sched.c 209 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <asm/tlb.h>
  71. #include <asm/irq_regs.h>
  72. /*
  73. * Scheduler clock - returns current time in nanosec units.
  74. * This is default implementation.
  75. * Architectures and sub-architectures can override this.
  76. */
  77. unsigned long long __attribute__((weak)) sched_clock(void)
  78. {
  79. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  80. }
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. #ifdef CONFIG_SMP
  115. /*
  116. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  117. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  118. */
  119. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  120. {
  121. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  122. }
  123. /*
  124. * Each time a sched group cpu_power is changed,
  125. * we must compute its reciprocal value
  126. */
  127. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  128. {
  129. sg->__cpu_power += val;
  130. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  131. }
  132. #endif
  133. static inline int rt_policy(int policy)
  134. {
  135. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  136. return 1;
  137. return 0;
  138. }
  139. static inline int task_has_rt_policy(struct task_struct *p)
  140. {
  141. return rt_policy(p->policy);
  142. }
  143. /*
  144. * This is the priority-queue data structure of the RT scheduling class:
  145. */
  146. struct rt_prio_array {
  147. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  148. struct list_head queue[MAX_RT_PRIO];
  149. };
  150. struct rt_bandwidth {
  151. /* nests inside the rq lock: */
  152. spinlock_t rt_runtime_lock;
  153. ktime_t rt_period;
  154. u64 rt_runtime;
  155. struct hrtimer rt_period_timer;
  156. };
  157. static struct rt_bandwidth def_rt_bandwidth;
  158. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  159. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  160. {
  161. struct rt_bandwidth *rt_b =
  162. container_of(timer, struct rt_bandwidth, rt_period_timer);
  163. ktime_t now;
  164. int overrun;
  165. int idle = 0;
  166. for (;;) {
  167. now = hrtimer_cb_get_time(timer);
  168. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  169. if (!overrun)
  170. break;
  171. idle = do_sched_rt_period_timer(rt_b, overrun);
  172. }
  173. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  174. }
  175. static
  176. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  177. {
  178. rt_b->rt_period = ns_to_ktime(period);
  179. rt_b->rt_runtime = runtime;
  180. spin_lock_init(&rt_b->rt_runtime_lock);
  181. hrtimer_init(&rt_b->rt_period_timer,
  182. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  183. rt_b->rt_period_timer.function = sched_rt_period_timer;
  184. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  185. }
  186. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  187. {
  188. ktime_t now;
  189. if (rt_b->rt_runtime == RUNTIME_INF)
  190. return;
  191. if (hrtimer_active(&rt_b->rt_period_timer))
  192. return;
  193. spin_lock(&rt_b->rt_runtime_lock);
  194. for (;;) {
  195. if (hrtimer_active(&rt_b->rt_period_timer))
  196. break;
  197. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  198. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  199. hrtimer_start(&rt_b->rt_period_timer,
  200. rt_b->rt_period_timer.expires,
  201. HRTIMER_MODE_ABS);
  202. }
  203. spin_unlock(&rt_b->rt_runtime_lock);
  204. }
  205. #ifdef CONFIG_RT_GROUP_SCHED
  206. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  207. {
  208. hrtimer_cancel(&rt_b->rt_period_timer);
  209. }
  210. #endif
  211. #ifdef CONFIG_GROUP_SCHED
  212. #include <linux/cgroup.h>
  213. struct cfs_rq;
  214. static LIST_HEAD(task_groups);
  215. /* task group related information */
  216. struct task_group {
  217. #ifdef CONFIG_CGROUP_SCHED
  218. struct cgroup_subsys_state css;
  219. #endif
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. /* schedulable entities of this group on each cpu */
  222. struct sched_entity **se;
  223. /* runqueue "owned" by this group on each cpu */
  224. struct cfs_rq **cfs_rq;
  225. unsigned long shares;
  226. #endif
  227. #ifdef CONFIG_RT_GROUP_SCHED
  228. struct sched_rt_entity **rt_se;
  229. struct rt_rq **rt_rq;
  230. struct rt_bandwidth rt_bandwidth;
  231. #endif
  232. struct rcu_head rcu;
  233. struct list_head list;
  234. };
  235. #ifdef CONFIG_USER_SCHED
  236. #ifdef CONFIG_FAIR_GROUP_SCHED
  237. /* Default task group's sched entity on each cpu */
  238. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  239. /* Default task group's cfs_rq on each cpu */
  240. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  241. #endif
  242. #ifdef CONFIG_RT_GROUP_SCHED
  243. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  244. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  245. #endif
  246. #endif
  247. /* task_group_lock serializes add/remove of task groups and also changes to
  248. * a task group's cpu shares.
  249. */
  250. static DEFINE_SPINLOCK(task_group_lock);
  251. /* doms_cur_mutex serializes access to doms_cur[] array */
  252. static DEFINE_MUTEX(doms_cur_mutex);
  253. #ifdef CONFIG_FAIR_GROUP_SCHED
  254. #ifdef CONFIG_USER_SCHED
  255. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  256. #else
  257. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  258. #endif
  259. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  260. #endif
  261. /* Default task group.
  262. * Every task in system belong to this group at bootup.
  263. */
  264. struct task_group init_task_group;
  265. /* return group to which a task belongs */
  266. static inline struct task_group *task_group(struct task_struct *p)
  267. {
  268. struct task_group *tg;
  269. #ifdef CONFIG_USER_SCHED
  270. tg = p->user->tg;
  271. #elif defined(CONFIG_CGROUP_SCHED)
  272. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  273. struct task_group, css);
  274. #else
  275. tg = &init_task_group;
  276. #endif
  277. return tg;
  278. }
  279. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  280. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  281. {
  282. #ifdef CONFIG_FAIR_GROUP_SCHED
  283. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  284. p->se.parent = task_group(p)->se[cpu];
  285. #endif
  286. #ifdef CONFIG_RT_GROUP_SCHED
  287. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  288. p->rt.parent = task_group(p)->rt_se[cpu];
  289. #endif
  290. }
  291. static inline void lock_doms_cur(void)
  292. {
  293. mutex_lock(&doms_cur_mutex);
  294. }
  295. static inline void unlock_doms_cur(void)
  296. {
  297. mutex_unlock(&doms_cur_mutex);
  298. }
  299. #else
  300. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  301. static inline void lock_doms_cur(void) { }
  302. static inline void unlock_doms_cur(void) { }
  303. #endif /* CONFIG_GROUP_SCHED */
  304. /* CFS-related fields in a runqueue */
  305. struct cfs_rq {
  306. struct load_weight load;
  307. unsigned long nr_running;
  308. u64 exec_clock;
  309. u64 min_vruntime;
  310. struct rb_root tasks_timeline;
  311. struct rb_node *rb_leftmost;
  312. struct rb_node *rb_load_balance_curr;
  313. /* 'curr' points to currently running entity on this cfs_rq.
  314. * It is set to NULL otherwise (i.e when none are currently running).
  315. */
  316. struct sched_entity *curr, *next;
  317. unsigned long nr_spread_over;
  318. #ifdef CONFIG_FAIR_GROUP_SCHED
  319. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  320. /*
  321. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  322. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  323. * (like users, containers etc.)
  324. *
  325. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  326. * list is used during load balance.
  327. */
  328. struct list_head leaf_cfs_rq_list;
  329. struct task_group *tg; /* group that "owns" this runqueue */
  330. #endif
  331. };
  332. /* Real-Time classes' related field in a runqueue: */
  333. struct rt_rq {
  334. struct rt_prio_array active;
  335. unsigned long rt_nr_running;
  336. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  337. int highest_prio; /* highest queued rt task prio */
  338. #endif
  339. #ifdef CONFIG_SMP
  340. unsigned long rt_nr_migratory;
  341. int overloaded;
  342. #endif
  343. int rt_throttled;
  344. u64 rt_time;
  345. u64 rt_runtime;
  346. /* Nests inside the rq lock: */
  347. spinlock_t rt_runtime_lock;
  348. #ifdef CONFIG_RT_GROUP_SCHED
  349. unsigned long rt_nr_boosted;
  350. struct rq *rq;
  351. struct list_head leaf_rt_rq_list;
  352. struct task_group *tg;
  353. struct sched_rt_entity *rt_se;
  354. #endif
  355. };
  356. #ifdef CONFIG_SMP
  357. /*
  358. * We add the notion of a root-domain which will be used to define per-domain
  359. * variables. Each exclusive cpuset essentially defines an island domain by
  360. * fully partitioning the member cpus from any other cpuset. Whenever a new
  361. * exclusive cpuset is created, we also create and attach a new root-domain
  362. * object.
  363. *
  364. */
  365. struct root_domain {
  366. atomic_t refcount;
  367. cpumask_t span;
  368. cpumask_t online;
  369. /*
  370. * The "RT overload" flag: it gets set if a CPU has more than
  371. * one runnable RT task.
  372. */
  373. cpumask_t rto_mask;
  374. atomic_t rto_count;
  375. };
  376. /*
  377. * By default the system creates a single root-domain with all cpus as
  378. * members (mimicking the global state we have today).
  379. */
  380. static struct root_domain def_root_domain;
  381. #endif
  382. /*
  383. * This is the main, per-CPU runqueue data structure.
  384. *
  385. * Locking rule: those places that want to lock multiple runqueues
  386. * (such as the load balancing or the thread migration code), lock
  387. * acquire operations must be ordered by ascending &runqueue.
  388. */
  389. struct rq {
  390. /* runqueue lock: */
  391. spinlock_t lock;
  392. /*
  393. * nr_running and cpu_load should be in the same cacheline because
  394. * remote CPUs use both these fields when doing load calculation.
  395. */
  396. unsigned long nr_running;
  397. #define CPU_LOAD_IDX_MAX 5
  398. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  399. unsigned char idle_at_tick;
  400. #ifdef CONFIG_NO_HZ
  401. unsigned long last_tick_seen;
  402. unsigned char in_nohz_recently;
  403. #endif
  404. /* capture load from *all* tasks on this cpu: */
  405. struct load_weight load;
  406. unsigned long nr_load_updates;
  407. u64 nr_switches;
  408. struct cfs_rq cfs;
  409. struct rt_rq rt;
  410. #ifdef CONFIG_FAIR_GROUP_SCHED
  411. /* list of leaf cfs_rq on this cpu: */
  412. struct list_head leaf_cfs_rq_list;
  413. #endif
  414. #ifdef CONFIG_RT_GROUP_SCHED
  415. struct list_head leaf_rt_rq_list;
  416. #endif
  417. /*
  418. * This is part of a global counter where only the total sum
  419. * over all CPUs matters. A task can increase this counter on
  420. * one CPU and if it got migrated afterwards it may decrease
  421. * it on another CPU. Always updated under the runqueue lock:
  422. */
  423. unsigned long nr_uninterruptible;
  424. struct task_struct *curr, *idle;
  425. unsigned long next_balance;
  426. struct mm_struct *prev_mm;
  427. u64 clock, prev_clock_raw;
  428. s64 clock_max_delta;
  429. unsigned int clock_warps, clock_overflows, clock_underflows;
  430. u64 idle_clock;
  431. unsigned int clock_deep_idle_events;
  432. u64 tick_timestamp;
  433. atomic_t nr_iowait;
  434. #ifdef CONFIG_SMP
  435. struct root_domain *rd;
  436. struct sched_domain *sd;
  437. /* For active balancing */
  438. int active_balance;
  439. int push_cpu;
  440. /* cpu of this runqueue: */
  441. int cpu;
  442. struct task_struct *migration_thread;
  443. struct list_head migration_queue;
  444. #endif
  445. #ifdef CONFIG_SCHED_HRTICK
  446. unsigned long hrtick_flags;
  447. ktime_t hrtick_expire;
  448. struct hrtimer hrtick_timer;
  449. #endif
  450. #ifdef CONFIG_SCHEDSTATS
  451. /* latency stats */
  452. struct sched_info rq_sched_info;
  453. /* sys_sched_yield() stats */
  454. unsigned int yld_exp_empty;
  455. unsigned int yld_act_empty;
  456. unsigned int yld_both_empty;
  457. unsigned int yld_count;
  458. /* schedule() stats */
  459. unsigned int sched_switch;
  460. unsigned int sched_count;
  461. unsigned int sched_goidle;
  462. /* try_to_wake_up() stats */
  463. unsigned int ttwu_count;
  464. unsigned int ttwu_local;
  465. /* BKL stats */
  466. unsigned int bkl_count;
  467. #endif
  468. struct lock_class_key rq_lock_key;
  469. };
  470. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  471. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  472. {
  473. rq->curr->sched_class->check_preempt_curr(rq, p);
  474. }
  475. static inline int cpu_of(struct rq *rq)
  476. {
  477. #ifdef CONFIG_SMP
  478. return rq->cpu;
  479. #else
  480. return 0;
  481. #endif
  482. }
  483. #ifdef CONFIG_NO_HZ
  484. static inline bool nohz_on(int cpu)
  485. {
  486. return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
  487. }
  488. static inline u64 max_skipped_ticks(struct rq *rq)
  489. {
  490. return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
  491. }
  492. static inline void update_last_tick_seen(struct rq *rq)
  493. {
  494. rq->last_tick_seen = jiffies;
  495. }
  496. #else
  497. static inline u64 max_skipped_ticks(struct rq *rq)
  498. {
  499. return 1;
  500. }
  501. static inline void update_last_tick_seen(struct rq *rq)
  502. {
  503. }
  504. #endif
  505. /*
  506. * Update the per-runqueue clock, as finegrained as the platform can give
  507. * us, but without assuming monotonicity, etc.:
  508. */
  509. static void __update_rq_clock(struct rq *rq)
  510. {
  511. u64 prev_raw = rq->prev_clock_raw;
  512. u64 now = sched_clock();
  513. s64 delta = now - prev_raw;
  514. u64 clock = rq->clock;
  515. #ifdef CONFIG_SCHED_DEBUG
  516. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  517. #endif
  518. /*
  519. * Protect against sched_clock() occasionally going backwards:
  520. */
  521. if (unlikely(delta < 0)) {
  522. clock++;
  523. rq->clock_warps++;
  524. } else {
  525. /*
  526. * Catch too large forward jumps too:
  527. */
  528. u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
  529. u64 max_time = rq->tick_timestamp + max_jump;
  530. if (unlikely(clock + delta > max_time)) {
  531. if (clock < max_time)
  532. clock = max_time;
  533. else
  534. clock++;
  535. rq->clock_overflows++;
  536. } else {
  537. if (unlikely(delta > rq->clock_max_delta))
  538. rq->clock_max_delta = delta;
  539. clock += delta;
  540. }
  541. }
  542. rq->prev_clock_raw = now;
  543. rq->clock = clock;
  544. }
  545. static void update_rq_clock(struct rq *rq)
  546. {
  547. if (likely(smp_processor_id() == cpu_of(rq)))
  548. __update_rq_clock(rq);
  549. }
  550. /*
  551. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  552. * See detach_destroy_domains: synchronize_sched for details.
  553. *
  554. * The domain tree of any CPU may only be accessed from within
  555. * preempt-disabled sections.
  556. */
  557. #define for_each_domain(cpu, __sd) \
  558. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  559. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  560. #define this_rq() (&__get_cpu_var(runqueues))
  561. #define task_rq(p) cpu_rq(task_cpu(p))
  562. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  563. /*
  564. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  565. */
  566. #ifdef CONFIG_SCHED_DEBUG
  567. # define const_debug __read_mostly
  568. #else
  569. # define const_debug static const
  570. #endif
  571. /*
  572. * Debugging: various feature bits
  573. */
  574. enum {
  575. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  576. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  577. SCHED_FEAT_START_DEBIT = 4,
  578. SCHED_FEAT_AFFINE_WAKEUPS = 8,
  579. SCHED_FEAT_CACHE_HOT_BUDDY = 16,
  580. SCHED_FEAT_SYNC_WAKEUPS = 32,
  581. SCHED_FEAT_HRTICK = 64,
  582. SCHED_FEAT_DOUBLE_TICK = 128,
  583. SCHED_FEAT_NORMALIZED_SLEEPER = 256,
  584. };
  585. const_debug unsigned int sysctl_sched_features =
  586. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  587. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  588. SCHED_FEAT_START_DEBIT * 1 |
  589. SCHED_FEAT_AFFINE_WAKEUPS * 1 |
  590. SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
  591. SCHED_FEAT_SYNC_WAKEUPS * 1 |
  592. SCHED_FEAT_HRTICK * 1 |
  593. SCHED_FEAT_DOUBLE_TICK * 0 |
  594. SCHED_FEAT_NORMALIZED_SLEEPER * 1;
  595. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  596. /*
  597. * Number of tasks to iterate in a single balance run.
  598. * Limited because this is done with IRQs disabled.
  599. */
  600. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  601. /*
  602. * period over which we measure -rt task cpu usage in us.
  603. * default: 1s
  604. */
  605. unsigned int sysctl_sched_rt_period = 1000000;
  606. static __read_mostly int scheduler_running;
  607. /*
  608. * part of the period that we allow rt tasks to run in us.
  609. * default: 0.95s
  610. */
  611. int sysctl_sched_rt_runtime = 950000;
  612. static inline u64 global_rt_period(void)
  613. {
  614. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  615. }
  616. static inline u64 global_rt_runtime(void)
  617. {
  618. if (sysctl_sched_rt_period < 0)
  619. return RUNTIME_INF;
  620. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  621. }
  622. static const unsigned long long time_sync_thresh = 100000;
  623. static DEFINE_PER_CPU(unsigned long long, time_offset);
  624. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  625. /*
  626. * Global lock which we take every now and then to synchronize
  627. * the CPUs time. This method is not warp-safe, but it's good
  628. * enough to synchronize slowly diverging time sources and thus
  629. * it's good enough for tracing:
  630. */
  631. static DEFINE_SPINLOCK(time_sync_lock);
  632. static unsigned long long prev_global_time;
  633. static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
  634. {
  635. unsigned long flags;
  636. spin_lock_irqsave(&time_sync_lock, flags);
  637. if (time < prev_global_time) {
  638. per_cpu(time_offset, cpu) += prev_global_time - time;
  639. time = prev_global_time;
  640. } else {
  641. prev_global_time = time;
  642. }
  643. spin_unlock_irqrestore(&time_sync_lock, flags);
  644. return time;
  645. }
  646. static unsigned long long __cpu_clock(int cpu)
  647. {
  648. unsigned long long now;
  649. unsigned long flags;
  650. struct rq *rq;
  651. /*
  652. * Only call sched_clock() if the scheduler has already been
  653. * initialized (some code might call cpu_clock() very early):
  654. */
  655. if (unlikely(!scheduler_running))
  656. return 0;
  657. local_irq_save(flags);
  658. rq = cpu_rq(cpu);
  659. update_rq_clock(rq);
  660. now = rq->clock;
  661. local_irq_restore(flags);
  662. return now;
  663. }
  664. /*
  665. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  666. * clock constructed from sched_clock():
  667. */
  668. unsigned long long cpu_clock(int cpu)
  669. {
  670. unsigned long long prev_cpu_time, time, delta_time;
  671. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  672. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  673. delta_time = time-prev_cpu_time;
  674. if (unlikely(delta_time > time_sync_thresh))
  675. time = __sync_cpu_clock(time, cpu);
  676. return time;
  677. }
  678. EXPORT_SYMBOL_GPL(cpu_clock);
  679. #ifndef prepare_arch_switch
  680. # define prepare_arch_switch(next) do { } while (0)
  681. #endif
  682. #ifndef finish_arch_switch
  683. # define finish_arch_switch(prev) do { } while (0)
  684. #endif
  685. static inline int task_current(struct rq *rq, struct task_struct *p)
  686. {
  687. return rq->curr == p;
  688. }
  689. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  690. static inline int task_running(struct rq *rq, struct task_struct *p)
  691. {
  692. return task_current(rq, p);
  693. }
  694. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  695. {
  696. }
  697. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  698. {
  699. #ifdef CONFIG_DEBUG_SPINLOCK
  700. /* this is a valid case when another task releases the spinlock */
  701. rq->lock.owner = current;
  702. #endif
  703. /*
  704. * If we are tracking spinlock dependencies then we have to
  705. * fix up the runqueue lock - which gets 'carried over' from
  706. * prev into current:
  707. */
  708. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  709. spin_unlock_irq(&rq->lock);
  710. }
  711. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  712. static inline int task_running(struct rq *rq, struct task_struct *p)
  713. {
  714. #ifdef CONFIG_SMP
  715. return p->oncpu;
  716. #else
  717. return task_current(rq, p);
  718. #endif
  719. }
  720. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  721. {
  722. #ifdef CONFIG_SMP
  723. /*
  724. * We can optimise this out completely for !SMP, because the
  725. * SMP rebalancing from interrupt is the only thing that cares
  726. * here.
  727. */
  728. next->oncpu = 1;
  729. #endif
  730. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  731. spin_unlock_irq(&rq->lock);
  732. #else
  733. spin_unlock(&rq->lock);
  734. #endif
  735. }
  736. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  737. {
  738. #ifdef CONFIG_SMP
  739. /*
  740. * After ->oncpu is cleared, the task can be moved to a different CPU.
  741. * We must ensure this doesn't happen until the switch is completely
  742. * finished.
  743. */
  744. smp_wmb();
  745. prev->oncpu = 0;
  746. #endif
  747. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  748. local_irq_enable();
  749. #endif
  750. }
  751. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  752. /*
  753. * __task_rq_lock - lock the runqueue a given task resides on.
  754. * Must be called interrupts disabled.
  755. */
  756. static inline struct rq *__task_rq_lock(struct task_struct *p)
  757. __acquires(rq->lock)
  758. {
  759. for (;;) {
  760. struct rq *rq = task_rq(p);
  761. spin_lock(&rq->lock);
  762. if (likely(rq == task_rq(p)))
  763. return rq;
  764. spin_unlock(&rq->lock);
  765. }
  766. }
  767. /*
  768. * task_rq_lock - lock the runqueue a given task resides on and disable
  769. * interrupts. Note the ordering: we can safely lookup the task_rq without
  770. * explicitly disabling preemption.
  771. */
  772. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  773. __acquires(rq->lock)
  774. {
  775. struct rq *rq;
  776. for (;;) {
  777. local_irq_save(*flags);
  778. rq = task_rq(p);
  779. spin_lock(&rq->lock);
  780. if (likely(rq == task_rq(p)))
  781. return rq;
  782. spin_unlock_irqrestore(&rq->lock, *flags);
  783. }
  784. }
  785. static void __task_rq_unlock(struct rq *rq)
  786. __releases(rq->lock)
  787. {
  788. spin_unlock(&rq->lock);
  789. }
  790. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  791. __releases(rq->lock)
  792. {
  793. spin_unlock_irqrestore(&rq->lock, *flags);
  794. }
  795. /*
  796. * this_rq_lock - lock this runqueue and disable interrupts.
  797. */
  798. static struct rq *this_rq_lock(void)
  799. __acquires(rq->lock)
  800. {
  801. struct rq *rq;
  802. local_irq_disable();
  803. rq = this_rq();
  804. spin_lock(&rq->lock);
  805. return rq;
  806. }
  807. /*
  808. * We are going deep-idle (irqs are disabled):
  809. */
  810. void sched_clock_idle_sleep_event(void)
  811. {
  812. struct rq *rq = cpu_rq(smp_processor_id());
  813. spin_lock(&rq->lock);
  814. __update_rq_clock(rq);
  815. spin_unlock(&rq->lock);
  816. rq->clock_deep_idle_events++;
  817. }
  818. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  819. /*
  820. * We just idled delta nanoseconds (called with irqs disabled):
  821. */
  822. void sched_clock_idle_wakeup_event(u64 delta_ns)
  823. {
  824. struct rq *rq = cpu_rq(smp_processor_id());
  825. u64 now = sched_clock();
  826. rq->idle_clock += delta_ns;
  827. /*
  828. * Override the previous timestamp and ignore all
  829. * sched_clock() deltas that occured while we idled,
  830. * and use the PM-provided delta_ns to advance the
  831. * rq clock:
  832. */
  833. spin_lock(&rq->lock);
  834. rq->prev_clock_raw = now;
  835. rq->clock += delta_ns;
  836. spin_unlock(&rq->lock);
  837. touch_softlockup_watchdog();
  838. }
  839. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  840. static void __resched_task(struct task_struct *p, int tif_bit);
  841. static inline void resched_task(struct task_struct *p)
  842. {
  843. __resched_task(p, TIF_NEED_RESCHED);
  844. }
  845. #ifdef CONFIG_SCHED_HRTICK
  846. /*
  847. * Use HR-timers to deliver accurate preemption points.
  848. *
  849. * Its all a bit involved since we cannot program an hrt while holding the
  850. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  851. * reschedule event.
  852. *
  853. * When we get rescheduled we reprogram the hrtick_timer outside of the
  854. * rq->lock.
  855. */
  856. static inline void resched_hrt(struct task_struct *p)
  857. {
  858. __resched_task(p, TIF_HRTICK_RESCHED);
  859. }
  860. static inline void resched_rq(struct rq *rq)
  861. {
  862. unsigned long flags;
  863. spin_lock_irqsave(&rq->lock, flags);
  864. resched_task(rq->curr);
  865. spin_unlock_irqrestore(&rq->lock, flags);
  866. }
  867. enum {
  868. HRTICK_SET, /* re-programm hrtick_timer */
  869. HRTICK_RESET, /* not a new slice */
  870. };
  871. /*
  872. * Use hrtick when:
  873. * - enabled by features
  874. * - hrtimer is actually high res
  875. */
  876. static inline int hrtick_enabled(struct rq *rq)
  877. {
  878. if (!sched_feat(HRTICK))
  879. return 0;
  880. return hrtimer_is_hres_active(&rq->hrtick_timer);
  881. }
  882. /*
  883. * Called to set the hrtick timer state.
  884. *
  885. * called with rq->lock held and irqs disabled
  886. */
  887. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  888. {
  889. assert_spin_locked(&rq->lock);
  890. /*
  891. * preempt at: now + delay
  892. */
  893. rq->hrtick_expire =
  894. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  895. /*
  896. * indicate we need to program the timer
  897. */
  898. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  899. if (reset)
  900. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  901. /*
  902. * New slices are called from the schedule path and don't need a
  903. * forced reschedule.
  904. */
  905. if (reset)
  906. resched_hrt(rq->curr);
  907. }
  908. static void hrtick_clear(struct rq *rq)
  909. {
  910. if (hrtimer_active(&rq->hrtick_timer))
  911. hrtimer_cancel(&rq->hrtick_timer);
  912. }
  913. /*
  914. * Update the timer from the possible pending state.
  915. */
  916. static void hrtick_set(struct rq *rq)
  917. {
  918. ktime_t time;
  919. int set, reset;
  920. unsigned long flags;
  921. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  922. spin_lock_irqsave(&rq->lock, flags);
  923. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  924. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  925. time = rq->hrtick_expire;
  926. clear_thread_flag(TIF_HRTICK_RESCHED);
  927. spin_unlock_irqrestore(&rq->lock, flags);
  928. if (set) {
  929. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  930. if (reset && !hrtimer_active(&rq->hrtick_timer))
  931. resched_rq(rq);
  932. } else
  933. hrtick_clear(rq);
  934. }
  935. /*
  936. * High-resolution timer tick.
  937. * Runs from hardirq context with interrupts disabled.
  938. */
  939. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  940. {
  941. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  942. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  943. spin_lock(&rq->lock);
  944. __update_rq_clock(rq);
  945. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  946. spin_unlock(&rq->lock);
  947. return HRTIMER_NORESTART;
  948. }
  949. static inline void init_rq_hrtick(struct rq *rq)
  950. {
  951. rq->hrtick_flags = 0;
  952. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  953. rq->hrtick_timer.function = hrtick;
  954. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  955. }
  956. void hrtick_resched(void)
  957. {
  958. struct rq *rq;
  959. unsigned long flags;
  960. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  961. return;
  962. local_irq_save(flags);
  963. rq = cpu_rq(smp_processor_id());
  964. hrtick_set(rq);
  965. local_irq_restore(flags);
  966. }
  967. #else
  968. static inline void hrtick_clear(struct rq *rq)
  969. {
  970. }
  971. static inline void hrtick_set(struct rq *rq)
  972. {
  973. }
  974. static inline void init_rq_hrtick(struct rq *rq)
  975. {
  976. }
  977. void hrtick_resched(void)
  978. {
  979. }
  980. #endif
  981. /*
  982. * resched_task - mark a task 'to be rescheduled now'.
  983. *
  984. * On UP this means the setting of the need_resched flag, on SMP it
  985. * might also involve a cross-CPU call to trigger the scheduler on
  986. * the target CPU.
