**
  5698. * sys_sched_yield - yield the current processor to other threads.
  5699. *
  5700. * This function yields the current CPU to other tasks. If there are no
  5701. * other threads running on this CPU then this function will return.
  5702. */
  5703. SYSCALL_DEFINE0(sched_yield)
  5704. {
  5705. struct rq *rq = this_rq_lock();
  5706. schedstat_inc(rq, yld_count);
  5707. current->sched_class->yield_task(rq);
  5708. /*
  5709. * Since we are going to call schedule() anyway, there's
  5710. * no need to preempt or enable interrupts:
  5711. */
  5712. __release(rq->lock);
  5713. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5714. do_raw_spin_unlock(&rq->lock);
  5715. preempt_enable_no_resched();
  5716. schedule();
  5717. return 0;
  5718. }
  5719. static inline int should_resched(void)
  5720. {
  5721. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5722. }
  5723. static void __cond_resched(void)
  5724. {
  5725. add_preempt_count(PREEMPT_ACTIVE);
  5726. schedule();
  5727. sub_preempt_count(PREEMPT_ACTIVE);
  5728. }
  5729. int __sched _cond_resched(void)
  5730. {
  5731. if (should_resched()) {
  5732. __cond_resched();
  5733. return 1;
  5734. }
  5735. return 0;
  5736. }
  5737. EXPORT_SYMBOL(_cond_resched);
  5738. /*
  5739. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5740. * call schedule, and on return reacquire the lock.
  5741. *
  5742. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5743. * operations here to prevent schedule() from being called twice (once via
  5744. * spin_unlock(), once by hand).
  5745. */
  5746. int __cond_resched_lock(spinlock_t *lock)
  5747. {
  5748. int resched = should_resched();
  5749. int ret = 0;
  5750. lockdep_assert_held(lock);
  5751. if (spin_needbreak(lock) || resched) {
  5752. spin_unlock(lock);
  5753. if (resched)
  5754. __cond_resched();
  5755. else
  5756. cpu_relax();
  5757. ret = 1;
  5758. spin_lock(lock);
  5759. }
  5760. return ret;
  5761. }
  5762. EXPORT_SYMBOL(__cond_resched_lock);
  5763. int __sched __cond_resched_softirq(void)
  5764. {
  5765. BUG_ON(!in_softirq());
  5766. if (should_resched()) {
  5767. local_bh_enable();
  5768. __cond_resched();
  5769. local_bh_disable();
  5770. return 1;
  5771. }
  5772. return 0;
  5773. }
  5774. EXPORT_SYMBOL(__cond_resched_softirq);
  5775. /**
  5776. * yield - yield the current processor to other threads.
  5777. *
  5778. * This is a shortcut for kernel-space yielding - it marks the
  5779. * thread runnable and calls sys_sched_yield().
  5780. */
  5781. void __sched yield(void)
  5782. {
  5783. set_current_state(TASK_RUNNING);
  5784. sys_sched_yield();
  5785. }
  5786. EXPORT_SYMBOL(yield);
  5787. /*
  5788. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5789. * that process accounting knows that this is a task in IO wait state.
  5790. */
  5791. void __sched io_schedule(void)
  5792. {
  5793. struct rq *rq = raw_rq();
  5794. delayacct_blkio_start();
  5795. atomic_inc(&rq->nr_iowait);
  5796. current->in_iowait = 1;
  5797. schedule();
  5798. current->in_iowait = 0;
  5799. atomic_dec(&rq->nr_iowait);
  5800. delayacct_blkio_end();
  5801. }
  5802. EXPORT_SYMBOL(io_schedule);
  5803. long __sched io_schedule_timeout(long timeout)
  5804. {
  5805. struct rq *rq = raw_rq();
  5806. long ret;
  5807. delayacct_blkio_start();
  5808. atomic_inc(&rq->nr_iowait);
  5809. current->in_iowait = 1;
  5810. ret = schedule_timeout(timeout);
  5811. current->in_iowait = 0;
  5812. atomic_dec(&rq->nr_iowait);
  5813. delayacct_blkio_end();
  5814. return ret;
  5815. }
  5816. /**
  5817. * sys_sched_get_priority_max - return maximum RT priority.
  5818. * @policy: scheduling class.
  5819. *
  5820. * this syscall returns the maximum rt_priority that can be used
  5821. * by a given scheduling class.
  5822. */
  5823. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5824. {
  5825. int ret = -EINVAL;
  5826. switch (policy) {
  5827. case SCHED_FIFO:
  5828. case SCHED_RR:
  5829. ret = MAX_USER_RT_PRIO-1;
  5830. break;
  5831. case SCHED_NORMAL:
  5832. case SCHED_BATCH:
  5833. case SCHED_IDLE:
  5834. ret = 0;
  5835. break;
  5836. }
  5837. return ret;
  5838. }
  5839. /**
  5840. * sys_sched_get_priority_min - return minimum RT priority.
  5841. * @policy: scheduling class.
  5842. *
  5843. * this syscall returns the minimum rt_priority that can be used
  5844. * by a given scheduling class.
  5845. */
  5846. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5847. {
  5848. int ret = -EINVAL;
  5849. switch (policy) {
  5850. case SCHED_FIFO:
  5851. case SCHED_RR:
  5852. ret = 1;
  5853. break;
  5854. case SCHED_NORMAL:
  5855. case SCHED_BATCH:
  5856. case SCHED_IDLE:
  5857. ret = 0;
  5858. }
  5859. return ret;
  5860. }
  5861. /**
  5862. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5863. * @pid: pid of the process.
  5864. * @interval: userspace pointer to the timeslice value.
  5865. *
  5866. * this syscall writes the default timeslice value of a given process
  5867. * into the user-space timespec buffer. A value of '0' means infinity.
  5868. */
  5869. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5870. struct timespec __user *, interval)
  5871. {
  5872. struct task_struct *p;
  5873. unsigned int time_slice;
  5874. unsigned long flags;
  5875. struct rq *rq;
  5876. int retval;
  5877. struct timespec t;
  5878. if (pid < 0)
  5879. return -EINVAL;
  5880. retval = -ESRCH;
  5881. rcu_read_lock();
  5882. p = find_process_by_pid(pid);
  5883. if (!p)
  5884. goto out_unlock;
  5885. retval = security_task_getscheduler(p);
  5886. if (retval)
  5887. goto out_unlock;
  5888. rq = task_rq_lock(p, &flags);
  5889. time_slice = p->sched_class->get_rr_interval(rq, p);
  5890. task_rq_unlock(rq, &flags);
  5891. rcu_read_unlock();
  5892. jiffies_to_timespec(time_slice, &t);
  5893. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5894. return retval;
  5895. out_unlock:
  5896. rcu_read_unlock();
  5897. return retval;
  5898. }
  5899. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5900. void sched_show_task(struct task_struct *p)
  5901. {
  5902. unsigned long free = 0;
  5903. unsigned state;
  5904. state = p->state ? __ffs(p->state) + 1 : 0;
  5905. pr_info("%-13.13s %c", p->comm,
  5906. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5907. #if BITS_PER_LONG == 32
  5908. if (state == TASK_RUNNING)
  5909. pr_cont(" running ");
  5910. else
  5911. pr_cont(" %08lx ", thread_saved_pc(p));
  5912. #else
  5913. if (state == TASK_RUNNING)
  5914. pr_cont(" running task ");
  5915. else
  5916. pr_cont(" %016lx ", thread_saved_pc(p));
  5917. #endif
  5918. #ifdef CONFIG_DEBUG_STACK_USAGE
  5919. free = stack_not_used(p);
  5920. #endif
  5921. pr_cont("%5lu %5d %6d 0x%08lx\n", free,
  5922. task_pid_nr(p), task_pid_nr(p->real_parent),
  5923. (unsigned long)task_thread_info(p)->flags);
  5924. show_stack(p, NULL);
  5925. }
  5926. void show_state_filter(unsigned long state_filter)
  5927. {
  5928. struct task_struct *g, *p;
  5929. #if BITS_PER_LONG == 32
  5930. pr_info(" task PC stack pid father\n");
  5931. #else
  5932. pr_info(" task PC stack pid father\n");
  5933. #endif
  5934. read_lock(&tasklist_lock);
  5935. do_each_thread(g, p) {
  5936. /*
  5937. * reset the NMI-timeout, listing all files on a slow
  5938. * console might take alot of time:
  5939. */
  5940. touch_nmi_watchdog();
  5941. if (!state_filter || (p->state & state_filter))
  5942. sched_show_task(p);
  5943. } while_each_thread(g, p);
  5944. touch_all_softlockup_watchdogs();
  5945. #ifdef CONFIG_SCHED_DEBUG
  5946. sysrq_sched_debug_show();
  5947. #endif
  5948. read_unlock(&tasklist_lock);
  5949. /*
  5950. * Only show locks if all tasks are dumped:
  5951. */
  5952. if (!state_filter)
  5953. debug_show_all_locks();
  5954. }
  5955. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5956. {
  5957. idle->sched_class = &idle_sched_class;
  5958. }
  5959. /**
  5960. * init_idle - set up an idle thread for a given CPU
  5961. * @idle: task in question
  5962. * @cpu: cpu the idle task belongs to
  5963. *
  5964. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5965. * flag, to make booting more robust.
  5966. */
  5967. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5968. {
  5969. struct rq *rq = cpu_rq(cpu);
  5970. unsigned long flags;
  5971. raw_spin_lock_irqsave(&rq->lock, flags);
  5972. __sched_fork(idle);
  5973. idle->state = TASK_RUNNING;
  5974. idle->se.exec_start = sched_clock();
  5975. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5976. __set_task_cpu(idle, cpu);
  5977. rq->curr = rq->idle = idle;
  5978. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5979. idle->oncpu = 1;
  5980. #endif
  5981. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5982. /* Set the preempt count _outside_ the spinlocks! */
  5983. #if defined(CONFIG_PREEMPT)
  5984. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5985. #else
  5986. task_thread_info(idle)->preempt_count = 0;
  5987. #endif
  5988. /*
  5989. * The idle tasks have their own, simple scheduling class:
  5990. */
  5991. idle->sched_class = &idle_sched_class;
  5992. ftrace_graph_init_task(idle);
  5993. }
  5994. /*
  5995. * In a system that switches off the HZ timer nohz_cpu_mask
  5996. * indicates which cpus entered this state. This is used
  5997. * in the rcu update to wait only for active cpus. For system
  5998. * which do not switch off the HZ timer nohz_cpu_mask should
  5999. * always be CPU_BITS_NONE.
  6000. */
  6001. cpumask_var_t nohz_cpu_mask;
  6002. /*
  6003. * Increase the granularity value when there are more CPUs,
  6004. * because with more CPUs the 'effective latency' as visible
  6005. * to users decreases. But the relationship is not linear,
  6006. * so pick a second-best guess by going with the log2 of the
  6007. * number of CPUs.
  6008. *
  6009. * This idea comes from the SD scheduler of Con Kolivas:
  6010. */
  6011. static int get_update_sysctl_factor(void)
  6012. {
  6013. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  6014. unsigned int factor;
  6015. switch (sysctl_sched_tunable_scaling) {
  6016. case SCHED_TUNABLESCALING_NONE:
  6017. factor = 1;
  6018. break;
  6019. case SCHED_TUNABLESCALING_LINEAR:
  6020. factor = cpus;
  6021. break;
  6022. case SCHED_TUNABLESCALING_LOG:
  6023. default:
  6024. factor = 1 + ilog2(cpus);
  6025. break;
  6026. }
  6027. return factor;
  6028. }
  6029. static void update_sysctl(void)
  6030. {
  6031. unsigned int factor = get_update_sysctl_factor();
  6032. #define SET_SYSCTL(name) \
  6033. (sysctl_##name = (factor) * normalized_sysctl_##name)
  6034. SET_SYSCTL(sched_min_granularity);
  6035. SET_SYSCTL(sched_latency);
  6036. SET_SYSCTL(sched_wakeup_granularity);
  6037. SET_SYSCTL(sched_shares_ratelimit);
  6038. #undef SET_SYSCTL
  6039. }
  6040. static inline void sched_init_granularity(void)
  6041. {
  6042. update_sysctl();
  6043. }
  6044. #ifdef CONFIG_SMP
  6045. /*
  6046. * This is how migration works:
  6047. *
  6048. * 1) we queue a struct migration_req structure in the source CPU's
  6049. * runqueue and wake up that CPU's migration thread.
  6050. * 2) we down() the locked semaphore => thread blocks.
  6051. * 3) migration thread wakes up (implicitly it forces the migrated
  6052. * thread off the CPU)
  6053. * 4) it gets the migration request and checks whether the migrated
  6054. * task is still in the wrong runqueue.
  6055. * 5) if it's in the wrong runqueue then the migration thread removes
  6056. * it and puts it into the right queue.
  6057. * 6) migration thread up()s the semaphore.
  6058. * 7) we wake up and the migration is done.
  6059. */
  6060. /*
  6061. * Change a given task's CPU affinity. Migrate the thread to a
  6062. * proper CPU and schedule it away if the CPU it's executing on
  6063. * is removed from the allowed bitmask.
  6064. *
  6065. * NOTE: the caller must have a valid reference to the task, the
  6066. * task must not exit() & deallocate itself prematurely. The
  6067. * call is not atomic; no spinlocks may be held.
  6068. */
  6069. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6070. {
  6071. struct migration_req req;
  6072. unsigned long flags;
  6073. struct rq *rq;
  6074. int ret = 0;
  6075. /*
  6076. * Since we rely on wake-ups to migrate sleeping tasks, don't change
  6077. * the ->cpus_allowed mask from under waking tasks, which would be
  6078. * possible when we change rq->lock in ttwu(), so synchronize against
  6079. * TASK_WAKING to avoid that.
  6080. */
  6081. again:
  6082. while (p->state == TASK_WAKING)
  6083. cpu_relax();
  6084. rq = task_rq_lock(p, &flags);
  6085. if (p->state == TASK_WAKING) {
  6086. task_rq_unlock(rq, &flags);
  6087. goto again;
  6088. }
  6089. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  6090. ret = -EINVAL;
  6091. goto out;
  6092. }
  6093. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6094. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6095. ret = -EINVAL;
  6096. goto out;
  6097. }
  6098. if (p->sched_class->set_cpus_allowed)
  6099. p->sched_class->set_cpus_allowed(p, new_mask);
  6100. else {
  6101. cpumask_copy(&p->cpus_allowed, new_mask);
  6102. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6103. }
  6104. /* Can the task run on the task's current CPU? If so, we're done */
  6105. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6106. goto out;
  6107. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  6108. /* Need help from migration thread: drop lock and wait. */
  6109. struct task_struct *mt = rq->migration_thread;
  6110. get_task_struct(mt);
  6111. task_rq_unlock(rq, &flags);
  6112. wake_up_process(rq->migration_thread);
  6113. put_task_struct(mt);
  6114. wait_for_completion(&req.done);
  6115. tlb_migrate_finish(p->mm);
  6116. return 0;
  6117. }
  6118. out:
  6119. task_rq_unlock(rq, &flags);
  6120. return ret;
  6121. }
  6122. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6123. /*
  6124. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6125. * this because either it can't run here any more (set_cpus_allowed()
  6126. * away from this CPU, or CPU going down), or because we're
  6127. * attempting to rebalance this task on exec (sched_exec).
  6128. *
  6129. * So we race with normal scheduler movements, but that's OK, as long
  6130. * as the task is no longer on this CPU.
  6131. *
  6132. * Returns non-zero if task was successfully migrated.
  6133. */
  6134. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6135. {
  6136. struct rq *rq_dest, *rq_src;
  6137. int ret = 0;
  6138. if (unlikely(!cpu_active(dest_cpu)))
  6139. return ret;
  6140. rq_src = cpu_rq(src_cpu);
  6141. rq_dest = cpu_rq(dest_cpu);
  6142. double_rq_lock(rq_src, rq_dest);
  6143. /* Already moved. */
  6144. if (task_cpu(p) != src_cpu)
  6145. goto done;
  6146. /* Affinity changed (again). */
  6147. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6148. goto fail;
  6149. /*
  6150. * If we're not on a rq, the next wake-up will ensure we're
  6151. * placed properly.
