dumpstack_64.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4. */
  5. #include <linux/kallsyms.h>
  6. #include <linux/kprobes.h>
  7. #include <linux/uaccess.h>
  8. #include <linux/hardirq.h>
  9. #include <linux/kdebug.h>
  10. #include <linux/module.h>
  11. #include <linux/ptrace.h>
  12. #include <linux/kexec.h>
  13. #include <linux/sysfs.h>
  14. #include <linux/bug.h>
  15. #include <linux/nmi.h>
  16. #include <asm/stacktrace.h>
  17. #include "dumpstack.h"
  18. #define N_EXCEPTION_STACKS_END \
  19. (N_EXCEPTION_STACKS + DEBUG_STKSZ/EXCEPTION_STKSZ - 2)
  20. static char x86_stack_ids[][8] = {
  21. [ DEBUG_STACK-1 ] = "#DB",
  22. [ NMI_STACK-1 ] = "NMI",
  23. [ DOUBLEFAULT_STACK-1 ] = "#DF",
  24. [ STACKFAULT_STACK-1 ] = "#SS",
  25. [ MCE_STACK-1 ] = "#MC",
  26. #if DEBUG_STKSZ > EXCEPTION_STKSZ
  27. [ N_EXCEPTION_STACKS ...
  28. N_EXCEPTION_STACKS_END ] = "#DB[?]"
  29. #endif
  30. };
  31. int x86_is_stack_id(int id, char *name)
  32. {
  33. return x86_stack_ids[id - 1] == name;
  34. }
  35. static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
  36. unsigned *usedp, char **idp)
  37. {
  38. unsigned k;
  39. /*
  40. * Iterate over all exception stacks, and figure out whether
  41. * 'stack' is in one of them:
  42. */
  43. for (k = 0; k < N_EXCEPTION_STACKS; k++) {
  44. unsigned long end = per_cpu(orig_ist, cpu).ist[k];
  45. /*
  46. * Is 'stack' above this exception frame's end?
  47. * If yes then skip to the next frame.
  48. */
  49. if (stack >= end)
  50. continue;
  51. /*
  52. * Is 'stack' above this exception frame's start address?
  53. * If yes then we found the right frame.
  54. */
  55. if (stack >= end - EXCEPTION_STKSZ) {
  56. /*
  57. * Make sure we only iterate through an exception
  58. * stack once. If it comes up for the second time
  59. * then there's something wrong going on - just
  60. * break out and return NULL:
  61. */
  62. if (*usedp & (1U << k))
  63. break;
  64. *usedp |= 1U << k;
  65. *idp = x86_stack_ids[k];
  66. return (unsigned long *)end;
  67. }
  68. /*
  69. * If this is a debug stack, and if it has a larger size than
  70. * the usual exception stacks, then 'stack' might still
  71. * be within the lower portion of the debug stack:
  72. */
  73. #if DEBUG_STKSZ > EXCEPTION_STKSZ
  74. if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
  75. unsigned j = N_EXCEPTION_STACKS - 1;
  76. /*
  77. * Black magic. A large debug stack is composed of
  78. * multiple exception stack entries, which we
  79. * iterate through now. Dont look:
  80. */
  81. do {
  82. ++j;
  83. end -= EXCEPTION_STKSZ;
  84. x86_stack_ids[j][4] = '1' +
  85. (j - N_EXCEPTION_STACKS);
  86. } while (stack < end - EXCEPTION_STKSZ);
  87. if (*usedp & (1U << j))
  88. break;
  89. *usedp |= 1U << j;
  90. *idp = x86_stack_ids[j];
  91. return (unsigned long *)end;
  92. }
  93. #endif
  94. }
  95. return NULL;
  96. }
  97. static inline int
  98. in_irq_stack(unsigned long *stack, unsigned long *irq_stack,
  99. unsigned long *irq_stack_end)
  100. {
  101. return (stack >= irq_stack && stack < irq_stack_end);
  102. }
  103. /*
  104. * We are returning from the irq stack and go to the previous one.