  987. */
  988. #ifdef CONFIG_SMP
  989. #ifndef tsk_is_polling
  990. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  991. #endif
  992. static void __resched_task(struct task_struct *p, int tif_bit)
  993. {
  994. int cpu;
  995. assert_spin_locked(&task_rq(p)->lock);
  996. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  997. return;
  998. set_tsk_thread_flag(p, tif_bit);
  999. cpu = task_cpu(p);
  1000. if (cpu == smp_processor_id())
  1001. return;
  1002. /* NEED_RESCHED must be visible before we test polling */
  1003. smp_mb();
  1004. if (!tsk_is_polling(p))
  1005. smp_send_reschedule(cpu);
  1006. }
  1007. static void resched_cpu(int cpu)
  1008. {
  1009. struct rq *rq = cpu_rq(cpu);
  1010. unsigned long flags;
  1011. if (!spin_trylock_irqsave(&rq->lock, flags))
  1012. return;
  1013. resched_task(cpu_curr(cpu));
  1014. spin_unlock_irqrestore(&rq->lock, flags);
  1015. }
  1016. #ifdef CONFIG_NO_HZ
  1017. /*
  1018. * When add_timer_on() enqueues a timer into the timer wheel of an
  1019. * idle CPU then this timer might expire before the next timer event
  1020. * which is scheduled to wake up that CPU. In case of a completely
  1021. * idle system the next event might even be infinite time into the
  1022. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1023. * leaves the inner idle loop so the newly added timer is taken into
  1024. * account when the CPU goes back to idle and evaluates the timer
  1025. * wheel for the next timer event.
  1026. */
  1027. void wake_up_idle_cpu(int cpu)
  1028. {
  1029. struct rq *rq = cpu_rq(cpu);
  1030. if (cpu == smp_processor_id())
  1031. return;
  1032. /*
  1033. * This is safe, as this function is called with the timer
  1034. * wheel base lock of (cpu) held. When the CPU is on the way
  1035. * to idle and has not yet set rq->curr to idle then it will
  1036. * be serialized on the timer wheel base lock and take the new
  1037. * timer into account automatically.
  1038. */
  1039. if (rq->curr != rq->idle)
  1040. return;
  1041. /*
  1042. * We can set TIF_RESCHED on the idle task of the other CPU
  1043. * lockless. The worst case is that the other CPU runs the
  1044. * idle task through an additional NOOP schedule()
  1045. */
  1046. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1047. /* NEED_RESCHED must be visible before we test polling */
  1048. smp_mb();
  1049. if (!tsk_is_polling(rq->idle))
  1050. smp_send_reschedule(cpu);
  1051. }
  1052. #endif
  1053. #else
  1054. static void __resched_task(struct task_struct *p, int tif_bit)
  1055. {
  1056. assert_spin_locked(&task_rq(p)->lock);
  1057. set_tsk_thread_flag(p, tif_bit);
  1058. }
  1059. #endif
  1060. #if BITS_PER_LONG == 32
  1061. # define WMULT_CONST (~0UL)
  1062. #else
  1063. # define WMULT_CONST (1UL << 32)
  1064. #endif
  1065. #define WMULT_SHIFT 32
  1066. /*
  1067. * Shift right and round:
  1068. */
  1069. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1070. static unsigned long
  1071. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1072. struct load_weight *lw)
  1073. {
  1074. u64 tmp;
  1075. if (unlikely(!lw->inv_weight))
  1076. lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
  1077. tmp = (u64)delta_exec * weight;
  1078. /*
  1079. * Check whether we'd overflow the 64-bit multiplication:
  1080. */
  1081. if (unlikely(tmp > WMULT_CONST))
  1082. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1083. WMULT_SHIFT/2);
  1084. else
  1085. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1086. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1087. }
  1088. static inline unsigned long
  1089. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1090. {
  1091. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1092. }
  1093. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1094. {
  1095. lw->weight += inc;
  1096. lw->inv_weight = 0;
  1097. }
  1098. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1099. {
  1100. lw->weight -= dec;
  1101. lw->inv_weight = 0;
  1102. }
  1103. /*
  1104. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1105. * of tasks with abnormal "nice" values across CPUs the contribution that
  1106. * each task makes to its run queue's load is weighted according to its
  1107. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1108. * scaled version of the new time slice allocation that they receive on time
  1109. * slice expiry etc.
  1110. */
  1111. #define WEIGHT_IDLEPRIO 2
  1112. #define WMULT_IDLEPRIO (1 << 31)
  1113. /*
  1114. * Nice levels are multiplicative, with a gentle 10% change for every
  1115. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1116. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1117. * that remained on nice 0.
  1118. *
  1119. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1120. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1121. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1122. * If a task goes up by ~10% and another task goes down by ~10% then
  1123. * the relative distance between them is ~25%.)
  1124. */
  1125. static const int prio_to_weight[40] = {
  1126. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1127. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1128. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1129. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1130. /* 0 */ 1024, 820, 655, 526, 423,
  1131. /* 5 */ 335, 272, 215, 172, 137,
  1132. /* 10 */ 110, 87, 70, 56, 45,
  1133. /* 15 */ 36, 29, 23, 18, 15,
  1134. };
  1135. /*
  1136. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1137. *
  1138. * In cases where the weight does not change often, we can use the
  1139. * precalculated inverse to speed up arithmetics by turning divisions
  1140. * into multiplications:
  1141. */
  1142. static const u32 prio_to_wmult[40] = {
  1143. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1144. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1145. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1146. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1147. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1148. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1149. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1150. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1151. };
  1152. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1153. /*
  1154. * runqueue iterator, to support SMP load-balancing between different
  1155. * scheduling classes, without having to expose their internal data
  1156. * structures to the load-balancing proper:
  1157. */
  1158. struct rq_iterator {
  1159. void *arg;
  1160. struct task_struct *(*start)(void *);
  1161. struct task_struct *(*next)(void *);
  1162. };
  1163. #ifdef CONFIG_SMP
  1164. static unsigned long
  1165. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1166. unsigned long max_load_move, struct sched_domain *sd,
  1167. enum cpu_idle_type idle, int *all_pinned,
  1168. int *this_best_prio, struct rq_iterator *iterator);
  1169. static int
  1170. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1171. struct sched_domain *sd, enum cpu_idle_type idle,
  1172. struct rq_iterator *iterator);
  1173. #endif
  1174. #ifdef CONFIG_CGROUP_CPUACCT
  1175. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1176. #else
  1177. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1178. #endif
  1179. #ifdef CONFIG_SMP
  1180. static unsigned long source_load(int cpu, int type);
  1181. static unsigned long target_load(int cpu, int type);
  1182. static unsigned long cpu_avg_load_per_task(int cpu);
  1183. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1184. #endif /* CONFIG_SMP */
  1185. #include "sched_stats.h"
  1186. #include "sched_idletask.c"
  1187. #include "sched_fair.c"
  1188. #include "sched_rt.c"
  1189. #ifdef CONFIG_SCHED_DEBUG
  1190. # include "sched_debug.c"
  1191. #endif
  1192. #define sched_class_highest (&rt_sched_class)
  1193. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1194. {
  1195. update_load_add(&rq->load, p->se.load.weight);
  1196. }
  1197. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1198. {
  1199. update_load_sub(&rq->load, p->se.load.weight);
  1200. }
  1201. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1202. {
  1203. rq->nr_running++;
  1204. inc_load(rq, p);
  1205. }
  1206. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1207. {
  1208. rq->nr_running--;
  1209. dec_load(rq, p);
  1210. }
  1211. static void set_load_weight(struct task_struct *p)
  1212. {
  1213. if (task_has_rt_policy(p)) {
  1214. p->se.load.weight = prio_to_weight[0] * 2;
  1215. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1216. return;
  1217. }
  1218. /*
  1219. * SCHED_IDLE tasks get minimal weight:
  1220. */
  1221. if (p->policy == SCHED_IDLE) {
  1222. p->se.load.weight = WEIGHT_IDLEPRIO;
  1223. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1224. return;
  1225. }
  1226. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1227. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1228. }
  1229. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1230. {
  1231. sched_info_queued(p);
  1232. p->sched_class->enqueue_task(rq, p, wakeup);
  1233. p->se.on_rq = 1;
  1234. }
  1235. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1236. {
  1237. p->sched_class->dequeue_task(rq, p, sleep);
  1238. p->se.on_rq = 0;
  1239. }
  1240. /*
  1241. * __normal_prio - return the priority that is based on the static prio
  1242. */
  1243. static inline int __normal_prio(struct task_struct *p)
  1244. {
  1245. return p->static_prio;
  1246. }
  1247. /*
  1248. * Calculate the expected normal priority: i.e. priority
  1249. * without taking RT-inheritance into account. Might be
  1250. * boosted by interactivity modifiers. Changes upon fork,
  1251. * setprio syscalls, and whenever the interactivity
  1252. * estimator recalculates.
  1253. */
  1254. static inline int normal_prio(struct task_struct *p)
  1255. {
  1256. int prio;
  1257. if (task_has_rt_policy(p))
  1258. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1259. else
  1260. prio = __normal_prio(p);
  1261. return prio;
  1262. }
  1263. /*
  1264. * Calculate the current priority, i.e. the priority
  1265. * taken into account by the scheduler. This value might
  1266. * be boosted by RT tasks, or might be boosted by
  1267. * interactivity modifiers. Will be RT if the task got
  1268. * RT-boosted. If not then it returns p->normal_prio.
  1269. */
  1270. static int effective_prio(struct task_struct *p)
  1271. {
  1272. p->normal_prio = normal_prio(p);
  1273. /*
  1274. * If we are RT tasks or we were boosted to RT priority,
  1275. * keep the priority unchanged. Otherwise, update priority
  1276. * to the normal priority:
  1277. */
  1278. if (!rt_prio(p->prio))
  1279. return p->normal_prio;
  1280. return p->prio;
  1281. }
  1282. /*
  1283. * activate_task - move a task to the runqueue.
  1284. */
  1285. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1286. {
  1287. if (task_contributes_to_load(p))
  1288. rq->nr_uninterruptible--;
  1289. enqueue_task(rq, p, wakeup);
  1290. inc_nr_running(p, rq);
  1291. }
  1292. /*
  1293. * deactivate_task - remove a task from the runqueue.
  1294. */
  1295. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1296. {
  1297. if (task_contributes_to_load(p))
  1298. rq->nr_uninterruptible++;
  1299. dequeue_task(rq, p, sleep);
  1300. dec_nr_running(p, rq);
  1301. }
  1302. /**
  1303. * task_curr - is this task currently executing on a CPU?
  1304. * @p: the task in question.
  1305. */
  1306. inline int task_curr(const struct task_struct *p)
  1307. {
  1308. return cpu_curr(task_cpu(p)) == p;
  1309. }
  1310. /* Used instead of source_load when we know the type == 0 */
  1311. unsigned long weighted_cpuload(const int cpu)
  1312. {
  1313. return cpu_rq(cpu)->load.weight;
  1314. }
  1315. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1316. {
  1317. set_task_rq(p, cpu);
  1318. #ifdef CONFIG_SMP
  1319. /*
  1320. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1321. * successfuly executed on another CPU. We must ensure that updates of
  1322. * per-task data have been completed by this moment.
  1323. */
  1324. smp_wmb();
  1325. task_thread_info(p)->cpu = cpu;
  1326. #endif
  1327. }
  1328. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1329. const struct sched_class *prev_class,
  1330. int oldprio, int running)
  1331. {
  1332. if (prev_class != p->sched_class) {
  1333. if (prev_class->switched_from)
  1334. prev_class->switched_from(rq, p, running);
  1335. p->sched_class->switched_to(rq, p, running);
  1336. } else
  1337. p->sched_class->prio_changed(rq, p, oldprio, running);
  1338. }
  1339. #ifdef CONFIG_SMP
  1340. /*
  1341. * Is this task likely cache-hot:
  1342. */
  1343. static int
  1344. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1345. {
  1346. s64 delta;
  1347. /*
  1348. * Buddy candidates are cache hot:
  1349. */
  1350. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1351. return 1;
  1352. if (p->sched_class != &fair_sched_class)
  1353. return 0;
  1354. if (sysctl_sched_migration_cost == -1)
  1355. return 1;
  1356. if (sysctl_sched_migration_cost == 0)
  1357. return 0;
  1358. delta = now - p->se.exec_start;
  1359. return delta < (s64)sysctl_sched_migration_cost;
  1360. }
  1361. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1362. {
  1363. int old_cpu = task_cpu(p);
  1364. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1365. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1366. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1367. u64 clock_offset;
  1368. clock_offset = old_rq->clock - new_rq->clock;
  1369. #ifdef CONFIG_SCHEDSTATS
  1370. if (p->se.wait_start)
  1371. p->se.wait_start -= clock_offset;
  1372. if (p->se.sleep_start)
  1373. p->se.sleep_start -= clock_offset;
  1374. if (p->se.block_start)
  1375. p->se.block_start -= clock_offset;
  1376. if (old_cpu != new_cpu) {
  1377. schedstat_inc(p, se.nr_migrations);
  1378. if (task_hot(p, old_rq->clock, NULL))
  1379. schedstat_inc(p, se.nr_forced2_migrations);
  1380. }
  1381. #endif
  1382. p->se.vruntime -= old_cfsrq->min_vruntime -
  1383. new_cfsrq->min_vruntime;
  1384. __set_task_cpu(p, new_cpu);
  1385. }
  1386. struct migration_req {
  1387. struct list_head list;
  1388. struct task_struct *task;
  1389. int dest_cpu;
  1390. struct completion done;
  1391. };
  1392. /*
  1393. * The task's runqueue lock must be held.
  1394. * Returns true if you have to wait for migration thread.
  1395. */
  1396. static int
  1397. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1398. {
  1399. struct rq *rq = task_rq(p);
  1400. /*
  1401. * If the task is not on a runqueue (and not running), then
  1402. * it is sufficient to simply update the task's cpu field.
  1403. */
  1404. if (!p->se.on_rq && !task_running(rq, p)) {
  1405. set_task_cpu(p, dest_cpu);
  1406. return 0;
  1407. }
  1408. init_completion(&req->done);
  1409. req->task = p;
  1410. req->dest_cpu = dest_cpu;
  1411. list_add(&req->list, &rq->migration_queue);
  1412. return 1;
  1413. }
  1414. /*
  1415. * wait_task_inactive - wait for a thread to unschedule.
  1416. *
  1417. * The caller must ensure that the task *will* unschedule sometime soon,
  1418. * else this function might spin for a *long* time. This function can't
  1419. * be called with interrupts off, or it may introduce deadlock with
  1420. * smp_call_function() if an IPI is sent by the same process we are
  1421. * waiting to become inactive.
  1422. */
  1423. void wait_task_inactive(struct task_struct *p)
  1424. {
  1425. unsigned long flags;
  1426. int running, on_rq;
  1427. struct rq *rq;
  1428. for (;;) {
  1429. /*
  1430. * We do the initial early heuristics without holding
  1431. * any task-queue locks at all. We'll only try to get
  1432. * the runqueue lock when things look like they will
  1433. * work out!
  1434. */
  1435. rq = task_rq(p);
  1436. /*
  1437. * If the task is actively running on another CPU
  1438. * still, just relax and busy-wait without holding
  1439. * any locks.
  1440. *
  1441. * NOTE! Since we don't hold any locks, it's not
  1442. * even sure that "rq" stays as the right runqueue!
  1443. * But we don't care, since "task_running()" will
  1444. * return false if the runqueue has changed and p
  1445. * is actually now running somewhere else!
  1446. */
  1447. while (task_running(rq, p))
  1448. cpu_relax();
  1449. /*
  1450. * Ok, time to look more closely! We need the rq
  1451. * lock now, to be *sure*. If we're wrong, we'll
  1452. * just go back and repeat.
  1453. */
  1454. rq = task_rq_lock(p, &flags);
  1455. running = task_running(rq, p);
  1456. on_rq = p->se.on_rq;
  1457. task_rq_unlock(rq, &flags);
  1458. /*
  1459. * Was it really running after all now that we
  1460. * checked with the proper locks actually held?
  1461. *
  1462. * Oops. Go back and try again..
  1463. */
  1464. if (unlikely(running)) {
  1465. cpu_relax();
  1466. continue;
  1467. }
  1468. /*
  1469. * It's not enough that it's not actively running,
  1470. * it must be off the runqueue _entirely_, and not
  1471. * preempted!
  1472. *
  1473. * So if it wa still runnable (but just not actively
  1474. * running right now), it's preempted, and we should
  1475. * yield - it could be a while.
  1476. */
  1477. if (unlikely(on_rq)) {
  1478. schedule_timeout_uninterruptible(1);
  1479. continue;
  1480. }
  1481. /*
  1482. * Ahh, all good. It wasn't running, and it wasn't
  1483. * runnable, which means that it will never become
  1484. * running in the future either. We're all done!
  1485. */
  1486. break;
  1487. }
  1488. }
  1489. /***
  1490. * kick_process - kick a running thread to enter/exit the kernel
  1491. * @p: the to-be-kicked thread
  1492. *
  1493. * Cause a process which is running on another CPU to enter
  1494. * kernel-mode, without any delay. (to get signals handled.)
  1495. *
  1496. * NOTE: this function doesnt have to take the runqueue lock,
  1497. * because all it wants to ensure is that the remote task enters
  1498. * the kernel. If the IPI races and the task has been migrated
  1499. * to another CPU then no harm is done and the purpose has been
  1500. * achieved as well.
  1501. */
  1502. void kick_process(struct task_struct *p)
  1503. {
  1504. int cpu;
  1505. preempt_disable();
  1506. cpu = task_cpu(p);
  1507. if ((cpu != smp_processor_id()) && task_curr(p))
  1508. smp_send_reschedule(cpu);
  1509. preempt_enable();
  1510. }
  1511. /*
  1512. * Return a low guess at the load of a migration-source cpu weighted
  1513. * according to the scheduling class and "nice" value.
  1514. *
  1515. * We want to under-estimate the load of migration sources, to
  1516. * balance conservatively.
  1517. */
  1518. static unsigned long source_load(int cpu, int type)
  1519. {
  1520. struct rq *rq = cpu_rq(cpu);
  1521. unsigned long total = weighted_cpuload(cpu);
  1522. if (type == 0)
  1523. return total;
  1524. return min(rq->cpu_load[type-1], total);
  1525. }
  1526. /*
  1527. * Return a high guess at the load of a migration-target cpu weighted
  1528. * according to the scheduling class and "nice" value.
  1529. */
  1530. static unsigned long target_load(int cpu, int type)
  1531. {
  1532. struct rq *rq = cpu_rq(cpu);
  1533. unsigned long total = weighted_cpuload(cpu);
  1534. if (type == 0)
  1535. return total;
  1536. return max(rq->cpu_load[type-1], total);
  1537. }
  1538. /*
  1539. * Return the average load per task on the cpu's run queue
  1540. */
  1541. static unsigned long cpu_avg_load_per_task(int cpu)
  1542. {
  1543. struct rq *rq = cpu_rq(cpu);
  1544. unsigned long total = weighted_cpuload(cpu);
  1545. unsigned long n = rq->nr_running;
  1546. return n ? total / n : SCHED_LOAD_SCALE;
  1547. }
  1548. /*
  1549. * find_idlest_group finds and returns the least busy CPU group within the
  1550. * domain.
  1551. */
  1552. static struct sched_group *
  1553. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1554. {
  1555. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1556. unsigned long min_load = ULONG_MAX, this_load = 0;
  1557. int load_idx = sd->forkexec_idx;
  1558. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1559. do {
  1560. unsigned long load, avg_load;
  1561. int local_group;
  1562. int i;
  1563. /* Skip over this group if it has no CPUs allowed */
  1564. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1565. continue;
  1566. local_group = cpu_isset(this_cpu, group->cpumask);
  1567. /* Tally up the load of all CPUs in the group */
  1568. avg_load = 0;
  1569. for_each_cpu_mask(i, group->cpumask) {
  1570. /* Bias balancing toward cpus of our domain */
  1571. if (local_group)
  1572. load = source_load(i, load_idx);
  1573. else
  1574. load = target_load(i, load_idx);
  1575. avg_load += load;
  1576. }
  1577. /* Adjust by relative CPU power of the group */
  1578. avg_load = sg_div_cpu_power(group,
  1579. avg_load * SCHED_LOAD_SCALE);
  1580. if (local_group) {
  1581. this_load = avg_load;
  1582. this = group;
  1583. } else if (avg_load < min_load) {
  1584. min_load = avg_load;
  1585. idlest = group;
  1586. }
  1587. } while (group = group->next, group != sd->groups);
  1588. if (!idlest || 100*this_load < imbalance*min_load)
  1589. return NULL;
  1590. return idlest;
  1591. }
  1592. /*
  1593. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1594. */
  1595. static int
  1596. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1597. cpumask_t *tmp)
  1598. {
  1599. unsigned long load, min_load = ULONG_MAX;
  1600. int idlest = -1;
  1601. int i;
  1602. /* Traverse only the allowed CPUs */
  1603. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1604. for_each_cpu_mask(i, *tmp) {
  1605. load = weighted_cpuload(i);
  1606. if (load < min_load || (load == min_load && i == this_cpu)) {
  1607. min_load = load;
  1608. idlest = i;
  1609. }
  1610. }
  1611. return idlest;
  1612. }
  1613. /*
  1614. * sched_balance_self: balance the current task (running on cpu) in domains
  1615. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1616. * SD_BALANCE_EXEC.
  1617. *
  1618. * Balance, ie. select the least loaded group.
  1619. *
  1620. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1621. *
  1622. * preempt must be disabled.
  1623. */
  1624. static int sched_balance_self(int cpu, int flag)
  1625. {
  1626. struct task_struct *t = current;
  1627. struct sched_domain *tmp, *sd = NULL;
  1628. for_each_domain(cpu, tmp) {
  1629. /*
  1630. * If power savings logic is enabled for a domain, stop there.
  1631. */
  1632. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1633. break;
  1634. if (tmp->flags & flag)
  1635. sd = tmp;
  1636. }
  1637. while (sd) {
  1638. cpumask_t span, tmpmask;
  1639. struct sched_group *group;
  1640. int new_cpu, weight;
  1641. if (!(sd->flags & flag)) {
  1642. sd = sd->child;
  1643. continue;
  1644. }
  1645. span = sd->span;
  1646. group = find_idlest_group(sd, t, cpu);
  1647. if (!group) {
  1648. sd = sd->child;
  1649. continue;
  1650. }
  1651. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1652. if (new_cpu == -1 || new_cpu == cpu) {
  1653. /* Now try balancing at a lower domain level of cpu */
  1654. sd = sd->child;
  1655. continue;
  1656. }
  1657. /* Now try balancing at a lower domain level of new_cpu */
  1658. cpu = new_cpu;
  1659. sd = NULL;
  1660. weight = cpus_weight(span);
  1661. for_each_domain(cpu, tmp) {
  1662. if (weight <= cpus_weight(tmp->span))
  1663. break;
  1664. if (tmp->flags & flag)
  1665. sd = tmp;
  1666. }
  1667. /* while loop will break here if sd == NULL */
  1668. }
  1669. return cpu;
  1670. }
  1671. #endif /* CONFIG_SMP */
  1672. /***
  1673. * try_to_wake_up - wake up a thread
  1674. * @p: the to-be-woken-up thread
  1675. * @state: the mask of task states that can be woken
  1676. * @sync: do a synchronous wakeup?
  1677. *
  1678. * Put it on the run-queue if it's not already there. The "current"
  1679. * thread is always on the run-queue (except when the actual
  1680. * re-schedule is in progress), and as such you're allowed to do
  1681. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1682. * runnable without the overhead of this.
  1683. *
  1684. * returns failure only if the task is already active.
  1685. */
  1686. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1687. {
  1688. int cpu, orig_cpu, this_cpu, success = 0;
  1689. unsigned long flags;
  1690. long old_state;
  1691. struct rq *rq;
  1692. if (!sched_feat(SYNC_WAKEUPS))
  1693. sync = 0;
  1694. smp_wmb();
  1695. rq = task_rq_lock(p, &flags);
  1696. old_state = p->state;
  1697. if (!(old_state & state))
  1698. goto out;
  1699. if (p->se.on_rq)
  1700. goto out_running;
  1701. cpu = task_cpu(p);
  1702. orig_cpu = cpu;
  1703. this_cpu = smp_processor_id();
  1704. #ifdef CONFIG_SMP
  1705. if (unlikely(task_running(rq, p)))
  1706. goto out_activate;
  1707. cpu = p->sched_class->select_task_rq(p, sync);
  1708. if (cpu != orig_cpu) {
  1709. set_task_cpu(p, cpu);
  1710. task_rq_unlock(rq, &flags);
  1711. /* might preempt at this point */
  1712. rq = task_rq_lock(p, &flags);
  1713. old_state = p->state;
  1714. if (!(old_state & state))
  1715. goto out;
  1716. if (p->se.on_rq)
  1717. goto out_running;
  1718. this_cpu = smp_processor_id();
  1719. cpu = task_cpu(p);
  1720. }
  1721. #ifdef CONFIG_SCHEDSTATS
  1722. schedstat_inc(rq, ttwu_count);
  1723. if (cpu == this_cpu)
  1724. schedstat_inc(rq, ttwu_local);
  1725. else {
  1726. struct sched_domain *sd;
  1727. for_each_domain(this_cpu, sd) {
  1728. if (cpu_isset(cpu, sd->span)) {
  1729. schedstat_inc(sd, ttwu_wake_remote);
  1730. break;
  1731. }
  1732. }
  1733. }
  1734. #endif
  1735. out_activate:
  1736. #endif /* CONFIG_SMP */
  1737. schedstat_inc(p, se.nr_wakeups);
  1738. if (sync)
  1739. schedstat_inc(p, se.nr_wakeups_sync);
  1740. if (orig_cpu != cpu)
  1741. schedstat_inc(p, se.nr_wakeups_migrate);
  1742. if (cpu == this_cpu)
  1743. schedstat_inc(p, se.nr_wakeups_local);
  1744. else
  1745. schedstat_inc(p, se.nr_wakeups_remote);
  1746. update_rq_clock(rq);
  1747. activate_task(rq, p, 1);
  1748. success = 1;
  1749. out_running:
  1750. check_preempt_curr(rq, p);
  1751. p->state = TASK_RUNNING;
  1752. #ifdef CONFIG_SMP
  1753. if (p->sched_class->task_wake_up)
  1754. p->sched_class->task_wake_up(rq, p);
  1755. #endif
  1756. out:
  1757. task_rq_unlock(rq, &flags);
  1758. return success;
  1759. }
  1760. int wake_up_process(struct task_struct *p)
  1761. {
  1762. return try_to_wake_up(p, TASK_ALL, 0);
  1763. }
  1764. EXPORT_SYMBOL(wake_up_process);
  1765. int wake_up_state(struct task_struct *p, unsigned int state)
  1766. {
  1767. return try_to_wake_up(p, state, 0);
  1768. }
  1769. /*
  1770. * Perform scheduler related setup for a newly forked process p.
  1771. * p is forked by current.
  1772. *
  1773. * __sched_fork() is basic setup used by init_idle() too:
  1774. */
  1775. static void __sched_fork(struct task_struct *p)
  1776. {
  1777. p->se.exec_start = 0;
  1778. p->se.sum_exec_runtime = 0;
  1779. p->se.prev_sum_exec_runtime = 0;
  1780. p->se.last_wakeup = 0;
  1781. p->se.avg_overlap = 0;
  1782. #ifdef CONFIG_SCHEDSTATS
  1783. p->se.wait_start = 0;
  1784. p->se.sum_sleep_runtime = 0;
  1785. p->se.sleep_start = 0;
  1786. p->se.block_start = 0;
  1787. p->se.sleep_max = 0;
  1788. p->se.block_max = 0;
  1789. p->se.exec_max = 0;
  1790. p->se.slice_max = 0;
  1791. p->se.wait_max = 0;
  1792. #endif
  1793. INIT_LIST_HEAD(&p->rt.run_list);
  1794. p->se.on_rq = 0;
  1795. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1796. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1797. #endif
  1798. /*
  1799. * We mark the process as running here, but have not actually
  1800. * inserted it onto the runqueue yet. This guarantees that
  1801. * nobody will actually run it, and a signal or other external
  1802. * event cannot wake it up and insert it on the runqueue either.
  1803. */
  1804. p->state = TASK_RUNNING;
  1805. }
  1806. /*
  1807. * fork()/clone()-time setup:
  1808. */
  1809. void sched_fork(struct task_struct *p, int clone_flags)
  1810. {
  1811. int cpu = get_cpu();
  1812. __sched_fork(p);
  1813. #ifdef CONFIG_SMP
  1814. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1815. #endif
  1816. set_task_cpu(p, cpu);
  1817. /*
  1818. * Make sure we do not leak PI boosting priority to the child:
  1819. */
  1820. p->prio = current->normal_prio;
  1821. if (!rt_prio(p->prio))
  1822. p->sched_class = &fair_sched_class;
  1823. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1824. if (likely(sched_info_on()))
  1825. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1826. #endif
  1827. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1828. p->oncpu = 0;
  1829. #endif
  1830. #ifdef CONFIG_PREEMPT
  1831. /* Want to start with kernel preemption disabled. */
  1832. task_thread_info(p)->preempt_count = 1;
  1833. #endif
  1834. put_cpu();
  1835. }
  1836. /*
  1837. * wake_up_new_task - wake up a newly created task for the first time.