  6152. */
  6153. if (p->se.on_rq) {
  6154. deactivate_task(rq_src, p, 0);
  6155. set_task_cpu(p, dest_cpu);
  6156. activate_task(rq_dest, p, 0);
  6157. check_preempt_curr(rq_dest, p, 0);
  6158. }
  6159. done:
  6160. ret = 1;
  6161. fail:
  6162. double_rq_unlock(rq_src, rq_dest);
  6163. return ret;
  6164. }
  6165. #define RCU_MIGRATION_IDLE 0
  6166. #define RCU_MIGRATION_NEED_QS 1
  6167. #define RCU_MIGRATION_GOT_QS 2
  6168. #define RCU_MIGRATION_MUST_SYNC 3
  6169. /*
  6170. * migration_thread - this is a highprio system thread that performs
  6171. * thread migration by bumping thread off CPU then 'pushing' onto
  6172. * another runqueue.
  6173. */
  6174. static int migration_thread(void *data)
  6175. {
  6176. int badcpu;
  6177. int cpu = (long)data;
  6178. struct rq *rq;
  6179. rq = cpu_rq(cpu);
  6180. BUG_ON(rq->migration_thread != current);
  6181. set_current_state(TASK_INTERRUPTIBLE);
  6182. while (!kthread_should_stop()) {
  6183. struct migration_req *req;
  6184. struct list_head *head;
  6185. raw_spin_lock_irq(&rq->lock);
  6186. if (cpu_is_offline(cpu)) {
  6187. raw_spin_unlock_irq(&rq->lock);
  6188. break;
  6189. }
  6190. if (rq->active_balance) {
  6191. active_load_balance(rq, cpu);
  6192. rq->active_balance = 0;
  6193. }
  6194. head = &rq->migration_queue;
  6195. if (list_empty(head)) {
  6196. raw_spin_unlock_irq(&rq->lock);
  6197. schedule();
  6198. set_current_state(TASK_INTERRUPTIBLE);
  6199. continue;
  6200. }
  6201. req = list_entry(head->next, struct migration_req, list);
  6202. list_del_init(head->next);
  6203. if (req->task != NULL) {
  6204. raw_spin_unlock(&rq->lock);
  6205. __migrate_task(req->task, cpu, req->dest_cpu);
  6206. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6207. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6208. raw_spin_unlock(&rq->lock);
  6209. } else {
  6210. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6211. raw_spin_unlock(&rq->lock);
  6212. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6213. }
  6214. local_irq_enable();
  6215. complete(&req->done);
  6216. }
  6217. __set_current_state(TASK_RUNNING);
  6218. return 0;
  6219. }
  6220. #ifdef CONFIG_HOTPLUG_CPU
  6221. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6222. {
  6223. int ret;
  6224. local_irq_disable();
  6225. ret = __migrate_task(p, src_cpu, dest_cpu);
  6226. local_irq_enable();
  6227. return ret;
  6228. }
  6229. /*
  6230. * Figure out where task on dead CPU should go, use force if necessary.
  6231. */
  6232. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6233. {
  6234. int dest_cpu;
  6235. again:
  6236. dest_cpu = select_fallback_rq(dead_cpu, p);
  6237. /* It can have affinity changed while we were choosing. */
  6238. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6239. goto again;
  6240. }
  6241. /*
  6242. * While a dead CPU has no uninterruptible tasks queued at this point,
  6243. * it might still have a nonzero ->nr_uninterruptible counter, because
  6244. * for performance reasons the counter is not stricly tracking tasks to
  6245. * their home CPUs. So we just add the counter to another CPU's counter,
  6246. * to keep the global sum constant after CPU-down:
  6247. */
  6248. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6249. {
  6250. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  6251. unsigned long flags;
  6252. local_irq_save(flags);
  6253. double_rq_lock(rq_src, rq_dest);
  6254. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6255. rq_src->nr_uninterruptible = 0;
  6256. double_rq_unlock(rq_src, rq_dest);
  6257. local_irq_restore(flags);
  6258. }
  6259. /* Run through task list and migrate tasks from the dead cpu. */
  6260. static void migrate_live_tasks(int src_cpu)
  6261. {
  6262. struct task_struct *p, *t;
  6263. read_lock(&tasklist_lock);
  6264. do_each_thread(t, p) {
  6265. if (p == current)
  6266. continue;
  6267. if (task_cpu(p) == src_cpu)
  6268. move_task_off_dead_cpu(src_cpu, p);
  6269. } while_each_thread(t, p);
  6270. read_unlock(&tasklist_lock);
  6271. }
  6272. /*
  6273. * Schedules idle task to be the next runnable task on current CPU.
  6274. * It does so by boosting its priority to highest possible.
  6275. * Used by CPU offline code.
  6276. */
  6277. void sched_idle_next(void)
  6278. {
  6279. int this_cpu = smp_processor_id();
  6280. struct rq *rq = cpu_rq(this_cpu);
  6281. struct task_struct *p = rq->idle;
  6282. unsigned long flags;
  6283. /* cpu has to be offline */
  6284. BUG_ON(cpu_online(this_cpu));
  6285. /*
  6286. * Strictly not necessary since rest of the CPUs are stopped by now
  6287. * and interrupts disabled on the current cpu.
  6288. */
  6289. raw_spin_lock_irqsave(&rq->lock, flags);
  6290. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6291. update_rq_clock(rq);
  6292. activate_task(rq, p, 0);
  6293. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6294. }
  6295. /*
  6296. * Ensures that the idle task is using init_mm right before its cpu goes
  6297. * offline.
  6298. */
  6299. void idle_task_exit(void)
  6300. {
  6301. struct mm_struct *mm = current->active_mm;
  6302. BUG_ON(cpu_online(smp_processor_id()));
  6303. if (mm != &init_mm)
  6304. switch_mm(mm, &init_mm, current);
  6305. mmdrop(mm);
  6306. }
  6307. /* called under rq->lock with disabled interrupts */
  6308. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6309. {
  6310. struct rq *rq = cpu_rq(dead_cpu);
  6311. /* Must be exiting, otherwise would be on tasklist. */
  6312. BUG_ON(!p->exit_state);
  6313. /* Cannot have done final schedule yet: would have vanished. */
  6314. BUG_ON(p->state == TASK_DEAD);
  6315. get_task_struct(p);
  6316. /*
  6317. * Drop lock around migration; if someone else moves it,
  6318. * that's OK. No task can be added to this CPU, so iteration is
  6319. * fine.
  6320. */
  6321. raw_spin_unlock_irq(&rq->lock);
  6322. move_task_off_dead_cpu(dead_cpu, p);
  6323. raw_spin_lock_irq(&rq->lock);
  6324. put_task_struct(p);
  6325. }
  6326. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6327. static void migrate_dead_tasks(unsigned int dead_cpu)
  6328. {
  6329. struct rq *rq = cpu_rq(dead_cpu);
  6330. struct task_struct *next;
  6331. for ( ; ; ) {
  6332. if (!rq->nr_running)
  6333. break;
  6334. update_rq_clock(rq);
  6335. next = pick_next_task(rq);
  6336. if (!next)
  6337. break;
  6338. next->sched_class->put_prev_task(rq, next);
  6339. migrate_dead(dead_cpu, next);
  6340. }
  6341. }
  6342. /*
  6343. * remove the tasks which were accounted by rq from calc_load_tasks.
  6344. */
  6345. static void calc_global_load_remove(struct rq *rq)
  6346. {
  6347. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6348. rq->calc_load_active = 0;
  6349. }
  6350. #endif /* CONFIG_HOTPLUG_CPU */
  6351. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6352. static struct ctl_table sd_ctl_dir[] = {
  6353. {
  6354. .procname = "sched_domain",
  6355. .mode = 0555,
  6356. },
  6357. {}
  6358. };
  6359. static struct ctl_table sd_ctl_root[] = {
  6360. {
  6361. .procname = "kernel",
  6362. .mode = 0555,
  6363. .child = sd_ctl_dir,
  6364. },
  6365. {}
  6366. };
  6367. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6368. {
  6369. struct ctl_table *entry =
  6370. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6371. return entry;
  6372. }
  6373. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6374. {
  6375. struct ctl_table *entry;
  6376. /*
  6377. * In the intermediate directories, both the child directory and
  6378. * procname are dynamically allocated and could fail but the mode
  6379. * will always be set. In the lowest directory the names are
  6380. * static strings and all have proc handlers.
  6381. */
  6382. for (entry = *tablep; entry->mode; entry++) {
  6383. if (entry->child)
  6384. sd_free_ctl_entry(&entry->child);
  6385. if (entry->proc_handler == NULL)
  6386. kfree(entry->procname);
  6387. }
  6388. kfree(*tablep);
  6389. *tablep = NULL;
  6390. }
  6391. static void
  6392. set_table_entry(struct ctl_table *entry,
  6393. const char *procname, void *data, int maxlen,
  6394. mode_t mode, proc_handler *proc_handler)
  6395. {
  6396. entry->procname = procname;
  6397. entry->data = data;
  6398. entry->maxlen = maxlen;
  6399. entry->mode = mode;
  6400. entry->proc_handler = proc_handler;
  6401. }
  6402. static struct ctl_table *
  6403. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6404. {
  6405. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6406. if (table == NULL)
  6407. return NULL;
  6408. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6409. sizeof(long), 0644, proc_doulongvec_minmax);
  6410. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6411. sizeof(long), 0644, proc_doulongvec_minmax);
  6412. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6413. sizeof(int), 0644, proc_dointvec_minmax);
  6414. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6415. sizeof(int), 0644, proc_dointvec_minmax);
  6416. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6417. sizeof(int), 0644, proc_dointvec_minmax);
  6418. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6419. sizeof(int), 0644, proc_dointvec_minmax);
  6420. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6421. sizeof(int), 0644, proc_dointvec_minmax);
  6422. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6423. sizeof(int), 0644, proc_dointvec_minmax);
  6424. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6425. sizeof(int), 0644, proc_dointvec_minmax);
  6426. set_table_entry(&table[9], "cache_nice_tries",
  6427. &sd->cache_nice_tries,
  6428. sizeof(int), 0644, proc_dointvec_minmax);
  6429. set_table_entry(&table[10], "flags", &sd->flags,
  6430. sizeof(int), 0644, proc_dointvec_minmax);
  6431. set_table_entry(&table[11], "name", sd->name,
  6432. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6433. /* &table[12] is terminator */
  6434. return table;
  6435. }
  6436. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6437. {
  6438. struct ctl_table *entry, *table;
  6439. struct sched_domain *sd;
  6440. int domain_num = 0, i;
  6441. char buf[32];
  6442. for_each_domain(cpu, sd)
  6443. domain_num++;
  6444. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6445. if (table == NULL)
  6446. return NULL;
  6447. i = 0;
  6448. for_each_domain(cpu, sd) {
  6449. snprintf(buf, 32, "domain%d", i);
  6450. entry->procname = kstrdup(buf, GFP_KERNEL);
  6451. entry->mode = 0555;
  6452. entry->child = sd_alloc_ctl_domain_table(sd);
  6453. entry++;
  6454. i++;
  6455. }
  6456. return table;
  6457. }
  6458. static struct ctl_table_header *sd_sysctl_header;
  6459. static void register_sched_domain_sysctl(void)
  6460. {
  6461. int i, cpu_num = num_possible_cpus();
  6462. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6463. char buf[32];
  6464. WARN_ON(sd_ctl_dir[0].child);
  6465. sd_ctl_dir[0].child = entry;
  6466. if (entry == NULL)
  6467. return;
  6468. for_each_possible_cpu(i) {
  6469. snprintf(buf, 32, "cpu%d", i);
  6470. entry->procname = kstrdup(buf, GFP_KERNEL);
  6471. entry->mode = 0555;
  6472. entry->child = sd_alloc_ctl_cpu_table(i);
  6473. entry++;
  6474. }
  6475. WARN_ON(sd_sysctl_header);
  6476. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6477. }
  6478. /* may be called multiple times per register */
  6479. static void unregister_sched_domain_sysctl(void)
  6480. {
  6481. if (sd_sysctl_header)
  6482. unregister_sysctl_table(sd_sysctl_header);
  6483. sd_sysctl_header = NULL;
  6484. if (sd_ctl_dir[0].child)
  6485. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6486. }
  6487. #else
  6488. static void register_sched_domain_sysctl(void)
  6489. {
  6490. }
  6491. static void unregister_sched_domain_sysctl(void)
  6492. {
  6493. }
  6494. #endif
  6495. static void set_rq_online(struct rq *rq)
  6496. {
  6497. if (!rq->online) {
  6498. const struct sched_class *class;
  6499. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6500. rq->online = 1;
  6501. for_each_class(class) {
  6502. if (class->rq_online)
  6503. class->rq_online(rq);
  6504. }
  6505. }
  6506. }
  6507. static void set_rq_offline(struct rq *rq)
  6508. {
  6509. if (rq->online) {
  6510. const struct sched_class *class;
  6511. for_each_class(class) {
  6512. if (class->rq_offline)
  6513. class->rq_offline(rq);
  6514. }
  6515. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6516. rq->online = 0;
  6517. }
  6518. }
  6519. /*
  6520. * migration_call - callback that gets triggered when a CPU is added.
  6521. * Here we can start up the necessary migration thread for the new CPU.
  6522. */
  6523. static int __cpuinit
  6524. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6525. {
  6526. struct task_struct *p;
  6527. int cpu = (long)hcpu;
  6528. unsigned long flags;
  6529. struct rq *rq;
  6530. switch (action) {
  6531. case CPU_UP_PREPARE:
  6532. case CPU_UP_PREPARE_FROZEN:
  6533. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6534. if (IS_ERR(p))
  6535. return NOTIFY_BAD;
  6536. kthread_bind(p, cpu);
  6537. /* Must be high prio: stop_machine expects to yield to it. */
  6538. rq = task_rq_lock(p, &flags);
  6539. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6540. task_rq_unlock(rq, &flags);
  6541. get_task_struct(p);
  6542. cpu_rq(cpu)->migration_thread = p;
  6543. rq->calc_load_update = calc_load_update;
  6544. break;
  6545. case CPU_ONLINE:
  6546. case CPU_ONLINE_FROZEN:
  6547. /* Strictly unnecessary, as first user will wake it. */
  6548. wake_up_process(cpu_rq(cpu)->migration_thread);
  6549. /* Update our root-domain */
  6550. rq = cpu_rq(cpu);
  6551. raw_spin_lock_irqsave(&rq->lock, flags);
  6552. if (rq->rd) {
  6553. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6554. set_rq_online(rq);
  6555. }
  6556. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6557. break;
  6558. #ifdef CONFIG_HOTPLUG_CPU
  6559. case CPU_UP_CANCELED:
  6560. case CPU_UP_CANCELED_FROZEN:
  6561. if (!cpu_rq(cpu)->migration_thread)
  6562. break;
  6563. /* Unbind it from offline cpu so it can run. Fall thru. */
  6564. kthread_bind(cpu_rq(cpu)->migration_thread,
  6565. cpumask_any(cpu_online_mask));
  6566. kthread_stop(cpu_rq(cpu)->migration_thread);
  6567. put_task_struct(cpu_rq(cpu)->migration_thread);
  6568. cpu_rq(cpu)->migration_thread = NULL;
  6569. break;
  6570. case CPU_DEAD:
  6571. case CPU_DEAD_FROZEN:
  6572. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6573. migrate_live_tasks(cpu);
  6574. rq = cpu_rq(cpu);
  6575. kthread_stop(rq->migration_thread);
  6576. put_task_struct(rq->migration_thread);
  6577. rq->migration_thread = NULL;
  6578. /* Idle task back to normal (off runqueue, low prio) */
  6579. raw_spin_lock_irq(&rq->lock);
  6580. update_rq_clock(rq);
  6581. deactivate_task(rq, rq->idle, 0);
  6582. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6583. rq->idle->sched_class = &idle_sched_class;
  6584. migrate_dead_tasks(cpu);
  6585. raw_spin_unlock_irq(&rq->lock);
  6586. cpuset_unlock();
  6587. migrate_nr_uninterruptible(rq);
  6588. BUG_ON(rq->nr_running != 0);
  6589. calc_global_load_remove(rq);
  6590. /*
  6591. * No need to migrate the tasks: it was best-effort if
  6592. * they didn't take sched_hotcpu_mutex. Just wake up
  6593. * the requestors.