  105. * If the previous stack is also in the irq stack, then bp in the first
  106. * frame of the irq stack points to the previous, interrupted one.
  107. * Otherwise we have another level of indirection: We first save
  108. * the bp of the previous stack, then we switch the stack to the irq one
  109. * and save a new bp that links to the previous one.
  110. * (See save_args())
  111. */
  112. static inline unsigned long
  113. fixup_bp_irq_link(unsigned long bp, unsigned long *stack,
  114. unsigned long *irq_stack, unsigned long *irq_stack_end)
  115. {
  116. #ifdef CONFIG_FRAME_POINTER
  117. struct stack_frame *frame = (struct stack_frame *)bp;
  118. if (!in_irq_stack(stack, irq_stack, irq_stack_end))
  119. return (unsigned long)frame->next_frame;
  120. #endif
  121. return bp;
  122. }
  123. /*
  124. * x86-64 can have up to three kernel stacks:
  125. * process stack
  126. * interrupt stack
  127. * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
  128. */
  129. void dump_trace(struct task_struct *task, struct pt_regs *regs,
  130. unsigned long *stack, unsigned long bp,
  131. const struct stacktrace_ops *ops, void *data)
  132. {
  133. const unsigned cpu = get_cpu();
  134. unsigned long *irq_stack_end =
  135. (unsigned long *)per_cpu(irq_stack_ptr, cpu);
  136. unsigned used = 0;
  137. struct thread_info *tinfo;
  138. int graph = 0;
  139. if (!task)
  140. task = current;
  141. if (!stack) {
  142. unsigned long dummy;
  143. stack = &dummy;
  144. if (task && task != current)
  145. stack = (unsigned long *)task->thread.sp;
  146. }
  147. #ifdef CONFIG_FRAME_POINTER
  148. if (!bp) {
  149. if (task == current) {
  150. /* Grab bp right from our regs */
  151. get_bp(bp);
  152. } else {
  153. /* bp is the last reg pushed by switch_to */
  154. bp = *(unsigned long *) task->thread.sp;
  155. }
  156. }
  157. #endif
  158. /*
  159. * Print function call entries in all stacks, starting at the
  160. * current stack address. If the stacks consist of nested
  161. * exceptions
  162. */
  163. tinfo = task_thread_info(task);
  164. for (;;) {
  165. char *id;
  166. unsigned long *estack_end;
  167. estack_end = in_exception_stack(cpu, (unsigned long)stack,
  168. &used, &id);
  169. if (estack_end) {
  170. if (ops->stack(data, id) < 0)
  171. break;
  172. bp = ops->walk_stack(tinfo, stack, bp, ops,
  173. data, estack_end, &graph);
  174. ops->stack(data, "<EOE>");
  175. /*
  176. * We link to the next stack via the
  177. * second-to-last pointer (index -2 to end) in the
  178. * exception stack:
  179. */
  180. stack = (unsigned long *) estack_end[-2];
  181. continue;
  182. }
  183. if (irq_stack_end) {
  184. unsigned long *irq_stack;
  185. irq_stack = irq_stack_end -
  186. (IRQ_STACK_SIZE - 64) / sizeof(*irq_stack);
  187. if (in_irq_stack(stack, irq_stack, irq_stack_end)) {
  188. if (ops->stack(data, "IRQ") < 0)
  189. break;
  190. bp = print_context_stack(tinfo, stack, bp,
  191. ops, data, irq_stack_end, &graph);
  192. /*
  193. * We link to the next stack (which would be
  194. * the process stack normally) the last
  195. * pointer (index -1 to end) in the IRQ stack:
  196. */
  197. stack = (unsigned long *) (irq_stack_end[-1]);
  198. bp = fixup_bp_irq_link(bp, stack, irq_stack,