  1838. *
  1839. * This function will do some initial scheduler statistics housekeeping
  1840. * that must be done for every newly created context, then puts the task
  1841. * on the runqueue and wakes it.
  1842. */
  1843. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1844. {
  1845. unsigned long flags;
  1846. struct rq *rq;
  1847. rq = task_rq_lock(p, &flags);
  1848. BUG_ON(p->state != TASK_RUNNING);
  1849. update_rq_clock(rq);
  1850. p->prio = effective_prio(p);
  1851. if (!p->sched_class->task_new || !current->se.on_rq) {
  1852. activate_task(rq, p, 0);
  1853. } else {
  1854. /*
  1855. * Let the scheduling class do new task startup
  1856. * management (if any):
  1857. */
  1858. p->sched_class->task_new(rq, p);
  1859. inc_nr_running(p, rq);
  1860. }
  1861. check_preempt_curr(rq, p);
  1862. #ifdef CONFIG_SMP
  1863. if (p->sched_class->task_wake_up)
  1864. p->sched_class->task_wake_up(rq, p);
  1865. #endif
  1866. task_rq_unlock(rq, &flags);
  1867. }
  1868. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1869. /**
  1870. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1871. * @notifier: notifier struct to register
  1872. */
  1873. void preempt_notifier_register(struct preempt_notifier *notifier)
  1874. {
  1875. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1876. }
  1877. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1878. /**
  1879. * preempt_notifier_unregister - no longer interested in preemption notifications
  1880. * @notifier: notifier struct to unregister
  1881. *
  1882. * This is safe to call from within a preemption notifier.
  1883. */
  1884. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1885. {
  1886. hlist_del(&notifier->link);
  1887. }
  1888. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1889. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1890. {
  1891. struct preempt_notifier *notifier;
  1892. struct hlist_node *node;
  1893. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1894. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1895. }
  1896. static void
  1897. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1898. struct task_struct *next)
  1899. {
  1900. struct preempt_notifier *notifier;
  1901. struct hlist_node *node;
  1902. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1903. notifier->ops->sched_out(notifier, next);
  1904. }
  1905. #else
  1906. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1907. {
  1908. }
  1909. static void
  1910. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1911. struct task_struct *next)
  1912. {
  1913. }
  1914. #endif
  1915. /**
  1916. * prepare_task_switch - prepare to switch tasks
  1917. * @rq: the runqueue preparing to switch
  1918. * @prev: the current task that is being switched out
  1919. * @next: the task we are going to switch to.
  1920. *
  1921. * This is called with the rq lock held and interrupts off. It must
  1922. * be paired with a subsequent finish_task_switch after the context
  1923. * switch.
  1924. *
  1925. * prepare_task_switch sets up locking and calls architecture specific
  1926. * hooks.
  1927. */
  1928. static inline void
  1929. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1930. struct task_struct *next)
  1931. {
  1932. fire_sched_out_preempt_notifiers(prev, next);
  1933. prepare_lock_switch(rq, next);
  1934. prepare_arch_switch(next);
  1935. }
  1936. /**
  1937. * finish_task_switch - clean up after a task-switch
  1938. * @rq: runqueue associated with task-switch
  1939. * @prev: the thread we just switched away from.
  1940. *
  1941. * finish_task_switch must be called after the context switch, paired
  1942. * with a prepare_task_switch call before the context switch.
  1943. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1944. * and do any other architecture-specific cleanup actions.
  1945. *
  1946. * Note that we may have delayed dropping an mm in context_switch(). If
  1947. * so, we finish that here outside of the runqueue lock. (Doing it
  1948. * with the lock held can cause deadlocks; see schedule() for
  1949. * details.)
  1950. */
  1951. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1952. __releases(rq->lock)
  1953. {
  1954. struct mm_struct *mm = rq->prev_mm;
  1955. long prev_state;
  1956. rq->prev_mm = NULL;
  1957. /*
  1958. * A task struct has one reference for the use as "current".
  1959. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1960. * schedule one last time. The schedule call will never return, and
  1961. * the scheduled task must drop that reference.
  1962. * The test for TASK_DEAD must occur while the runqueue locks are
  1963. * still held, otherwise prev could be scheduled on another cpu, die
  1964. * there before we look at prev->state, and then the reference would
  1965. * be dropped twice.
  1966. * Manfred Spraul <manfred@colorfullife.com>
  1967. */
  1968. prev_state = prev->state;
  1969. finish_arch_switch(prev);
  1970. finish_lock_switch(rq, prev);
  1971. #ifdef CONFIG_SMP
  1972. if (current->sched_class->post_schedule)
  1973. current->sched_class->post_schedule(rq);
  1974. #endif
  1975. fire_sched_in_preempt_notifiers(current);
  1976. if (mm)
  1977. mmdrop(mm);
  1978. if (unlikely(prev_state == TASK_DEAD)) {
  1979. /*
  1980. * Remove function-return probe instances associated with this
  1981. * task and put them back on the free list.
  1982. */
  1983. kprobe_flush_task(prev);
  1984. put_task_struct(prev);
  1985. }
  1986. }
  1987. /**
  1988. * schedule_tail - first thing a freshly forked thread must call.
  1989. * @prev: the thread we just switched away from.
  1990. */
  1991. asmlinkage void schedule_tail(struct task_struct *prev)
  1992. __releases(rq->lock)
  1993. {
  1994. struct rq *rq = this_rq();
  1995. finish_task_switch(rq, prev);
  1996. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1997. /* In this case, finish_task_switch does not reenable preemption */
  1998. preempt_enable();
  1999. #endif
  2000. if (current->set_child_tid)
  2001. put_user(task_pid_vnr(current), current->set_child_tid);
  2002. }
  2003. /*
  2004. * context_switch - switch to the new MM and the new
  2005. * thread's register state.
  2006. */
  2007. static inline void
  2008. context_switch(struct rq *rq, struct task_struct *prev,
  2009. struct task_struct *next)
  2010. {
  2011. struct mm_struct *mm, *oldmm;
  2012. prepare_task_switch(rq, prev, next);
  2013. mm = next->mm;
  2014. oldmm = prev->active_mm;
  2015. /*
  2016. * For paravirt, this is coupled with an exit in switch_to to
  2017. * combine the page table reload and the switch backend into
  2018. * one hypercall.
  2019. */
  2020. arch_enter_lazy_cpu_mode();
  2021. if (unlikely(!mm)) {
  2022. next->active_mm = oldmm;
  2023. atomic_inc(&oldmm->mm_count);
  2024. enter_lazy_tlb(oldmm, next);
  2025. } else
  2026. switch_mm(oldmm, mm, next);
  2027. if (unlikely(!prev->mm)) {
  2028. prev->active_mm = NULL;
  2029. rq->prev_mm = oldmm;
  2030. }
  2031. /*
  2032. * Since the runqueue lock will be released by the next
  2033. * task (which is an invalid locking op but in the case
  2034. * of the scheduler it's an obvious special-case), so we
  2035. * do an early lockdep release here:
  2036. */
  2037. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2038. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2039. #endif
  2040. /* Here we just switch the register state and the stack. */
  2041. switch_to(prev, next, prev);
  2042. barrier();
  2043. /*
  2044. * this_rq must be evaluated again because prev may have moved
  2045. * CPUs since it called schedule(), thus the 'rq' on its stack
  2046. * frame will be invalid.
  2047. */
  2048. finish_task_switch(this_rq(), prev);
  2049. }
  2050. /*
  2051. * nr_running, nr_uninterruptible and nr_context_switches:
  2052. *
  2053. * externally visible scheduler statistics: current number of runnable
  2054. * threads, current number of uninterruptible-sleeping threads, total
  2055. * number of context switches performed since bootup.
  2056. */
  2057. unsigned long nr_running(void)
  2058. {
  2059. unsigned long i, sum = 0;
  2060. for_each_online_cpu(i)
  2061. sum += cpu_rq(i)->nr_running;
  2062. return sum;
  2063. }
  2064. unsigned long nr_uninterruptible(void)
  2065. {
  2066. unsigned long i, sum = 0;
  2067. for_each_possible_cpu(i)
  2068. sum += cpu_rq(i)->nr_uninterruptible;
  2069. /*
  2070. * Since we read the counters lockless, it might be slightly
  2071. * inaccurate. Do not allow it to go below zero though:
  2072. */
  2073. if (unlikely((long)sum < 0))
  2074. sum = 0;
  2075. return sum;
  2076. }
  2077. unsigned long long nr_context_switches(void)
  2078. {
  2079. int i;
  2080. unsigned long long sum = 0;
  2081. for_each_possible_cpu(i)
  2082. sum += cpu_rq(i)->nr_switches;
  2083. return sum;
  2084. }
  2085. unsigned long nr_iowait(void)
  2086. {
  2087. unsigned long i, sum = 0;
  2088. for_each_possible_cpu(i)
  2089. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2090. return sum;
  2091. }
  2092. unsigned long nr_active(void)
  2093. {
  2094. unsigned long i, running = 0, uninterruptible = 0;
  2095. for_each_online_cpu(i) {
  2096. running += cpu_rq(i)->nr_running;
  2097. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2098. }
  2099. if (unlikely((long)uninterruptible < 0))
  2100. uninterruptible = 0;
  2101. return running + uninterruptible;
  2102. }
  2103. /*
  2104. * Update rq->cpu_load[] statistics. This function is usually called every
  2105. * scheduler tick (TICK_NSEC).
  2106. */
  2107. static void update_cpu_load(struct rq *this_rq)
  2108. {
  2109. unsigned long this_load = this_rq->load.weight;
  2110. int i, scale;
  2111. this_rq->nr_load_updates++;
  2112. /* Update our load: */
  2113. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2114. unsigned long old_load, new_load;
  2115. /* scale is effectively 1 << i now, and >> i divides by scale */
  2116. old_load = this_rq->cpu_load[i];
  2117. new_load = this_load;
  2118. /*
  2119. * Round up the averaging division if load is increasing. This
  2120. * prevents us from getting stuck on 9 if the load is 10, for
  2121. * example.
  2122. */
  2123. if (new_load > old_load)
  2124. new_load += scale-1;
  2125. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2126. }
  2127. }
  2128. #ifdef CONFIG_SMP
  2129. /*
  2130. * double_rq_lock - safely lock two runqueues
  2131. *
  2132. * Note this does not disable interrupts like task_rq_lock,
  2133. * you need to do so manually before calling.
  2134. */
  2135. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2136. __acquires(rq1->lock)
  2137. __acquires(rq2->lock)
  2138. {
  2139. BUG_ON(!irqs_disabled());
  2140. if (rq1 == rq2) {
  2141. spin_lock(&rq1->lock);
  2142. __acquire(rq2->lock); /* Fake it out ;) */
  2143. } else {
  2144. if (rq1 < rq2) {
  2145. spin_lock(&rq1->lock);
  2146. spin_lock(&rq2->lock);
  2147. } else {
  2148. spin_lock(&rq2->lock);
  2149. spin_lock(&rq1->lock);
  2150. }
  2151. }
  2152. update_rq_clock(rq1);
  2153. update_rq_clock(rq2);
  2154. }
  2155. /*
  2156. * double_rq_unlock - safely unlock two runqueues
  2157. *
  2158. * Note this does not restore interrupts like task_rq_unlock,
  2159. * you need to do so manually after calling.
  2160. */
  2161. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2162. __releases(rq1->lock)
  2163. __releases(rq2->lock)
  2164. {
  2165. spin_unlock(&rq1->lock);
  2166. if (rq1 != rq2)
  2167. spin_unlock(&rq2->lock);
  2168. else
  2169. __release(rq2->lock);
  2170. }
  2171. /*
  2172. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2173. */
  2174. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2175. __releases(this_rq->lock)
  2176. __acquires(busiest->lock)
  2177. __acquires(this_rq->lock)
  2178. {
  2179. int ret = 0;
  2180. if (unlikely(!irqs_disabled())) {
  2181. /* printk() doesn't work good under rq->lock */
  2182. spin_unlock(&this_rq->lock);
  2183. BUG_ON(1);
  2184. }
  2185. if (unlikely(!spin_trylock(&busiest->lock))) {
  2186. if (busiest < this_rq) {
  2187. spin_unlock(&this_rq->lock);
  2188. spin_lock(&busiest->lock);
  2189. spin_lock(&this_rq->lock);
  2190. ret = 1;
  2191. } else
  2192. spin_lock(&busiest->lock);
  2193. }
  2194. return ret;
  2195. }
  2196. /*
  2197. * If dest_cpu is allowed for this process, migrate the task to it.
  2198. * This is accomplished by forcing the cpu_allowed mask to only
  2199. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2200. * the cpu_allowed mask is restored.
  2201. */
  2202. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2203. {
  2204. struct migration_req req;
  2205. unsigned long flags;
  2206. struct rq *rq;
  2207. rq = task_rq_lock(p, &flags);
  2208. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2209. || unlikely(cpu_is_offline(dest_cpu)))
  2210. goto out;
  2211. /* force the process onto the specified CPU */
  2212. if (migrate_task(p, dest_cpu, &req)) {
  2213. /* Need to wait for migration thread (might exit: take ref). */
  2214. struct task_struct *mt = rq->migration_thread;
  2215. get_task_struct(mt);
  2216. task_rq_unlock(rq, &flags);
  2217. wake_up_process(mt);
  2218. put_task_struct(mt);
  2219. wait_for_completion(&req.done);
  2220. return;
  2221. }
  2222. out:
  2223. task_rq_unlock(rq, &flags);
  2224. }
  2225. /*
  2226. * sched_exec - execve() is a valuable balancing opportunity, because at
  2227. * this point the task has the smallest effective memory and cache footprint.
  2228. */
  2229. void sched_exec(void)
  2230. {
  2231. int new_cpu, this_cpu = get_cpu();
  2232. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2233. put_cpu();
  2234. if (new_cpu != this_cpu)
  2235. sched_migrate_task(current, new_cpu);
  2236. }
  2237. /*
  2238. * pull_task - move a task from a remote runqueue to the local runqueue.
  2239. * Both runqueues must be locked.
  2240. */
  2241. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2242. struct rq *this_rq, int this_cpu)
  2243. {
  2244. deactivate_task(src_rq, p, 0);
  2245. set_task_cpu(p, this_cpu);
  2246. activate_task(this_rq, p, 0);
  2247. /*
  2248. * Note that idle threads have a prio of MAX_PRIO, for this test
  2249. * to be always true for them.
  2250. */
  2251. check_preempt_curr(this_rq, p);
  2252. }
  2253. /*
  2254. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2255. */
  2256. static
  2257. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2258. struct sched_domain *sd, enum cpu_idle_type idle,
  2259. int *all_pinned)
  2260. {
  2261. /*
  2262. * We do not migrate tasks that are:
  2263. * 1) running (obviously), or
  2264. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2265. * 3) are cache-hot on their current CPU.
  2266. */
  2267. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2268. schedstat_inc(p, se.nr_failed_migrations_affine);
  2269. return 0;
  2270. }
  2271. *all_pinned = 0;
  2272. if (task_running(rq, p)) {
  2273. schedstat_inc(p, se.nr_failed_migrations_running);
  2274. return 0;
  2275. }
  2276. /*
  2277. * Aggressive migration if:
  2278. * 1) task is cache cold, or
  2279. * 2) too many balance attempts have failed.
  2280. */
  2281. if (!task_hot(p, rq->clock, sd) ||
  2282. sd->nr_balance_failed > sd->cache_nice_tries) {
  2283. #ifdef CONFIG_SCHEDSTATS
  2284. if (task_hot(p, rq->clock, sd)) {
  2285. schedstat_inc(sd, lb_hot_gained[idle]);
  2286. schedstat_inc(p, se.nr_forced_migrations);
  2287. }
  2288. #endif
  2289. return 1;
  2290. }
  2291. if (task_hot(p, rq->clock, sd)) {
  2292. schedstat_inc(p, se.nr_failed_migrations_hot);
  2293. return 0;
  2294. }
  2295. return 1;
  2296. }
  2297. static unsigned long
  2298. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2299. unsigned long max_load_move, struct sched_domain *sd,
  2300. enum cpu_idle_type idle, int *all_pinned,
  2301. int *this_best_prio, struct rq_iterator *iterator)
  2302. {
  2303. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2304. struct task_struct *p;
  2305. long rem_load_move = max_load_move;
  2306. if (max_load_move == 0)
  2307. goto out;
  2308. pinned = 1;
  2309. /*
  2310. * Start the load-balancing iterator:
  2311. */
  2312. p = iterator->start(iterator->arg);
  2313. next:
  2314. if (!p || loops++ > sysctl_sched_nr_migrate)
  2315. goto out;
  2316. /*
  2317. * To help distribute high priority tasks across CPUs we don't
  2318. * skip a task if it will be the highest priority task (i.e. smallest
  2319. * prio value) on its new queue regardless of its load weight
  2320. */
  2321. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2322. SCHED_LOAD_SCALE_FUZZ;
  2323. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2324. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2325. p = iterator->next(iterator->arg);
  2326. goto next;
  2327. }
  2328. pull_task(busiest, p, this_rq, this_cpu);
  2329. pulled++;
  2330. rem_load_move -= p->se.load.weight;
  2331. /*
  2332. * We only want to steal up to the prescribed amount of weighted load.
  2333. */
  2334. if (rem_load_move > 0) {
  2335. if (p->prio < *this_best_prio)
  2336. *this_best_prio = p->prio;
  2337. p = iterator->next(iterator->arg);
  2338. goto next;
  2339. }
  2340. out:
  2341. /*
  2342. * Right now, this is one of only two places pull_task() is called,
  2343. * so we can safely collect pull_task() stats here rather than
  2344. * inside pull_task().
  2345. */
  2346. schedstat_add(sd, lb_gained[idle], pulled);
  2347. if (all_pinned)
  2348. *all_pinned = pinned;
  2349. return max_load_move - rem_load_move;
  2350. }
  2351. /*
  2352. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2353. * this_rq, as part of a balancing operation within domain "sd".
  2354. * Returns 1 if successful and 0 otherwise.
  2355. *
  2356. * Called with both runqueues locked.
  2357. */
  2358. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2359. unsigned long max_load_move,
  2360. struct sched_domain *sd, enum cpu_idle_type idle,
  2361. int *all_pinned)
  2362. {
  2363. const struct sched_class *class = sched_class_highest;
  2364. unsigned long total_load_moved = 0;
  2365. int this_best_prio = this_rq->curr->prio;
  2366. do {
  2367. total_load_moved +=
  2368. class->load_balance(this_rq, this_cpu, busiest,
  2369. max_load_move - total_load_moved,
  2370. sd, idle, all_pinned, &this_best_prio);
  2371. class = class->next;
  2372. } while (class && max_load_move > total_load_moved);
  2373. return total_load_moved > 0;
  2374. }
  2375. static int
  2376. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2377. struct sched_domain *sd, enum cpu_idle_type idle,
  2378. struct rq_iterator *iterator)
  2379. {
  2380. struct task_struct *p = iterator->start(iterator->arg);
  2381. int pinned = 0;
  2382. while (p) {
  2383. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2384. pull_task(busiest, p, this_rq, this_cpu);
  2385. /*
  2386. * Right now, this is only the second place pull_task()
  2387. * is called, so we can safely collect pull_task()
  2388. * stats here rather than inside pull_task().
  2389. */
  2390. schedstat_inc(sd, lb_gained[idle]);
  2391. return 1;
  2392. }
  2393. p = iterator->next(iterator->arg);
  2394. }
  2395. return 0;
  2396. }
  2397. /*
  2398. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2399. * part of active balancing operations within "domain".
  2400. * Returns 1 if successful and 0 otherwise.
  2401. *
  2402. * Called with both runqueues locked.
  2403. */
  2404. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2405. struct sched_domain *sd, enum cpu_idle_type idle)
  2406. {
  2407. const struct sched_class *class;
  2408. for (class = sched_class_highest; class; class = class->next)
  2409. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2410. return 1;
  2411. return 0;
  2412. }
  2413. /*
  2414. * find_busiest_group finds and returns the busiest CPU group within the
  2415. * domain. It calculates and returns the amount of weighted load which
  2416. * should be moved to restore balance via the imbalance parameter.
  2417. */
  2418. static struct sched_group *
  2419. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2420. unsigned long *imbalance, enum cpu_idle_type idle,
  2421. int *sd_idle, const cpumask_t *cpus, int *balance)
  2422. {
  2423. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2424. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2425. unsigned long max_pull;
  2426. unsigned long busiest_load_per_task, busiest_nr_running;
  2427. unsigned long this_load_per_task, this_nr_running;
  2428. int load_idx, group_imb = 0;
  2429. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2430. int power_savings_balance = 1;
  2431. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2432. unsigned long min_nr_running = ULONG_MAX;
  2433. struct sched_group *group_min = NULL, *group_leader = NULL;
  2434. #endif
  2435. max_load = this_load = total_load = total_pwr = 0;
  2436. busiest_load_per_task = busiest_nr_running = 0;
  2437. this_load_per_task = this_nr_running = 0;
  2438. if (idle == CPU_NOT_IDLE)
  2439. load_idx = sd->busy_idx;
  2440. else if (idle == CPU_NEWLY_IDLE)
  2441. load_idx = sd->newidle_idx;
  2442. else
  2443. load_idx = sd->idle_idx;
  2444. do {
  2445. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2446. int local_group;
  2447. int i;
  2448. int __group_imb = 0;
  2449. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2450. unsigned long sum_nr_running, sum_weighted_load;
  2451. local_group = cpu_isset(this_cpu, group->cpumask);
  2452. if (local_group)
  2453. balance_cpu = first_cpu(group->cpumask);
  2454. /* Tally up the load of all CPUs in the group */
  2455. sum_weighted_load = sum_nr_running = avg_load = 0;
  2456. max_cpu_load = 0;
  2457. min_cpu_load = ~0UL;
  2458. for_each_cpu_mask(i, group->cpumask) {
  2459. struct rq *rq;
  2460. if (!cpu_isset(i, *cpus))
  2461. continue;
  2462. rq = cpu_rq(i);
  2463. if (*sd_idle && rq->nr_running)
  2464. *sd_idle = 0;
  2465. /* Bias balancing toward cpus of our domain */
  2466. if (local_group) {
  2467. if (idle_cpu(i) && !first_idle_cpu) {
  2468. first_idle_cpu = 1;
  2469. balance_cpu = i;
  2470. }
  2471. load = target_load(i, load_idx);
  2472. } else {
  2473. load = source_load(i, load_idx);
  2474. if (load > max_cpu_load)
  2475. max_cpu_load = load;
  2476. if (min_cpu_load > load)
  2477. min_cpu_load = load;
  2478. }
  2479. avg_load += load;
  2480. sum_nr_running += rq->nr_running;
  2481. sum_weighted_load += weighted_cpuload(i);
  2482. }
  2483. /*
  2484. * First idle cpu or the first cpu(busiest) in this sched group
  2485. * is eligible for doing load balancing at this and above
  2486. * domains. In the newly idle case, we will allow all the cpu's
  2487. * to do the newly idle load balance.
  2488. */
  2489. if (idle != CPU_NEWLY_IDLE && local_group &&
  2490. balance_cpu != this_cpu && balance) {
  2491. *balance = 0;
  2492. goto ret;
  2493. }
  2494. total_load += avg_load;
  2495. total_pwr += group->__cpu_power;
  2496. /* Adjust by relative CPU power of the group */
  2497. avg_load = sg_div_cpu_power(group,
  2498. avg_load * SCHED_LOAD_SCALE);
  2499. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2500. __group_imb = 1;
  2501. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2502. if (local_group) {
  2503. this_load = avg_load;
  2504. this = group;
  2505. this_nr_running = sum_nr_running;
  2506. this_load_per_task = sum_weighted_load;
  2507. } else if (avg_load > max_load &&
  2508. (sum_nr_running > group_capacity || __group_imb)) {
  2509. max_load = avg_load;
  2510. busiest = group;
  2511. busiest_nr_running = sum_nr_running;
  2512. busiest_load_per_task = sum_weighted_load;
  2513. group_imb = __group_imb;
  2514. }
  2515. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2516. /*
  2517. * Busy processors will not participate in power savings
  2518. * balance.
  2519. */
  2520. if (idle == CPU_NOT_IDLE ||
  2521. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2522. goto group_next;
  2523. /*
  2524. * If the local group is idle or completely loaded
  2525. * no need to do power savings balance at this domain
  2526. */
  2527. if (local_group && (this_nr_running >= group_capacity ||
  2528. !this_nr_running))
  2529. power_savings_balance = 0;
  2530. /*
  2531. * If a group is already running at full capacity or idle,
  2532. * don't include that group in power savings calculations
  2533. */
  2534. if (!power_savings_balance || sum_nr_running >= group_capacity
  2535. || !sum_nr_running)
  2536. goto group_next;
  2537. /*
  2538. * Calculate the group which has the least non-idle load.
  2539. * This is the group from where we need to pick up the load
  2540. * for saving power
  2541. */
  2542. if ((sum_nr_running < min_nr_running) ||
  2543. (sum_nr_running == min_nr_running &&
  2544. first_cpu(group->cpumask) <
  2545. first_cpu(group_min->cpumask))) {
  2546. group_min = group;
  2547. min_nr_running = sum_nr_running;
  2548. min_load_per_task = sum_weighted_load /
  2549. sum_nr_running;
  2550. }
  2551. /*
  2552. * Calculate the group which is almost near its
  2553. * capacity but still has some space to pick up some load
  2554. * from other group and save more power
  2555. */
  2556. if (sum_nr_running <= group_capacity - 1) {
  2557. if (sum_nr_running > leader_nr_running ||
  2558. (sum_nr_running == leader_nr_running &&
  2559. first_cpu(group->cpumask) >
  2560. first_cpu(group_leader->cpumask))) {
  2561. group_leader = group;
  2562. leader_nr_running = sum_nr_running;
  2563. }
  2564. }
  2565. group_next:
  2566. #endif
  2567. group = group->next;
  2568. } while (group != sd->groups);
  2569. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2570. goto out_balanced;
  2571. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2572. if (this_load >= avg_load ||
  2573. 100*max_load <= sd->imbalance_pct*this_load)
  2574. goto out_balanced;
  2575. busiest_load_per_task /= busiest_nr_running;
  2576. if (group_imb)
  2577. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2578. /*
  2579. * We're trying to get all the cpus to the average_load, so we don't
  2580. * want to push ourselves above the average load, nor do we wish to
  2581. * reduce the max loaded cpu below the average load, as either of these
  2582. * actions would just result in more rebalancing later, and ping-pong
  2583. * tasks around. Thus we look for the minimum possible imbalance.
  2584. * Negative imbalances (*we* are more loaded than anyone else) will
  2585. * be counted as no imbalance for these purposes -- we can't fix that
  2586. * by pulling tasks to us. Be careful of negative numbers as they'll
  2587. * appear as very large values with unsigned longs.
  2588. */
  2589. if (max_load <= busiest_load_per_task)
  2590. goto out_balanced;
  2591. /*
  2592. * In the presence of smp nice balancing, certain scenarios can have
  2593. * max load less than avg load(as we skip the groups at or below
  2594. * its cpu_power, while calculating max_load..)
  2595. */
  2596. if (max_load < avg_load) {
  2597. *imbalance = 0;
  2598. goto small_imbalance;
  2599. }
  2600. /* Don't want to pull so many tasks that a group would go idle */
  2601. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2602. /* How much load to actually move to equalise the imbalance */
  2603. *imbalance = min(max_pull * busiest->__cpu_power,
  2604. (avg_load - this_load) * this->__cpu_power)
  2605. / SCHED_LOAD_SCALE;
  2606. /*
  2607. * if *imbalance is less than the average load per runnable task
  2608. * there is no gaurantee that any tasks will be moved so we'll have
  2609. * a think about bumping its value to force at least one task to be
  2610. * moved
  2611. */
  2612. if (*imbalance < busiest_load_per_task) {
  2613. unsigned long tmp, pwr_now, pwr_move;
  2614. unsigned int imbn;
  2615. small_imbalance:
  2616. pwr_move = pwr_now = 0;
  2617. imbn = 2;
  2618. if (this_nr_running) {
  2619. this_load_per_task /= this_nr_running;
  2620. if (busiest_load_per_task > this_load_per_task)
  2621. imbn = 1;
  2622. } else
  2623. this_load_per_task = SCHED_LOAD_SCALE;
  2624. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2625. busiest_load_per_task * imbn) {
  2626. *imbalance = busiest_load_per_task;
  2627. return busiest;
  2628. }
  2629. /*
  2630. * OK, we don't have enough imbalance to justify moving tasks,
  2631. * however we may be able to increase total CPU power used by
  2632. * moving them.