  6594. */
  6595. raw_spin_lock_irq(&rq->lock);
  6596. while (!list_empty(&rq->migration_queue)) {
  6597. struct migration_req *req;
  6598. req = list_entry(rq->migration_queue.next,
  6599. struct migration_req, list);
  6600. list_del_init(&req->list);
  6601. raw_spin_unlock_irq(&rq->lock);
  6602. complete(&req->done);
  6603. raw_spin_lock_irq(&rq->lock);
  6604. }
  6605. raw_spin_unlock_irq(&rq->lock);
  6606. break;
  6607. case CPU_DYING:
  6608. case CPU_DYING_FROZEN:
  6609. /* Update our root-domain */
  6610. rq = cpu_rq(cpu);
  6611. raw_spin_lock_irqsave(&rq->lock, flags);
  6612. if (rq->rd) {
  6613. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6614. set_rq_offline(rq);
  6615. }
  6616. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6617. break;
  6618. #endif
  6619. }
  6620. return NOTIFY_OK;
  6621. }
  6622. /*
  6623. * Register at high priority so that task migration (migrate_all_tasks)
  6624. * happens before everything else. This has to be lower priority than
  6625. * the notifier in the perf_event subsystem, though.
  6626. */
  6627. static struct notifier_block __cpuinitdata migration_notifier = {
  6628. .notifier_call = migration_call,
  6629. .priority = 10
  6630. };
  6631. static int __init migration_init(void)
  6632. {
  6633. void *cpu = (void *)(long)smp_processor_id();
  6634. int err;
  6635. /* Start one for the boot CPU: */
  6636. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6637. BUG_ON(err == NOTIFY_BAD);
  6638. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6639. register_cpu_notifier(&migration_notifier);
  6640. return 0;
  6641. }
  6642. early_initcall(migration_init);
  6643. #endif
  6644. #ifdef CONFIG_SMP
  6645. #ifdef CONFIG_SCHED_DEBUG
  6646. static __read_mostly int sched_domain_debug_enabled;
  6647. static int __init sched_domain_debug_setup(char *str)
  6648. {
  6649. sched_domain_debug_enabled = 1;
  6650. return 0;
  6651. }
  6652. early_param("sched_debug", sched_domain_debug_setup);
  6653. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6654. struct cpumask *groupmask)
  6655. {
  6656. struct sched_group *group = sd->groups;
  6657. char str[256];
  6658. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6659. cpumask_clear(groupmask);
  6660. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6661. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6662. pr_cont("does not load-balance\n");
  6663. if (sd->parent)
  6664. pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
  6665. return -1;
  6666. }
  6667. pr_cont("span %s level %s\n", str, sd->name);
  6668. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6669. pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
  6670. }
  6671. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6672. pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
  6673. }
  6674. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6675. do {
  6676. if (!group) {
  6677. pr_cont("\n");
  6678. pr_err("ERROR: group is NULL\n");
  6679. break;
  6680. }
  6681. if (!group->cpu_power) {
  6682. pr_cont("\n");
  6683. pr_err("ERROR: domain->cpu_power not set\n");
  6684. break;
  6685. }
  6686. if (!cpumask_weight(sched_group_cpus(group))) {
  6687. pr_cont("\n");
  6688. pr_err("ERROR: empty group\n");
  6689. break;
  6690. }
  6691. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6692. pr_cont("\n");
  6693. pr_err("ERROR: repeated CPUs\n");
  6694. break;
  6695. }
  6696. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6697. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6698. pr_cont(" %s", str);
  6699. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6700. pr_cont(" (cpu_power = %d)", group->cpu_power);
  6701. }
  6702. group = group->next;
  6703. } while (group != sd->groups);
  6704. pr_cont("\n");
  6705. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6706. pr_err("ERROR: groups don't span domain->span\n");
  6707. if (sd->parent &&
  6708. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6709. pr_err("ERROR: parent span is not a superset of domain->span\n");
  6710. return 0;
  6711. }
  6712. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6713. {
  6714. cpumask_var_t groupmask;
  6715. int level = 0;
  6716. if (!sched_domain_debug_enabled)
  6717. return;
  6718. if (!sd) {
  6719. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6720. return;
  6721. }
  6722. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6723. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6724. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6725. return;
  6726. }
  6727. for (;;) {
  6728. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6729. break;
  6730. level++;
  6731. sd = sd->parent;
  6732. if (!sd)
  6733. break;
  6734. }
  6735. free_cpumask_var(groupmask);
  6736. }
  6737. #else /* !CONFIG_SCHED_DEBUG */
  6738. # define sched_domain_debug(sd, cpu) do { } while (0)
  6739. #endif /* CONFIG_SCHED_DEBUG */
  6740. static int sd_degenerate(struct sched_domain *sd)
  6741. {
  6742. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6743. return 1;
  6744. /* Following flags need at least 2 groups */
  6745. if (sd->flags & (SD_LOAD_BALANCE |
  6746. SD_BALANCE_NEWIDLE |
  6747. SD_BALANCE_FORK |
  6748. SD_BALANCE_EXEC |
  6749. SD_SHARE_CPUPOWER |
  6750. SD_SHARE_PKG_RESOURCES)) {
  6751. if (sd->groups != sd->groups->next)
  6752. return 0;
  6753. }
  6754. /* Following flags don't use groups */
  6755. if (sd->flags & (SD_WAKE_AFFINE))
  6756. return 0;
  6757. return 1;
  6758. }
  6759. static int
  6760. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6761. {
  6762. unsigned long cflags = sd->flags, pflags = parent->flags;
  6763. if (sd_degenerate(parent))
  6764. return 1;
  6765. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6766. return 0;
  6767. /* Flags needing groups don't count if only 1 group in parent */
  6768. if (parent->groups == parent->groups->next) {
  6769. pflags &= ~(SD_LOAD_BALANCE |
  6770. SD_BALANCE_NEWIDLE |
  6771. SD_BALANCE_FORK |
  6772. SD_BALANCE_EXEC |
  6773. SD_SHARE_CPUPOWER |
  6774. SD_SHARE_PKG_RESOURCES);
  6775. if (nr_node_ids == 1)
  6776. pflags &= ~SD_SERIALIZE;
  6777. }
  6778. if (~cflags & pflags)
  6779. return 0;
  6780. return 1;
  6781. }
  6782. static void free_rootdomain(struct root_domain *rd)
  6783. {
  6784. synchronize_sched();
  6785. cpupri_cleanup(&rd->cpupri);
  6786. free_cpumask_var(rd->rto_mask);
  6787. free_cpumask_var(rd->online);
  6788. free_cpumask_var(rd->span);
  6789. kfree(rd);
  6790. }
  6791. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6792. {
  6793. struct root_domain *old_rd = NULL;
  6794. unsigned long flags;
  6795. raw_spin_lock_irqsave(&rq->lock, flags);
  6796. if (rq->rd) {
  6797. old_rd = rq->rd;
  6798. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6799. set_rq_offline(rq);
  6800. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6801. /*
  6802. * If we dont want to free the old_rt yet then
  6803. * set old_rd to NULL to skip the freeing later
  6804. * in this function:
  6805. */
  6806. if (!atomic_dec_and_test(&old_rd->refcount))
  6807. old_rd = NULL;
  6808. }
  6809. atomic_inc(&rd->refcount);
  6810. rq->rd = rd;
  6811. cpumask_set_cpu(rq->cpu, rd->span);
  6812. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6813. set_rq_online(rq);
  6814. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6815. if (old_rd)
  6816. free_rootdomain(old_rd);
  6817. }
  6818. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6819. {
  6820. gfp_t gfp = GFP_KERNEL;
  6821. memset(rd, 0, sizeof(*rd));
  6822. if (bootmem)
  6823. gfp = GFP_NOWAIT;
  6824. if (!alloc_cpumask_var(&rd->span, gfp))
  6825. goto out;
  6826. if (!alloc_cpumask_var(&rd->online, gfp))
  6827. goto free_span;
  6828. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6829. goto free_online;
  6830. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6831. goto free_rto_mask;
  6832. return 0;
  6833. free_rto_mask:
  6834. free_cpumask_var(rd->rto_mask);
  6835. free_online:
  6836. free_cpumask_var(rd->online);
  6837. free_span:
  6838. free_cpumask_var(rd->span);
  6839. out:
  6840. return -ENOMEM;
  6841. }
  6842. static void init_defrootdomain(void)
  6843. {
  6844. init_rootdomain(&def_root_domain, true);
  6845. atomic_set(&def_root_domain.refcount, 1);
  6846. }
  6847. static struct root_domain *alloc_rootdomain(void)
  6848. {
  6849. struct root_domain *rd;
  6850. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6851. if (!rd)
  6852. return NULL;
  6853. if (init_rootdomain(rd, false) != 0) {
  6854. kfree(rd);
  6855. return NULL;
  6856. }
  6857. return rd;
  6858. }
  6859. /*
  6860. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6861. * hold the hotplug lock.
  6862. */
  6863. static void
  6864. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6865. {
  6866. struct rq *rq = cpu_rq(cpu);
  6867. struct sched_domain *tmp;
  6868. /* Remove the sched domains which do not contribute to scheduling. */
  6869. for (tmp = sd; tmp; ) {
  6870. struct sched_domain *parent = tmp->parent;
  6871. if (!parent)
  6872. break;
  6873. if (sd_parent_degenerate(tmp, parent)) {
  6874. tmp->parent = parent->parent;
  6875. if (parent->parent)
  6876. parent->parent->child = tmp;
  6877. } else
  6878. tmp = tmp->parent;
  6879. }
  6880. if (sd && sd_degenerate(sd)) {
  6881. sd = sd->parent;
  6882. if (sd)
  6883. sd->child = NULL;
  6884. }
  6885. sched_domain_debug(sd, cpu);
  6886. rq_attach_root(rq, rd);
  6887. rcu_assign_pointer(rq->sd, sd);
  6888. }
  6889. /* cpus with isolated domains */
  6890. static cpumask_var_t cpu_isolated_map;
  6891. /* Setup the mask of cpus configured for isolated domains */
  6892. static int __init isolated_cpu_setup(char *str)
  6893. {
  6894. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6895. cpulist_parse(str, cpu_isolated_map);
  6896. return 1;
  6897. }
  6898. __setup("isolcpus=", isolated_cpu_setup);
  6899. /*
  6900. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6901. * to a function which identifies what group(along with sched group) a CPU
  6902. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6903. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6904. *
  6905. * init_sched_build_groups will build a circular linked list of the groups
  6906. * covered by the given span, and will set each group's ->cpumask correctly,
  6907. * and ->cpu_power to 0.
  6908. */
  6909. static void
  6910. init_sched_build_groups(const struct cpumask *span,
  6911. const struct cpumask *cpu_map,
  6912. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6913. struct sched_group **sg,
  6914. struct cpumask *tmpmask),
  6915. struct cpumask *covered, struct cpumask *tmpmask)
  6916. {
  6917. struct sched_group *first = NULL, *last = NULL;
  6918. int i;
  6919. cpumask_clear(covered);
  6920. for_each_cpu(i, span) {
  6921. struct sched_group *sg;
  6922. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6923. int j;
  6924. if (cpumask_test_cpu(i, covered))
  6925. continue;
  6926. cpumask_clear(sched_group_cpus(sg));
  6927. sg->cpu_power = 0;
  6928. for_each_cpu(j, span) {
  6929. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6930. continue;
  6931. cpumask_set_cpu(j, covered);
  6932. cpumask_set_cpu(j, sched_group_cpus(sg));
  6933. }
  6934. if (!first)
  6935. first = sg;
  6936. if (last)
  6937. last->next = sg;
  6938. last = sg;
  6939. }
  6940. last->next = first;
  6941. }
  6942. #define SD_NODES_PER_DOMAIN 16
  6943. #ifdef CONFIG_NUMA
  6944. /**
  6945. * find_next_best_node - find the next node to include in a sched_domain
  6946. * @node: node whose sched_domain we're building
  6947. * @used_nodes: nodes already in the sched_domain
  6948. *
  6949. * Find the next node to include in a given scheduling domain. Simply
  6950. * finds the closest node not already in the @used_nodes map.
  6951. *
  6952. * Should use nodemask_t.
  6953. */
  6954. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6955. {
  6956. int i, n, val, min_val, best_node = 0;
  6957. min_val = INT_MAX;
  6958. for (i = 0; i < nr_node_ids; i++) {
  6959. /* Start at @node */
  6960. n = (node + i) % nr_node_ids;
  6961. if (!nr_cpus_node(n))
  6962. continue;
  6963. /* Skip already used nodes */
  6964. if (node_isset(n, *used_nodes))
  6965. continue;
  6966. /* Simple min distance search */
  6967. val = node_distance(node, n);
  6968. if (val < min_val) {
  6969. min_val = val;
  6970. best_node = n;
  6971. }
  6972. }
  6973. node_set(best_node, *used_nodes);
  6974. return best_node;
  6975. }
  6976. /**
  6977. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6978. * @node: node whose cpumask we're constructing
  6979. * @span: resulting cpumask
  6980. *
  6981. * Given a node, construct a good cpumask for its sched_domain to span. It
  6982. * should be one that prevents unnecessary balancing, but also spreads tasks
  6983. * out optimally.
  6984. */
  6985. static void sched_domain_node_span(int node, struct cpumask *span)
  6986. {
  6987. nodemask_t used_nodes;
  6988. int i;
  6989. cpumask_clear(span);
  6990. nodes_clear(used_nodes);
  6991. cpumask_or(span, span, cpumask_of_node(node));
  6992. node_set(node, used_nodes);
  6993. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6994. int next_node = find_next_best_node(node, &used_nodes);
  6995. cpumask_or(span, span, cpumask_of_node(next_node));
  6996. }
  6997. }
  6998. #endif /* CONFIG_NUMA */
  6999. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  7000. /*
  7001. * The cpus mask in sched_group and sched_domain hangs off the end.