  199. irq_stack_end);
  200. irq_stack_end = NULL;
  201. ops->stack(data, "EOI");
  202. continue;
  203. }
  204. }
  205. break;
  206. }
  207. /*
  208. * This handles the process stack:
  209. */
  210. bp = print_context_stack(tinfo, stack, bp, ops, data, NULL, &graph);
  211. put_cpu();
  212. }
  213. EXPORT_SYMBOL(dump_trace);
  214. void
  215. show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
  216. unsigned long *sp, unsigned long bp, char *log_lvl)
  217. {
  218. unsigned long *irq_stack_end;
  219. unsigned long *irq_stack;
  220. unsigned long *stack;
  221. int cpu;
  222. int i;
  223. preempt_disable();
  224. cpu = smp_processor_id();
  225. irq_stack_end = (unsigned long *)(per_cpu(irq_stack_ptr, cpu));
  226. irq_stack = (unsigned long *)(per_cpu(irq_stack_ptr, cpu) - IRQ_STACK_SIZE);
  227. /*
  228. * Debugging aid: "show_stack(NULL, NULL);" prints the
  229. * back trace for this cpu:
  230. */
  231. if (sp == NULL) {
  232. if (task)
  233. sp = (unsigned long *)task->thread.sp;
  234. else
  235. sp = (unsigned long *)&sp;
  236. }
  237. stack = sp;
  238. for (i = 0; i < kstack_depth_to_print; i++) {
  239. if (stack >= irq_stack && stack <= irq_stack_end) {
  240. if (stack == irq_stack_end) {
  241. stack = (unsigned long *) (irq_stack_end[-1]);
  242. printk(" <EOI> ");
  243. }
  244. } else {
  245. if (((long) stack & (THREAD_SIZE-1)) == 0)
  246. break;
  247. }
  248. if (i && ((i % STACKSLOTS_PER_LINE) == 0))
  249. printk("\n%s", log_lvl);
  250. printk(" %016lx", *stack++);
  251. touch_nmi_watchdog();
  252. }
  253. preempt_enable();
  254. printk("\n");
  255. show_trace_log_lvl(task, regs, sp, bp, log_lvl);
  256. }
  257. void show_registers(struct pt_regs *regs)
  258. {
  259. int i;
  260. unsigned long sp;
  261. const int cpu = smp_processor_id();
  262. struct task_struct *cur = current;
  263. sp = regs->sp;
  264. printk("CPU %d ", cpu);
  265. __show_regs(regs, 1);
  266. printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
  267. cur->comm, cur->pid, task_thread_info(cur), cur);
  268. /*
  269. * When in-kernel, we also print out the stack and code at the
  270. * time of the fault..
  271. */
  272. if (!user_mode(regs)) {
  273. unsigned int code_prologue = code_bytes * 43 / 64;
  274. unsigned int code_len = code_bytes;
  275. unsigned char c;
  276. u8 *ip;
  277. printk(KERN_EMERG "Stack:\n");
  278. show_stack_log_lvl(NULL, regs, (unsigned long *)sp,
  279. regs->bp, KERN_EMERG);
  280. printk(KERN_EMERG "Code: ");
  281. ip = (u8 *)regs->ip - code_prologue;
  282. if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
  283. /* try starting at IP */
  284. ip = (u8 *)regs->ip;
  285. code_len = code_len - code_prologue + 1;
  286. }
  287. for (i = 0; i < code_len; i++, ip++) {
  288. if (ip < (u8 *)PAGE_OFFSET ||
  289. probe_kernel_address(ip, c)) {
  290. printk(" Bad RIP value.");
  291. break;
  292. }
  293. if (ip == (u8 *)regs->ip)
  294. printk("<%02x> ", c);
  295. else
  296. printk("%02x ", c);
  297. }
  298. }
  299. printk("\n");
  300. }
  301. int is_valid_bugaddr(unsigned long ip)
  302. {
  303. unsigned short ud2;
  304. if (__copy_from_user(&ud2, (const void __user *) ip, sizeof(ud2)))
  305. return 0;
  306. return ud2 == 0x0b0f;
  307. }