  2633. */
  2634. pwr_now += busiest->__cpu_power *
  2635. min(busiest_load_per_task, max_load);
  2636. pwr_now += this->__cpu_power *
  2637. min(this_load_per_task, this_load);
  2638. pwr_now /= SCHED_LOAD_SCALE;
  2639. /* Amount of load we'd subtract */
  2640. tmp = sg_div_cpu_power(busiest,
  2641. busiest_load_per_task * SCHED_LOAD_SCALE);
  2642. if (max_load > tmp)
  2643. pwr_move += busiest->__cpu_power *
  2644. min(busiest_load_per_task, max_load - tmp);
  2645. /* Amount of load we'd add */
  2646. if (max_load * busiest->__cpu_power <
  2647. busiest_load_per_task * SCHED_LOAD_SCALE)
  2648. tmp = sg_div_cpu_power(this,
  2649. max_load * busiest->__cpu_power);
  2650. else
  2651. tmp = sg_div_cpu_power(this,
  2652. busiest_load_per_task * SCHED_LOAD_SCALE);
  2653. pwr_move += this->__cpu_power *
  2654. min(this_load_per_task, this_load + tmp);
  2655. pwr_move /= SCHED_LOAD_SCALE;
  2656. /* Move if we gain throughput */
  2657. if (pwr_move > pwr_now)
  2658. *imbalance = busiest_load_per_task;
  2659. }
  2660. return busiest;
  2661. out_balanced:
  2662. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2663. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2664. goto ret;
  2665. if (this == group_leader && group_leader != group_min) {
  2666. *imbalance = min_load_per_task;
  2667. return group_min;
  2668. }
  2669. #endif
  2670. ret:
  2671. *imbalance = 0;
  2672. return NULL;
  2673. }
  2674. /*
  2675. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2676. */
  2677. static struct rq *
  2678. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2679. unsigned long imbalance, const cpumask_t *cpus)
  2680. {
  2681. struct rq *busiest = NULL, *rq;
  2682. unsigned long max_load = 0;
  2683. int i;
  2684. for_each_cpu_mask(i, group->cpumask) {
  2685. unsigned long wl;
  2686. if (!cpu_isset(i, *cpus))
  2687. continue;
  2688. rq = cpu_rq(i);
  2689. wl = weighted_cpuload(i);
  2690. if (rq->nr_running == 1 && wl > imbalance)
  2691. continue;
  2692. if (wl > max_load) {
  2693. max_load = wl;
  2694. busiest = rq;
  2695. }
  2696. }
  2697. return busiest;
  2698. }
  2699. /*
  2700. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2701. * so long as it is large enough.
  2702. */
  2703. #define MAX_PINNED_INTERVAL 512
  2704. /*
  2705. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2706. * tasks if there is an imbalance.
  2707. */
  2708. static int load_balance(int this_cpu, struct rq *this_rq,
  2709. struct sched_domain *sd, enum cpu_idle_type idle,
  2710. int *balance, cpumask_t *cpus)
  2711. {
  2712. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2713. struct sched_group *group;
  2714. unsigned long imbalance;
  2715. struct rq *busiest;
  2716. unsigned long flags;
  2717. cpus_setall(*cpus);
  2718. /*
  2719. * When power savings policy is enabled for the parent domain, idle
  2720. * sibling can pick up load irrespective of busy siblings. In this case,
  2721. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2722. * portraying it as CPU_NOT_IDLE.
  2723. */
  2724. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2725. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2726. sd_idle = 1;
  2727. schedstat_inc(sd, lb_count[idle]);
  2728. redo:
  2729. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2730. cpus, balance);
  2731. if (*balance == 0)
  2732. goto out_balanced;
  2733. if (!group) {
  2734. schedstat_inc(sd, lb_nobusyg[idle]);
  2735. goto out_balanced;
  2736. }
  2737. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2738. if (!busiest) {
  2739. schedstat_inc(sd, lb_nobusyq[idle]);
  2740. goto out_balanced;
  2741. }
  2742. BUG_ON(busiest == this_rq);
  2743. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2744. ld_moved = 0;
  2745. if (busiest->nr_running > 1) {
  2746. /*
  2747. * Attempt to move tasks. If find_busiest_group has found
  2748. * an imbalance but busiest->nr_running <= 1, the group is
  2749. * still unbalanced. ld_moved simply stays zero, so it is
  2750. * correctly treated as an imbalance.
  2751. */
  2752. local_irq_save(flags);
  2753. double_rq_lock(this_rq, busiest);
  2754. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2755. imbalance, sd, idle, &all_pinned);
  2756. double_rq_unlock(this_rq, busiest);
  2757. local_irq_restore(flags);
  2758. /*
  2759. * some other cpu did the load balance for us.
  2760. */
  2761. if (ld_moved && this_cpu != smp_processor_id())
  2762. resched_cpu(this_cpu);
  2763. /* All tasks on this runqueue were pinned by CPU affinity */
  2764. if (unlikely(all_pinned)) {
  2765. cpu_clear(cpu_of(busiest), *cpus);
  2766. if (!cpus_empty(*cpus))
  2767. goto redo;
  2768. goto out_balanced;
  2769. }
  2770. }
  2771. if (!ld_moved) {
  2772. schedstat_inc(sd, lb_failed[idle]);
  2773. sd->nr_balance_failed++;
  2774. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2775. spin_lock_irqsave(&busiest->lock, flags);
  2776. /* don't kick the migration_thread, if the curr
  2777. * task on busiest cpu can't be moved to this_cpu
  2778. */
  2779. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2780. spin_unlock_irqrestore(&busiest->lock, flags);
  2781. all_pinned = 1;
  2782. goto out_one_pinned;
  2783. }
  2784. if (!busiest->active_balance) {
  2785. busiest->active_balance = 1;
  2786. busiest->push_cpu = this_cpu;
  2787. active_balance = 1;
  2788. }
  2789. spin_unlock_irqrestore(&busiest->lock, flags);
  2790. if (active_balance)
  2791. wake_up_process(busiest->migration_thread);
  2792. /*
  2793. * We've kicked active balancing, reset the failure
  2794. * counter.
  2795. */
  2796. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2797. }
  2798. } else
  2799. sd->nr_balance_failed = 0;
  2800. if (likely(!active_balance)) {
  2801. /* We were unbalanced, so reset the balancing interval */
  2802. sd->balance_interval = sd->min_interval;
  2803. } else {
  2804. /*
  2805. * If we've begun active balancing, start to back off. This
  2806. * case may not be covered by the all_pinned logic if there
  2807. * is only 1 task on the busy runqueue (because we don't call
  2808. * move_tasks).
  2809. */
  2810. if (sd->balance_interval < sd->max_interval)
  2811. sd->balance_interval *= 2;
  2812. }
  2813. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2814. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2815. return -1;
  2816. return ld_moved;
  2817. out_balanced:
  2818. schedstat_inc(sd, lb_balanced[idle]);
  2819. sd->nr_balance_failed = 0;
  2820. out_one_pinned:
  2821. /* tune up the balancing interval */
  2822. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2823. (sd->balance_interval < sd->max_interval))
  2824. sd->balance_interval *= 2;
  2825. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2826. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2827. return -1;
  2828. return 0;
  2829. }
  2830. /*
  2831. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2832. * tasks if there is an imbalance.
  2833. *
  2834. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2835. * this_rq is locked.
  2836. */
  2837. static int
  2838. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  2839. cpumask_t *cpus)
  2840. {
  2841. struct sched_group *group;
  2842. struct rq *busiest = NULL;
  2843. unsigned long imbalance;
  2844. int ld_moved = 0;
  2845. int sd_idle = 0;
  2846. int all_pinned = 0;
  2847. cpus_setall(*cpus);
  2848. /*
  2849. * When power savings policy is enabled for the parent domain, idle
  2850. * sibling can pick up load irrespective of busy siblings. In this case,
  2851. * let the state of idle sibling percolate up as IDLE, instead of
  2852. * portraying it as CPU_NOT_IDLE.
  2853. */
  2854. if (sd->flags & SD_SHARE_CPUPOWER &&
  2855. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2856. sd_idle = 1;
  2857. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2858. redo:
  2859. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2860. &sd_idle, cpus, NULL);
  2861. if (!group) {
  2862. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2863. goto out_balanced;
  2864. }
  2865. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  2866. if (!busiest) {
  2867. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2868. goto out_balanced;
  2869. }
  2870. BUG_ON(busiest == this_rq);
  2871. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2872. ld_moved = 0;
  2873. if (busiest->nr_running > 1) {
  2874. /* Attempt to move tasks */
  2875. double_lock_balance(this_rq, busiest);
  2876. /* this_rq->clock is already updated */
  2877. update_rq_clock(busiest);
  2878. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2879. imbalance, sd, CPU_NEWLY_IDLE,
  2880. &all_pinned);
  2881. spin_unlock(&busiest->lock);
  2882. if (unlikely(all_pinned)) {
  2883. cpu_clear(cpu_of(busiest), *cpus);
  2884. if (!cpus_empty(*cpus))
  2885. goto redo;
  2886. }
  2887. }
  2888. if (!ld_moved) {
  2889. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2890. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2891. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2892. return -1;
  2893. } else
  2894. sd->nr_balance_failed = 0;
  2895. return ld_moved;
  2896. out_balanced:
  2897. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2898. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2899. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2900. return -1;
  2901. sd->nr_balance_failed = 0;
  2902. return 0;
  2903. }
  2904. /*
  2905. * idle_balance is called by schedule() if this_cpu is about to become
  2906. * idle. Attempts to pull tasks from other CPUs.
  2907. */
  2908. static void idle_balance(int this_cpu, struct rq *this_rq)
  2909. {
  2910. struct sched_domain *sd;
  2911. int pulled_task = -1;
  2912. unsigned long next_balance = jiffies + HZ;
  2913. cpumask_t tmpmask;
  2914. for_each_domain(this_cpu, sd) {
  2915. unsigned long interval;
  2916. if (!(sd->flags & SD_LOAD_BALANCE))
  2917. continue;
  2918. if (sd->flags & SD_BALANCE_NEWIDLE)
  2919. /* If we've pulled tasks over stop searching: */
  2920. pulled_task = load_balance_newidle(this_cpu, this_rq,
  2921. sd, &tmpmask);
  2922. interval = msecs_to_jiffies(sd->balance_interval);
  2923. if (time_after(next_balance, sd->last_balance + interval))
  2924. next_balance = sd->last_balance + interval;
  2925. if (pulled_task)
  2926. break;
  2927. }
  2928. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2929. /*
  2930. * We are going idle. next_balance may be set based on
  2931. * a busy processor. So reset next_balance.
  2932. */
  2933. this_rq->next_balance = next_balance;
  2934. }
  2935. }
  2936. /*
  2937. * active_load_balance is run by migration threads. It pushes running tasks
  2938. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2939. * running on each physical CPU where possible, and avoids physical /
  2940. * logical imbalances.
  2941. *
  2942. * Called with busiest_rq locked.
  2943. */
  2944. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2945. {
  2946. int target_cpu = busiest_rq->push_cpu;
  2947. struct sched_domain *sd;
  2948. struct rq *target_rq;
  2949. /* Is there any task to move? */
  2950. if (busiest_rq->nr_running <= 1)
  2951. return;
  2952. target_rq = cpu_rq(target_cpu);
  2953. /*
  2954. * This condition is "impossible", if it occurs
  2955. * we need to fix it. Originally reported by
  2956. * Bjorn Helgaas on a 128-cpu setup.
  2957. */
  2958. BUG_ON(busiest_rq == target_rq);
  2959. /* move a task from busiest_rq to target_rq */
  2960. double_lock_balance(busiest_rq, target_rq);
  2961. update_rq_clock(busiest_rq);
  2962. update_rq_clock(target_rq);
  2963. /* Search for an sd spanning us and the target CPU. */
  2964. for_each_domain(target_cpu, sd) {
  2965. if ((sd->flags & SD_LOAD_BALANCE) &&
  2966. cpu_isset(busiest_cpu, sd->span))
  2967. break;
  2968. }
  2969. if (likely(sd)) {
  2970. schedstat_inc(sd, alb_count);
  2971. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2972. sd, CPU_IDLE))
  2973. schedstat_inc(sd, alb_pushed);
  2974. else
  2975. schedstat_inc(sd, alb_failed);
  2976. }
  2977. spin_unlock(&target_rq->lock);
  2978. }
  2979. #ifdef CONFIG_NO_HZ
  2980. static struct {
  2981. atomic_t load_balancer;
  2982. cpumask_t cpu_mask;
  2983. } nohz ____cacheline_aligned = {
  2984. .load_balancer = ATOMIC_INIT(-1),
  2985. .cpu_mask = CPU_MASK_NONE,
  2986. };
  2987. /*
  2988. * This routine will try to nominate the ilb (idle load balancing)
  2989. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2990. * load balancing on behalf of all those cpus. If all the cpus in the system
  2991. * go into this tickless mode, then there will be no ilb owner (as there is
  2992. * no need for one) and all the cpus will sleep till the next wakeup event
  2993. * arrives...
  2994. *
  2995. * For the ilb owner, tick is not stopped. And this tick will be used
  2996. * for idle load balancing. ilb owner will still be part of
  2997. * nohz.cpu_mask..
  2998. *
  2999. * While stopping the tick, this cpu will become the ilb owner if there
  3000. * is no other owner. And will be the owner till that cpu becomes busy
  3001. * or if all cpus in the system stop their ticks at which point
  3002. * there is no need for ilb owner.
  3003. *
  3004. * When the ilb owner becomes busy, it nominates another owner, during the
  3005. * next busy scheduler_tick()
  3006. */
  3007. int select_nohz_load_balancer(int stop_tick)
  3008. {
  3009. int cpu = smp_processor_id();
  3010. if (stop_tick) {
  3011. cpu_set(cpu, nohz.cpu_mask);
  3012. cpu_rq(cpu)->in_nohz_recently = 1;
  3013. /*
  3014. * If we are going offline and still the leader, give up!
  3015. */
  3016. if (cpu_is_offline(cpu) &&
  3017. atomic_read(&nohz.load_balancer) == cpu) {
  3018. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3019. BUG();
  3020. return 0;
  3021. }
  3022. /* time for ilb owner also to sleep */
  3023. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3024. if (atomic_read(&nohz.load_balancer) == cpu)
  3025. atomic_set(&nohz.load_balancer, -1);
  3026. return 0;
  3027. }
  3028. if (atomic_read(&nohz.load_balancer) == -1) {
  3029. /* make me the ilb owner */
  3030. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3031. return 1;
  3032. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3033. return 1;
  3034. } else {
  3035. if (!cpu_isset(cpu, nohz.cpu_mask))
  3036. return 0;
  3037. cpu_clear(cpu, nohz.cpu_mask);
  3038. if (atomic_read(&nohz.load_balancer) == cpu)
  3039. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3040. BUG();
  3041. }
  3042. return 0;
  3043. }
  3044. #endif
  3045. static DEFINE_SPINLOCK(balancing);
  3046. /*
  3047. * It checks each scheduling domain to see if it is due to be balanced,
  3048. * and initiates a balancing operation if so.
  3049. *
  3050. * Balancing parameters are set up in arch_init_sched_domains.
  3051. */
  3052. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3053. {
  3054. int balance = 1;
  3055. struct rq *rq = cpu_rq(cpu);
  3056. unsigned long interval;
  3057. struct sched_domain *sd;
  3058. /* Earliest time when we have to do rebalance again */
  3059. unsigned long next_balance = jiffies + 60*HZ;
  3060. int update_next_balance = 0;
  3061. cpumask_t tmp;
  3062. for_each_domain(cpu, sd) {
  3063. if (!(sd->flags & SD_LOAD_BALANCE))
  3064. continue;
  3065. interval = sd->balance_interval;
  3066. if (idle != CPU_IDLE)
  3067. interval *= sd->busy_factor;
  3068. /* scale ms to jiffies */
  3069. interval = msecs_to_jiffies(interval);
  3070. if (unlikely(!interval))
  3071. interval = 1;
  3072. if (interval > HZ*NR_CPUS/10)
  3073. interval = HZ*NR_CPUS/10;
  3074. if (sd->flags & SD_SERIALIZE) {
  3075. if (!spin_trylock(&balancing))
  3076. goto out;
  3077. }
  3078. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3079. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3080. /*
  3081. * We've pulled tasks over so either we're no
  3082. * longer idle, or one of our SMT siblings is
  3083. * not idle.
  3084. */
  3085. idle = CPU_NOT_IDLE;
  3086. }
  3087. sd->last_balance = jiffies;
  3088. }
  3089. if (sd->flags & SD_SERIALIZE)
  3090. spin_unlock(&balancing);
  3091. out:
  3092. if (time_after(next_balance, sd->last_balance + interval)) {
  3093. next_balance = sd->last_balance + interval;
  3094. update_next_balance = 1;
  3095. }
  3096. /*
  3097. * Stop the load balance at this level. There is another
  3098. * CPU in our sched group which is doing load balancing more
  3099. * actively.
  3100. */
  3101. if (!balance)
  3102. break;
  3103. }
  3104. /*
  3105. * next_balance will be updated only when there is a need.
  3106. * When the cpu is attached to null domain for ex, it will not be
  3107. * updated.
  3108. */
  3109. if (likely(update_next_balance))
  3110. rq->next_balance = next_balance;
  3111. }
  3112. /*
  3113. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3114. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3115. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3116. */
  3117. static void run_rebalance_domains(struct softirq_action *h)
  3118. {
  3119. int this_cpu = smp_processor_id();
  3120. struct rq *this_rq = cpu_rq(this_cpu);
  3121. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3122. CPU_IDLE : CPU_NOT_IDLE;
  3123. rebalance_domains(this_cpu, idle);
  3124. #ifdef CONFIG_NO_HZ
  3125. /*
  3126. * If this cpu is the owner for idle load balancing, then do the
  3127. * balancing on behalf of the other idle cpus whose ticks are
  3128. * stopped.
  3129. */
  3130. if (this_rq->idle_at_tick &&
  3131. atomic_read(&nohz.load_balancer) == this_cpu) {
  3132. cpumask_t cpus = nohz.cpu_mask;
  3133. struct rq *rq;
  3134. int balance_cpu;
  3135. cpu_clear(this_cpu, cpus);
  3136. for_each_cpu_mask(balance_cpu, cpus) {
  3137. /*
  3138. * If this cpu gets work to do, stop the load balancing
  3139. * work being done for other cpus. Next load
  3140. * balancing owner will pick it up.
  3141. */
  3142. if (need_resched())
  3143. break;
  3144. rebalance_domains(balance_cpu, CPU_IDLE);
  3145. rq = cpu_rq(balance_cpu);
  3146. if (time_after(this_rq->next_balance, rq->next_balance))
  3147. this_rq->next_balance = rq->next_balance;
  3148. }
  3149. }
  3150. #endif
  3151. }
  3152. /*
  3153. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3154. *
  3155. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3156. * idle load balancing owner or decide to stop the periodic load balancing,
  3157. * if the whole system is idle.
  3158. */
  3159. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3160. {
  3161. #ifdef CONFIG_NO_HZ
  3162. /*
  3163. * If we were in the nohz mode recently and busy at the current
  3164. * scheduler tick, then check if we need to nominate new idle
  3165. * load balancer.
  3166. */
  3167. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3168. rq->in_nohz_recently = 0;
  3169. if (atomic_read(&nohz.load_balancer) == cpu) {
  3170. cpu_clear(cpu, nohz.cpu_mask);
  3171. atomic_set(&nohz.load_balancer, -1);
  3172. }
  3173. if (atomic_read(&nohz.load_balancer) == -1) {
  3174. /*
  3175. * simple selection for now: Nominate the
  3176. * first cpu in the nohz list to be the next
  3177. * ilb owner.
  3178. *
  3179. * TBD: Traverse the sched domains and nominate
  3180. * the nearest cpu in the nohz.cpu_mask.
  3181. */
  3182. int ilb = first_cpu(nohz.cpu_mask);
  3183. if (ilb < nr_cpu_ids)
  3184. resched_cpu(ilb);
  3185. }
  3186. }
  3187. /*
  3188. * If this cpu is idle and doing idle load balancing for all the
  3189. * cpus with ticks stopped, is it time for that to stop?
  3190. */
  3191. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3192. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3193. resched_cpu(cpu);
  3194. return;
  3195. }
  3196. /*
  3197. * If this cpu is idle and the idle load balancing is done by
  3198. * someone else, then no need raise the SCHED_SOFTIRQ
  3199. */
  3200. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3201. cpu_isset(cpu, nohz.cpu_mask))
  3202. return;
  3203. #endif
  3204. if (time_after_eq(jiffies, rq->next_balance))
  3205. raise_softirq(SCHED_SOFTIRQ);
  3206. }
  3207. #else /* CONFIG_SMP */
  3208. /*
  3209. * on UP we do not need to balance between CPUs:
  3210. */
  3211. static inline void idle_balance(int cpu, struct rq *rq)
  3212. {
  3213. }
  3214. #endif
  3215. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3216. EXPORT_PER_CPU_SYMBOL(kstat);
  3217. /*
  3218. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3219. * that have not yet been banked in case the task is currently running.
  3220. */
  3221. unsigned long long task_sched_runtime(struct task_struct *p)
  3222. {
  3223. unsigned long flags;
  3224. u64 ns, delta_exec;
  3225. struct rq *rq;
  3226. rq = task_rq_lock(p, &flags);
  3227. ns = p->se.sum_exec_runtime;
  3228. if (task_current(rq, p)) {
  3229. update_rq_clock(rq);
  3230. delta_exec = rq->clock - p->se.exec_start;
  3231. if ((s64)delta_exec > 0)
  3232. ns += delta_exec;
  3233. }
  3234. task_rq_unlock(rq, &flags);
  3235. return ns;
  3236. }
  3237. /*
  3238. * Account user cpu time to a process.
  3239. * @p: the process that the cpu time gets accounted to
  3240. * @cputime: the cpu time spent in user space since the last update
  3241. */
  3242. void account_user_time(struct task_struct *p, cputime_t cputime)
  3243. {
  3244. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3245. cputime64_t tmp;
  3246. p->utime = cputime_add(p->utime, cputime);
  3247. /* Add user time to cpustat. */
  3248. tmp = cputime_to_cputime64(cputime);
  3249. if (TASK_NICE(p) > 0)
  3250. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3251. else
  3252. cpustat->user = cputime64_add(cpustat->user, tmp);
  3253. }
  3254. /*
  3255. * Account guest cpu time to a process.
  3256. * @p: the process that the cpu time gets accounted to
  3257. * @cputime: the cpu time spent in virtual machine since the last update
  3258. */
  3259. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3260. {
  3261. cputime64_t tmp;
  3262. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3263. tmp = cputime_to_cputime64(cputime);
  3264. p->utime = cputime_add(p->utime, cputime);
  3265. p->gtime = cputime_add(p->gtime, cputime);
  3266. cpustat->user = cputime64_add(cpustat->user, tmp);
  3267. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3268. }
  3269. /*
  3270. * Account scaled user cpu time to a process.
  3271. * @p: the process that the cpu time gets accounted to
  3272. * @cputime: the cpu time spent in user space since the last update
  3273. */
  3274. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3275. {
  3276. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3277. }
  3278. /*
  3279. * Account system cpu time to a process.
  3280. * @p: the process that the cpu time gets accounted to
  3281. * @hardirq_offset: the offset to subtract from hardirq_count()
  3282. * @cputime: the cpu time spent in kernel space since the last update
  3283. */
  3284. void account_system_time(struct task_struct *p, int hardirq_offset,
  3285. cputime_t cputime)
  3286. {
  3287. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3288. struct rq *rq = this_rq();
  3289. cputime64_t tmp;
  3290. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3291. return account_guest_time(p, cputime);
  3292. p->stime = cputime_add(p->stime, cputime);
  3293. /* Add system time to cpustat. */
  3294. tmp = cputime_to_cputime64(cputime);
  3295. if (hardirq_count() - hardirq_offset)
  3296. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3297. else if (softirq_count())
  3298. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3299. else if (p != rq->idle)
  3300. cpustat->system = cputime64_add(cpustat->system, tmp);
  3301. else if (atomic_read(&rq->nr_iowait) > 0)
  3302. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3303. else
  3304. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3305. /* Account for system time used */
  3306. acct_update_integrals(p);
  3307. }
  3308. /*
  3309. * Account scaled system cpu time to a process.
  3310. * @p: the process that the cpu time gets accounted to
  3311. * @hardirq_offset: the offset to subtract from hardirq_count()
  3312. * @cputime: the cpu time spent in kernel space since the last update
  3313. */
  3314. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3315. {
  3316. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3317. }
  3318. /*
  3319. * Account for involuntary wait time.
  3320. * @p: the process from which the cpu time has been stolen
  3321. * @steal: the cpu time spent in involuntary wait
  3322. */
  3323. void account_steal_time(struct task_struct *p, cputime_t steal)
  3324. {
  3325. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3326. cputime64_t tmp = cputime_to_cputime64(steal);
  3327. struct rq *rq = this_rq();
  3328. if (p == rq->idle) {
  3329. p->stime = cputime_add(p->stime, steal);
  3330. if (atomic_read(&rq->nr_iowait) > 0)
  3331. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3332. else
  3333. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3334. } else
  3335. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3336. }
  3337. /*
  3338. * This function gets called by the timer code, with HZ frequency.
  3339. * We call it with interrupts disabled.
  3340. *
  3341. * It also gets called by the fork code, when changing the parent's
  3342. * timeslices.
  3343. */
  3344. void scheduler_tick(void)
  3345. {
  3346. int cpu = smp_processor_id();
  3347. struct rq *rq = cpu_rq(cpu);
  3348. struct task_struct *curr = rq->curr;
  3349. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3350. spin_lock(&rq->lock);
  3351. __update_rq_clock(rq);
  3352. /*
  3353. * Let rq->clock advance by at least TICK_NSEC:
  3354. */
  3355. if (unlikely(rq->clock < next_tick)) {
  3356. rq->clock = next_tick;
  3357. rq->clock_underflows++;
  3358. }
  3359. rq->tick_timestamp = rq->clock;
  3360. update_last_tick_seen(rq);
  3361. update_cpu_load(rq);
  3362. curr->sched_class->task_tick(rq, curr, 0);
  3363. spin_unlock(&rq->lock);
  3364. #ifdef CONFIG_SMP
  3365. rq->idle_at_tick = idle_cpu(cpu);
  3366. trigger_load_balance(rq, cpu);
  3367. #endif
  3368. }
  3369. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3370. void __kprobes add_preempt_count(int val)
  3371. {
  3372. /*
  3373. * Underflow?
  3374. */
  3375. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3376. return;
  3377. preempt_count() += val;
  3378. /*
  3379. * Spinlock count overflowing soon?
  3380. */
  3381. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3382. PREEMPT_MASK - 10);
  3383. }
  3384. EXPORT_SYMBOL(add_preempt_count);
  3385. void __kprobes sub_preempt_count(int val)
  3386. {
  3387. /*
  3388. * Underflow?
  3389. */
  3390. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3391. return;
  3392. /*
  3393. * Is the spinlock portion underflowing?
  3394. */
  3395. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3396. !(preempt_count() & PREEMPT_MASK)))
  3397. return;
  3398. preempt_count() -= val;
  3399. }
  3400. EXPORT_SYMBOL(sub_preempt_count);
  3401. #endif
  3402. /*
  3403. * Print scheduling while atomic bug:
  3404. */
  3405. static noinline void __schedule_bug(struct task_struct *prev)
  3406. {
  3407. struct pt_regs *regs = get_irq_regs();
  3408. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3409. prev->comm, prev->pid, preempt_count());
  3410. debug_show_held_locks(prev);
  3411. if (irqs_disabled())
  3412. print_irqtrace_events(prev);
  3413. if (regs)
  3414. show_regs(regs);
  3415. else
  3416. dump_stack();
  3417. }
  3418. /*
  3419. * Various schedule()-time debugging checks and statistics:
  3420. */
  3421. static inline void schedule_debug(struct task_struct *prev)
  3422. {
  3423. /*
  3424. * Test if we are atomic. Since do_exit() needs to call into
  3425. * schedule() atomically, we ignore that path for now.
  3426. * Otherwise, whine if we are scheduling when we should not be.
  3427. */
  3428. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3429. __schedule_bug(prev);
  3430. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3431. schedstat_inc(this_rq(), sched_count);
  3432. #ifdef CONFIG_SCHEDSTATS
  3433. if (unlikely(prev->lock_depth >= 0)) {
  3434. schedstat_inc(this_rq(), bkl_count);
  3435. schedstat_inc(prev, sched_info.bkl_count);
  3436. }
  3437. #endif
  3438. }
  3439. /*
  3440. * Pick up the highest-prio task:
  3441. */
  3442. static inline struct task_struct *
  3443. pick_next_task(struct rq *rq, struct task_struct *prev)
  3444. {
  3445. const struct sched_class *class;
  3446. struct task_struct *p;
  3447. /*
  3448. * Optimization: we know that if all tasks are in
  3449. * the fair class we can call that function directly:
  3450. */
  3451. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3452. p = fair_sched_class.pick_next_task(rq);
  3453. if (likely(p))
  3454. return p;
  3455. }
  3456. class = sched_class_highest;
  3457. for ( ; ; ) {
  3458. p = class->pick_next_task(rq);
  3459. if (p)
  3460. return p;
  3461. /*
  3462. * Will never be NULL as the idle class always
  3463. * returns a non-NULL p:
  3464. */
  3465. class = class->next;
  3466. }
  3467. }
  3468. /*
  3469. * schedule() is the main scheduler function.