  7002. *
  7003. * ( See the the comments in include/linux/sched.h:struct sched_group
  7004. * and struct sched_domain. )
  7005. */
  7006. struct static_sched_group {
  7007. struct sched_group sg;
  7008. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  7009. };
  7010. struct static_sched_domain {
  7011. struct sched_domain sd;
  7012. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  7013. };
  7014. struct s_data {
  7015. #ifdef CONFIG_NUMA
  7016. int sd_allnodes;
  7017. cpumask_var_t domainspan;
  7018. cpumask_var_t covered;
  7019. cpumask_var_t notcovered;
  7020. #endif
  7021. cpumask_var_t nodemask;
  7022. cpumask_var_t this_sibling_map;
  7023. cpumask_var_t this_core_map;
  7024. cpumask_var_t send_covered;
  7025. cpumask_var_t tmpmask;
  7026. struct sched_group **sched_group_nodes;
  7027. struct root_domain *rd;
  7028. };
  7029. enum s_alloc {
  7030. sa_sched_groups = 0,
  7031. sa_rootdomain,
  7032. sa_tmpmask,
  7033. sa_send_covered,
  7034. sa_this_core_map,
  7035. sa_this_sibling_map,
  7036. sa_nodemask,
  7037. sa_sched_group_nodes,
  7038. #ifdef CONFIG_NUMA
  7039. sa_notcovered,
  7040. sa_covered,
  7041. sa_domainspan,
  7042. #endif
  7043. sa_none,
  7044. };
  7045. /*
  7046. * SMT sched-domains:
  7047. */
  7048. #ifdef CONFIG_SCHED_SMT
  7049. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7050. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  7051. static int
  7052. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7053. struct sched_group **sg, struct cpumask *unused)
  7054. {
  7055. if (sg)
  7056. *sg = &per_cpu(sched_groups, cpu).sg;
  7057. return cpu;
  7058. }
  7059. #endif /* CONFIG_SCHED_SMT */
  7060. /*
  7061. * multi-core sched-domains:
  7062. */
  7063. #ifdef CONFIG_SCHED_MC
  7064. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7065. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7066. #endif /* CONFIG_SCHED_MC */
  7067. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7068. static int
  7069. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7070. struct sched_group **sg, struct cpumask *mask)
  7071. {
  7072. int group;
  7073. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7074. group = cpumask_first(mask);
  7075. if (sg)
  7076. *sg = &per_cpu(sched_group_core, group).sg;
  7077. return group;
  7078. }
  7079. #elif defined(CONFIG_SCHED_MC)
  7080. static int
  7081. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7082. struct sched_group **sg, struct cpumask *unused)
  7083. {
  7084. if (sg)
  7085. *sg = &per_cpu(sched_group_core, cpu).sg;
  7086. return cpu;
  7087. }
  7088. #endif
  7089. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7090. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7091. static int
  7092. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7093. struct sched_group **sg, struct cpumask *mask)
  7094. {
  7095. int group;
  7096. #ifdef CONFIG_SCHED_MC
  7097. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7098. group = cpumask_first(mask);
  7099. #elif defined(CONFIG_SCHED_SMT)
  7100. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7101. group = cpumask_first(mask);
  7102. #else
  7103. group = cpu;
  7104. #endif
  7105. if (sg)
  7106. *sg = &per_cpu(sched_group_phys, group).sg;
  7107. return group;
  7108. }
  7109. #ifdef CONFIG_NUMA
  7110. /*
  7111. * The init_sched_build_groups can't handle what we want to do with node
  7112. * groups, so roll our own. Now each node has its own list of groups which
  7113. * gets dynamically allocated.
  7114. */
  7115. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7116. static struct sched_group ***sched_group_nodes_bycpu;
  7117. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7118. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7119. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7120. struct sched_group **sg,
  7121. struct cpumask *nodemask)
  7122. {
  7123. int group;
  7124. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7125. group = cpumask_first(nodemask);
  7126. if (sg)
  7127. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7128. return group;
  7129. }
  7130. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7131. {
  7132. struct sched_group *sg = group_head;
  7133. int j;
  7134. if (!sg)
  7135. return;
  7136. do {
  7137. for_each_cpu(j, sched_group_cpus(sg)) {
  7138. struct sched_domain *sd;
  7139. sd = &per_cpu(phys_domains, j).sd;
  7140. if (j != group_first_cpu(sd->groups)) {
  7141. /*
  7142. * Only add "power" once for each
  7143. * physical package.
  7144. */
  7145. continue;
  7146. }
  7147. sg->cpu_power += sd->groups->cpu_power;
  7148. }
  7149. sg = sg->next;
  7150. } while (sg != group_head);
  7151. }
  7152. static int build_numa_sched_groups(struct s_data *d,
  7153. const struct cpumask *cpu_map, int num)
  7154. {
  7155. struct sched_domain *sd;
  7156. struct sched_group *sg, *prev;
  7157. int n, j;
  7158. cpumask_clear(d->covered);
  7159. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7160. if (cpumask_empty(d->nodemask)) {
  7161. d->sched_group_nodes[num] = NULL;
  7162. goto out;
  7163. }
  7164. sched_domain_node_span(num, d->domainspan);
  7165. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7166. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7167. GFP_KERNEL, num);
  7168. if (!sg) {
  7169. pr_warning("Can not alloc domain group for node %d\n", num);
  7170. return -ENOMEM;
  7171. }
  7172. d->sched_group_nodes[num] = sg;
  7173. for_each_cpu(j, d->nodemask) {
  7174. sd = &per_cpu(node_domains, j).sd;
  7175. sd->groups = sg;
  7176. }
  7177. sg->cpu_power = 0;
  7178. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7179. sg->next = sg;
  7180. cpumask_or(d->covered, d->covered, d->nodemask);
  7181. prev = sg;
  7182. for (j = 0; j < nr_node_ids; j++) {
  7183. n = (num + j) % nr_node_ids;
  7184. cpumask_complement(d->notcovered, d->covered);
  7185. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7186. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7187. if (cpumask_empty(d->tmpmask))
  7188. break;
  7189. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7190. if (cpumask_empty(d->tmpmask))
  7191. continue;
  7192. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7193. GFP_KERNEL, num);
  7194. if (!sg) {
  7195. pr_warning("Can not alloc domain group for node %d\n",
  7196. j);
  7197. return -ENOMEM;
  7198. }
  7199. sg->cpu_power = 0;
  7200. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7201. sg->next = prev->next;
  7202. cpumask_or(d->covered, d->covered, d->tmpmask);
  7203. prev->next = sg;
  7204. prev = sg;
  7205. }
  7206. out:
  7207. return 0;
  7208. }
  7209. #endif /* CONFIG_NUMA */
  7210. #ifdef CONFIG_NUMA
  7211. /* Free memory allocated for various sched_group structures */
  7212. static void free_sched_groups(const struct cpumask *cpu_map,
  7213. struct cpumask *nodemask)
  7214. {
  7215. int cpu, i;
  7216. for_each_cpu(cpu, cpu_map) {
  7217. struct sched_group **sched_group_nodes
  7218. = sched_group_nodes_bycpu[cpu];
  7219. if (!sched_group_nodes)
  7220. continue;
  7221. for (i = 0; i < nr_node_ids; i++) {
  7222. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7223. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7224. if (cpumask_empty(nodemask))
  7225. continue;
  7226. if (sg == NULL)
  7227. continue;
  7228. sg = sg->next;
  7229. next_sg:
  7230. oldsg = sg;
  7231. sg = sg->next;
  7232. kfree(oldsg);
  7233. if (oldsg != sched_group_nodes[i])
  7234. goto next_sg;
  7235. }
  7236. kfree(sched_group_nodes);
  7237. sched_group_nodes_bycpu[cpu] = NULL;
  7238. }
  7239. }
  7240. #else /* !CONFIG_NUMA */
  7241. static void free_sched_groups(const struct cpumask *cpu_map,
  7242. struct cpumask *nodemask)
  7243. {
  7244. }
  7245. #endif /* CONFIG_NUMA */
  7246. /*
  7247. * Initialize sched groups cpu_power.
  7248. *
  7249. * cpu_power indicates the capacity of sched group, which is used while
  7250. * distributing the load between different sched groups in a sched domain.
  7251. * Typically cpu_power for all the groups in a sched domain will be same unless
  7252. * there are asymmetries in the topology. If there are asymmetries, group
  7253. * having more cpu_power will pickup more load compared to the group having
  7254. * less cpu_power.
  7255. */
  7256. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7257. {
  7258. struct sched_domain *child;
  7259. struct sched_group *group;
  7260. long power;
  7261. int weight;
  7262. WARN_ON(!sd || !sd->groups);
  7263. if (cpu != group_first_cpu(sd->groups))
  7264. return;
  7265. child = sd->child;
  7266. sd->groups->cpu_power = 0;
  7267. if (!child) {
  7268. power = SCHED_LOAD_SCALE;
  7269. weight = cpumask_weight(sched_domain_span(sd));
  7270. /*
  7271. * SMT siblings share the power of a single core.
  7272. * Usually multiple threads get a better yield out of
  7273. * that one core than a single thread would have,
  7274. * reflect that in sd->smt_gain.
  7275. */
  7276. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7277. power *= sd->smt_gain;
  7278. power /= weight;
  7279. power >>= SCHED_LOAD_SHIFT;
  7280. }
  7281. sd->groups->cpu_power += power;
  7282. return;
  7283. }
  7284. /*
  7285. * Add cpu_power of each child group to this groups cpu_power.
  7286. */
  7287. group = child->groups;
  7288. do {
  7289. sd->groups->cpu_power += group->cpu_power;
  7290. group = group->next;
  7291. } while (group != child->groups);
  7292. }
  7293. /*
  7294. * Initializers for schedule domains
  7295. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7296. */
  7297. #ifdef CONFIG_SCHED_DEBUG
  7298. # define SD_INIT_NAME(sd, type) sd->name = #type
  7299. #else
  7300. # define SD_INIT_NAME(sd, type) do { } while (0)
  7301. #endif
  7302. #define SD_INIT(sd, type) sd_init_##type(sd)
  7303. #define SD_INIT_FUNC(type) \
  7304. static noinline void sd_init_##type(struct sched_domain *sd) \
  7305. { \
  7306. memset(sd, 0, sizeof(*sd)); \
  7307. *sd = SD_##type##_INIT; \
  7308. sd->level = SD_LV_##type; \
  7309. SD_INIT_NAME(sd, type); \
  7310. }
  7311. SD_INIT_FUNC(CPU)
  7312. #ifdef CONFIG_NUMA
  7313. SD_INIT_FUNC(ALLNODES)
  7314. SD_INIT_FUNC(NODE)
  7315. #endif
  7316. #ifdef CONFIG_SCHED_SMT
  7317. SD_INIT_FUNC(SIBLING)
  7318. #endif
  7319. #ifdef CONFIG_SCHED_MC
  7320. SD_INIT_FUNC(MC)
  7321. #endif
  7322. static int default_relax_domain_level = -1;
  7323. static int __init setup_relax_domain_level(char *str)
  7324. {
  7325. unsigned long val;
  7326. val = simple_strtoul(str, NULL, 0);
  7327. if (val < SD_LV_MAX)
  7328. default_relax_domain_level = val;
  7329. return 1;
  7330. }
  7331. __setup("relax_domain_level=", setup_relax_domain_level);
  7332. static void set_domain_attribute(struct sched_domain *sd,
  7333. struct sched_domain_attr *attr)
  7334. {
  7335. int request;
  7336. if (!attr || attr->relax_domain_level < 0) {
  7337. if (default_relax_domain_level < 0)
  7338. return;
  7339. else
  7340. request = default_relax_domain_level;
  7341. } else
  7342. request = attr->relax_domain_level;
  7343. if (request < sd->level) {
  7344. /* turn off idle balance on this domain */
  7345. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7346. } else {
  7347. /* turn on idle balance on this domain */
  7348. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7349. }
  7350. }
  7351. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7352. const struct cpumask *cpu_map)
  7353. {
  7354. switch (what) {
  7355. case sa_sched_groups:
  7356. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7357. d->sched_group_nodes = NULL;
  7358. case sa_rootdomain:
  7359. free_rootdomain(d->rd); /* fall through */
  7360. case sa_tmpmask:
  7361. free_cpumask_var(d->tmpmask); /* fall through */
  7362. case sa_send_covered:
  7363. free_cpumask_var(d->send_covered); /* fall through */
  7364. case sa_this_core_map:
  7365. free_cpumask_var(d->this_core_map); /* fall through */
  7366. case sa_this_sibling_map:
  7367. free_cpumask_var(d->this_sibling_map); /* fall through */
  7368. case sa_nodemask:
  7369. free_cpumask_var(d->nodemask); /* fall through */
  7370. case sa_sched_group_nodes:
  7371. #ifdef CONFIG_NUMA
  7372. kfree(d->sched_group_nodes); /* fall through */
  7373. case sa_notcovered:
  7374. free_cpumask_var(d->notcovered); /* fall through */
  7375. case sa_covered:
  7376. free_cpumask_var(d->covered); /* fall through */
  7377. case sa_domainspan:
  7378. free_cpumask_var(d->domainspan); /* fall through */
  7379. #endif
  7380. case sa_none:
  7381. break;
  7382. }
  7383. }
  7384. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7385. const struct cpumask *cpu_map)
  7386. {
  7387. #ifdef CONFIG_NUMA
  7388. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7389. return sa_none;
  7390. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7391. return sa_domainspan;
  7392. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7393. return sa_covered;
  7394. /* Allocate the per-node list of sched groups */
  7395. d->sched_group_nodes = kcalloc(nr_node_ids,
  7396. sizeof(struct sched_group *), GFP_KERNEL);
  7397. if (!d->sched_group_nodes) {
  7398. pr_warning("Can not alloc sched group node list\n");
  7399. return sa_notcovered;
  7400. }
  7401. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7402. #endif
  7403. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7404. return sa_sched_group_nodes;
  7405. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7406. return sa_nodemask;
  7407. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7408. return sa_this_sibling_map;
  7409. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7410. return sa_this_core_map;
  7411. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7412. return sa_send_covered;
  7413. d->rd = alloc_rootdomain();
  7414. if (!d->rd) {
  7415. pr_warning("Cannot alloc root domain\n");
  7416. return sa_tmpmask;
  7417. }
  7418. return sa_rootdomain;
  7419. }
  7420. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7421. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7422. {
  7423. struct sched_domain *sd = NULL;
  7424. #ifdef CONFIG_NUMA
  7425. struct sched_domain *parent;
  7426. d->sd_allnodes = 0;
  7427. if (cpumask_weight(cpu_map) >
  7428. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7429. sd = &per_cpu(allnodes_domains, i).sd;
  7430. SD_INIT(sd, ALLNODES);
  7431. set_domain_attribute(sd, attr);
  7432. cpumask_copy(sched_domain_span(sd), cpu_map);
  7433. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7434. d->sd_allnodes = 1;
  7435. }
  7436. parent = sd;
  7437. sd = &per_cpu(node_domains, i).sd;
  7438. SD_INIT(sd, NODE);
  7439. set_domain_attribute(sd, attr);
  7440. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7441. sd->parent = parent;
  7442. if (parent)
  7443. parent->child = sd;
  7444. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7445. #endif
  7446. return sd;
  7447. }
  7448. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7449. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7450. struct sched_domain *parent, int i)
  7451. {
  7452. struct sched_domain *sd;
  7453. sd = &per_cpu(phys_domains, i).sd;
  7454. SD_INIT(sd, CPU);
  7455. set_domain_attribute(sd, attr);
  7456. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7457. sd->parent = parent;
  7458. if (parent)
  7459. parent->child = sd;
  7460. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7461. return sd;
  7462. }
  7463. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7464. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7465. struct sched_domain *parent, int i)
  7466. {
  7467. struct sched_domain *sd = parent;
  7468. #ifdef CONFIG_SCHED_MC
  7469. sd = &per_cpu(core_domains, i).sd;
  7470. SD_INIT(sd, MC);
  7471. set_domain_attribute(sd, attr);
  7472. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7473. sd->parent = parent;
  7474. parent->child = sd;
  7475. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7476. #endif
  7477. return sd;
  7478. }
  7479. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7480. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7481. struct sched_domain *parent, int i)
  7482. {
  7483. struct sched_domain *sd = parent;
  7484. #ifdef CONFIG_SCHED_SMT
  7485. sd = &per_cpu(cpu_domains, i).sd;
  7486. SD_INIT(sd, SIBLING);
  7487. set_domain_attribute(sd, attr);
  7488. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7489. sd->parent = parent;
  7490. parent->child = sd;
  7491. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7492. #endif
  7493. return sd;
  7494. }
  7495. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7496. const struct cpumask *cpu_map, int cpu)
  7497. {
  7498. switch (l) {
  7499. #ifdef CONFIG_SCHED_SMT
  7500. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7501. cpumask_and(d->this_sibling_map, cpu_map,
  7502. topology_thread_cpumask(cpu));
  7503. if (cpu == cpumask_first(d->this_sibling_map))
  7504. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7505. &cpu_to_cpu_group,
  7506. d->send_covered, d->tmpmask);
  7507. break;
  7508. #endif
  7509. #ifdef CONFIG_SCHED_MC
  7510. case SD_LV_MC: /* set up multi-core groups */
  7511. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7512. if (cpu == cpumask_first(d->this_core_map))
  7513. init_sched_build_groups(d->this_core_map, cpu_map,
  7514. &cpu_to_core_group,
  7515. d->send_covered, d->tmpmask);
  7516. break;
  7517. #endif
  7518. case SD_LV_CPU: /* set up physical groups */
  7519. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7520. if (!cpumask_empty(d->nodemask))
  7521. init_sched_build_groups(d->nodemask, cpu_map,
  7522. &cpu_to_phys_group,
  7523. d->send_covered, d->tmpmask);
  7524. break;
  7525. #ifdef CONFIG_NUMA
  7526. case SD_LV_ALLNODES:
  7527. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7528. d->send_covered, d->tmpmask);
  7529. break;
  7530. #endif
  7531. default:
  7532. break;
  7533. }
  7534. }
  7535. /*
  7536. * Build sched domains for a given set of cpus and attach the sched domains
  7537. * to the individual cpus
  7538. */
  7539. static int __build_sched_domains(const struct cpumask *cpu_map,
  7540. struct sched_domain_attr *attr)
  7541. {
  7542. enum s_alloc alloc_state = sa_none;
  7543. struct s_data d;
  7544. struct sched_domain *sd;
  7545. int i;
  7546. #ifdef CONFIG_NUMA
  7547. d.sd_allnodes = 0;
  7548. #endif
  7549. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7550. if (alloc_state != sa_rootdomain)
  7551. goto error;
  7552. alloc_state = sa_sched_groups;
  7553. /*
  7554. * Set up domains for cpus specified by the cpu_map.