  3470. */
  3471. asmlinkage void __sched schedule(void)
  3472. {
  3473. struct task_struct *prev, *next;
  3474. unsigned long *switch_count;
  3475. struct rq *rq;
  3476. int cpu;
  3477. need_resched:
  3478. preempt_disable();
  3479. cpu = smp_processor_id();
  3480. rq = cpu_rq(cpu);
  3481. rcu_qsctr_inc(cpu);
  3482. prev = rq->curr;
  3483. switch_count = &prev->nivcsw;
  3484. release_kernel_lock(prev);
  3485. need_resched_nonpreemptible:
  3486. schedule_debug(prev);
  3487. hrtick_clear(rq);
  3488. /*
  3489. * Do the rq-clock update outside the rq lock:
  3490. */
  3491. local_irq_disable();
  3492. __update_rq_clock(rq);
  3493. spin_lock(&rq->lock);
  3494. clear_tsk_need_resched(prev);
  3495. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3496. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3497. signal_pending(prev))) {
  3498. prev->state = TASK_RUNNING;
  3499. } else {
  3500. deactivate_task(rq, prev, 1);
  3501. }
  3502. switch_count = &prev->nvcsw;
  3503. }
  3504. #ifdef CONFIG_SMP
  3505. if (prev->sched_class->pre_schedule)
  3506. prev->sched_class->pre_schedule(rq, prev);
  3507. #endif
  3508. if (unlikely(!rq->nr_running))
  3509. idle_balance(cpu, rq);
  3510. prev->sched_class->put_prev_task(rq, prev);
  3511. next = pick_next_task(rq, prev);
  3512. sched_info_switch(prev, next);
  3513. if (likely(prev != next)) {
  3514. rq->nr_switches++;
  3515. rq->curr = next;
  3516. ++*switch_count;
  3517. context_switch(rq, prev, next); /* unlocks the rq */
  3518. /*
  3519. * the context switch might have flipped the stack from under
  3520. * us, hence refresh the local variables.
  3521. */
  3522. cpu = smp_processor_id();
  3523. rq = cpu_rq(cpu);
  3524. } else
  3525. spin_unlock_irq(&rq->lock);
  3526. hrtick_set(rq);
  3527. if (unlikely(reacquire_kernel_lock(current) < 0))
  3528. goto need_resched_nonpreemptible;
  3529. preempt_enable_no_resched();
  3530. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3531. goto need_resched;
  3532. }
  3533. EXPORT_SYMBOL(schedule);
  3534. #ifdef CONFIG_PREEMPT
  3535. /*
  3536. * this is the entry point to schedule() from in-kernel preemption
  3537. * off of preempt_enable. Kernel preemptions off return from interrupt
  3538. * occur there and call schedule directly.
  3539. */
  3540. asmlinkage void __sched preempt_schedule(void)
  3541. {
  3542. struct thread_info *ti = current_thread_info();
  3543. struct task_struct *task = current;
  3544. int saved_lock_depth;
  3545. /*
  3546. * If there is a non-zero preempt_count or interrupts are disabled,
  3547. * we do not want to preempt the current task. Just return..
  3548. */
  3549. if (likely(ti->preempt_count || irqs_disabled()))
  3550. return;
  3551. do {
  3552. add_preempt_count(PREEMPT_ACTIVE);
  3553. /*
  3554. * We keep the big kernel semaphore locked, but we
  3555. * clear ->lock_depth so that schedule() doesnt
  3556. * auto-release the semaphore:
  3557. */
  3558. saved_lock_depth = task->lock_depth;
  3559. task->lock_depth = -1;
  3560. schedule();
  3561. task->lock_depth = saved_lock_depth;
  3562. sub_preempt_count(PREEMPT_ACTIVE);
  3563. /*
  3564. * Check again in case we missed a preemption opportunity
  3565. * between schedule and now.
  3566. */
  3567. barrier();
  3568. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3569. }
  3570. EXPORT_SYMBOL(preempt_schedule);
  3571. /*
  3572. * this is the entry point to schedule() from kernel preemption
  3573. * off of irq context.
  3574. * Note, that this is called and return with irqs disabled. This will
  3575. * protect us against recursive calling from irq.
  3576. */
  3577. asmlinkage void __sched preempt_schedule_irq(void)
  3578. {
  3579. struct thread_info *ti = current_thread_info();
  3580. struct task_struct *task = current;
  3581. int saved_lock_depth;
  3582. /* Catch callers which need to be fixed */
  3583. BUG_ON(ti->preempt_count || !irqs_disabled());
  3584. do {
  3585. add_preempt_count(PREEMPT_ACTIVE);
  3586. /*
  3587. * We keep the big kernel semaphore locked, but we
  3588. * clear ->lock_depth so that schedule() doesnt
  3589. * auto-release the semaphore:
  3590. */
  3591. saved_lock_depth = task->lock_depth;
  3592. task->lock_depth = -1;
  3593. local_irq_enable();
  3594. schedule();
  3595. local_irq_disable();
  3596. task->lock_depth = saved_lock_depth;
  3597. sub_preempt_count(PREEMPT_ACTIVE);
  3598. /*
  3599. * Check again in case we missed a preemption opportunity
  3600. * between schedule and now.
  3601. */
  3602. barrier();
  3603. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3604. }
  3605. #endif /* CONFIG_PREEMPT */
  3606. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3607. void *key)
  3608. {
  3609. return try_to_wake_up(curr->private, mode, sync);
  3610. }
  3611. EXPORT_SYMBOL(default_wake_function);
  3612. /*
  3613. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3614. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3615. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3616. *
  3617. * There are circumstances in which we can try to wake a task which has already
  3618. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3619. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3620. */
  3621. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3622. int nr_exclusive, int sync, void *key)
  3623. {
  3624. wait_queue_t *curr, *next;
  3625. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3626. unsigned flags = curr->flags;
  3627. if (curr->func(curr, mode, sync, key) &&
  3628. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3629. break;
  3630. }
  3631. }
  3632. /**
  3633. * __wake_up - wake up threads blocked on a waitqueue.
  3634. * @q: the waitqueue
  3635. * @mode: which threads
  3636. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3637. * @key: is directly passed to the wakeup function
  3638. */
  3639. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3640. int nr_exclusive, void *key)
  3641. {
  3642. unsigned long flags;
  3643. spin_lock_irqsave(&q->lock, flags);
  3644. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3645. spin_unlock_irqrestore(&q->lock, flags);
  3646. }
  3647. EXPORT_SYMBOL(__wake_up);
  3648. /*
  3649. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3650. */
  3651. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3652. {
  3653. __wake_up_common(q, mode, 1, 0, NULL);
  3654. }
  3655. /**
  3656. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3657. * @q: the waitqueue
  3658. * @mode: which threads
  3659. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3660. *
  3661. * The sync wakeup differs that the waker knows that it will schedule
  3662. * away soon, so while the target thread will be woken up, it will not
  3663. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3664. * with each other. This can prevent needless bouncing between CPUs.
  3665. *
  3666. * On UP it can prevent extra preemption.
  3667. */
  3668. void
  3669. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3670. {
  3671. unsigned long flags;
  3672. int sync = 1;
  3673. if (unlikely(!q))
  3674. return;
  3675. if (unlikely(!nr_exclusive))
  3676. sync = 0;
  3677. spin_lock_irqsave(&q->lock, flags);
  3678. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3679. spin_unlock_irqrestore(&q->lock, flags);
  3680. }
  3681. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3682. void complete(struct completion *x)
  3683. {
  3684. unsigned long flags;
  3685. spin_lock_irqsave(&x->wait.lock, flags);
  3686. x->done++;
  3687. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3688. spin_unlock_irqrestore(&x->wait.lock, flags);
  3689. }
  3690. EXPORT_SYMBOL(complete);
  3691. void complete_all(struct completion *x)
  3692. {
  3693. unsigned long flags;
  3694. spin_lock_irqsave(&x->wait.lock, flags);
  3695. x->done += UINT_MAX/2;
  3696. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3697. spin_unlock_irqrestore(&x->wait.lock, flags);
  3698. }
  3699. EXPORT_SYMBOL(complete_all);
  3700. static inline long __sched
  3701. do_wait_for_common(struct completion *x, long timeout, int state)
  3702. {
  3703. if (!x->done) {
  3704. DECLARE_WAITQUEUE(wait, current);
  3705. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3706. __add_wait_queue_tail(&x->wait, &wait);
  3707. do {
  3708. if ((state == TASK_INTERRUPTIBLE &&
  3709. signal_pending(current)) ||
  3710. (state == TASK_KILLABLE &&
  3711. fatal_signal_pending(current))) {
  3712. __remove_wait_queue(&x->wait, &wait);
  3713. return -ERESTARTSYS;
  3714. }
  3715. __set_current_state(state);
  3716. spin_unlock_irq(&x->wait.lock);
  3717. timeout = schedule_timeout(timeout);
  3718. spin_lock_irq(&x->wait.lock);
  3719. if (!timeout) {
  3720. __remove_wait_queue(&x->wait, &wait);
  3721. return timeout;
  3722. }
  3723. } while (!x->done);
  3724. __remove_wait_queue(&x->wait, &wait);
  3725. }
  3726. x->done--;
  3727. return timeout;
  3728. }
  3729. static long __sched
  3730. wait_for_common(struct completion *x, long timeout, int state)
  3731. {
  3732. might_sleep();
  3733. spin_lock_irq(&x->wait.lock);
  3734. timeout = do_wait_for_common(x, timeout, state);
  3735. spin_unlock_irq(&x->wait.lock);
  3736. return timeout;
  3737. }
  3738. void __sched wait_for_completion(struct completion *x)
  3739. {
  3740. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3741. }
  3742. EXPORT_SYMBOL(wait_for_completion);
  3743. unsigned long __sched
  3744. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3745. {
  3746. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3747. }
  3748. EXPORT_SYMBOL(wait_for_completion_timeout);
  3749. int __sched wait_for_completion_interruptible(struct completion *x)
  3750. {
  3751. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3752. if (t == -ERESTARTSYS)
  3753. return t;
  3754. return 0;
  3755. }
  3756. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3757. unsigned long __sched
  3758. wait_for_completion_interruptible_timeout(struct completion *x,
  3759. unsigned long timeout)
  3760. {
  3761. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3762. }
  3763. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3764. int __sched wait_for_completion_killable(struct completion *x)
  3765. {
  3766. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3767. if (t == -ERESTARTSYS)
  3768. return t;
  3769. return 0;
  3770. }
  3771. EXPORT_SYMBOL(wait_for_completion_killable);
  3772. static long __sched
  3773. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3774. {
  3775. unsigned long flags;
  3776. wait_queue_t wait;
  3777. init_waitqueue_entry(&wait, current);
  3778. __set_current_state(state);
  3779. spin_lock_irqsave(&q->lock, flags);
  3780. __add_wait_queue(q, &wait);
  3781. spin_unlock(&q->lock);
  3782. timeout = schedule_timeout(timeout);
  3783. spin_lock_irq(&q->lock);
  3784. __remove_wait_queue(q, &wait);
  3785. spin_unlock_irqrestore(&q->lock, flags);
  3786. return timeout;
  3787. }
  3788. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3789. {
  3790. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3791. }
  3792. EXPORT_SYMBOL(interruptible_sleep_on);
  3793. long __sched
  3794. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3795. {
  3796. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3797. }
  3798. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3799. void __sched sleep_on(wait_queue_head_t *q)
  3800. {
  3801. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3802. }
  3803. EXPORT_SYMBOL(sleep_on);
  3804. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3805. {
  3806. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3807. }
  3808. EXPORT_SYMBOL(sleep_on_timeout);
  3809. #ifdef CONFIG_RT_MUTEXES
  3810. /*
  3811. * rt_mutex_setprio - set the current priority of a task
  3812. * @p: task
  3813. * @prio: prio value (kernel-internal form)
  3814. *
  3815. * This function changes the 'effective' priority of a task. It does
  3816. * not touch ->normal_prio like __setscheduler().
  3817. *
  3818. * Used by the rt_mutex code to implement priority inheritance logic.
  3819. */
  3820. void rt_mutex_setprio(struct task_struct *p, int prio)
  3821. {
  3822. unsigned long flags;
  3823. int oldprio, on_rq, running;
  3824. struct rq *rq;
  3825. const struct sched_class *prev_class = p->sched_class;
  3826. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3827. rq = task_rq_lock(p, &flags);
  3828. update_rq_clock(rq);
  3829. oldprio = p->prio;
  3830. on_rq = p->se.on_rq;
  3831. running = task_current(rq, p);
  3832. if (on_rq)
  3833. dequeue_task(rq, p, 0);
  3834. if (running)
  3835. p->sched_class->put_prev_task(rq, p);
  3836. if (rt_prio(prio))
  3837. p->sched_class = &rt_sched_class;
  3838. else
  3839. p->sched_class = &fair_sched_class;
  3840. p->prio = prio;
  3841. if (running)
  3842. p->sched_class->set_curr_task(rq);
  3843. if (on_rq) {
  3844. enqueue_task(rq, p, 0);
  3845. check_class_changed(rq, p, prev_class, oldprio, running);
  3846. }
  3847. task_rq_unlock(rq, &flags);
  3848. }
  3849. #endif
  3850. void set_user_nice(struct task_struct *p, long nice)
  3851. {
  3852. int old_prio, delta, on_rq;
  3853. unsigned long flags;
  3854. struct rq *rq;
  3855. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3856. return;
  3857. /*
  3858. * We have to be careful, if called from sys_setpriority(),
  3859. * the task might be in the middle of scheduling on another CPU.
  3860. */
  3861. rq = task_rq_lock(p, &flags);
  3862. update_rq_clock(rq);
  3863. /*
  3864. * The RT priorities are set via sched_setscheduler(), but we still
  3865. * allow the 'normal' nice value to be set - but as expected
  3866. * it wont have any effect on scheduling until the task is
  3867. * SCHED_FIFO/SCHED_RR:
  3868. */
  3869. if (task_has_rt_policy(p)) {
  3870. p->static_prio = NICE_TO_PRIO(nice);
  3871. goto out_unlock;
  3872. }
  3873. on_rq = p->se.on_rq;
  3874. if (on_rq) {
  3875. dequeue_task(rq, p, 0);
  3876. dec_load(rq, p);
  3877. }
  3878. p->static_prio = NICE_TO_PRIO(nice);
  3879. set_load_weight(p);
  3880. old_prio = p->prio;
  3881. p->prio = effective_prio(p);
  3882. delta = p->prio - old_prio;
  3883. if (on_rq) {
  3884. enqueue_task(rq, p, 0);
  3885. inc_load(rq, p);
  3886. /*
  3887. * If the task increased its priority or is running and
  3888. * lowered its priority, then reschedule its CPU:
  3889. */
  3890. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3891. resched_task(rq->curr);
  3892. }
  3893. out_unlock:
  3894. task_rq_unlock(rq, &flags);
  3895. }
  3896. EXPORT_SYMBOL(set_user_nice);
  3897. /*
  3898. * can_nice - check if a task can reduce its nice value
  3899. * @p: task
  3900. * @nice: nice value
  3901. */
  3902. int can_nice(const struct task_struct *p, const int nice)
  3903. {
  3904. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3905. int nice_rlim = 20 - nice;
  3906. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3907. capable(CAP_SYS_NICE));
  3908. }
  3909. #ifdef __ARCH_WANT_SYS_NICE
  3910. /*
  3911. * sys_nice - change the priority of the current process.
  3912. * @increment: priority increment
  3913. *
  3914. * sys_setpriority is a more generic, but much slower function that
  3915. * does similar things.
  3916. */
  3917. asmlinkage long sys_nice(int increment)
  3918. {
  3919. long nice, retval;
  3920. /*
  3921. * Setpriority might change our priority at the same moment.
  3922. * We don't have to worry. Conceptually one call occurs first
  3923. * and we have a single winner.
  3924. */
  3925. if (increment < -40)
  3926. increment = -40;
  3927. if (increment > 40)
  3928. increment = 40;
  3929. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3930. if (nice < -20)
  3931. nice = -20;
  3932. if (nice > 19)
  3933. nice = 19;
  3934. if (increment < 0 && !can_nice(current, nice))
  3935. return -EPERM;
  3936. retval = security_task_setnice(current, nice);
  3937. if (retval)
  3938. return retval;
  3939. set_user_nice(current, nice);
  3940. return 0;
  3941. }
  3942. #endif
  3943. /**
  3944. * task_prio - return the priority value of a given task.
  3945. * @p: the task in question.
  3946. *
  3947. * This is the priority value as seen by users in /proc.
  3948. * RT tasks are offset by -200. Normal tasks are centered
  3949. * around 0, value goes from -16 to +15.
  3950. */
  3951. int task_prio(const struct task_struct *p)
  3952. {
  3953. return p->prio - MAX_RT_PRIO;
  3954. }
  3955. /**
  3956. * task_nice - return the nice value of a given task.
  3957. * @p: the task in question.
  3958. */
  3959. int task_nice(const struct task_struct *p)
  3960. {
  3961. return TASK_NICE(p);
  3962. }
  3963. EXPORT_SYMBOL(task_nice);
  3964. /**
  3965. * idle_cpu - is a given cpu idle currently?
  3966. * @cpu: the processor in question.
  3967. */
  3968. int idle_cpu(int cpu)
  3969. {
  3970. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3971. }
  3972. /**
  3973. * idle_task - return the idle task for a given cpu.
  3974. * @cpu: the processor in question.
  3975. */
  3976. struct task_struct *idle_task(int cpu)
  3977. {
  3978. return cpu_rq(cpu)->idle;
  3979. }
  3980. /**
  3981. * find_process_by_pid - find a process with a matching PID value.
  3982. * @pid: the pid in question.
  3983. */
  3984. static struct task_struct *find_process_by_pid(pid_t pid)
  3985. {
  3986. return pid ? find_task_by_vpid(pid) : current;
  3987. }
  3988. /* Actually do priority change: must hold rq lock. */
  3989. static void
  3990. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3991. {
  3992. BUG_ON(p->se.on_rq);
  3993. p->policy = policy;
  3994. switch (p->policy) {
  3995. case SCHED_NORMAL:
  3996. case SCHED_BATCH:
  3997. case SCHED_IDLE:
  3998. p->sched_class = &fair_sched_class;
  3999. break;
  4000. case SCHED_FIFO:
  4001. case SCHED_RR:
  4002. p->sched_class = &rt_sched_class;
  4003. break;
  4004. }
  4005. p->rt_priority = prio;
  4006. p->normal_prio = normal_prio(p);
  4007. /* we are holding p->pi_lock already */
  4008. p->prio = rt_mutex_getprio(p);
  4009. set_load_weight(p);
  4010. }
  4011. /**
  4012. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4013. * @p: the task in question.
  4014. * @policy: new policy.
  4015. * @param: structure containing the new RT priority.
  4016. *
  4017. * NOTE that the task may be already dead.
  4018. */
  4019. int sched_setscheduler(struct task_struct *p, int policy,
  4020. struct sched_param *param)
  4021. {
  4022. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4023. unsigned long flags;
  4024. const struct sched_class *prev_class = p->sched_class;
  4025. struct rq *rq;
  4026. /* may grab non-irq protected spin_locks */
  4027. BUG_ON(in_interrupt());
  4028. recheck:
  4029. /* double check policy once rq lock held */
  4030. if (policy < 0)
  4031. policy = oldpolicy = p->policy;
  4032. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4033. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4034. policy != SCHED_IDLE)
  4035. return -EINVAL;
  4036. /*
  4037. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4038. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4039. * SCHED_BATCH and SCHED_IDLE is 0.
  4040. */
  4041. if (param->sched_priority < 0 ||
  4042. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4043. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4044. return -EINVAL;
  4045. if (rt_policy(policy) != (param->sched_priority != 0))
  4046. return -EINVAL;
  4047. /*
  4048. * Allow unprivileged RT tasks to decrease priority:
  4049. */
  4050. if (!capable(CAP_SYS_NICE)) {
  4051. if (rt_policy(policy)) {
  4052. unsigned long rlim_rtprio;
  4053. if (!lock_task_sighand(p, &flags))
  4054. return -ESRCH;
  4055. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4056. unlock_task_sighand(p, &flags);
  4057. /* can't set/change the rt policy */
  4058. if (policy != p->policy && !rlim_rtprio)
  4059. return -EPERM;
  4060. /* can't increase priority */
  4061. if (param->sched_priority > p->rt_priority &&
  4062. param->sched_priority > rlim_rtprio)
  4063. return -EPERM;
  4064. }
  4065. /*
  4066. * Like positive nice levels, dont allow tasks to
  4067. * move out of SCHED_IDLE either:
  4068. */
  4069. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4070. return -EPERM;
  4071. /* can't change other user's priorities */
  4072. if ((current->euid != p->euid) &&
  4073. (current->euid != p->uid))
  4074. return -EPERM;
  4075. }
  4076. #ifdef CONFIG_RT_GROUP_SCHED
  4077. /*
  4078. * Do not allow realtime tasks into groups that have no runtime
  4079. * assigned.
  4080. */
  4081. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4082. return -EPERM;
  4083. #endif
  4084. retval = security_task_setscheduler(p, policy, param);
  4085. if (retval)
  4086. return retval;
  4087. /*
  4088. * make sure no PI-waiters arrive (or leave) while we are
  4089. * changing the priority of the task:
  4090. */
  4091. spin_lock_irqsave(&p->pi_lock, flags);
  4092. /*
  4093. * To be able to change p->policy safely, the apropriate
  4094. * runqueue lock must be held.
  4095. */
  4096. rq = __task_rq_lock(p);
  4097. /* recheck policy now with rq lock held */
  4098. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4099. policy = oldpolicy = -1;
  4100. __task_rq_unlock(rq);
  4101. spin_unlock_irqrestore(&p->pi_lock, flags);
  4102. goto recheck;
  4103. }
  4104. update_rq_clock(rq);
  4105. on_rq = p->se.on_rq;
  4106. running = task_current(rq, p);
  4107. if (on_rq)
  4108. deactivate_task(rq, p, 0);
  4109. if (running)
  4110. p->sched_class->put_prev_task(rq, p);
  4111. oldprio = p->prio;
  4112. __setscheduler(rq, p, policy, param->sched_priority);
  4113. if (running)
  4114. p->sched_class->set_curr_task(rq);
  4115. if (on_rq) {
  4116. activate_task(rq, p, 0);
  4117. check_class_changed(rq, p, prev_class, oldprio, running);
  4118. }
  4119. __task_rq_unlock(rq);
  4120. spin_unlock_irqrestore(&p->pi_lock, flags);
  4121. rt_mutex_adjust_pi(p);
  4122. return 0;
  4123. }
  4124. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4125. static int
  4126. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4127. {
  4128. struct sched_param lparam;
  4129. struct task_struct *p;
  4130. int retval;
  4131. if (!param || pid < 0)
  4132. return -EINVAL;
  4133. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4134. return -EFAULT;
  4135. rcu_read_lock();
  4136. retval = -ESRCH;
  4137. p = find_process_by_pid(pid);
  4138. if (p != NULL)
  4139. retval = sched_setscheduler(p, policy, &lparam);
  4140. rcu_read_unlock();
  4141. return retval;
  4142. }
  4143. /**
  4144. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4145. * @pid: the pid in question.
  4146. * @policy: new policy.
  4147. * @param: structure containing the new RT priority.
  4148. */
  4149. asmlinkage long
  4150. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4151. {
  4152. /* negative values for policy are not valid */
  4153. if (policy < 0)
  4154. return -EINVAL;
  4155. return do_sched_setscheduler(pid, policy, param);
  4156. }
  4157. /**
  4158. * sys_sched_setparam - set/change the RT priority of a thread
  4159. * @pid: the pid in question.
  4160. * @param: structure containing the new RT priority.
  4161. */
  4162. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4163. {
  4164. return do_sched_setscheduler(pid, -1, param);
  4165. }
  4166. /**
  4167. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4168. * @pid: the pid in question.
  4169. */
  4170. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4171. {
  4172. struct task_struct *p;
  4173. int retval;
  4174. if (pid < 0)
  4175. return -EINVAL;
  4176. retval = -ESRCH;
  4177. read_lock(&tasklist_lock);
  4178. p = find_process_by_pid(pid);
  4179. if (p) {
  4180. retval = security_task_getscheduler(p);
  4181. if (!retval)
  4182. retval = p->policy;
  4183. }
  4184. read_unlock(&tasklist_lock);
  4185. return retval;
  4186. }
  4187. /**
  4188. * sys_sched_getscheduler - get the RT priority of a thread
  4189. * @pid: the pid in question.
  4190. * @param: structure containing the RT priority.
  4191. */
  4192. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4193. {
  4194. struct sched_param lp;
  4195. struct task_struct *p;
  4196. int retval;
  4197. if (!param || pid < 0)
  4198. return -EINVAL;
  4199. read_lock(&tasklist_lock);
  4200. p = find_process_by_pid(pid);
  4201. retval = -ESRCH;
  4202. if (!p)
  4203. goto out_unlock;
  4204. retval = security_task_getscheduler(p);
  4205. if (retval)
  4206. goto out_unlock;
  4207. lp.sched_priority = p->rt_priority;
  4208. read_unlock(&tasklist_lock);
  4209. /*
  4210. * This one might sleep, we cannot do it with a spinlock held ...
  4211. */
  4212. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4213. return retval;
  4214. out_unlock:
  4215. read_unlock(&tasklist_lock);
  4216. return retval;
  4217. }
  4218. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4219. {
  4220. cpumask_t cpus_allowed;
  4221. cpumask_t new_mask = *in_mask;
  4222. struct task_struct *p;
  4223. int retval;
  4224. get_online_cpus();
  4225. read_lock(&tasklist_lock);
  4226. p = find_process_by_pid(pid);
  4227. if (!p) {
  4228. read_unlock(&tasklist_lock);
  4229. put_online_cpus();
  4230. return -ESRCH;
  4231. }
  4232. /*
  4233. * It is not safe to call set_cpus_allowed with the
  4234. * tasklist_lock held. We will bump the task_struct's
  4235. * usage count and then drop tasklist_lock.
  4236. */
  4237. get_task_struct(p);
  4238. read_unlock(&tasklist_lock);
  4239. retval = -EPERM;
  4240. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4241. !capable(CAP_SYS_NICE))
  4242. goto out_unlock;
  4243. retval = security_task_setscheduler(p, 0, NULL);
  4244. if (retval)
  4245. goto out_unlock;
  4246. cpuset_cpus_allowed(p, &cpus_allowed);
  4247. cpus_and(new_mask, new_mask, cpus_allowed);
  4248. again:
  4249. retval = set_cpus_allowed_ptr(p, &new_mask);
  4250. if (!retval) {
  4251. cpuset_cpus_allowed(p, &cpus_allowed);
  4252. if (!cpus_subset(new_mask, cpus_allowed)) {
  4253. /*
  4254. * We must have raced with a concurrent cpuset
  4255. * update. Just reset the cpus_allowed to the
  4256. * cpuset's cpus_allowed
  4257. */
  4258. new_mask = cpus_allowed;
  4259. goto again;
  4260. }
  4261. }
  4262. out_unlock:
  4263. put_task_struct(p);
  4264. put_online_cpus();
  4265. return retval;
  4266. }
  4267. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4268. cpumask_t *new_mask)
  4269. {
  4270. if (len < sizeof(cpumask_t)) {
  4271. memset(new_mask, 0, sizeof(cpumask_t));
  4272. } else if (len > sizeof(cpumask_t)) {
  4273. len = sizeof(cpumask_t);
  4274. }
  4275. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4276. }
  4277. /**
  4278. * sys_sched_setaffinity - set the cpu affinity of a process
  4279. * @pid: pid of the process
  4280. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4281. * @user_mask_ptr: user-space pointer to the new cpu mask
  4282. */
  4283. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4284. unsigned long __user *user_mask_ptr)
  4285. {
  4286. cpumask_t new_mask;
  4287. int retval;
  4288. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4289. if (retval)
  4290. return retval;
  4291. return sched_setaffinity(pid, &new_mask);
  4292. }
  4293. /*
  4294. * Represents all cpu's present in the system
  4295. * In systems capable of hotplug, this map could dynamically grow
  4296. * as new cpu's are detected in the system via any platform specific
  4297. * method, such as ACPI for e.g.