  7555. */
  7556. for_each_cpu(i, cpu_map) {
  7557. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7558. cpu_map);
  7559. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7560. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7561. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7562. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7563. }
  7564. for_each_cpu(i, cpu_map) {
  7565. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7566. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7567. }
  7568. /* Set up physical groups */
  7569. for (i = 0; i < nr_node_ids; i++)
  7570. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7571. #ifdef CONFIG_NUMA
  7572. /* Set up node groups */
  7573. if (d.sd_allnodes)
  7574. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7575. for (i = 0; i < nr_node_ids; i++)
  7576. if (build_numa_sched_groups(&d, cpu_map, i))
  7577. goto error;
  7578. #endif
  7579. /* Calculate CPU power for physical packages and nodes */
  7580. #ifdef CONFIG_SCHED_SMT
  7581. for_each_cpu(i, cpu_map) {
  7582. sd = &per_cpu(cpu_domains, i).sd;
  7583. init_sched_groups_power(i, sd);
  7584. }
  7585. #endif
  7586. #ifdef CONFIG_SCHED_MC
  7587. for_each_cpu(i, cpu_map) {
  7588. sd = &per_cpu(core_domains, i).sd;
  7589. init_sched_groups_power(i, sd);
  7590. }
  7591. #endif
  7592. for_each_cpu(i, cpu_map) {
  7593. sd = &per_cpu(phys_domains, i).sd;
  7594. init_sched_groups_power(i, sd);
  7595. }
  7596. #ifdef CONFIG_NUMA
  7597. for (i = 0; i < nr_node_ids; i++)
  7598. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7599. if (d.sd_allnodes) {
  7600. struct sched_group *sg;
  7601. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7602. d.tmpmask);
  7603. init_numa_sched_groups_power(sg);
  7604. }
  7605. #endif
  7606. /* Attach the domains */
  7607. for_each_cpu(i, cpu_map) {
  7608. #ifdef CONFIG_SCHED_SMT
  7609. sd = &per_cpu(cpu_domains, i).sd;
  7610. #elif defined(CONFIG_SCHED_MC)
  7611. sd = &per_cpu(core_domains, i).sd;
  7612. #else
  7613. sd = &per_cpu(phys_domains, i).sd;
  7614. #endif
  7615. cpu_attach_domain(sd, d.rd, i);
  7616. }
  7617. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7618. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7619. return 0;
  7620. error:
  7621. __free_domain_allocs(&d, alloc_state, cpu_map);
  7622. return -ENOMEM;
  7623. }
  7624. static int build_sched_domains(const struct cpumask *cpu_map)
  7625. {
  7626. return __build_sched_domains(cpu_map, NULL);
  7627. }
  7628. static cpumask_var_t *doms_cur; /* current sched domains */
  7629. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7630. static struct sched_domain_attr *dattr_cur;
  7631. /* attribues of custom domains in 'doms_cur' */
  7632. /*
  7633. * Special case: If a kmalloc of a doms_cur partition (array of
  7634. * cpumask) fails, then fallback to a single sched domain,
  7635. * as determined by the single cpumask fallback_doms.
  7636. */
  7637. static cpumask_var_t fallback_doms;
  7638. /*
  7639. * arch_update_cpu_topology lets virtualized architectures update the
  7640. * cpu core maps. It is supposed to return 1 if the topology changed
  7641. * or 0 if it stayed the same.
  7642. */
  7643. int __attribute__((weak)) arch_update_cpu_topology(void)
  7644. {
  7645. return 0;
  7646. }
  7647. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  7648. {
  7649. int i;
  7650. cpumask_var_t *doms;
  7651. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  7652. if (!doms)
  7653. return NULL;
  7654. for (i = 0; i < ndoms; i++) {
  7655. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  7656. free_sched_domains(doms, i);
  7657. return NULL;
  7658. }
  7659. }
  7660. return doms;
  7661. }
  7662. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  7663. {
  7664. unsigned int i;
  7665. for (i = 0; i < ndoms; i++)
  7666. free_cpumask_var(doms[i]);
  7667. kfree(doms);
  7668. }
  7669. /*
  7670. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7671. * For now this just excludes isolated cpus, but could be used to
  7672. * exclude other special cases in the future.
  7673. */
  7674. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7675. {
  7676. int err;
  7677. arch_update_cpu_topology();
  7678. ndoms_cur = 1;
  7679. doms_cur = alloc_sched_domains(ndoms_cur);
  7680. if (!doms_cur)
  7681. doms_cur = &fallback_doms;
  7682. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  7683. dattr_cur = NULL;
  7684. err = build_sched_domains(doms_cur[0]);
  7685. register_sched_domain_sysctl();
  7686. return err;
  7687. }
  7688. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7689. struct cpumask *tmpmask)
  7690. {
  7691. free_sched_groups(cpu_map, tmpmask);
  7692. }
  7693. /*
  7694. * Detach sched domains from a group of cpus specified in cpu_map
  7695. * These cpus will now be attached to the NULL domain
  7696. */
  7697. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7698. {
  7699. /* Save because hotplug lock held. */
  7700. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7701. int i;
  7702. for_each_cpu(i, cpu_map)
  7703. cpu_attach_domain(NULL, &def_root_domain, i);
  7704. synchronize_sched();
  7705. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7706. }
  7707. /* handle null as "default" */
  7708. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7709. struct sched_domain_attr *new, int idx_new)
  7710. {
  7711. struct sched_domain_attr tmp;
  7712. /* fast path */
  7713. if (!new && !cur)
  7714. return 1;
  7715. tmp = SD_ATTR_INIT;
  7716. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7717. new ? (new + idx_new) : &tmp,
  7718. sizeof(struct sched_domain_attr));
  7719. }
  7720. /*
  7721. * Partition sched domains as specified by the 'ndoms_new'
  7722. * cpumasks in the array doms_new[] of cpumasks. This compares
  7723. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7724. * It destroys each deleted domain and builds each new domain.
  7725. *
  7726. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  7727. * The masks don't intersect (don't overlap.) We should setup one
  7728. * sched domain for each mask. CPUs not in any of the cpumasks will
  7729. * not be load balanced. If the same cpumask appears both in the
  7730. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7731. * it as it is.
  7732. *
  7733. * The passed in 'doms_new' should be allocated using
  7734. * alloc_sched_domains. This routine takes ownership of it and will
  7735. * free_sched_domains it when done with it. If the caller failed the
  7736. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  7737. * and partition_sched_domains() will fallback to the single partition
  7738. * 'fallback_doms', it also forces the domains to be rebuilt.
  7739. *
  7740. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7741. * ndoms_new == 0 is a special case for destroying existing domains,
  7742. * and it will not create the default domain.
  7743. *
  7744. * Call with hotplug lock held
  7745. */
  7746. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  7747. struct sched_domain_attr *dattr_new)
  7748. {
  7749. int i, j, n;
  7750. int new_topology;
  7751. mutex_lock(&sched_domains_mutex);
  7752. /* always unregister in case we don't destroy any domains */
  7753. unregister_sched_domain_sysctl();
  7754. /* Let architecture update cpu core mappings. */
  7755. new_topology = arch_update_cpu_topology();
  7756. n = doms_new ? ndoms_new : 0;
  7757. /* Destroy deleted domains */
  7758. for (i = 0; i < ndoms_cur; i++) {
  7759. for (j = 0; j < n && !new_topology; j++) {
  7760. if (cpumask_equal(doms_cur[i], doms_new[j])
  7761. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7762. goto match1;
  7763. }
  7764. /* no match - a current sched domain not in new doms_new[] */
  7765. detach_destroy_domains(doms_cur[i]);
  7766. match1:
  7767. ;
  7768. }
  7769. if (doms_new == NULL) {
  7770. ndoms_cur = 0;
  7771. doms_new = &fallback_doms;
  7772. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  7773. WARN_ON_ONCE(dattr_new);
  7774. }
  7775. /* Build new domains */
  7776. for (i = 0; i < ndoms_new; i++) {
  7777. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7778. if (cpumask_equal(doms_new[i], doms_cur[j])
  7779. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7780. goto match2;
  7781. }
  7782. /* no match - add a new doms_new */
  7783. __build_sched_domains(doms_new[i],
  7784. dattr_new ? dattr_new + i : NULL);
  7785. match2:
  7786. ;
  7787. }
  7788. /* Remember the new sched domains */
  7789. if (doms_cur != &fallback_doms)
  7790. free_sched_domains(doms_cur, ndoms_cur);
  7791. kfree(dattr_cur); /* kfree(NULL) is safe */
  7792. doms_cur = doms_new;
  7793. dattr_cur = dattr_new;
  7794. ndoms_cur = ndoms_new;
  7795. register_sched_domain_sysctl();
  7796. mutex_unlock(&sched_domains_mutex);
  7797. }
  7798. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7799. static void arch_reinit_sched_domains(void)
  7800. {
  7801. get_online_cpus();
  7802. /* Destroy domains first to force the rebuild */
  7803. partition_sched_domains(0, NULL, NULL);
  7804. rebuild_sched_domains();
  7805. put_online_cpus();
  7806. }
  7807. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7808. {
  7809. unsigned int level = 0;
  7810. if (sscanf(buf, "%u", &level) != 1)
  7811. return -EINVAL;
  7812. /*
  7813. * level is always be positive so don't check for
  7814. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7815. * What happens on 0 or 1 byte write,
  7816. * need to check for count as well?
  7817. */
  7818. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7819. return -EINVAL;
  7820. if (smt)
  7821. sched_smt_power_savings = level;
  7822. else
  7823. sched_mc_power_savings = level;
  7824. arch_reinit_sched_domains();
  7825. return count;
  7826. }
  7827. #ifdef CONFIG_SCHED_MC
  7828. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7829. char *page)
  7830. {
  7831. return sprintf(page, "%u\n", sched_mc_power_savings);
  7832. }
  7833. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7834. const char *buf, size_t count)
  7835. {
  7836. return sched_power_savings_store(buf, count, 0);
  7837. }
  7838. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7839. sched_mc_power_savings_show,
  7840. sched_mc_power_savings_store);
  7841. #endif
  7842. #ifdef CONFIG_SCHED_SMT
  7843. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7844. char *page)
  7845. {
  7846. return sprintf(page, "%u\n", sched_smt_power_savings);
  7847. }
  7848. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7849. const char *buf, size_t count)
  7850. {
  7851. return sched_power_savings_store(buf, count, 1);
  7852. }
  7853. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7854. sched_smt_power_savings_show,
  7855. sched_smt_power_savings_store);
  7856. #endif
  7857. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7858. {
  7859. int err = 0;
  7860. #ifdef CONFIG_SCHED_SMT
  7861. if (smt_capable())
  7862. err = sysfs_create_file(&cls->kset.kobj,
  7863. &attr_sched_smt_power_savings.attr);
  7864. #endif
  7865. #ifdef CONFIG_SCHED_MC
  7866. if (!err && mc_capable())
  7867. err = sysfs_create_file(&cls->kset.kobj,
  7868. &attr_sched_mc_power_savings.attr);
  7869. #endif
  7870. return err;
  7871. }
  7872. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7873. #ifndef CONFIG_CPUSETS
  7874. /*
  7875. * Add online and remove offline CPUs from the scheduler domains.
  7876. * When cpusets are enabled they take over this function.
  7877. */
  7878. static int update_sched_domains(struct notifier_block *nfb,
  7879. unsigned long action, void *hcpu)
  7880. {
  7881. switch (action) {
  7882. case CPU_ONLINE:
  7883. case CPU_ONLINE_FROZEN:
  7884. case CPU_DOWN_PREPARE:
  7885. case CPU_DOWN_PREPARE_FROZEN:
  7886. case CPU_DOWN_FAILED:
  7887. case CPU_DOWN_FAILED_FROZEN:
  7888. partition_sched_domains(1, NULL, NULL);
  7889. return NOTIFY_OK;
  7890. default:
  7891. return NOTIFY_DONE;
  7892. }
  7893. }
  7894. #endif
  7895. static int update_runtime(struct notifier_block *nfb,
  7896. unsigned long action, void *hcpu)
  7897. {
  7898. int cpu = (int)(long)hcpu;
  7899. switch (action) {
  7900. case CPU_DOWN_PREPARE:
  7901. case CPU_DOWN_PREPARE_FROZEN:
  7902. disable_runtime(cpu_rq(cpu));
  7903. return NOTIFY_OK;
  7904. case CPU_DOWN_FAILED:
  7905. case CPU_DOWN_FAILED_FROZEN:
  7906. case CPU_ONLINE:
  7907. case CPU_ONLINE_FROZEN:
  7908. enable_runtime(cpu_rq(cpu));
  7909. return NOTIFY_OK;
  7910. default:
  7911. return NOTIFY_DONE;
  7912. }
  7913. }
  7914. void __init sched_init_smp(void)
  7915. {
  7916. cpumask_var_t non_isolated_cpus;
  7917. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7918. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7919. #if defined(CONFIG_NUMA)
  7920. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7921. GFP_KERNEL);
  7922. BUG_ON(sched_group_nodes_bycpu == NULL);
  7923. #endif
  7924. get_online_cpus();
  7925. mutex_lock(&sched_domains_mutex);
  7926. arch_init_sched_domains(cpu_active_mask);
  7927. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7928. if (cpumask_empty(non_isolated_cpus))
  7929. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7930. mutex_unlock(&sched_domains_mutex);
  7931. put_online_cpus();
  7932. #ifndef CONFIG_CPUSETS
  7933. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7934. hotcpu_notifier(update_sched_domains, 0);
  7935. #endif
  7936. /* RT runtime code needs to handle some hotplug events */
  7937. hotcpu_notifier(update_runtime, 0);
  7938. init_hrtick();
  7939. /* Move init over to a non-isolated CPU */
  7940. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7941. BUG();
  7942. sched_init_granularity();
  7943. free_cpumask_var(non_isolated_cpus);
  7944. init_sched_rt_class();
  7945. }
  7946. #else
  7947. void __init sched_init_smp(void)
  7948. {
  7949. sched_init_granularity();
  7950. }
  7951. #endif /* CONFIG_SMP */
  7952. const_debug unsigned int sysctl_timer_migration = 1;
  7953. int in_sched_functions(unsigned long addr)
  7954. {
  7955. return in_lock_functions(addr) ||
  7956. (addr >= (unsigned long)__sched_text_start
  7957. && addr < (unsigned long)__sched_text_end);
  7958. }
  7959. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7960. {
  7961. cfs_rq->tasks_timeline = RB_ROOT;
  7962. INIT_LIST_HEAD(&cfs_rq->tasks);
  7963. #ifdef CONFIG_FAIR_GROUP_SCHED
  7964. cfs_rq->rq = rq;
  7965. #endif
  7966. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7967. }
  7968. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7969. {
  7970. struct rt_prio_array *array;
  7971. int i;
  7972. array = &rt_rq->active;
  7973. for (i = 0; i < MAX_RT_PRIO; i++) {
  7974. INIT_LIST_HEAD(array->queue + i);
  7975. __clear_bit(i, array->bitmap);
  7976. }
  7977. /* delimiter for bitsearch: */
  7978. __set_bit(MAX_RT_PRIO, array->bitmap);
  7979. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7980. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7981. #ifdef CONFIG_SMP
  7982. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7983. #endif
  7984. #endif
  7985. #ifdef CONFIG_SMP
  7986. rt_rq->rt_nr_migratory = 0;
  7987. rt_rq->overloaded = 0;
  7988. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  7989. #endif
  7990. rt_rq->rt_time = 0;
  7991. rt_rq->rt_throttled = 0;
  7992. rt_rq->rt_runtime = 0;
  7993. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  7994. #ifdef CONFIG_RT_GROUP_SCHED
  7995. rt_rq->rt_nr_boosted = 0;
  7996. rt_rq->rq = rq;
  7997. #endif
  7998. }
  7999. #ifdef CONFIG_FAIR_GROUP_SCHED
  8000. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  8001. struct sched_entity *se, int cpu, int add,
  8002. struct sched_entity *parent)
  8003. {
  8004. struct rq *rq = cpu_rq(cpu);
  8005. tg->cfs_rq[cpu] = cfs_rq;
  8006. init_cfs_rq(cfs_rq, rq);
  8007. cfs_rq->tg = tg;
  8008. if (add)
  8009. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  8010. tg->se[cpu] = se;
  8011. /* se could be NULL for init_task_group */
  8012. if (!se)
  8013. return;
  8014. if (!parent)
  8015. se->cfs_rq = &rq->cfs;
  8016. else
  8017. se->cfs_rq = parent->my_q;
  8018. se->my_q = cfs_rq;
  8019. se->load.weight = tg->shares;
  8020. se->load.inv_weight = 0;
  8021. se->parent = parent;
  8022. }
  8023. #endif
  8024. #ifdef CONFIG_RT_GROUP_SCHED
  8025. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8026. struct sched_rt_entity *rt_se, int cpu, int add,
  8027. struct sched_rt_entity *parent)
  8028. {
  8029. struct rq *rq = cpu_rq(cpu);
  8030. tg->rt_rq[cpu] = rt_rq;
  8031. init_rt_rq(rt_rq, rq);
  8032. rt_rq->tg = tg;
  8033. rt_rq->rt_se = rt_se;
  8034. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8035. if (add)
  8036. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8037. tg->rt_se[cpu] = rt_se;
  8038. if (!rt_se)
  8039. return;
  8040. if (!parent)
  8041. rt_se->rt_rq = &rq->rt;
  8042. else
  8043. rt_se->rt_rq = parent->my_q;
  8044. rt_se->my_q = rt_rq;
  8045. rt_se->parent = parent;
  8046. INIT_LIST_HEAD(&rt_se->run_list);
  8047. }
  8048. #endif
  8049. void __init sched_init(void)
  8050. {
  8051. int i, j;
  8052. unsigned long alloc_size = 0, ptr;
  8053. #ifdef CONFIG_FAIR_GROUP_SCHED
  8054. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8055. #endif
  8056. #ifdef CONFIG_RT_GROUP_SCHED
  8057. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8058. #endif
  8059. #ifdef CONFIG_USER_SCHED
  8060. alloc_size *= 2;
  8061. #endif
  8062. #ifdef CONFIG_CPUMASK_OFFSTACK
  8063. alloc_size += num_possible_cpus() * cpumask_size();
  8064. #endif
  8065. if (alloc_size) {
  8066. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8067. #ifdef CONFIG_FAIR_GROUP_SCHED
  8068. init_task_group.se = (struct sched_entity **)ptr;
  8069. ptr += nr_cpu_ids * sizeof(void **);
  8070. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8071. ptr += nr_cpu_ids * sizeof(void **);
  8072. #ifdef CONFIG_USER_SCHED
  8073. root_task_group.se = (struct sched_entity **)ptr;
  8074. ptr += nr_cpu_ids * sizeof(void **);
  8075. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8076. ptr += nr_cpu_ids * sizeof(void **);
  8077. #endif /* CONFIG_USER_SCHED */
  8078. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8079. #ifdef CONFIG_RT_GROUP_SCHED
  8080. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8081. ptr += nr_cpu_ids * sizeof(void **);
  8082. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8083. ptr += nr_cpu_ids * sizeof(void **);
  8084. #ifdef CONFIG_USER_SCHED
  8085. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8086. ptr += nr_cpu_ids * sizeof(void **);
  8087. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8088. ptr += nr_cpu_ids * sizeof(void **);
  8089. #endif /* CONFIG_USER_SCHED */
  8090. #endif /* CONFIG_RT_GROUP_SCHED */
  8091. #ifdef CONFIG_CPUMASK_OFFSTACK
  8092. for_each_possible_cpu(i) {
  8093. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8094. ptr += cpumask_size();
  8095. }
  8096. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8097. }
  8098. #ifdef CONFIG_SMP
  8099. init_defrootdomain();
  8100. #endif
  8101. init_rt_bandwidth(&def_rt_bandwidth,
  8102. global_rt_period(), global_rt_runtime());
  8103. #ifdef CONFIG_RT_GROUP_SCHED
  8104. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8105. global_rt_period(), global_rt_runtime());
  8106. #ifdef CONFIG_USER_SCHED
  8107. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8108. global_rt_period(), RUNTIME_INF);
  8109. #endif /* CONFIG_USER_SCHED */
  8110. #endif /* CONFIG_RT_GROUP_SCHED */
  8111. #ifdef CONFIG_GROUP_SCHED
  8112. list_add(&init_task_group.list, &task_groups);
  8113. INIT_LIST_HEAD(&init_task_group.children);
  8114. #ifdef CONFIG_USER_SCHED
  8115. INIT_LIST_HEAD(&root_task_group.children);
  8116. init_task_group.parent = &root_task_group;
  8117. list_add(&init_task_group.siblings, &root_task_group.children);
  8118. #endif /* CONFIG_USER_SCHED */
  8119. #endif /* CONFIG_GROUP_SCHED */
  8120. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8121. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8122. __alignof__(unsigned long));
  8123. #endif
  8124. for_each_possible_cpu(i) {
  8125. struct rq *rq;
  8126. rq = cpu_rq(i);
  8127. raw_spin_lock_init(&rq->lock);
  8128. rq->nr_running = 0;
  8129. rq->calc_load_active = 0;
  8130. rq->calc_load_update = jiffies + LOAD_FREQ;
  8131. init_cfs_rq(&rq->cfs, rq);
  8132. init_rt_rq(&rq->rt, rq);
  8133. #ifdef CONFIG_FAIR_GROUP_SCHED
  8134. init_task_group.shares = init_task_group_load;
  8135. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8136. #ifdef CONFIG_CGROUP_SCHED
  8137. /*
  8138. * How much cpu bandwidth does init_task_group get?
  8139. *
  8140. * In case of task-groups formed thr' the cgroup filesystem, it
  8141. * gets 100% of the cpu resources in the system. This overall
  8142. * system cpu resource is divided among the tasks of
  8143. * init_task_group and its child task-groups in a fair manner,
  8144. * based on each entity's (task or task-group's) weight
  8145. * (se->load.weight).
  8146. *
  8147. * In other words, if init_task_group has 10 tasks of weight
  8148. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8149. * then A0's share of the cpu resource is:
  8150. *
  8151. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8152. *
  8153. * We achieve this by letting init_task_group's tasks sit
  8154. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8155. */
  8156. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8157. #elif defined CONFIG_USER_SCHED
  8158. root_task_group.shares = NICE_0_LOAD;
  8159. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8160. /*
  8161. * In case of task-groups formed thr' the user id of tasks,
  8162. * init_task_group represents tasks belonging to root user.
  8163. * Hence it forms a sibling of all subsequent groups formed.
  8164. * In this case, init_task_group gets only a fraction of overall
  8165. * system cpu resource, based on the weight assigned to root
  8166. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8167. * by letting tasks of init_task_group sit in a separate cfs_rq
  8168. * (init_tg_cfs_rq) and having one entity represent this group of
  8169. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8170. */
  8171. init_tg_cfs_entry(&init_task_group,
  8172. &per_cpu(init_tg_cfs_rq, i),
  8173. &per_cpu(init_sched_entity, i), i, 1,
  8174. root_task_group.se[i]);
  8175. #endif
  8176. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8177. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8178. #ifdef CONFIG_RT_GROUP_SCHED
  8179. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8180. #ifdef CONFIG_CGROUP_SCHED
  8181. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8182. #elif defined CONFIG_USER_SCHED
  8183. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8184. init_tg_rt_entry(&init_task_group,
  8185. &per_cpu(init_rt_rq_var, i),
  8186. &per_cpu(init_sched_rt_entity, i), i, 1,
  8187. root_task_group.rt_se[i]);
  8188. #endif
  8189. #endif
  8190. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8191. rq->cpu_load[j] = 0;
  8192. #ifdef CONFIG_SMP
  8193. rq->sd = NULL;
  8194. rq->rd = NULL;
  8195. rq->post_schedule = 0;
  8196. rq->active_balance = 0;
  8197. rq->next_balance = jiffies;
  8198. rq->push_cpu = 0;
  8199. rq->cpu = i;
  8200. rq->online = 0;
  8201. rq->migration_thread = NULL;
  8202. rq->idle_stamp = 0;
  8203. rq->avg_idle = 2*sysctl_sched_migration_cost;
  8204. INIT_LIST_HEAD(&rq->migration_queue);
  8205. rq_attach_root(rq, &def_root_domain);
  8206. #endif
  8207. init_rq_hrtick(rq);
  8208. atomic_set(&rq->nr_iowait, 0);
  8209. }
  8210. set_load_weight(&init_task);
  8211. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8212. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8213. #endif
  8214. #ifdef CONFIG_SMP
  8215. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8216. #endif
  8217. #ifdef CONFIG_RT_MUTEXES
  8218. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  8219. #endif
  8220. /*
  8221. * The boot idle thread does lazy MMU switching as well:
  8222. */
  8223. atomic_inc(&init_mm.mm_count);
  8224. enter_lazy_tlb(&init_mm, current);
  8225. /*
  8226. * Make us the idle thread. Technically, schedule() should not be
  8227. * called from this thread, however somewhere below it might be,
  8228. * but because we are the idle thread, we just pick up running again
  8229. * when this runqueue becomes "idle".
  8230. */
  8231. init_idle(current, smp_processor_id());
  8232. calc_load_update = jiffies + LOAD_FREQ;
  8233. /*
  8234. * During early bootup we pretend to be a normal task:
  8235. */
  8236. current->sched_class = &fair_sched_class;
  8237. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8238. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8239. #ifdef CONFIG_SMP
  8240. #ifdef CONFIG_NO_HZ
  8241. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8242. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8243. #endif
  8244. /* May be allocated at isolcpus cmdline parse time */
  8245. if (cpu_isolated_map == NULL)
  8246. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8247. #endif /* SMP */
  8248. perf_event_init();
  8249. scheduler_running = 1;
  8250. }
  8251. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8252. static inline int preempt_count_equals(int preempt_offset)
  8253. {
  8254. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  8255. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8256. }
  8257. void __might_sleep(char *file, int line, int preempt_offset)
  8258. {
  8259. #ifdef in_atomic
  8260. static unsigned long prev_jiffy; /* ratelimiting */
  8261. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8262. system_state != SYSTEM_RUNNING || oops_in_progress)
  8263. return;
  8264. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8265. return;
  8266. prev_jiffy = jiffies;
  8267. pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
  8268. file, line);
  8269. pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8270. in_atomic(), irqs_disabled(),
  8271. current->pid, current->comm);
  8272. debug_show_held_locks(current);
  8273. if (irqs_disabled())
  8274. print_irqtrace_events(current);
  8275. dump_stack();
  8276. #endif
  8277. }
  8278. EXPORT_SYMBOL(__might_sleep);
  8279. #endif
  8280. #ifdef CONFIG_MAGIC_SYSRQ
  8281. static void normalize_task(struct rq *rq, struct task_struct *p)
  8282. {
  8283. int on_rq;
  8284. update_rq_clock(rq);
  8285. on_rq = p->se.on_rq;
  8286. if (on_rq)
  8287. deactivate_task(rq, p, 0);
  8288. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8289. if (on_rq) {
  8290. activate_task(rq, p, 0);
  8291. resched_task(rq->curr);
  8292. }
  8293. }
  8294. void normalize_rt_tasks(void)
  8295. {
  8296. struct task_struct *g, *p;
  8297. unsigned long flags;
  8298. struct rq *rq;
  8299. read_lock_irqsave(&tasklist_lock, flags);
  8300. do_each_thread(g, p) {
  8301. /*
  8302. * Only normalize user tasks:
  8303. */
  8304. if (!p->mm)
  8305. continue;
  8306. p->se.exec_start = 0;
  8307. #ifdef CONFIG_SCHEDSTATS
  8308. p->se.wait_start = 0;
  8309. p->se.sleep_start = 0;
  8310. p->se.block_start = 0;
  8311. #endif
  8312. if (!rt_task(p)) {
  8313. /*
  8314. * Renice negative nice level userspace
  8315. * tasks back to 0:
  8316. */
  8317. if (TASK_NICE(p) < 0 && p->mm)
  8318. set_user_nice(p, 0);
  8319. continue;
  8320. }
  8321. raw_spin_lock(&p->pi_lock);
  8322. rq = __task_rq_lock(p);
  8323. normalize_task(rq, p);
  8324. __task_rq_unlock(rq);
  8325. raw_spin_unlock(&p->pi_lock);
  8326. } while_each_thread(g, p);
  8327. read_unlock_irqrestore(&tasklist_lock, flags);
  8328. }
  8329. #endif /* CONFIG_MAGIC_SYSRQ */
  8330. #ifdef CONFIG_IA64
  8331. /*
  8332. * These functions are only useful for the IA64 MCA handling.
  8333. *
  8334. * They can only be called when the whole system has been
  8335. * stopped - every CPU needs to be quiescent, and no scheduling
  8336. * activity can take place. Using them for anything else would
  8337. * be a serious bug, and as a result, they aren't even visible
  8338. * under any other configuration.
  8339. */
  8340. /**
  8341. * curr_task - return the current task for a given cpu.
  8342. * @cpu: the processor in question.
  8343. *
  8344. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8345. */
  8346. struct task_struct *curr_task(int cpu)
  8347. {
  8348. return cpu_curr(cpu);
  8349. }
  8350. /**
  8351. * set_curr_task - set the current task for a given cpu.
  8352. * @cpu: the processor in question.
  8353. * @p: the task pointer to set.
  8354. *
  8355. * Description: This function must only be used when non-maskable interrupts
  8356. * are serviced on a separate stack. It allows the architecture to switch the
  8357. * notion of the current task on a cpu in a non-blocking manner. This function
  8358. * must be called with all CPU's synchronized, and interrupts disabled, the
  8359. * and caller must save the original value of the current task (see
  8360. * curr_task() above) and restore that value before reenabling interrupts and
  8361. * re-starting the system.