  4298. */
  4299. cpumask_t cpu_present_map __read_mostly;
  4300. EXPORT_SYMBOL(cpu_present_map);
  4301. #ifndef CONFIG_SMP
  4302. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4303. EXPORT_SYMBOL(cpu_online_map);
  4304. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4305. EXPORT_SYMBOL(cpu_possible_map);
  4306. #endif
  4307. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4308. {
  4309. struct task_struct *p;
  4310. int retval;
  4311. get_online_cpus();
  4312. read_lock(&tasklist_lock);
  4313. retval = -ESRCH;
  4314. p = find_process_by_pid(pid);
  4315. if (!p)
  4316. goto out_unlock;
  4317. retval = security_task_getscheduler(p);
  4318. if (retval)
  4319. goto out_unlock;
  4320. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4321. out_unlock:
  4322. read_unlock(&tasklist_lock);
  4323. put_online_cpus();
  4324. return retval;
  4325. }
  4326. /**
  4327. * sys_sched_getaffinity - get the cpu affinity of a process
  4328. * @pid: pid of the process
  4329. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4330. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4331. */
  4332. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4333. unsigned long __user *user_mask_ptr)
  4334. {
  4335. int ret;
  4336. cpumask_t mask;
  4337. if (len < sizeof(cpumask_t))
  4338. return -EINVAL;
  4339. ret = sched_getaffinity(pid, &mask);
  4340. if (ret < 0)
  4341. return ret;
  4342. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4343. return -EFAULT;
  4344. return sizeof(cpumask_t);
  4345. }
  4346. /**
  4347. * sys_sched_yield - yield the current processor to other threads.
  4348. *
  4349. * This function yields the current CPU to other tasks. If there are no
  4350. * other threads running on this CPU then this function will return.
  4351. */
  4352. asmlinkage long sys_sched_yield(void)
  4353. {
  4354. struct rq *rq = this_rq_lock();
  4355. schedstat_inc(rq, yld_count);
  4356. current->sched_class->yield_task(rq);
  4357. /*
  4358. * Since we are going to call schedule() anyway, there's
  4359. * no need to preempt or enable interrupts:
  4360. */
  4361. __release(rq->lock);
  4362. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4363. _raw_spin_unlock(&rq->lock);
  4364. preempt_enable_no_resched();
  4365. schedule();
  4366. return 0;
  4367. }
  4368. static void __cond_resched(void)
  4369. {
  4370. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4371. __might_sleep(__FILE__, __LINE__);
  4372. #endif
  4373. /*
  4374. * The BKS might be reacquired before we have dropped
  4375. * PREEMPT_ACTIVE, which could trigger a second
  4376. * cond_resched() call.
  4377. */
  4378. do {
  4379. add_preempt_count(PREEMPT_ACTIVE);
  4380. schedule();
  4381. sub_preempt_count(PREEMPT_ACTIVE);
  4382. } while (need_resched());
  4383. }
  4384. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4385. int __sched _cond_resched(void)
  4386. {
  4387. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4388. system_state == SYSTEM_RUNNING) {
  4389. __cond_resched();
  4390. return 1;
  4391. }
  4392. return 0;
  4393. }
  4394. EXPORT_SYMBOL(_cond_resched);
  4395. #endif
  4396. /*
  4397. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4398. * call schedule, and on return reacquire the lock.
  4399. *
  4400. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4401. * operations here to prevent schedule() from being called twice (once via
  4402. * spin_unlock(), once by hand).
  4403. */
  4404. int cond_resched_lock(spinlock_t *lock)
  4405. {
  4406. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4407. int ret = 0;
  4408. if (spin_needbreak(lock) || resched) {
  4409. spin_unlock(lock);
  4410. if (resched && need_resched())
  4411. __cond_resched();
  4412. else
  4413. cpu_relax();
  4414. ret = 1;
  4415. spin_lock(lock);
  4416. }
  4417. return ret;
  4418. }
  4419. EXPORT_SYMBOL(cond_resched_lock);
  4420. int __sched cond_resched_softirq(void)
  4421. {
  4422. BUG_ON(!in_softirq());
  4423. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4424. local_bh_enable();
  4425. __cond_resched();
  4426. local_bh_disable();
  4427. return 1;
  4428. }
  4429. return 0;
  4430. }
  4431. EXPORT_SYMBOL(cond_resched_softirq);
  4432. /**
  4433. * yield - yield the current processor to other threads.
  4434. *
  4435. * This is a shortcut for kernel-space yielding - it marks the
  4436. * thread runnable and calls sys_sched_yield().
  4437. */
  4438. void __sched yield(void)
  4439. {
  4440. set_current_state(TASK_RUNNING);
  4441. sys_sched_yield();
  4442. }
  4443. EXPORT_SYMBOL(yield);
  4444. /*
  4445. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4446. * that process accounting knows that this is a task in IO wait state.
  4447. *
  4448. * But don't do that if it is a deliberate, throttling IO wait (this task
  4449. * has set its backing_dev_info: the queue against which it should throttle)
  4450. */
  4451. void __sched io_schedule(void)
  4452. {
  4453. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4454. delayacct_blkio_start();
  4455. atomic_inc(&rq->nr_iowait);
  4456. schedule();
  4457. atomic_dec(&rq->nr_iowait);
  4458. delayacct_blkio_end();
  4459. }
  4460. EXPORT_SYMBOL(io_schedule);
  4461. long __sched io_schedule_timeout(long timeout)
  4462. {
  4463. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4464. long ret;
  4465. delayacct_blkio_start();
  4466. atomic_inc(&rq->nr_iowait);
  4467. ret = schedule_timeout(timeout);
  4468. atomic_dec(&rq->nr_iowait);
  4469. delayacct_blkio_end();
  4470. return ret;
  4471. }
  4472. /**
  4473. * sys_sched_get_priority_max - return maximum RT priority.
  4474. * @policy: scheduling class.
  4475. *
  4476. * this syscall returns the maximum rt_priority that can be used
  4477. * by a given scheduling class.
  4478. */
  4479. asmlinkage long sys_sched_get_priority_max(int policy)
  4480. {
  4481. int ret = -EINVAL;
  4482. switch (policy) {
  4483. case SCHED_FIFO:
  4484. case SCHED_RR:
  4485. ret = MAX_USER_RT_PRIO-1;
  4486. break;
  4487. case SCHED_NORMAL:
  4488. case SCHED_BATCH:
  4489. case SCHED_IDLE:
  4490. ret = 0;
  4491. break;
  4492. }
  4493. return ret;
  4494. }
  4495. /**
  4496. * sys_sched_get_priority_min - return minimum RT priority.
  4497. * @policy: scheduling class.
  4498. *
  4499. * this syscall returns the minimum rt_priority that can be used
  4500. * by a given scheduling class.
  4501. */
  4502. asmlinkage long sys_sched_get_priority_min(int policy)
  4503. {
  4504. int ret = -EINVAL;
  4505. switch (policy) {
  4506. case SCHED_FIFO:
  4507. case SCHED_RR:
  4508. ret = 1;
  4509. break;
  4510. case SCHED_NORMAL:
  4511. case SCHED_BATCH:
  4512. case SCHED_IDLE:
  4513. ret = 0;
  4514. }
  4515. return ret;
  4516. }
  4517. /**
  4518. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4519. * @pid: pid of the process.
  4520. * @interval: userspace pointer to the timeslice value.
  4521. *
  4522. * this syscall writes the default timeslice value of a given process
  4523. * into the user-space timespec buffer. A value of '0' means infinity.
  4524. */
  4525. asmlinkage
  4526. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4527. {
  4528. struct task_struct *p;
  4529. unsigned int time_slice;
  4530. int retval;
  4531. struct timespec t;
  4532. if (pid < 0)
  4533. return -EINVAL;
  4534. retval = -ESRCH;
  4535. read_lock(&tasklist_lock);
  4536. p = find_process_by_pid(pid);
  4537. if (!p)
  4538. goto out_unlock;
  4539. retval = security_task_getscheduler(p);
  4540. if (retval)
  4541. goto out_unlock;
  4542. /*
  4543. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4544. * tasks that are on an otherwise idle runqueue:
  4545. */
  4546. time_slice = 0;
  4547. if (p->policy == SCHED_RR) {
  4548. time_slice = DEF_TIMESLICE;
  4549. } else if (p->policy != SCHED_FIFO) {
  4550. struct sched_entity *se = &p->se;
  4551. unsigned long flags;
  4552. struct rq *rq;
  4553. rq = task_rq_lock(p, &flags);
  4554. if (rq->cfs.load.weight)
  4555. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4556. task_rq_unlock(rq, &flags);
  4557. }
  4558. read_unlock(&tasklist_lock);
  4559. jiffies_to_timespec(time_slice, &t);
  4560. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4561. return retval;
  4562. out_unlock:
  4563. read_unlock(&tasklist_lock);
  4564. return retval;
  4565. }
  4566. static const char stat_nam[] = "RSDTtZX";
  4567. void sched_show_task(struct task_struct *p)
  4568. {
  4569. unsigned long free = 0;
  4570. unsigned state;
  4571. state = p->state ? __ffs(p->state) + 1 : 0;
  4572. printk(KERN_INFO "%-13.13s %c", p->comm,
  4573. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4574. #if BITS_PER_LONG == 32
  4575. if (state == TASK_RUNNING)
  4576. printk(KERN_CONT " running ");
  4577. else
  4578. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4579. #else
  4580. if (state == TASK_RUNNING)
  4581. printk(KERN_CONT " running task ");
  4582. else
  4583. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4584. #endif
  4585. #ifdef CONFIG_DEBUG_STACK_USAGE
  4586. {
  4587. unsigned long *n = end_of_stack(p);
  4588. while (!*n)
  4589. n++;
  4590. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4591. }
  4592. #endif
  4593. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4594. task_pid_nr(p), task_pid_nr(p->real_parent));
  4595. show_stack(p, NULL);
  4596. }
  4597. void show_state_filter(unsigned long state_filter)
  4598. {
  4599. struct task_struct *g, *p;
  4600. #if BITS_PER_LONG == 32
  4601. printk(KERN_INFO
  4602. " task PC stack pid father\n");
  4603. #else
  4604. printk(KERN_INFO
  4605. " task PC stack pid father\n");
  4606. #endif
  4607. read_lock(&tasklist_lock);
  4608. do_each_thread(g, p) {
  4609. /*
  4610. * reset the NMI-timeout, listing all files on a slow
  4611. * console might take alot of time:
  4612. */
  4613. touch_nmi_watchdog();
  4614. if (!state_filter || (p->state & state_filter))
  4615. sched_show_task(p);
  4616. } while_each_thread(g, p);
  4617. touch_all_softlockup_watchdogs();
  4618. #ifdef CONFIG_SCHED_DEBUG
  4619. sysrq_sched_debug_show();
  4620. #endif
  4621. read_unlock(&tasklist_lock);
  4622. /*
  4623. * Only show locks if all tasks are dumped:
  4624. */
  4625. if (state_filter == -1)
  4626. debug_show_all_locks();
  4627. }
  4628. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4629. {
  4630. idle->sched_class = &idle_sched_class;
  4631. }
  4632. /**
  4633. * init_idle - set up an idle thread for a given CPU
  4634. * @idle: task in question
  4635. * @cpu: cpu the idle task belongs to
  4636. *
  4637. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4638. * flag, to make booting more robust.
  4639. */
  4640. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4641. {
  4642. struct rq *rq = cpu_rq(cpu);
  4643. unsigned long flags;
  4644. __sched_fork(idle);
  4645. idle->se.exec_start = sched_clock();
  4646. idle->prio = idle->normal_prio = MAX_PRIO;
  4647. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4648. __set_task_cpu(idle, cpu);
  4649. spin_lock_irqsave(&rq->lock, flags);
  4650. rq->curr = rq->idle = idle;
  4651. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4652. idle->oncpu = 1;
  4653. #endif
  4654. spin_unlock_irqrestore(&rq->lock, flags);
  4655. /* Set the preempt count _outside_ the spinlocks! */
  4656. task_thread_info(idle)->preempt_count = 0;
  4657. /*
  4658. * The idle tasks have their own, simple scheduling class:
  4659. */
  4660. idle->sched_class = &idle_sched_class;
  4661. }
  4662. /*
  4663. * In a system that switches off the HZ timer nohz_cpu_mask
  4664. * indicates which cpus entered this state. This is used
  4665. * in the rcu update to wait only for active cpus. For system
  4666. * which do not switch off the HZ timer nohz_cpu_mask should
  4667. * always be CPU_MASK_NONE.
  4668. */
  4669. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4670. /*
  4671. * Increase the granularity value when there are more CPUs,
  4672. * because with more CPUs the 'effective latency' as visible
  4673. * to users decreases. But the relationship is not linear,
  4674. * so pick a second-best guess by going with the log2 of the
  4675. * number of CPUs.
  4676. *
  4677. * This idea comes from the SD scheduler of Con Kolivas:
  4678. */
  4679. static inline void sched_init_granularity(void)
  4680. {
  4681. unsigned int factor = 1 + ilog2(num_online_cpus());
  4682. const unsigned long limit = 200000000;
  4683. sysctl_sched_min_granularity *= factor;
  4684. if (sysctl_sched_min_granularity > limit)
  4685. sysctl_sched_min_granularity = limit;
  4686. sysctl_sched_latency *= factor;
  4687. if (sysctl_sched_latency > limit)
  4688. sysctl_sched_latency = limit;
  4689. sysctl_sched_wakeup_granularity *= factor;
  4690. }
  4691. #ifdef CONFIG_SMP
  4692. /*
  4693. * This is how migration works:
  4694. *
  4695. * 1) we queue a struct migration_req structure in the source CPU's
  4696. * runqueue and wake up that CPU's migration thread.
  4697. * 2) we down() the locked semaphore => thread blocks.
  4698. * 3) migration thread wakes up (implicitly it forces the migrated
  4699. * thread off the CPU)
  4700. * 4) it gets the migration request and checks whether the migrated
  4701. * task is still in the wrong runqueue.
  4702. * 5) if it's in the wrong runqueue then the migration thread removes
  4703. * it and puts it into the right queue.
  4704. * 6) migration thread up()s the semaphore.
  4705. * 7) we wake up and the migration is done.
  4706. */
  4707. /*
  4708. * Change a given task's CPU affinity. Migrate the thread to a
  4709. * proper CPU and schedule it away if the CPU it's executing on
  4710. * is removed from the allowed bitmask.
  4711. *
  4712. * NOTE: the caller must have a valid reference to the task, the
  4713. * task must not exit() & deallocate itself prematurely. The
  4714. * call is not atomic; no spinlocks may be held.
  4715. */
  4716. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4717. {
  4718. struct migration_req req;
  4719. unsigned long flags;
  4720. struct rq *rq;
  4721. int ret = 0;
  4722. rq = task_rq_lock(p, &flags);
  4723. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4724. ret = -EINVAL;
  4725. goto out;
  4726. }
  4727. if (p->sched_class->set_cpus_allowed)
  4728. p->sched_class->set_cpus_allowed(p, new_mask);
  4729. else {
  4730. p->cpus_allowed = *new_mask;
  4731. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4732. }
  4733. /* Can the task run on the task's current CPU? If so, we're done */
  4734. if (cpu_isset(task_cpu(p), *new_mask))
  4735. goto out;
  4736. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4737. /* Need help from migration thread: drop lock and wait. */
  4738. task_rq_unlock(rq, &flags);
  4739. wake_up_process(rq->migration_thread);
  4740. wait_for_completion(&req.done);
  4741. tlb_migrate_finish(p->mm);
  4742. return 0;
  4743. }
  4744. out:
  4745. task_rq_unlock(rq, &flags);
  4746. return ret;
  4747. }
  4748. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4749. /*
  4750. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4751. * this because either it can't run here any more (set_cpus_allowed()
  4752. * away from this CPU, or CPU going down), or because we're
  4753. * attempting to rebalance this task on exec (sched_exec).
  4754. *
  4755. * So we race with normal scheduler movements, but that's OK, as long
  4756. * as the task is no longer on this CPU.
  4757. *
  4758. * Returns non-zero if task was successfully migrated.
  4759. */
  4760. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4761. {
  4762. struct rq *rq_dest, *rq_src;
  4763. int ret = 0, on_rq;
  4764. if (unlikely(cpu_is_offline(dest_cpu)))
  4765. return ret;
  4766. rq_src = cpu_rq(src_cpu);
  4767. rq_dest = cpu_rq(dest_cpu);
  4768. double_rq_lock(rq_src, rq_dest);
  4769. /* Already moved. */
  4770. if (task_cpu(p) != src_cpu)
  4771. goto out;
  4772. /* Affinity changed (again). */
  4773. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4774. goto out;
  4775. on_rq = p->se.on_rq;
  4776. if (on_rq)
  4777. deactivate_task(rq_src, p, 0);
  4778. set_task_cpu(p, dest_cpu);
  4779. if (on_rq) {
  4780. activate_task(rq_dest, p, 0);
  4781. check_preempt_curr(rq_dest, p);
  4782. }
  4783. ret = 1;
  4784. out:
  4785. double_rq_unlock(rq_src, rq_dest);
  4786. return ret;
  4787. }
  4788. /*
  4789. * migration_thread - this is a highprio system thread that performs
  4790. * thread migration by bumping thread off CPU then 'pushing' onto
  4791. * another runqueue.
  4792. */
  4793. static int migration_thread(void *data)
  4794. {
  4795. int cpu = (long)data;
  4796. struct rq *rq;
  4797. rq = cpu_rq(cpu);
  4798. BUG_ON(rq->migration_thread != current);
  4799. set_current_state(TASK_INTERRUPTIBLE);
  4800. while (!kthread_should_stop()) {
  4801. struct migration_req *req;
  4802. struct list_head *head;
  4803. spin_lock_irq(&rq->lock);
  4804. if (cpu_is_offline(cpu)) {
  4805. spin_unlock_irq(&rq->lock);
  4806. goto wait_to_die;
  4807. }
  4808. if (rq->active_balance) {
  4809. active_load_balance(rq, cpu);
  4810. rq->active_balance = 0;
  4811. }
  4812. head = &rq->migration_queue;
  4813. if (list_empty(head)) {
  4814. spin_unlock_irq(&rq->lock);
  4815. schedule();
  4816. set_current_state(TASK_INTERRUPTIBLE);
  4817. continue;
  4818. }
  4819. req = list_entry(head->next, struct migration_req, list);
  4820. list_del_init(head->next);
  4821. spin_unlock(&rq->lock);
  4822. __migrate_task(req->task, cpu, req->dest_cpu);
  4823. local_irq_enable();
  4824. complete(&req->done);
  4825. }
  4826. __set_current_state(TASK_RUNNING);
  4827. return 0;
  4828. wait_to_die:
  4829. /* Wait for kthread_stop */
  4830. set_current_state(TASK_INTERRUPTIBLE);
  4831. while (!kthread_should_stop()) {
  4832. schedule();
  4833. set_current_state(TASK_INTERRUPTIBLE);
  4834. }
  4835. __set_current_state(TASK_RUNNING);
  4836. return 0;
  4837. }
  4838. #ifdef CONFIG_HOTPLUG_CPU
  4839. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4840. {
  4841. int ret;
  4842. local_irq_disable();
  4843. ret = __migrate_task(p, src_cpu, dest_cpu);
  4844. local_irq_enable();
  4845. return ret;
  4846. }
  4847. /*
  4848. * Figure out where task on dead CPU should go, use force if necessary.
  4849. * NOTE: interrupts should be disabled by the caller
  4850. */
  4851. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4852. {
  4853. unsigned long flags;
  4854. cpumask_t mask;
  4855. struct rq *rq;
  4856. int dest_cpu;
  4857. do {
  4858. /* On same node? */
  4859. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4860. cpus_and(mask, mask, p->cpus_allowed);
  4861. dest_cpu = any_online_cpu(mask);
  4862. /* On any allowed CPU? */
  4863. if (dest_cpu >= nr_cpu_ids)
  4864. dest_cpu = any_online_cpu(p->cpus_allowed);
  4865. /* No more Mr. Nice Guy. */
  4866. if (dest_cpu >= nr_cpu_ids) {
  4867. cpumask_t cpus_allowed;
  4868. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  4869. /*
  4870. * Try to stay on the same cpuset, where the
  4871. * current cpuset may be a subset of all cpus.
  4872. * The cpuset_cpus_allowed_locked() variant of
  4873. * cpuset_cpus_allowed() will not block. It must be
  4874. * called within calls to cpuset_lock/cpuset_unlock.
  4875. */
  4876. rq = task_rq_lock(p, &flags);
  4877. p->cpus_allowed = cpus_allowed;
  4878. dest_cpu = any_online_cpu(p->cpus_allowed);
  4879. task_rq_unlock(rq, &flags);
  4880. /*
  4881. * Don't tell them about moving exiting tasks or
  4882. * kernel threads (both mm NULL), since they never
  4883. * leave kernel.
  4884. */
  4885. if (p->mm && printk_ratelimit()) {
  4886. printk(KERN_INFO "process %d (%s) no "
  4887. "longer affine to cpu%d\n",
  4888. task_pid_nr(p), p->comm, dead_cpu);
  4889. }
  4890. }
  4891. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4892. }
  4893. /*
  4894. * While a dead CPU has no uninterruptible tasks queued at this point,
  4895. * it might still have a nonzero ->nr_uninterruptible counter, because
  4896. * for performance reasons the counter is not stricly tracking tasks to
  4897. * their home CPUs. So we just add the counter to another CPU's counter,
  4898. * to keep the global sum constant after CPU-down:
  4899. */
  4900. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4901. {
  4902. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  4903. unsigned long flags;
  4904. local_irq_save(flags);
  4905. double_rq_lock(rq_src, rq_dest);
  4906. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4907. rq_src->nr_uninterruptible = 0;
  4908. double_rq_unlock(rq_src, rq_dest);
  4909. local_irq_restore(flags);
  4910. }
  4911. /* Run through task list and migrate tasks from the dead cpu. */
  4912. static void migrate_live_tasks(int src_cpu)
  4913. {
  4914. struct task_struct *p, *t;
  4915. read_lock(&tasklist_lock);
  4916. do_each_thread(t, p) {
  4917. if (p == current)
  4918. continue;
  4919. if (task_cpu(p) == src_cpu)
  4920. move_task_off_dead_cpu(src_cpu, p);
  4921. } while_each_thread(t, p);
  4922. read_unlock(&tasklist_lock);
  4923. }
  4924. /*
  4925. * Schedules idle task to be the next runnable task on current CPU.
  4926. * It does so by boosting its priority to highest possible.
  4927. * Used by CPU offline code.
  4928. */
  4929. void sched_idle_next(void)
  4930. {
  4931. int this_cpu = smp_processor_id();
  4932. struct rq *rq = cpu_rq(this_cpu);
  4933. struct task_struct *p = rq->idle;
  4934. unsigned long flags;
  4935. /* cpu has to be offline */
  4936. BUG_ON(cpu_online(this_cpu));
  4937. /*
  4938. * Strictly not necessary since rest of the CPUs are stopped by now
  4939. * and interrupts disabled on the current cpu.
  4940. */
  4941. spin_lock_irqsave(&rq->lock, flags);
  4942. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4943. update_rq_clock(rq);
  4944. activate_task(rq, p, 0);
  4945. spin_unlock_irqrestore(&rq->lock, flags);
  4946. }
  4947. /*
  4948. * Ensures that the idle task is using init_mm right before its cpu goes
  4949. * offline.
  4950. */
  4951. void idle_task_exit(void)
  4952. {
  4953. struct mm_struct *mm = current->active_mm;
  4954. BUG_ON(cpu_online(smp_processor_id()));
  4955. if (mm != &init_mm)
  4956. switch_mm(mm, &init_mm, current);
  4957. mmdrop(mm);
  4958. }
  4959. /* called under rq->lock with disabled interrupts */
  4960. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4961. {
  4962. struct rq *rq = cpu_rq(dead_cpu);
  4963. /* Must be exiting, otherwise would be on tasklist. */
  4964. BUG_ON(!p->exit_state);
  4965. /* Cannot have done final schedule yet: would have vanished. */
  4966. BUG_ON(p->state == TASK_DEAD);
  4967. get_task_struct(p);
  4968. /*
  4969. * Drop lock around migration; if someone else moves it,
  4970. * that's OK. No task can be added to this CPU, so iteration is
  4971. * fine.
  4972. */
  4973. spin_unlock_irq(&rq->lock);
  4974. move_task_off_dead_cpu(dead_cpu, p);
  4975. spin_lock_irq(&rq->lock);
  4976. put_task_struct(p);
  4977. }
  4978. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4979. static void migrate_dead_tasks(unsigned int dead_cpu)
  4980. {
  4981. struct rq *rq = cpu_rq(dead_cpu);
  4982. struct task_struct *next;
  4983. for ( ; ; ) {
  4984. if (!rq->nr_running)
  4985. break;
  4986. update_rq_clock(rq);
  4987. next = pick_next_task(rq, rq->curr);
  4988. if (!next)
  4989. break;
  4990. migrate_dead(dead_cpu, next);
  4991. }
  4992. }
  4993. #endif /* CONFIG_HOTPLUG_CPU */
  4994. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4995. static struct ctl_table sd_ctl_dir[] = {
  4996. {
  4997. .procname = "sched_domain",
  4998. .mode = 0555,
  4999. },
  5000. {0, },
  5001. };
  5002. static struct ctl_table sd_ctl_root[] = {
  5003. {
  5004. .ctl_name = CTL_KERN,
  5005. .procname = "kernel",
  5006. .mode = 0555,
  5007. .child = sd_ctl_dir,
  5008. },
  5009. {0, },
  5010. };
  5011. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5012. {
  5013. struct ctl_table *entry =
  5014. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5015. return entry;
  5016. }
  5017. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5018. {
  5019. struct ctl_table *entry;
  5020. /*
  5021. * In the intermediate directories, both the child directory and
  5022. * procname are dynamically allocated and could fail but the mode
  5023. * will always be set. In the lowest directory the names are
  5024. * static strings and all have proc handlers.
  5025. */
  5026. for (entry = *tablep; entry->mode; entry++) {
  5027. if (entry->child)
  5028. sd_free_ctl_entry(&entry->child);
  5029. if (entry->proc_handler == NULL)
  5030. kfree(entry->procname);
  5031. }
  5032. kfree(*tablep);
  5033. *tablep = NULL;
  5034. }
  5035. static void
  5036. set_table_entry(struct ctl_table *entry,
  5037. const char *procname, void *data, int maxlen,
  5038. mode_t mode, proc_handler *proc_handler)
  5039. {
  5040. entry->procname = procname;
  5041. entry->data = data;
  5042. entry->maxlen = maxlen;
  5043. entry->mode = mode;
  5044. entry->proc_handler = proc_handler;
  5045. }
  5046. static struct ctl_table *
  5047. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5048. {
  5049. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5050. if (table == NULL)
  5051. return NULL;
  5052. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5053. sizeof(long), 0644, proc_doulongvec_minmax);
  5054. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5055. sizeof(long), 0644, proc_doulongvec_minmax);
  5056. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5057. sizeof(int), 0644, proc_dointvec_minmax);
  5058. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5059. sizeof(int), 0644, proc_dointvec_minmax);
  5060. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5061. sizeof(int), 0644, proc_dointvec_minmax);
  5062. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5063. sizeof(int), 0644, proc_dointvec_minmax);
  5064. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5065. sizeof(int), 0644, proc_dointvec_minmax);
  5066. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5067. sizeof(int), 0644, proc_dointvec_minmax);
  5068. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5069. sizeof(int), 0644, proc_dointvec_minmax);
  5070. set_table_entry(&table[9], "cache_nice_tries",
  5071. &sd->cache_nice_tries,
  5072. sizeof(int), 0644, proc_dointvec_minmax);
  5073. set_table_entry(&table[10], "flags", &sd->flags,
  5074. sizeof(int), 0644, proc_dointvec_minmax);
  5075. /* &table[11] is terminator */
  5076. return table;
  5077. }
  5078. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5079. {
  5080. struct ctl_table *entry, *table;
  5081. struct sched_domain *sd;
  5082. int domain_num = 0, i;
  5083. char buf[32];
  5084. for_each_domain(cpu, sd)
  5085. domain_num++;
  5086. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5087. if (table == NULL)
  5088. return NULL;
  5089. i = 0;
  5090. for_each_domain(cpu, sd) {
  5091. snprintf(buf, 32, "domain%d", i);
  5092. entry->procname = kstrdup(buf, GFP_KERNEL);
  5093. entry->mode = 0555;
  5094. entry->child = sd_alloc_ctl_domain_table(sd);
  5095. entry++;
  5096. i++;
  5097. }
  5098. return table;
  5099. }
  5100. static struct ctl_table_header *sd_sysctl_header;
  5101. static void register_sched_domain_sysctl(void)
  5102. {
  5103. int i, cpu_num = num_online_cpus();
  5104. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5105. char buf[32];
  5106. WARN_ON(sd_ctl_dir[0].child);
  5107. sd_ctl_dir[0].child = entry;
  5108. if (entry == NULL)
  5109. return;
  5110. for_each_online_cpu(i) {
  5111. snprintf(buf, 32, "cpu%d", i);
  5112. entry->procname = kstrdup(buf, GFP_KERNEL);
  5113. entry->mode = 0555;
  5114. entry->child = sd_alloc_ctl_cpu_table(i);
  5115. entry++;
  5116. }
  5117. WARN_ON(sd_sysctl_header);
  5118. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5119. }
  5120. /* may be called multiple times per register */
  5121. static void unregister_sched_domain_sysctl(void)
  5122. {
  5123. if (sd_sysctl_header)
  5124. unregister_sysctl_table(sd_sysctl_header);
  5125. sd_sysctl_header = NULL;
  5126. if (sd_ctl_dir[0].child)
  5127. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5128. }
  5129. #else
  5130. static void register_sched_domain_sysctl(void)
  5131. {
  5132. }
  5133. static void unregister_sched_domain_sysctl(void)
  5134. {
  5135. }
  5136. #endif
  5137. /*
  5138. * migration_call - callback that gets triggered when a CPU is added.