  8362. *
  8363. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8364. */
  8365. void set_curr_task(int cpu, struct task_struct *p)
  8366. {
  8367. cpu_curr(cpu) = p;
  8368. }
  8369. #endif
  8370. #ifdef CONFIG_FAIR_GROUP_SCHED
  8371. static void free_fair_sched_group(struct task_group *tg)
  8372. {
  8373. int i;
  8374. for_each_possible_cpu(i) {
  8375. if (tg->cfs_rq)
  8376. kfree(tg->cfs_rq[i]);
  8377. if (tg->se)
  8378. kfree(tg->se[i]);
  8379. }
  8380. kfree(tg->cfs_rq);
  8381. kfree(tg->se);
  8382. }
  8383. static
  8384. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8385. {
  8386. struct cfs_rq *cfs_rq;
  8387. struct sched_entity *se;
  8388. struct rq *rq;
  8389. int i;
  8390. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8391. if (!tg->cfs_rq)
  8392. goto err;
  8393. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8394. if (!tg->se)
  8395. goto err;
  8396. tg->shares = NICE_0_LOAD;
  8397. for_each_possible_cpu(i) {
  8398. rq = cpu_rq(i);
  8399. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8400. GFP_KERNEL, cpu_to_node(i));
  8401. if (!cfs_rq)
  8402. goto err;
  8403. se = kzalloc_node(sizeof(struct sched_entity),
  8404. GFP_KERNEL, cpu_to_node(i));
  8405. if (!se)
  8406. goto err_free_rq;
  8407. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8408. }
  8409. return 1;
  8410. err_free_rq:
  8411. kfree(cfs_rq);
  8412. err:
  8413. return 0;
  8414. }
  8415. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8416. {
  8417. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8418. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8419. }
  8420. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8421. {
  8422. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8423. }
  8424. #else /* !CONFG_FAIR_GROUP_SCHED */
  8425. static inline void free_fair_sched_group(struct task_group *tg)
  8426. {
  8427. }
  8428. static inline
  8429. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8430. {
  8431. return 1;
  8432. }
  8433. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8434. {
  8435. }
  8436. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8437. {
  8438. }
  8439. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8440. #ifdef CONFIG_RT_GROUP_SCHED
  8441. static void free_rt_sched_group(struct task_group *tg)
  8442. {
  8443. int i;
  8444. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8445. for_each_possible_cpu(i) {
  8446. if (tg->rt_rq)
  8447. kfree(tg->rt_rq[i]);
  8448. if (tg->rt_se)
  8449. kfree(tg->rt_se[i]);
  8450. }
  8451. kfree(tg->rt_rq);
  8452. kfree(tg->rt_se);
  8453. }
  8454. static
  8455. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8456. {
  8457. struct rt_rq *rt_rq;
  8458. struct sched_rt_entity *rt_se;
  8459. struct rq *rq;
  8460. int i;
  8461. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8462. if (!tg->rt_rq)
  8463. goto err;
  8464. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8465. if (!tg->rt_se)
  8466. goto err;
  8467. init_rt_bandwidth(&tg->rt_bandwidth,
  8468. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8469. for_each_possible_cpu(i) {
  8470. rq = cpu_rq(i);
  8471. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8472. GFP_KERNEL, cpu_to_node(i));
  8473. if (!rt_rq)
  8474. goto err;
  8475. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8476. GFP_KERNEL, cpu_to_node(i));
  8477. if (!rt_se)
  8478. goto err_free_rq;
  8479. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8480. }
  8481. return 1;
  8482. err_free_rq:
  8483. kfree(rt_rq);
  8484. err:
  8485. return 0;
  8486. }
  8487. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8488. {
  8489. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8490. &cpu_rq(cpu)->leaf_rt_rq_list);
  8491. }
  8492. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8493. {
  8494. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8495. }
  8496. #else /* !CONFIG_RT_GROUP_SCHED */
  8497. static inline void free_rt_sched_group(struct task_group *tg)
  8498. {
  8499. }
  8500. static inline
  8501. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8502. {
  8503. return 1;
  8504. }
  8505. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8506. {
  8507. }
  8508. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8509. {
  8510. }
  8511. #endif /* CONFIG_RT_GROUP_SCHED */
  8512. #ifdef CONFIG_GROUP_SCHED
  8513. static void free_sched_group(struct task_group *tg)
  8514. {
  8515. free_fair_sched_group(tg);
  8516. free_rt_sched_group(tg);
  8517. kfree(tg);
  8518. }
  8519. /* allocate runqueue etc for a new task group */
  8520. struct task_group *sched_create_group(struct task_group *parent)
  8521. {
  8522. struct task_group *tg;
  8523. unsigned long flags;
  8524. int i;
  8525. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8526. if (!tg)
  8527. return ERR_PTR(-ENOMEM);
  8528. if (!alloc_fair_sched_group(tg, parent))
  8529. goto err;
  8530. if (!alloc_rt_sched_group(tg, parent))
  8531. goto err;
  8532. spin_lock_irqsave(&task_group_lock, flags);
  8533. for_each_possible_cpu(i) {
  8534. register_fair_sched_group(tg, i);
  8535. register_rt_sched_group(tg, i);
  8536. }
  8537. list_add_rcu(&tg->list, &task_groups);
  8538. WARN_ON(!parent); /* root should already exist */
  8539. tg->parent = parent;
  8540. INIT_LIST_HEAD(&tg->children);
  8541. list_add_rcu(&tg->siblings, &parent->children);
  8542. spin_unlock_irqrestore(&task_group_lock, flags);
  8543. return tg;
  8544. err:
  8545. free_sched_group(tg);
  8546. return ERR_PTR(-ENOMEM);
  8547. }
  8548. /* rcu callback to free various structures associated with a task group */
  8549. static void free_sched_group_rcu(struct rcu_head *rhp)
  8550. {
  8551. /* now it should be safe to free those cfs_rqs */
  8552. free_sched_group(container_of(rhp, struct task_group, rcu));
  8553. }
  8554. /* Destroy runqueue etc associated with a task group */
  8555. void sched_destroy_group(struct task_group *tg)
  8556. {
  8557. unsigned long flags;
  8558. int i;
  8559. spin_lock_irqsave(&task_group_lock, flags);
  8560. for_each_possible_cpu(i) {
  8561. unregister_fair_sched_group(tg, i);
  8562. unregister_rt_sched_group(tg, i);
  8563. }
  8564. list_del_rcu(&tg->list);
  8565. list_del_rcu(&tg->siblings);
  8566. spin_unlock_irqrestore(&task_group_lock, flags);
  8567. /* wait for possible concurrent references to cfs_rqs complete */
  8568. call_rcu(&tg->rcu, free_sched_group_rcu);
  8569. }
  8570. /* change task's runqueue when it moves between groups.
  8571. * The caller of this function should have put the task in its new group
  8572. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8573. * reflect its new group.
  8574. */
  8575. void sched_move_task(struct task_struct *tsk)
  8576. {
  8577. int on_rq, running;
  8578. unsigned long flags;
  8579. struct rq *rq;
  8580. rq = task_rq_lock(tsk, &flags);
  8581. update_rq_clock(rq);
  8582. running = task_current(rq, tsk);
  8583. on_rq = tsk->se.on_rq;
  8584. if (on_rq)
  8585. dequeue_task(rq, tsk, 0);
  8586. if (unlikely(running))
  8587. tsk->sched_class->put_prev_task(rq, tsk);
  8588. set_task_rq(tsk, task_cpu(tsk));
  8589. #ifdef CONFIG_FAIR_GROUP_SCHED
  8590. if (tsk->sched_class->moved_group)
  8591. tsk->sched_class->moved_group(tsk, on_rq);
  8592. #endif
  8593. if (unlikely(running))
  8594. tsk->sched_class->set_curr_task(rq);
  8595. if (on_rq)
  8596. enqueue_task(rq, tsk, 0);
  8597. task_rq_unlock(rq, &flags);
  8598. }
  8599. #endif /* CONFIG_GROUP_SCHED */
  8600. #ifdef CONFIG_FAIR_GROUP_SCHED
  8601. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8602. {
  8603. struct cfs_rq *cfs_rq = se->cfs_rq;
  8604. int on_rq;
  8605. on_rq = se->on_rq;
  8606. if (on_rq)
  8607. dequeue_entity(cfs_rq, se, 0);
  8608. se->load.weight = shares;
  8609. se->load.inv_weight = 0;
  8610. if (on_rq)
  8611. enqueue_entity(cfs_rq, se, 0);
  8612. }
  8613. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8614. {
  8615. struct cfs_rq *cfs_rq = se->cfs_rq;
  8616. struct rq *rq = cfs_rq->rq;
  8617. unsigned long flags;
  8618. raw_spin_lock_irqsave(&rq->lock, flags);
  8619. __set_se_shares(se, shares);
  8620. raw_spin_unlock_irqrestore(&rq->lock, flags);
  8621. }
  8622. static DEFINE_MUTEX(shares_mutex);
  8623. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8624. {
  8625. int i;
  8626. unsigned long flags;
  8627. /*
  8628. * We can't change the weight of the root cgroup.
  8629. */
  8630. if (!tg->se[0])
  8631. return -EINVAL;
  8632. if (shares < MIN_SHARES)
  8633. shares = MIN_SHARES;
  8634. else if (shares > MAX_SHARES)
  8635. shares = MAX_SHARES;
  8636. mutex_lock(&shares_mutex);
  8637. if (tg->shares == shares)
  8638. goto done;
  8639. spin_lock_irqsave(&task_group_lock, flags);
  8640. for_each_possible_cpu(i)
  8641. unregister_fair_sched_group(tg, i);
  8642. list_del_rcu(&tg->siblings);
  8643. spin_unlock_irqrestore(&task_group_lock, flags);
  8644. /* wait for any ongoing reference to this group to finish */
  8645. synchronize_sched();
  8646. /*
  8647. * Now we are free to modify the group's share on each cpu
  8648. * w/o tripping rebalance_share or load_balance_fair.
  8649. */
  8650. tg->shares = shares;
  8651. for_each_possible_cpu(i) {
  8652. /*
  8653. * force a rebalance
  8654. */
  8655. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8656. set_se_shares(tg->se[i], shares);
  8657. }
  8658. /*
  8659. * Enable load balance activity on this group, by inserting it back on
  8660. * each cpu's rq->leaf_cfs_rq_list.
  8661. */
  8662. spin_lock_irqsave(&task_group_lock, flags);
  8663. for_each_possible_cpu(i)
  8664. register_fair_sched_group(tg, i);
  8665. list_add_rcu(&tg->siblings, &tg->parent->children);
  8666. spin_unlock_irqrestore(&task_group_lock, flags);
  8667. done:
  8668. mutex_unlock(&shares_mutex);
  8669. return 0;
  8670. }
  8671. unsigned long sched_group_shares(struct task_group *tg)
  8672. {
  8673. return tg->shares;
  8674. }
  8675. #endif
  8676. #ifdef CONFIG_RT_GROUP_SCHED
  8677. /*
  8678. * Ensure that the real time constraints are schedulable.
  8679. */
  8680. static DEFINE_MUTEX(rt_constraints_mutex);
  8681. static unsigned long to_ratio(u64 period, u64 runtime)
  8682. {
  8683. if (runtime == RUNTIME_INF)
  8684. return 1ULL << 20;
  8685. return div64_u64(runtime << 20, period);
  8686. }
  8687. /* Must be called with tasklist_lock held */
  8688. static inline int tg_has_rt_tasks(struct task_group *tg)
  8689. {
  8690. struct task_struct *g, *p;
  8691. do_each_thread(g, p) {
  8692. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8693. return 1;
  8694. } while_each_thread(g, p);
  8695. return 0;
  8696. }
  8697. struct rt_schedulable_data {
  8698. struct task_group *tg;
  8699. u64 rt_period;
  8700. u64 rt_runtime;
  8701. };
  8702. static int tg_schedulable(struct task_group *tg, void *data)
  8703. {
  8704. struct rt_schedulable_data *d = data;
  8705. struct task_group *child;
  8706. unsigned long total, sum = 0;
  8707. u64 period, runtime;
  8708. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8709. runtime = tg->rt_bandwidth.rt_runtime;
  8710. if (tg == d->tg) {
  8711. period = d->rt_period;
  8712. runtime = d->rt_runtime;
  8713. }
  8714. #ifdef CONFIG_USER_SCHED
  8715. if (tg == &root_task_group) {
  8716. period = global_rt_period();
  8717. runtime = global_rt_runtime();
  8718. }
  8719. #endif
  8720. /*
  8721. * Cannot have more runtime than the period.
  8722. */
  8723. if (runtime > period && runtime != RUNTIME_INF)
  8724. return -EINVAL;
  8725. /*
  8726. * Ensure we don't starve existing RT tasks.
  8727. */
  8728. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8729. return -EBUSY;
  8730. total = to_ratio(period, runtime);
  8731. /*
  8732. * Nobody can have more than the global setting allows.
  8733. */
  8734. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8735. return -EINVAL;
  8736. /*
  8737. * The sum of our children's runtime should not exceed our own.
  8738. */
  8739. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8740. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8741. runtime = child->rt_bandwidth.rt_runtime;
  8742. if (child == d->tg) {
  8743. period = d->rt_period;
  8744. runtime = d->rt_runtime;
  8745. }
  8746. sum += to_ratio(period, runtime);
  8747. }
  8748. if (sum > total)
  8749. return -EINVAL;
  8750. return 0;
  8751. }
  8752. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8753. {
  8754. struct rt_schedulable_data data = {
  8755. .tg = tg,
  8756. .rt_period = period,
  8757. .rt_runtime = runtime,
  8758. };
  8759. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8760. }
  8761. static int tg_set_bandwidth(struct task_group *tg,
  8762. u64 rt_period, u64 rt_runtime)
  8763. {
  8764. int i, err = 0;
  8765. mutex_lock(&rt_constraints_mutex);
  8766. read_lock(&tasklist_lock);
  8767. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8768. if (err)
  8769. goto unlock;
  8770. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8771. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8772. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8773. for_each_possible_cpu(i) {
  8774. struct rt_rq *rt_rq = tg->rt_rq[i];
  8775. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8776. rt_rq->rt_runtime = rt_runtime;
  8777. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8778. }
  8779. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8780. unlock:
  8781. read_unlock(&tasklist_lock);
  8782. mutex_unlock(&rt_constraints_mutex);
  8783. return err;
  8784. }
  8785. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8786. {
  8787. u64 rt_runtime, rt_period;
  8788. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8789. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8790. if (rt_runtime_us < 0)
  8791. rt_runtime = RUNTIME_INF;
  8792. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8793. }
  8794. long sched_group_rt_runtime(struct task_group *tg)
  8795. {
  8796. u64 rt_runtime_us;
  8797. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8798. return -1;
  8799. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8800. do_div(rt_runtime_us, NSEC_PER_USEC);
  8801. return rt_runtime_us;
  8802. }
  8803. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8804. {
  8805. u64 rt_runtime, rt_period;
  8806. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8807. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8808. if (rt_period == 0)
  8809. return -EINVAL;
  8810. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8811. }
  8812. long sched_group_rt_period(struct task_group *tg)
  8813. {
  8814. u64 rt_period_us;
  8815. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8816. do_div(rt_period_us, NSEC_PER_USEC);
  8817. return rt_period_us;
  8818. }
  8819. static int sched_rt_global_constraints(void)
  8820. {
  8821. u64 runtime, period;
  8822. int ret = 0;
  8823. if (sysctl_sched_rt_period <= 0)
  8824. return -EINVAL;
  8825. runtime = global_rt_runtime();
  8826. period = global_rt_period();
  8827. /*
  8828. * Sanity check on the sysctl variables.
  8829. */
  8830. if (runtime > period && runtime != RUNTIME_INF)
  8831. return -EINVAL;
  8832. mutex_lock(&rt_constraints_mutex);
  8833. read_lock(&tasklist_lock);
  8834. ret = __rt_schedulable(NULL, 0, 0);
  8835. read_unlock(&tasklist_lock);
  8836. mutex_unlock(&rt_constraints_mutex);
  8837. return ret;
  8838. }
  8839. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8840. {
  8841. /* Don't accept realtime tasks when there is no way for them to run */
  8842. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8843. return 0;
  8844. return 1;
  8845. }
  8846. #else /* !CONFIG_RT_GROUP_SCHED */
  8847. static int sched_rt_global_constraints(void)
  8848. {
  8849. unsigned long flags;
  8850. int i;
  8851. if (sysctl_sched_rt_period <= 0)
  8852. return -EINVAL;
  8853. /*
  8854. * There's always some RT tasks in the root group
  8855. * -- migration, kstopmachine etc..
  8856. */
  8857. if (sysctl_sched_rt_runtime == 0)
  8858. return -EBUSY;
  8859. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8860. for_each_possible_cpu(i) {
  8861. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8862. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8863. rt_rq->rt_runtime = global_rt_runtime();
  8864. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8865. }
  8866. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8867. return 0;
  8868. }
  8869. #endif /* CONFIG_RT_GROUP_SCHED */
  8870. int sched_rt_handler(struct ctl_table *table, int write,
  8871. void __user *buffer, size_t *lenp,
  8872. loff_t *ppos)
  8873. {
  8874. int ret;
  8875. int old_period, old_runtime;
  8876. static DEFINE_MUTEX(mutex);
  8877. mutex_lock(&mutex);
  8878. old_period = sysctl_sched_rt_period;
  8879. old_runtime = sysctl_sched_rt_runtime;
  8880. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8881. if (!ret && write) {
  8882. ret = sched_rt_global_constraints();
  8883. if (ret) {
  8884. sysctl_sched_rt_period = old_period;
  8885. sysctl_sched_rt_runtime = old_runtime;
  8886. } else {
  8887. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8888. def_rt_bandwidth.rt_period =
  8889. ns_to_ktime(global_rt_period());
  8890. }
  8891. }
  8892. mutex_unlock(&mutex);
  8893. return ret;
  8894. }
  8895. #ifdef CONFIG_CGROUP_SCHED
  8896. /* return corresponding task_group object of a cgroup */
  8897. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8898. {
  8899. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8900. struct task_group, css);
  8901. }
  8902. static struct cgroup_subsys_state *
  8903. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8904. {
  8905. struct task_group *tg, *parent;
  8906. if (!cgrp->parent) {
  8907. /* This is early initialization for the top cgroup */
  8908. return &init_task_group.css;
  8909. }
  8910. parent = cgroup_tg(cgrp->parent);
  8911. tg = sched_create_group(parent);
  8912. if (IS_ERR(tg))
  8913. return ERR_PTR(-ENOMEM);
  8914. return &tg->css;
  8915. }
  8916. static void
  8917. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8918. {
  8919. struct task_group *tg = cgroup_tg(cgrp);
  8920. sched_destroy_group(tg);
  8921. }
  8922. static int
  8923. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8924. {
  8925. #ifdef CONFIG_RT_GROUP_SCHED
  8926. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8927. return -EINVAL;
  8928. #else
  8929. /* We don't support RT-tasks being in separate groups */
  8930. if (tsk->sched_class != &fair_sched_class)
  8931. return -EINVAL;
  8932. #endif
  8933. return 0;
  8934. }
  8935. static int
  8936. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8937. struct task_struct *tsk, bool threadgroup)
  8938. {
  8939. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8940. if (retval)
  8941. return retval;
  8942. if (threadgroup) {
  8943. struct task_struct *c;
  8944. rcu_read_lock();
  8945. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8946. retval = cpu_cgroup_can_attach_task(cgrp, c);
  8947. if (retval) {
  8948. rcu_read_unlock();
  8949. return retval;
  8950. }
  8951. }
  8952. rcu_read_unlock();
  8953. }
  8954. return 0;
  8955. }
  8956. static void
  8957. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8958. struct cgroup *old_cont, struct task_struct *tsk,
  8959. bool threadgroup)
  8960. {
  8961. sched_move_task(tsk);
  8962. if (threadgroup) {
  8963. struct task_struct *c;
  8964. rcu_read_lock();
  8965. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8966. sched_move_task(c);
  8967. }
  8968. rcu_read_unlock();
  8969. }
  8970. }
  8971. #ifdef CONFIG_FAIR_GROUP_SCHED
  8972. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8973. u64 shareval)
  8974. {
  8975. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8976. }
  8977. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8978. {
  8979. struct task_group *tg = cgroup_tg(cgrp);
  8980. return (u64) tg->shares;
  8981. }
  8982. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8983. #ifdef CONFIG_RT_GROUP_SCHED
  8984. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8985. s64 val)
  8986. {
  8987. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8988. }
  8989. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8990. {
  8991. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8992. }
  8993. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8994. u64 rt_period_us)
  8995. {
  8996. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8997. }
  8998. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8999. {
  9000. return sched_group_rt_period(cgroup_tg(cgrp));
  9001. }
  9002. #endif /* CONFIG_RT_GROUP_SCHED */
  9003. static struct cftype cpu_files[] = {
  9004. #ifdef CONFIG_FAIR_GROUP_SCHED
  9005. {
  9006. .name = "shares",
  9007. .read_u64 = cpu_shares_read_u64,
  9008. .write_u64 = cpu_shares_write_u64,
  9009. },
  9010. #endif
  9011. #ifdef CONFIG_RT_GROUP_SCHED
  9012. {
  9013. .name = "rt_runtime_us",
  9014. .read_s64 = cpu_rt_runtime_read,
  9015. .write_s64 = cpu_rt_runtime_write,
  9016. },
  9017. {
  9018. .name = "rt_period_us",
  9019. .read_u64 = cpu_rt_period_read_uint,
  9020. .write_u64 = cpu_rt_period_write_uint,
  9021. },
  9022. #endif
  9023. };
  9024. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9025. {
  9026. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9027. }
  9028. struct cgroup_subsys cpu_cgroup_subsys = {
  9029. .name = "cpu",
  9030. .create = cpu_cgroup_create,
  9031. .destroy = cpu_cgroup_destroy,
  9032. .can_attach = cpu_cgroup_can_attach,
  9033. .attach = cpu_cgroup_attach,
  9034. .populate = cpu_cgroup_populate,
  9035. .subsys_id = cpu_cgroup_subsys_id,
  9036. .early_init = 1,
  9037. };
  9038. #endif /* CONFIG_CGROUP_SCHED */
  9039. #ifdef CONFIG_CGROUP_CPUACCT
  9040. /*
  9041. * CPU accounting code for task groups.
  9042. *
  9043. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9044. * (balbir@in.ibm.com).
  9045. */
  9046. /* track cpu usage of a group of tasks and its child groups */
  9047. struct cpuacct {
  9048. struct cgroup_subsys_state css;
  9049. /* cpuusage holds pointer to a u64-type object on every cpu */
  9050. u64 *cpuusage;
  9051. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9052. struct cpuacct *parent;
  9053. };
  9054. struct cgroup_subsys cpuacct_subsys;
  9055. /* return cpu accounting group corresponding to this container */
  9056. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9057. {
  9058. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9059. struct cpuacct, css);
  9060. }
  9061. /* return cpu accounting group to which this task belongs */
  9062. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9063. {
  9064. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9065. struct cpuacct, css);
  9066. }
  9067. /* create a new cpu accounting group */
  9068. static struct cgroup_subsys_state *cpuacct_create(
  9069. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9070. {
  9071. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9072. int i;
  9073. if (!ca)
  9074. goto out;
  9075. ca->cpuusage = alloc_percpu(u64);
  9076. if (!ca->cpuusage)
  9077. goto out_free_ca;
  9078. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9079. if (percpu_counter_init(&ca->cpustat[i], 0))
  9080. goto out_free_counters;
  9081. if (cgrp->parent)
  9082. ca->parent = cgroup_ca(cgrp->parent);
  9083. return &ca->css;
  9084. out_free_counters:
  9085. while (--i >= 0)
  9086. percpu_counter_destroy(&ca->cpustat[i]);
  9087. free_percpu(ca->cpuusage);
  9088. out_free_ca:
  9089. kfree(ca);
  9090. out:
  9091. return ERR_PTR(-ENOMEM);
  9092. }
  9093. /* destroy an existing cpu accounting group */
  9094. static void
  9095. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9096. {
  9097. struct cpuacct *ca = cgroup_ca(cgrp);
  9098. int i;
  9099. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9100. percpu_counter_destroy(&ca->cpustat[i]);
  9101. free_percpu(ca->cpuusage);
  9102. kfree(ca);
  9103. }
  9104. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9105. {
  9106. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9107. u64 data;
  9108. #ifndef CONFIG_64BIT
  9109. /*
  9110. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9111. */
  9112. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9113. data = *cpuusage;
  9114. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9115. #else
  9116. data = *cpuusage;
  9117. #endif
  9118. return data;
  9119. }
  9120. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9121. {
  9122. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9123. #ifndef CONFIG_64BIT
  9124. /*
  9125. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9126. */
  9127. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9128. *cpuusage = val;
  9129. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9130. #else
  9131. *cpuusage = val;
  9132. #endif
  9133. }
  9134. /* return total cpu usage (in nanoseconds) of a group */
  9135. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9136. {
  9137. struct cpuacct *ca = cgroup_ca(cgrp);
  9138. u64 totalcpuusage = 0;
  9139. int i;
  9140. for_each_present_cpu(i)
  9141. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9142. return totalcpuusage;
  9143. }
  9144. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9145. u64 reset)
  9146. {
  9147. struct cpuacct *ca = cgroup_ca(cgrp);
  9148. int err = 0;
  9149. int i;
  9150. if (reset) {
  9151. err = -EINVAL;
  9152. goto out;
  9153. }
  9154. for_each_present_cpu(i)
  9155. cpuacct_cpuusage_write(ca, i, 0);
  9156. out:
  9157. return err;
  9158. }
  9159. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9160. struct seq_file *m)
  9161. {
  9162. struct cpuacct *ca = cgroup_ca(cgroup);
  9163. u64 percpu;
  9164. int i;
  9165. for_each_present_cpu(i) {
  9166. percpu = cpuacct_cpuusage_read(ca, i);
  9167. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9168. }
  9169. seq_printf(m, "\n");
  9170. return 0;
  9171. }
  9172. static const char *cpuacct_stat_desc[] = {
  9173. [CPUACCT_STAT_USER] = "user",
  9174. [CPUACCT_STAT_SYSTEM] = "system",
  9175. };
  9176. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9177. struct cgroup_map_cb *cb)
  9178. {
  9179. struct cpuacct *ca = cgroup_ca(cgrp);
  9180. int i;
  9181. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9182. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9183. val = cputime64_to_clock_t(val);
  9184. cb->fill(cb, cpuacct_stat_desc[i], val);
  9185. }
  9186. return 0;
  9187. }
  9188. static struct cftype files[] = {
  9189. {
  9190. .name = "usage",
  9191. .read_u64 = cpuusage_read,
  9192. .write_u64 = cpuusage_write,
  9193. },
  9194. {
  9195. .name = "usage_percpu",
  9196. .read_seq_string = cpuacct_percpu_seq_read,
  9197. },
  9198. {
  9199. .name = "stat",
  9200. .read_map = cpuacct_stats_show,
  9201. },
  9202. };
  9203. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9204. {
  9205. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9206. }
  9207. /*
  9208. * charge this task's execution time to its accounting group.
  9209. *
  9210. * called with rq->lock held.
  9211. */
  9212. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9213. {
  9214. struct cpuacct *ca;
  9215. int cpu;
  9216. if (unlikely(!cpuacct_subsys.active))
  9217. return;
  9218. cpu = task_cpu(tsk);
  9219. rcu_read_lock();
  9220. ca = task_ca(tsk);
  9221. for (; ca; ca = ca->parent) {
  9222. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9223. *cpuusage += cputime;
  9224. }
  9225. rcu_read_unlock();
  9226. }
  9227. /*
  9228. * Charge the system/user time to the task's accounting group.
  9229. */
  9230. static void cpuacct_update_stats(struct task_struct *tsk,
  9231. enum cpuacct_stat_index idx, cputime_t val)
  9232. {
  9233. struct cpuacct *ca;
  9234. if (unlikely(!cpuacct_subsys.active))
  9235. return;
  9236. rcu_read_lock();
  9237. ca = task_ca(tsk);
  9238. do {
  9239. percpu_counter_add(&ca->cpustat[idx], val);
  9240. ca = ca->parent;
  9241. } while (ca);
  9242. rcu_read_unlock();
  9243. }
  9244. struct cgroup_subsys cpuacct_subsys = {
  9245. .name = "cpuacct",
  9246. .create = cpuacct_create,
  9247. .destroy = cpuacct_destroy,
  9248. .populate = cpuacct_populate,
  9249. .subsys_id = cpuacct_subsys_id,
  9250. };
  9251. #endif /* CONFIG_CGROUP_CPUACCT */
  9252. #ifndef CONFIG_SMP
  9253. int rcu_expedited_torture_stats(char *page)
  9254. {
  9255. return 0;
  9256. }
  9257. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9258. void synchronize_sched_expedited(void)
  9259. {
  9260. }
  9261. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9262. #else /* #ifndef CONFIG_SMP */
  9263. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9264. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9265. #define RCU_EXPEDITED_STATE_POST -2
  9266. #define RCU_EXPEDITED_STATE_IDLE -1
  9267. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9268. int rcu_expedited_torture_stats(char *page)
  9269. {
  9270. int cnt = 0;
  9271. int cpu;
  9272. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9273. for_each_online_cpu(cpu) {
  9274. cnt += sprintf(&page[cnt], " %d:%d",
  9275. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9276. }
  9277. cnt += sprintf(&page[cnt], "\n");
  9278. return cnt;
  9279. }
  9280. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9281. static long synchronize_sched_expedited_count;
  9282. /*
  9283. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9284. * approach to force grace period to end quickly. This consumes
  9285. * significant time on all CPUs, and is thus not recommended for
  9286. * any sort of common-case code.
  9287. *
  9288. * Note that it is illegal to call this function while holding any
  9289. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9290. * observe this restriction will result in deadlock.
  9291. */
  9292. void synchronize_sched_expedited(void)
  9293. {
  9294. int cpu;
  9295. unsigned long flags;
  9296. bool need_full_sync = 0;
  9297. struct rq *rq;
  9298. struct migration_req *req;
  9299. long snap;
  9300. int trycount = 0;
  9301. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9302. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9303. get_online_cpus();
  9304. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9305. put_online_cpus();
  9306. if (trycount++ < 10)
  9307. udelay(trycount * num_online_cpus());
  9308. else {
  9309. synchronize_sched();
  9310. return;
  9311. }
  9312. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9313. smp_mb(); /* ensure test happens before caller kfree */
  9314. return;
  9315. }
  9316. get_online_cpus();
  9317. }
  9318. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9319. for_each_online_cpu(cpu) {
  9320. rq = cpu_rq(cpu);
  9321. req = &per_cpu(rcu_migration_req, cpu);
  9322. init_completion(&req->done);
  9323. req->task = NULL;
  9324. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9325. raw_spin_lock_irqsave(&rq->lock, flags);
  9326. list_add(&req->list, &rq->migration_queue);
  9327. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9328. wake_up_process(rq->migration_thread);
  9329. }
  9330. for_each_online_cpu(cpu) {
  9331. rcu_expedited_state = cpu;
  9332. req = &per_cpu(rcu_migration_req, cpu);
  9333. rq = cpu_rq(cpu);
  9334. wait_for_completion(&req->done);
  9335. raw_spin_lock_irqsave(&rq->lock, flags);
  9336. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9337. need_full_sync = 1;
  9338. req->dest_cpu = RCU_MIGRATION_IDLE;
  9339. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9340. }
  9341. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9342. synchronize_sched_expedited_count++;
  9343. mutex_unlock(&rcu_sched_expedited_mutex);
  9344. put_online_cpus();
  9345. if (need_full_sync)
  9346. synchronize_sched();
  9347. }
  9348. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9349. #endif /* #else #ifndef CONFIG_SMP */