  5139. * Here we can start up the necessary migration thread for the new CPU.
  5140. */
  5141. static int __cpuinit
  5142. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5143. {
  5144. struct task_struct *p;
  5145. int cpu = (long)hcpu;
  5146. unsigned long flags;
  5147. struct rq *rq;
  5148. switch (action) {
  5149. case CPU_UP_PREPARE:
  5150. case CPU_UP_PREPARE_FROZEN:
  5151. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5152. if (IS_ERR(p))
  5153. return NOTIFY_BAD;
  5154. kthread_bind(p, cpu);
  5155. /* Must be high prio: stop_machine expects to yield to it. */
  5156. rq = task_rq_lock(p, &flags);
  5157. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5158. task_rq_unlock(rq, &flags);
  5159. cpu_rq(cpu)->migration_thread = p;
  5160. break;
  5161. case CPU_ONLINE:
  5162. case CPU_ONLINE_FROZEN:
  5163. /* Strictly unnecessary, as first user will wake it. */
  5164. wake_up_process(cpu_rq(cpu)->migration_thread);
  5165. /* Update our root-domain */
  5166. rq = cpu_rq(cpu);
  5167. spin_lock_irqsave(&rq->lock, flags);
  5168. if (rq->rd) {
  5169. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5170. cpu_set(cpu, rq->rd->online);
  5171. }
  5172. spin_unlock_irqrestore(&rq->lock, flags);
  5173. break;
  5174. #ifdef CONFIG_HOTPLUG_CPU
  5175. case CPU_UP_CANCELED:
  5176. case CPU_UP_CANCELED_FROZEN:
  5177. if (!cpu_rq(cpu)->migration_thread)
  5178. break;
  5179. /* Unbind it from offline cpu so it can run. Fall thru. */
  5180. kthread_bind(cpu_rq(cpu)->migration_thread,
  5181. any_online_cpu(cpu_online_map));
  5182. kthread_stop(cpu_rq(cpu)->migration_thread);
  5183. cpu_rq(cpu)->migration_thread = NULL;
  5184. break;
  5185. case CPU_DEAD:
  5186. case CPU_DEAD_FROZEN:
  5187. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5188. migrate_live_tasks(cpu);
  5189. rq = cpu_rq(cpu);
  5190. kthread_stop(rq->migration_thread);
  5191. rq->migration_thread = NULL;
  5192. /* Idle task back to normal (off runqueue, low prio) */
  5193. spin_lock_irq(&rq->lock);
  5194. update_rq_clock(rq);
  5195. deactivate_task(rq, rq->idle, 0);
  5196. rq->idle->static_prio = MAX_PRIO;
  5197. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5198. rq->idle->sched_class = &idle_sched_class;
  5199. migrate_dead_tasks(cpu);
  5200. spin_unlock_irq(&rq->lock);
  5201. cpuset_unlock();
  5202. migrate_nr_uninterruptible(rq);
  5203. BUG_ON(rq->nr_running != 0);
  5204. /*
  5205. * No need to migrate the tasks: it was best-effort if
  5206. * they didn't take sched_hotcpu_mutex. Just wake up
  5207. * the requestors.
  5208. */
  5209. spin_lock_irq(&rq->lock);
  5210. while (!list_empty(&rq->migration_queue)) {
  5211. struct migration_req *req;
  5212. req = list_entry(rq->migration_queue.next,
  5213. struct migration_req, list);
  5214. list_del_init(&req->list);
  5215. complete(&req->done);
  5216. }
  5217. spin_unlock_irq(&rq->lock);
  5218. break;
  5219. case CPU_DYING:
  5220. case CPU_DYING_FROZEN:
  5221. /* Update our root-domain */
  5222. rq = cpu_rq(cpu);
  5223. spin_lock_irqsave(&rq->lock, flags);
  5224. if (rq->rd) {
  5225. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5226. cpu_clear(cpu, rq->rd->online);
  5227. }
  5228. spin_unlock_irqrestore(&rq->lock, flags);
  5229. break;
  5230. #endif
  5231. }
  5232. return NOTIFY_OK;
  5233. }
  5234. /* Register at highest priority so that task migration (migrate_all_tasks)
  5235. * happens before everything else.
  5236. */
  5237. static struct notifier_block __cpuinitdata migration_notifier = {
  5238. .notifier_call = migration_call,
  5239. .priority = 10
  5240. };
  5241. void __init migration_init(void)
  5242. {
  5243. void *cpu = (void *)(long)smp_processor_id();
  5244. int err;
  5245. /* Start one for the boot CPU: */
  5246. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5247. BUG_ON(err == NOTIFY_BAD);
  5248. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5249. register_cpu_notifier(&migration_notifier);
  5250. }
  5251. #endif
  5252. #ifdef CONFIG_SMP
  5253. #ifdef CONFIG_SCHED_DEBUG
  5254. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5255. cpumask_t *groupmask)
  5256. {
  5257. struct sched_group *group = sd->groups;
  5258. char str[256];
  5259. cpulist_scnprintf(str, sizeof(str), sd->span);
  5260. cpus_clear(*groupmask);
  5261. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5262. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5263. printk("does not load-balance\n");
  5264. if (sd->parent)
  5265. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5266. " has parent");
  5267. return -1;
  5268. }
  5269. printk(KERN_CONT "span %s\n", str);
  5270. if (!cpu_isset(cpu, sd->span)) {
  5271. printk(KERN_ERR "ERROR: domain->span does not contain "
  5272. "CPU%d\n", cpu);
  5273. }
  5274. if (!cpu_isset(cpu, group->cpumask)) {
  5275. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5276. " CPU%d\n", cpu);
  5277. }
  5278. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5279. do {
  5280. if (!group) {
  5281. printk("\n");
  5282. printk(KERN_ERR "ERROR: group is NULL\n");
  5283. break;
  5284. }
  5285. if (!group->__cpu_power) {
  5286. printk(KERN_CONT "\n");
  5287. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5288. "set\n");
  5289. break;
  5290. }
  5291. if (!cpus_weight(group->cpumask)) {
  5292. printk(KERN_CONT "\n");
  5293. printk(KERN_ERR "ERROR: empty group\n");
  5294. break;
  5295. }
  5296. if (cpus_intersects(*groupmask, group->cpumask)) {
  5297. printk(KERN_CONT "\n");
  5298. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5299. break;
  5300. }
  5301. cpus_or(*groupmask, *groupmask, group->cpumask);
  5302. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5303. printk(KERN_CONT " %s", str);
  5304. group = group->next;
  5305. } while (group != sd->groups);
  5306. printk(KERN_CONT "\n");
  5307. if (!cpus_equal(sd->span, *groupmask))
  5308. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5309. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5310. printk(KERN_ERR "ERROR: parent span is not a superset "
  5311. "of domain->span\n");
  5312. return 0;
  5313. }
  5314. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5315. {
  5316. cpumask_t *groupmask;
  5317. int level = 0;
  5318. if (!sd) {
  5319. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5320. return;
  5321. }
  5322. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5323. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5324. if (!groupmask) {
  5325. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5326. return;
  5327. }
  5328. for (;;) {
  5329. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5330. break;
  5331. level++;
  5332. sd = sd->parent;
  5333. if (!sd)
  5334. break;
  5335. }
  5336. kfree(groupmask);
  5337. }
  5338. #else
  5339. # define sched_domain_debug(sd, cpu) do { } while (0)
  5340. #endif
  5341. static int sd_degenerate(struct sched_domain *sd)
  5342. {
  5343. if (cpus_weight(sd->span) == 1)
  5344. return 1;
  5345. /* Following flags need at least 2 groups */
  5346. if (sd->flags & (SD_LOAD_BALANCE |
  5347. SD_BALANCE_NEWIDLE |
  5348. SD_BALANCE_FORK |
  5349. SD_BALANCE_EXEC |
  5350. SD_SHARE_CPUPOWER |
  5351. SD_SHARE_PKG_RESOURCES)) {
  5352. if (sd->groups != sd->groups->next)
  5353. return 0;
  5354. }
  5355. /* Following flags don't use groups */
  5356. if (sd->flags & (SD_WAKE_IDLE |
  5357. SD_WAKE_AFFINE |
  5358. SD_WAKE_BALANCE))
  5359. return 0;
  5360. return 1;
  5361. }
  5362. static int
  5363. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5364. {
  5365. unsigned long cflags = sd->flags, pflags = parent->flags;
  5366. if (sd_degenerate(parent))
  5367. return 1;
  5368. if (!cpus_equal(sd->span, parent->span))
  5369. return 0;
  5370. /* Does parent contain flags not in child? */
  5371. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5372. if (cflags & SD_WAKE_AFFINE)
  5373. pflags &= ~SD_WAKE_BALANCE;
  5374. /* Flags needing groups don't count if only 1 group in parent */
  5375. if (parent->groups == parent->groups->next) {
  5376. pflags &= ~(SD_LOAD_BALANCE |
  5377. SD_BALANCE_NEWIDLE |
  5378. SD_BALANCE_FORK |
  5379. SD_BALANCE_EXEC |
  5380. SD_SHARE_CPUPOWER |
  5381. SD_SHARE_PKG_RESOURCES);
  5382. }
  5383. if (~cflags & pflags)
  5384. return 0;
  5385. return 1;
  5386. }
  5387. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5388. {
  5389. unsigned long flags;
  5390. const struct sched_class *class;
  5391. spin_lock_irqsave(&rq->lock, flags);
  5392. if (rq->rd) {
  5393. struct root_domain *old_rd = rq->rd;
  5394. for (class = sched_class_highest; class; class = class->next) {
  5395. if (class->leave_domain)
  5396. class->leave_domain(rq);
  5397. }
  5398. cpu_clear(rq->cpu, old_rd->span);
  5399. cpu_clear(rq->cpu, old_rd->online);
  5400. if (atomic_dec_and_test(&old_rd->refcount))
  5401. kfree(old_rd);
  5402. }
  5403. atomic_inc(&rd->refcount);
  5404. rq->rd = rd;
  5405. cpu_set(rq->cpu, rd->span);
  5406. if (cpu_isset(rq->cpu, cpu_online_map))
  5407. cpu_set(rq->cpu, rd->online);
  5408. for (class = sched_class_highest; class; class = class->next) {
  5409. if (class->join_domain)
  5410. class->join_domain(rq);
  5411. }
  5412. spin_unlock_irqrestore(&rq->lock, flags);
  5413. }
  5414. static void init_rootdomain(struct root_domain *rd)
  5415. {
  5416. memset(rd, 0, sizeof(*rd));
  5417. cpus_clear(rd->span);
  5418. cpus_clear(rd->online);
  5419. }
  5420. static void init_defrootdomain(void)
  5421. {
  5422. init_rootdomain(&def_root_domain);
  5423. atomic_set(&def_root_domain.refcount, 1);
  5424. }
  5425. static struct root_domain *alloc_rootdomain(void)
  5426. {
  5427. struct root_domain *rd;
  5428. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5429. if (!rd)
  5430. return NULL;
  5431. init_rootdomain(rd);
  5432. return rd;
  5433. }
  5434. /*
  5435. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5436. * hold the hotplug lock.
  5437. */
  5438. static void
  5439. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5440. {
  5441. struct rq *rq = cpu_rq(cpu);
  5442. struct sched_domain *tmp;
  5443. /* Remove the sched domains which do not contribute to scheduling. */
  5444. for (tmp = sd; tmp; tmp = tmp->parent) {
  5445. struct sched_domain *parent = tmp->parent;
  5446. if (!parent)
  5447. break;
  5448. if (sd_parent_degenerate(tmp, parent)) {
  5449. tmp->parent = parent->parent;
  5450. if (parent->parent)
  5451. parent->parent->child = tmp;
  5452. }
  5453. }
  5454. if (sd && sd_degenerate(sd)) {
  5455. sd = sd->parent;
  5456. if (sd)
  5457. sd->child = NULL;
  5458. }
  5459. sched_domain_debug(sd, cpu);
  5460. rq_attach_root(rq, rd);
  5461. rcu_assign_pointer(rq->sd, sd);
  5462. }
  5463. /* cpus with isolated domains */
  5464. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5465. /* Setup the mask of cpus configured for isolated domains */
  5466. static int __init isolated_cpu_setup(char *str)
  5467. {
  5468. int ints[NR_CPUS], i;
  5469. str = get_options(str, ARRAY_SIZE(ints), ints);
  5470. cpus_clear(cpu_isolated_map);
  5471. for (i = 1; i <= ints[0]; i++)
  5472. if (ints[i] < NR_CPUS)
  5473. cpu_set(ints[i], cpu_isolated_map);
  5474. return 1;
  5475. }
  5476. __setup("isolcpus=", isolated_cpu_setup);
  5477. /*
  5478. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5479. * to a function which identifies what group(along with sched group) a CPU
  5480. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5481. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5482. *
  5483. * init_sched_build_groups will build a circular linked list of the groups
  5484. * covered by the given span, and will set each group's ->cpumask correctly,
  5485. * and ->cpu_power to 0.
  5486. */
  5487. static void
  5488. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5489. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5490. struct sched_group **sg,
  5491. cpumask_t *tmpmask),
  5492. cpumask_t *covered, cpumask_t *tmpmask)
  5493. {
  5494. struct sched_group *first = NULL, *last = NULL;
  5495. int i;
  5496. cpus_clear(*covered);
  5497. for_each_cpu_mask(i, *span) {
  5498. struct sched_group *sg;
  5499. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5500. int j;
  5501. if (cpu_isset(i, *covered))
  5502. continue;
  5503. cpus_clear(sg->cpumask);
  5504. sg->__cpu_power = 0;
  5505. for_each_cpu_mask(j, *span) {
  5506. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5507. continue;
  5508. cpu_set(j, *covered);
  5509. cpu_set(j, sg->cpumask);
  5510. }
  5511. if (!first)
  5512. first = sg;
  5513. if (last)
  5514. last->next = sg;
  5515. last = sg;
  5516. }
  5517. last->next = first;
  5518. }
  5519. #define SD_NODES_PER_DOMAIN 16
  5520. #ifdef CONFIG_NUMA
  5521. /**
  5522. * find_next_best_node - find the next node to include in a sched_domain
  5523. * @node: node whose sched_domain we're building
  5524. * @used_nodes: nodes already in the sched_domain
  5525. *
  5526. * Find the next node to include in a given scheduling domain. Simply
  5527. * finds the closest node not already in the @used_nodes map.
  5528. *
  5529. * Should use nodemask_t.
  5530. */
  5531. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5532. {
  5533. int i, n, val, min_val, best_node = 0;
  5534. min_val = INT_MAX;
  5535. for (i = 0; i < MAX_NUMNODES; i++) {
  5536. /* Start at @node */
  5537. n = (node + i) % MAX_NUMNODES;
  5538. if (!nr_cpus_node(n))
  5539. continue;
  5540. /* Skip already used nodes */
  5541. if (node_isset(n, *used_nodes))
  5542. continue;
  5543. /* Simple min distance search */
  5544. val = node_distance(node, n);
  5545. if (val < min_val) {
  5546. min_val = val;
  5547. best_node = n;
  5548. }
  5549. }
  5550. node_set(best_node, *used_nodes);
  5551. return best_node;
  5552. }
  5553. /**
  5554. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5555. * @node: node whose cpumask we're constructing
  5556. *
  5557. * Given a node, construct a good cpumask for its sched_domain to span. It
  5558. * should be one that prevents unnecessary balancing, but also spreads tasks
  5559. * out optimally.
  5560. */
  5561. static void sched_domain_node_span(int node, cpumask_t *span)
  5562. {
  5563. nodemask_t used_nodes;
  5564. node_to_cpumask_ptr(nodemask, node);
  5565. int i;
  5566. cpus_clear(*span);
  5567. nodes_clear(used_nodes);
  5568. cpus_or(*span, *span, *nodemask);
  5569. node_set(node, used_nodes);
  5570. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5571. int next_node = find_next_best_node(node, &used_nodes);
  5572. node_to_cpumask_ptr_next(nodemask, next_node);
  5573. cpus_or(*span, *span, *nodemask);
  5574. }
  5575. }
  5576. #endif
  5577. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5578. /*
  5579. * SMT sched-domains:
  5580. */
  5581. #ifdef CONFIG_SCHED_SMT
  5582. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5583. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5584. static int
  5585. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5586. cpumask_t *unused)
  5587. {
  5588. if (sg)
  5589. *sg = &per_cpu(sched_group_cpus, cpu);
  5590. return cpu;
  5591. }
  5592. #endif
  5593. /*
  5594. * multi-core sched-domains:
  5595. */
  5596. #ifdef CONFIG_SCHED_MC
  5597. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5598. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5599. #endif
  5600. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5601. static int
  5602. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5603. cpumask_t *mask)
  5604. {
  5605. int group;
  5606. *mask = per_cpu(cpu_sibling_map, cpu);
  5607. cpus_and(*mask, *mask, *cpu_map);
  5608. group = first_cpu(*mask);
  5609. if (sg)
  5610. *sg = &per_cpu(sched_group_core, group);
  5611. return group;
  5612. }
  5613. #elif defined(CONFIG_SCHED_MC)
  5614. static int
  5615. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5616. cpumask_t *unused)
  5617. {
  5618. if (sg)
  5619. *sg = &per_cpu(sched_group_core, cpu);
  5620. return cpu;
  5621. }
  5622. #endif
  5623. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5624. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5625. static int
  5626. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5627. cpumask_t *mask)
  5628. {
  5629. int group;
  5630. #ifdef CONFIG_SCHED_MC
  5631. *mask = cpu_coregroup_map(cpu);
  5632. cpus_and(*mask, *mask, *cpu_map);
  5633. group = first_cpu(*mask);
  5634. #elif defined(CONFIG_SCHED_SMT)
  5635. *mask = per_cpu(cpu_sibling_map, cpu);
  5636. cpus_and(*mask, *mask, *cpu_map);
  5637. group = first_cpu(*mask);
  5638. #else
  5639. group = cpu;
  5640. #endif
  5641. if (sg)
  5642. *sg = &per_cpu(sched_group_phys, group);
  5643. return group;
  5644. }
  5645. #ifdef CONFIG_NUMA
  5646. /*
  5647. * The init_sched_build_groups can't handle what we want to do with node
  5648. * groups, so roll our own. Now each node has its own list of groups which
  5649. * gets dynamically allocated.
  5650. */
  5651. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5652. static struct sched_group ***sched_group_nodes_bycpu;
  5653. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5654. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5655. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5656. struct sched_group **sg, cpumask_t *nodemask)
  5657. {
  5658. int group;
  5659. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5660. cpus_and(*nodemask, *nodemask, *cpu_map);
  5661. group = first_cpu(*nodemask);
  5662. if (sg)
  5663. *sg = &per_cpu(sched_group_allnodes, group);
  5664. return group;
  5665. }
  5666. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5667. {
  5668. struct sched_group *sg = group_head;
  5669. int j;
  5670. if (!sg)
  5671. return;
  5672. do {
  5673. for_each_cpu_mask(j, sg->cpumask) {
  5674. struct sched_domain *sd;
  5675. sd = &per_cpu(phys_domains, j);
  5676. if (j != first_cpu(sd->groups->cpumask)) {
  5677. /*
  5678. * Only add "power" once for each
  5679. * physical package.
  5680. */
  5681. continue;
  5682. }
  5683. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5684. }
  5685. sg = sg->next;
  5686. } while (sg != group_head);
  5687. }
  5688. #endif
  5689. #ifdef CONFIG_NUMA
  5690. /* Free memory allocated for various sched_group structures */
  5691. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5692. {
  5693. int cpu, i;
  5694. for_each_cpu_mask(cpu, *cpu_map) {
  5695. struct sched_group **sched_group_nodes
  5696. = sched_group_nodes_bycpu[cpu];
  5697. if (!sched_group_nodes)
  5698. continue;
  5699. for (i = 0; i < MAX_NUMNODES; i++) {
  5700. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5701. *nodemask = node_to_cpumask(i);
  5702. cpus_and(*nodemask, *nodemask, *cpu_map);
  5703. if (cpus_empty(*nodemask))
  5704. continue;
  5705. if (sg == NULL)
  5706. continue;
  5707. sg = sg->next;
  5708. next_sg:
  5709. oldsg = sg;
  5710. sg = sg->next;
  5711. kfree(oldsg);
  5712. if (oldsg != sched_group_nodes[i])
  5713. goto next_sg;
  5714. }
  5715. kfree(sched_group_nodes);
  5716. sched_group_nodes_bycpu[cpu] = NULL;
  5717. }
  5718. }
  5719. #else
  5720. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5721. {
  5722. }
  5723. #endif
  5724. /*
  5725. * Initialize sched groups cpu_power.
  5726. *
  5727. * cpu_power indicates the capacity of sched group, which is used while
  5728. * distributing the load between different sched groups in a sched domain.
  5729. * Typically cpu_power for all the groups in a sched domain will be same unless
  5730. * there are asymmetries in the topology. If there are asymmetries, group
  5731. * having more cpu_power will pickup more load compared to the group having
  5732. * less cpu_power.
  5733. *
  5734. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5735. * the maximum number of tasks a group can handle in the presence of other idle
  5736. * or lightly loaded groups in the same sched domain.
  5737. */
  5738. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5739. {
  5740. struct sched_domain *child;
  5741. struct sched_group *group;
  5742. WARN_ON(!sd || !sd->groups);
  5743. if (cpu != first_cpu(sd->groups->cpumask))
  5744. return;
  5745. child = sd->child;
  5746. sd->groups->__cpu_power = 0;
  5747. /*
  5748. * For perf policy, if the groups in child domain share resources
  5749. * (for example cores sharing some portions of the cache hierarchy
  5750. * or SMT), then set this domain groups cpu_power such that each group
  5751. * can handle only one task, when there are other idle groups in the
  5752. * same sched domain.
  5753. */
  5754. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5755. (child->flags &
  5756. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5757. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5758. return;
  5759. }
  5760. /*
  5761. * add cpu_power of each child group to this groups cpu_power
  5762. */
  5763. group = child->groups;
  5764. do {
  5765. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5766. group = group->next;
  5767. } while (group != child->groups);
  5768. }
  5769. /*
  5770. * Initializers for schedule domains
  5771. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5772. */
  5773. #define SD_INIT(sd, type) sd_init_##type(sd)
  5774. #define SD_INIT_FUNC(type) \
  5775. static noinline void sd_init_##type(struct sched_domain *sd) \
  5776. { \
  5777. memset(sd, 0, sizeof(*sd)); \
  5778. *sd = SD_##type##_INIT; \
  5779. }
  5780. SD_INIT_FUNC(CPU)
  5781. #ifdef CONFIG_NUMA
  5782. SD_INIT_FUNC(ALLNODES)
  5783. SD_INIT_FUNC(NODE)
  5784. #endif
  5785. #ifdef CONFIG_SCHED_SMT
  5786. SD_INIT_FUNC(SIBLING)
  5787. #endif
  5788. #ifdef CONFIG_SCHED_MC
  5789. SD_INIT_FUNC(MC)
  5790. #endif
  5791. /*
  5792. * To minimize stack usage kmalloc room for cpumasks and share the
  5793. * space as the usage in build_sched_domains() dictates. Used only
  5794. * if the amount of space is significant.
  5795. */
  5796. struct allmasks {
  5797. cpumask_t tmpmask; /* make this one first */
  5798. union {
  5799. cpumask_t nodemask;
  5800. cpumask_t this_sibling_map;
  5801. cpumask_t this_core_map;
  5802. };
  5803. cpumask_t send_covered;
  5804. #ifdef CONFIG_NUMA
  5805. cpumask_t domainspan;
  5806. cpumask_t covered;
  5807. cpumask_t notcovered;
  5808. #endif
  5809. };
  5810. #if NR_CPUS > 128
  5811. #define SCHED_CPUMASK_ALLOC 1
  5812. #define SCHED_CPUMASK_FREE(v) kfree(v)
  5813. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  5814. #else
  5815. #define SCHED_CPUMASK_ALLOC 0
  5816. #define SCHED_CPUMASK_FREE(v)
  5817. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  5818. #endif
  5819. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  5820. ((unsigned long)(a) + offsetof(struct allmasks, v))
  5821. /*
  5822. * Build sched domains for a given set of cpus and attach the sched domains
  5823. * to the individual cpus
  5824. */
  5825. static int build_sched_domains(const cpumask_t *cpu_map)
  5826. {
  5827. int i;
  5828. struct root_domain *rd;
  5829. SCHED_CPUMASK_DECLARE(allmasks);
  5830. cpumask_t *tmpmask;
  5831. #ifdef CONFIG_NUMA
  5832. struct sched_group **sched_group_nodes = NULL;
  5833. int sd_allnodes = 0;
  5834. /*
  5835. * Allocate the per-node list of sched groups
  5836. */
  5837. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5838. GFP_KERNEL);
  5839. if (!sched_group_nodes) {
  5840. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5841. return -ENOMEM;
  5842. }
  5843. #endif
  5844. rd = alloc_rootdomain();
  5845. if (!rd) {
  5846. printk(KERN_WARNING "Cannot alloc root domain\n");
  5847. #ifdef CONFIG_NUMA
  5848. kfree(sched_group_nodes);
  5849. #endif
  5850. return -ENOMEM;
  5851. }
  5852. #if SCHED_CPUMASK_ALLOC
  5853. /* get space for all scratch cpumask variables */
  5854. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  5855. if (!allmasks) {
  5856. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  5857. kfree(rd);
  5858. #ifdef CONFIG_NUMA
  5859. kfree(sched_group_nodes);
  5860. #endif
  5861. return -ENOMEM;
  5862. }
  5863. #endif
  5864. tmpmask = (cpumask_t *)allmasks;
  5865. #ifdef CONFIG_NUMA
  5866. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5867. #endif
  5868. /*
  5869. * Set up domains for cpus specified by the cpu_map.
  5870. */
  5871. for_each_cpu_mask(i, *cpu_map) {
  5872. struct sched_domain *sd = NULL, *p;
  5873. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5874. *nodemask = node_to_cpumask(cpu_to_node(i));
  5875. cpus_and(*nodemask, *nodemask, *cpu_map);
  5876. #ifdef CONFIG_NUMA
  5877. if (cpus_weight(*cpu_map) >
  5878. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  5879. sd = &per_cpu(allnodes_domains, i);
  5880. SD_INIT(sd, ALLNODES);
  5881. sd->span = *cpu_map;
  5882. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  5883. p = sd;
  5884. sd_allnodes = 1;
  5885. } else
  5886. p = NULL;
  5887. sd = &per_cpu(node_domains, i);
  5888. SD_INIT(sd, NODE);
  5889. sched_domain_node_span(cpu_to_node(i), &sd->span);
  5890. sd->parent = p;
  5891. if (p)
  5892. p->child = sd;
  5893. cpus_and(sd->span, sd->span, *cpu_map);
  5894. #endif
  5895. p = sd;
  5896. sd = &per_cpu(phys_domains, i);
  5897. SD_INIT(sd, CPU);
  5898. sd->span = *nodemask;
  5899. sd->parent = p;
  5900. if (p)
  5901. p->child = sd;
  5902. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  5903. #ifdef CONFIG_SCHED_MC
  5904. p = sd;
  5905. sd = &per_cpu(core_domains, i);
  5906. SD_INIT(sd, MC);
  5907. sd->span = cpu_coregroup_map(i);
  5908. cpus_and(sd->span, sd->span, *cpu_map);
  5909. sd->parent = p;
  5910. p->child = sd;
  5911. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  5912. #endif
  5913. #ifdef CONFIG_SCHED_SMT
  5914. p = sd;
  5915. sd = &per_cpu(cpu_domains, i);
  5916. SD_INIT(sd, SIBLING);
  5917. sd->span = per_cpu(cpu_sibling_map, i);
  5918. cpus_and(sd->span, sd->span, *cpu_map);
  5919. sd->parent = p;
  5920. p->child = sd;
  5921. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  5922. #endif
  5923. }
  5924. #ifdef CONFIG_SCHED_SMT
  5925. /* Set up CPU (sibling) groups */
  5926. for_each_cpu_mask(i, *cpu_map) {
  5927. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  5928. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5929. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  5930. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  5931. if (i != first_cpu(*this_sibling_map))
  5932. continue;
  5933. init_sched_build_groups(this_sibling_map, cpu_map,
  5934. &cpu_to_cpu_group,
  5935. send_covered, tmpmask);
  5936. }
  5937. #endif
  5938. #ifdef CONFIG_SCHED_MC
  5939. /* Set up multi-core groups */
  5940. for_each_cpu_mask(i, *cpu_map) {
  5941. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  5942. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5943. *this_core_map = cpu_coregroup_map(i);
  5944. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  5945. if (i != first_cpu(*this_core_map))
  5946. continue;
  5947. init_sched_build_groups(this_core_map, cpu_map,
  5948. &cpu_to_core_group,
  5949. send_covered, tmpmask);
  5950. }
  5951. #endif
  5952. /* Set up physical groups */
  5953. for (i = 0; i < MAX_NUMNODES; i++) {
  5954. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5955. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5956. *nodemask = node_to_cpumask(i);
  5957. cpus_and(*nodemask, *nodemask, *cpu_map);
  5958. if (cpus_empty(*nodemask))
  5959. continue;
  5960. init_sched_build_groups(nodemask, cpu_map,
  5961. &cpu_to_phys_group,
  5962. send_covered, tmpmask);
  5963. }
  5964. #ifdef CONFIG_NUMA
  5965. /* Set up node groups */
  5966. if (sd_allnodes) {
  5967. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5968. init_sched_build_groups(cpu_map, cpu_map,
  5969. &cpu_to_allnodes_group,
  5970. send_covered, tmpmask);
  5971. }
  5972. for (i = 0; i < MAX_NUMNODES; i++) {
  5973. /* Set up node groups */
  5974. struct sched_group *sg, *prev;
  5975. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5976. SCHED_CPUMASK_VAR(domainspan, allmasks);
  5977. SCHED_CPUMASK_VAR(covered, allmasks);
  5978. int j;
  5979. *nodemask = node_to_cpumask(i);
  5980. cpus_clear(*covered);
  5981. cpus_and(*nodemask, *nodemask, *cpu_map);
  5982. if (cpus_empty(*nodemask)) {
  5983. sched_group_nodes[i] = NULL;
  5984. continue;
  5985. }
  5986. sched_domain_node_span(i, domainspan);
  5987. cpus_and(*domainspan, *domainspan, *cpu_map);
  5988. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5989. if (!sg) {
  5990. printk(KERN_WARNING "Can not alloc domain group for "
  5991. "node %d\n", i);
  5992. goto error;
  5993. }
  5994. sched_group_nodes[i] = sg;
  5995. for_each_cpu_mask(j, *nodemask) {
  5996. struct sched_domain *sd;
  5997. sd = &per_cpu(node_domains, j);
  5998. sd->groups = sg;
  5999. }
  6000. sg->__cpu_power = 0;
  6001. sg->cpumask = *nodemask;
  6002. sg->next = sg;
  6003. cpus_or(*covered, *covered, *nodemask);
  6004. prev = sg;
  6005. for (j = 0; j < MAX_NUMNODES; j++) {
  6006. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6007. int n = (i + j) % MAX_NUMNODES;
  6008. node_to_cpumask_ptr(pnodemask, n);
  6009. cpus_complement(*notcovered, *covered);
  6010. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6011. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6012. if (cpus_empty(*tmpmask))
  6013. break;
  6014. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6015. if (cpus_empty(*tmpmask))
  6016. continue;
  6017. sg = kmalloc_node(sizeof(struct sched_group),
  6018. GFP_KERNEL, i);
  6019. if (!sg) {
  6020. printk(KERN_WARNING
  6021. "Can not alloc domain group for node %d\n", j);
  6022. goto error;
  6023. }
  6024. sg->__cpu_power = 0;
  6025. sg->cpumask = *tmpmask;
  6026. sg->next = prev->next;
  6027. cpus_or(*covered, *covered, *tmpmask);
  6028. prev->next = sg;
  6029. prev = sg;
  6030. }
  6031. }
  6032. #endif
  6033. /* Calculate CPU power for physical packages and nodes */
  6034. #ifdef CONFIG_SCHED_SMT
  6035. for_each_cpu_mask(i, *cpu_map) {
  6036. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6037. init_sched_groups_power(i, sd);
  6038. }
  6039. #endif
  6040. #ifdef CONFIG_SCHED_MC
  6041. for_each_cpu_mask(i, *cpu_map) {
  6042. struct sched_domain *sd = &per_cpu(core_domains, i);
  6043. init_sched_groups_power(i, sd);
  6044. }
  6045. #endif
  6046. for_each_cpu_mask(i, *cpu_map) {
  6047. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6048. init_sched_groups_power(i, sd);
  6049. }
  6050. #ifdef CONFIG_NUMA
  6051. for (i = 0; i < MAX_NUMNODES; i++)
  6052. init_numa_sched_groups_power(sched_group_nodes[i]);
  6053. if (sd_allnodes) {
  6054. struct sched_group *sg;
  6055. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6056. tmpmask);
  6057. init_numa_sched_groups_power(sg);
  6058. }
  6059. #endif
  6060. /* Attach the domains */
  6061. for_each_cpu_mask(i, *cpu_map) {
  6062. struct sched_domain *sd;
  6063. #ifdef CONFIG_SCHED_SMT
  6064. sd = &per_cpu(cpu_domains, i);
  6065. #elif defined(CONFIG_SCHED_MC)
  6066. sd = &per_cpu(core_domains, i);
  6067. #else
  6068. sd = &per_cpu(phys_domains, i);
  6069. #endif
  6070. cpu_attach_domain(sd, rd, i);
  6071. }
  6072. SCHED_CPUMASK_FREE((void *)allmasks);
  6073. return 0;
  6074. #ifdef CONFIG_NUMA
  6075. error:
  6076. free_sched_groups(cpu_map, tmpmask);
  6077. SCHED_CPUMASK_FREE((void *)allmasks);
  6078. return -ENOMEM;
  6079. #endif
  6080. }
  6081. static cpumask_t *doms_cur; /* current sched domains */
  6082. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6083. /*
  6084. * Special case: If a kmalloc of a doms_cur partition (array of
  6085. * cpumask_t) fails, then fallback to a single sched domain,
  6086. * as determined by the single cpumask_t fallback_doms.
  6087. */
  6088. static cpumask_t fallback_doms;
  6089. void __attribute__((weak)) arch_update_cpu_topology(void)
  6090. {
  6091. }
  6092. /*
  6093. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6094. * For now this just excludes isolated cpus, but could be used to
  6095. * exclude other special cases in the future.
  6096. */
  6097. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6098. {
  6099. int err;
  6100. arch_update_cpu_topology();
  6101. ndoms_cur = 1;
  6102. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6103. if (!doms_cur)
  6104. doms_cur = &fallback_doms;
  6105. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6106. err = build_sched_domains(doms_cur);
  6107. register_sched_domain_sysctl();
  6108. return err;
  6109. }
  6110. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6111. cpumask_t *tmpmask)
  6112. {
  6113. free_sched_groups(cpu_map, tmpmask);
  6114. }
  6115. /*
  6116. * Detach sched domains from a group of cpus specified in cpu_map
  6117. * These cpus will now be attached to the NULL domain
  6118. */
  6119. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6120. {
  6121. cpumask_t tmpmask;
  6122. int i;
  6123. unregister_sched_domain_sysctl();
  6124. for_each_cpu_mask(i, *cpu_map)
  6125. cpu_attach_domain(NULL, &def_root_domain, i);
  6126. synchronize_sched();
  6127. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6128. }
  6129. /*
  6130. * Partition sched domains as specified by the 'ndoms_new'
  6131. * cpumasks in the array doms_new[] of cpumasks. This compares
  6132. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6133. * It destroys each deleted domain and builds each new domain.
  6134. *
  6135. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6136. * The masks don't intersect (don't overlap.) We should setup one
  6137. * sched domain for each mask. CPUs not in any of the cpumasks will
  6138. * not be load balanced. If the same cpumask appears both in the
  6139. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6140. * it as it is.
  6141. *
  6142. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6143. * ownership of it and will kfree it when done with it. If the caller
  6144. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6145. * and partition_sched_domains() will fallback to the single partition
  6146. * 'fallback_doms'.
  6147. *
  6148. * Call with hotplug lock held
  6149. */
  6150. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  6151. {
  6152. int i, j;
  6153. lock_doms_cur();
  6154. /* always unregister in case we don't destroy any domains */
  6155. unregister_sched_domain_sysctl();
  6156. if (doms_new == NULL) {
  6157. ndoms_new = 1;
  6158. doms_new = &fallback_doms;
  6159. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6160. }
  6161. /* Destroy deleted domains */
  6162. for (i = 0; i < ndoms_cur; i++) {
  6163. for (j = 0; j < ndoms_new; j++) {
  6164. if (cpus_equal(doms_cur[i], doms_new[j]))
  6165. goto match1;
  6166. }
  6167. /* no match - a current sched domain not in new doms_new[] */
  6168. detach_destroy_domains(doms_cur + i);
  6169. match1:
  6170. ;
  6171. }
  6172. /* Build new domains */
  6173. for (i = 0; i < ndoms_new; i++) {
  6174. for (j = 0; j < ndoms_cur; j++) {
  6175. if (cpus_equal(doms_new[i], doms_cur[j]))
  6176. goto match2;
  6177. }
  6178. /* no match - add a new doms_new */
  6179. build_sched_domains(doms_new + i);
  6180. match2:
  6181. ;
  6182. }
  6183. /* Remember the new sched domains */
  6184. if (doms_cur != &fallback_doms)
  6185. kfree(doms_cur);
  6186. doms_cur = doms_new;
  6187. ndoms_cur = ndoms_new;
  6188. register_sched_domain_sysctl();
  6189. unlock_doms_cur();
  6190. }
  6191. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6192. int arch_reinit_sched_domains(void)
  6193. {
  6194. int err;
  6195. get_online_cpus();
  6196. detach_destroy_domains(&cpu_online_map);
  6197. err = arch_init_sched_domains(&cpu_online_map);
  6198. put_online_cpus();
  6199. return err;
  6200. }
  6201. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6202. {
  6203. int ret;
  6204. if (buf[0] != '0' && buf[0] != '1')
  6205. return -EINVAL;
  6206. if (smt)
  6207. sched_smt_power_savings = (buf[0] == '1');
  6208. else
  6209. sched_mc_power_savings = (buf[0] == '1');
  6210. ret = arch_reinit_sched_domains();
  6211. return ret ? ret : count;
  6212. }
  6213. #ifdef CONFIG_SCHED_MC
  6214. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6215. {
  6216. return sprintf(page, "%u\n", sched_mc_power_savings);
  6217. }
  6218. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6219. const char *buf, size_t count)
  6220. {
  6221. return sched_power_savings_store(buf, count, 0);
  6222. }
  6223. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6224. sched_mc_power_savings_store);
  6225. #endif
  6226. #ifdef CONFIG_SCHED_SMT
  6227. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6228. {
  6229. return sprintf(page, "%u\n", sched_smt_power_savings);
  6230. }
  6231. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6232. const char *buf, size_t count)
  6233. {
  6234. return sched_power_savings_store(buf, count, 1);
  6235. }
  6236. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6237. sched_smt_power_savings_store);
  6238. #endif
  6239. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6240. {
  6241. int err = 0;
  6242. #ifdef CONFIG_SCHED_SMT
  6243. if (smt_capable())
  6244. err = sysfs_create_file(&cls->kset.kobj,
  6245. &attr_sched_smt_power_savings.attr);
  6246. #endif
  6247. #ifdef CONFIG_SCHED_MC
  6248. if (!err && mc_capable())
  6249. err = sysfs_create_file(&cls->kset.kobj,
  6250. &attr_sched_mc_power_savings.attr);
  6251. #endif
  6252. return err;
  6253. }
  6254. #endif
  6255. /*
  6256. * Force a reinitialization of the sched domains hierarchy. The domains
  6257. * and groups cannot be updated in place without racing with the balancing
  6258. * code, so we temporarily attach all running cpus to the NULL domain
  6259. * which will prevent rebalancing while the sched domains are recalculated.
  6260. */
  6261. static int update_sched_domains(struct notifier_block *nfb,
  6262. unsigned long action, void *hcpu)
  6263. {
  6264. switch (action) {
  6265. case CPU_UP_PREPARE:
  6266. case CPU_UP_PREPARE_FROZEN:
  6267. case CPU_DOWN_PREPARE:
  6268. case CPU_DOWN_PREPARE_FROZEN:
  6269. detach_destroy_domains(&cpu_online_map);
  6270. return NOTIFY_OK;
  6271. case CPU_UP_CANCELED:
  6272. case CPU_UP_CANCELED_FROZEN:
  6273. case CPU_DOWN_FAILED:
  6274. case CPU_DOWN_FAILED_FROZEN:
  6275. case CPU_ONLINE:
  6276. case CPU_ONLINE_FROZEN:
  6277. case CPU_DEAD:
  6278. case CPU_DEAD_FROZEN:
  6279. /*
  6280. * Fall through and re-initialise the domains.
  6281. */
  6282. break;
  6283. default:
  6284. return NOTIFY_DONE;
  6285. }
  6286. /* The hotplug lock is already held by cpu_up/cpu_down */
  6287. arch_init_sched_domains(&cpu_online_map);
  6288. return NOTIFY_OK;
  6289. }
  6290. void __init sched_init_smp(void)
  6291. {
  6292. cpumask_t non_isolated_cpus;
  6293. #if defined(CONFIG_NUMA)
  6294. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6295. GFP_KERNEL);
  6296. BUG_ON(sched_group_nodes_bycpu == NULL);
  6297. #endif
  6298. get_online_cpus();
  6299. arch_init_sched_domains(&cpu_online_map);
  6300. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6301. if (cpus_empty(non_isolated_cpus))
  6302. cpu_set(smp_processor_id(), non_isolated_cpus);
  6303. put_online_cpus();
  6304. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6305. hotcpu_notifier(update_sched_domains, 0);
  6306. /* Move init over to a non-isolated CPU */
  6307. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6308. BUG();
  6309. sched_init_granularity();
  6310. }
  6311. #else
  6312. void __init sched_init_smp(void)
  6313. {
  6314. #if defined(CONFIG_NUMA)
  6315. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6316. GFP_KERNEL);
  6317. BUG_ON(sched_group_nodes_bycpu == NULL);
  6318. #endif
  6319. sched_init_granularity();
  6320. }
  6321. #endif /* CONFIG_SMP */
  6322. int in_sched_functions(unsigned long addr)
  6323. {
  6324. return in_lock_functions(addr) ||
  6325. (addr >= (unsigned long)__sched_text_start
  6326. && addr < (unsigned long)__sched_text_end);
  6327. }
  6328. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6329. {
  6330. cfs_rq->tasks_timeline = RB_ROOT;
  6331. #ifdef CONFIG_FAIR_GROUP_SCHED
  6332. cfs_rq->rq = rq;
  6333. #endif
  6334. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6335. }
  6336. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6337. {
  6338. struct rt_prio_array *array;
  6339. int i;
  6340. array = &rt_rq->active;
  6341. for (i = 0; i < MAX_RT_PRIO; i++) {
  6342. INIT_LIST_HEAD(array->queue + i);
  6343. __clear_bit(i, array->bitmap);
  6344. }
  6345. /* delimiter for bitsearch: */
  6346. __set_bit(MAX_RT_PRIO, array->bitmap);
  6347. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6348. rt_rq->highest_prio = MAX_RT_PRIO;
  6349. #endif
  6350. #ifdef CONFIG_SMP
  6351. rt_rq->rt_nr_migratory = 0;
  6352. rt_rq->overloaded = 0;
  6353. #endif
  6354. rt_rq->rt_time = 0;
  6355. rt_rq->rt_throttled = 0;
  6356. rt_rq->rt_runtime = 0;
  6357. spin_lock_init(&rt_rq->rt_runtime_lock);
  6358. #ifdef CONFIG_RT_GROUP_SCHED
  6359. rt_rq->rt_nr_boosted = 0;
  6360. rt_rq->rq = rq;
  6361. #endif
  6362. }
  6363. #ifdef CONFIG_FAIR_GROUP_SCHED
  6364. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6365. struct sched_entity *se, int cpu, int add,
  6366. struct sched_entity *parent)
  6367. {
  6368. struct rq *rq = cpu_rq(cpu);
  6369. tg->cfs_rq[cpu] = cfs_rq;
  6370. init_cfs_rq(cfs_rq, rq);
  6371. cfs_rq->tg = tg;
  6372. if (add)
  6373. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6374. tg->se[cpu] = se;
  6375. /* se could be NULL for init_task_group */
  6376. if (!se)
  6377. return;
  6378. if (!parent)
  6379. se->cfs_rq = &rq->cfs;
  6380. else
  6381. se->cfs_rq = parent->my_q;
  6382. se->my_q = cfs_rq;
  6383. se->load.weight = tg->shares;
  6384. se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
  6385. se->parent = parent;
  6386. }
  6387. #endif
  6388. #ifdef CONFIG_RT_GROUP_SCHED
  6389. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6390. struct sched_rt_entity *rt_se, int cpu, int add,
  6391. struct sched_rt_entity *parent)
  6392. {
  6393. struct rq *rq = cpu_rq(cpu);
  6394. tg->rt_rq[cpu] = rt_rq;
  6395. init_rt_rq(rt_rq, rq);
  6396. rt_rq->tg = tg;
  6397. rt_rq->rt_se = rt_se;
  6398. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6399. if (add)
  6400. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6401. tg->rt_se[cpu] = rt_se;
  6402. if (!rt_se)
  6403. return;
  6404. if (!parent)
  6405. rt_se->rt_rq = &rq->rt;
  6406. else
  6407. rt_se->rt_rq = parent->my_q;
  6408. rt_se->rt_rq = &rq->rt;
  6409. rt_se->my_q = rt_rq;
  6410. rt_se->parent = parent;
  6411. INIT_LIST_HEAD(&rt_se->run_list);
  6412. }
  6413. #endif
  6414. void __init sched_init(void)
  6415. {
  6416. int i, j;
  6417. unsigned long alloc_size = 0, ptr;
  6418. #ifdef CONFIG_FAIR_GROUP_SCHED
  6419. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6420. #endif
  6421. #ifdef CONFIG_RT_GROUP_SCHED
  6422. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6423. #endif
  6424. /*
  6425. * As sched_init() is called before page_alloc is setup,
  6426. * we use alloc_bootmem().
  6427. */
  6428. if (alloc_size) {
  6429. ptr = (unsigned long)alloc_bootmem_low(alloc_size);
  6430. #ifdef CONFIG_FAIR_GROUP_SCHED
  6431. init_task_group.se = (struct sched_entity **)ptr;
  6432. ptr += nr_cpu_ids * sizeof(void **);
  6433. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6434. ptr += nr_cpu_ids * sizeof(void **);
  6435. #endif
  6436. #ifdef CONFIG_RT_GROUP_SCHED
  6437. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6438. ptr += nr_cpu_ids * sizeof(void **);
  6439. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6440. #endif
  6441. }
  6442. #ifdef CONFIG_SMP
  6443. init_defrootdomain();
  6444. #endif
  6445. init_rt_bandwidth(&def_rt_bandwidth,
  6446. global_rt_period(), global_rt_runtime());
  6447. #ifdef CONFIG_RT_GROUP_SCHED
  6448. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6449. global_rt_period(), global_rt_runtime());
  6450. #endif
  6451. #ifdef CONFIG_GROUP_SCHED
  6452. list_add(&init_task_group.list, &task_groups);
  6453. #endif
  6454. for_each_possible_cpu(i) {
  6455. struct rq *rq;
  6456. rq = cpu_rq(i);
  6457. spin_lock_init(&rq->lock);
  6458. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6459. rq->nr_running = 0;
  6460. rq->clock = 1;
  6461. update_last_tick_seen(rq);
  6462. init_cfs_rq(&rq->cfs, rq);
  6463. init_rt_rq(&rq->rt, rq);
  6464. #ifdef CONFIG_FAIR_GROUP_SCHED
  6465. init_task_group.shares = init_task_group_load;
  6466. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6467. #ifdef CONFIG_CGROUP_SCHED
  6468. /*
  6469. * How much cpu bandwidth does init_task_group get?
  6470. *
  6471. * In case of task-groups formed thr' the cgroup filesystem, it
  6472. * gets 100% of the cpu resources in the system. This overall
  6473. * system cpu resource is divided among the tasks of
  6474. * init_task_group and its child task-groups in a fair manner,
  6475. * based on each entity's (task or task-group's) weight
  6476. * (se->load.weight).
  6477. *
  6478. * In other words, if init_task_group has 10 tasks of weight
  6479. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6480. * then A0's share of the cpu resource is:
  6481. *
  6482. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6483. *
  6484. * We achieve this by letting init_task_group's tasks sit
  6485. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6486. */
  6487. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6488. #elif defined CONFIG_USER_SCHED
  6489. /*
  6490. * In case of task-groups formed thr' the user id of tasks,
  6491. * init_task_group represents tasks belonging to root user.
  6492. * Hence it forms a sibling of all subsequent groups formed.
  6493. * In this case, init_task_group gets only a fraction of overall
  6494. * system cpu resource, based on the weight assigned to root
  6495. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6496. * by letting tasks of init_task_group sit in a separate cfs_rq
  6497. * (init_cfs_rq) and having one entity represent this group of
  6498. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6499. */
  6500. init_tg_cfs_entry(&init_task_group,
  6501. &per_cpu(init_cfs_rq, i),
  6502. &per_cpu(init_sched_entity, i), i, 1, NULL);
  6503. #endif
  6504. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6505. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6506. #ifdef CONFIG_RT_GROUP_SCHED
  6507. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6508. #ifdef CONFIG_CGROUP_SCHED
  6509. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6510. #elif defined CONFIG_USER_SCHED
  6511. init_tg_rt_entry(&init_task_group,
  6512. &per_cpu(init_rt_rq, i),
  6513. &per_cpu(init_sched_rt_entity, i), i, 1, NULL);
  6514. #endif
  6515. #endif
  6516. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6517. rq->cpu_load[j] = 0;
  6518. #ifdef CONFIG_SMP
  6519. rq->sd = NULL;
  6520. rq->rd = NULL;
  6521. rq->active_balance = 0;
  6522. rq->next_balance = jiffies;
  6523. rq->push_cpu = 0;
  6524. rq->cpu = i;
  6525. rq->migration_thread = NULL;
  6526. INIT_LIST_HEAD(&rq->migration_queue);
  6527. rq_attach_root(rq, &def_root_domain);
  6528. #endif
  6529. init_rq_hrtick(rq);
  6530. atomic_set(&rq->nr_iowait, 0);
  6531. }
  6532. set_load_weight(&init_task);
  6533. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6534. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6535. #endif
  6536. #ifdef CONFIG_SMP
  6537. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6538. #endif
  6539. #ifdef CONFIG_RT_MUTEXES
  6540. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6541. #endif
  6542. /*
  6543. * The boot idle thread does lazy MMU switching as well:
  6544. */
  6545. atomic_inc(&init_mm.mm_count);
  6546. enter_lazy_tlb(&init_mm, current);
  6547. /*
  6548. * Make us the idle thread. Technically, schedule() should not be
  6549. * called from this thread, however somewhere below it might be,
  6550. * but because we are the idle thread, we just pick up running again
  6551. * when this runqueue becomes "idle".
  6552. */
  6553. init_idle(current, smp_processor_id());
  6554. /*
  6555. * During early bootup we pretend to be a normal task:
  6556. */
  6557. current->sched_class = &fair_sched_class;
  6558. scheduler_running = 1;
  6559. }
  6560. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6561. void __might_sleep(char *file, int line)
  6562. {
  6563. #ifdef in_atomic
  6564. static unsigned long prev_jiffy; /* ratelimiting */
  6565. if ((in_atomic() || irqs_disabled()) &&
  6566. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6567. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6568. return;
  6569. prev_jiffy = jiffies;
  6570. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6571. " context at %s:%d\n", file, line);
  6572. printk("in_atomic():%d, irqs_disabled():%d\n",
  6573. in_atomic(), irqs_disabled());
  6574. debug_show_held_locks(current);
  6575. if (irqs_disabled())
  6576. print_irqtrace_events(current);
  6577. dump_stack();
  6578. }
  6579. #endif
  6580. }
  6581. EXPORT_SYMBOL(__might_sleep);
  6582. #endif
  6583. #ifdef CONFIG_MAGIC_SYSRQ
  6584. static void normalize_task(struct rq *rq, struct task_struct *p)
  6585. {
  6586. int on_rq;
  6587. update_rq_clock(rq);
  6588. on_rq = p->se.on_rq;
  6589. if (on_rq)
  6590. deactivate_task(rq, p, 0);
  6591. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6592. if (on_rq) {
  6593. activate_task(rq, p, 0);
  6594. resched_task(rq->curr);
  6595. }
  6596. }
  6597. void normalize_rt_tasks(void)
  6598. {
  6599. struct task_struct *g, *p;
  6600. unsigned long flags;
  6601. struct rq *rq;
  6602. read_lock_irqsave(&tasklist_lock, flags);
  6603. do_each_thread(g, p) {
  6604. /*
  6605. * Only normalize user tasks:
  6606. */
  6607. if (!p->mm)
  6608. continue;
  6609. p->se.exec_start = 0;
  6610. #ifdef CONFIG_SCHEDSTATS
  6611. p->se.wait_start = 0;
  6612. p->se.sleep_start = 0;
  6613. p->se.block_start = 0;
  6614. #endif
  6615. task_rq(p)->clock = 0;
  6616. if (!rt_task(p)) {
  6617. /*
  6618. * Renice negative nice level userspace
  6619. * tasks back to 0:
  6620. */
  6621. if (TASK_NICE(p) < 0 && p->mm)
  6622. set_user_nice(p, 0);
  6623. continue;
  6624. }
  6625. spin_lock(&p->pi_lock);
  6626. rq = __task_rq_lock(p);
  6627. normalize_task(rq, p);
  6628. __task_rq_unlock(rq);
  6629. spin_unlock(&p->pi_lock);
  6630. } while_each_thread(g, p);
  6631. read_unlock_irqrestore(&tasklist_lock, flags);
  6632. }
  6633. #endif /* CONFIG_MAGIC_SYSRQ */
  6634. #ifdef CONFIG_IA64
  6635. /*
  6636. * These functions are only useful for the IA64 MCA handling.
  6637. *
  6638. * They can only be called when the whole system has been
  6639. * stopped - every CPU needs to be quiescent, and no scheduling
  6640. * activity can take place. Using them for anything else would
  6641. * be a serious bug, and as a result, they aren't even visible
  6642. * under any other configuration.
  6643. */
  6644. /**
  6645. * curr_task - return the current task for a given cpu.
  6646. * @cpu: the processor in question.
  6647. *
  6648. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6649. */
  6650. struct task_struct *curr_task(int cpu)
  6651. {
  6652. return cpu_curr(cpu);
  6653. }
  6654. /**
  6655. * set_curr_task - set the current task for a given cpu.
  6656. * @cpu: the processor in question.
  6657. * @p: the task pointer to set.
  6658. *
  6659. * Description: This function must only be used when non-maskable interrupts
  6660. * are serviced on a separate stack. It allows the architecture to switch the
  6661. * notion of the current task on a cpu in a non-blocking manner. This function
  6662. * must be called with all CPU's synchronized, and interrupts disabled, the
  6663. * and caller must save the original value of the current task (see
  6664. * curr_task() above) and restore that value before reenabling interrupts and
  6665. * re-starting the system.
  6666. *
  6667. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6668. */
  6669. void set_curr_task(int cpu, struct task_struct *p)
  6670. {
  6671. cpu_curr(cpu) = p;
  6672. }
  6673. #endif
  6674. #ifdef CONFIG_FAIR_GROUP_SCHED
  6675. static void free_fair_sched_group(struct task_group *tg)
  6676. {
  6677. int i;
  6678. for_each_possible_cpu(i) {
  6679. if (tg->cfs_rq)
  6680. kfree(tg->cfs_rq[i]);
  6681. if (tg->se)
  6682. kfree(tg->se[i]);
  6683. }
  6684. kfree(tg->cfs_rq);
  6685. kfree(tg->se);
  6686. }
  6687. static
  6688. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6689. {
  6690. struct cfs_rq *cfs_rq;
  6691. struct sched_entity *se, *parent_se;
  6692. struct rq *rq;
  6693. int i;
  6694. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6695. if (!tg->cfs_rq)
  6696. goto err;
  6697. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6698. if (!tg->se)
  6699. goto err;
  6700. tg->shares = NICE_0_LOAD;
  6701. for_each_possible_cpu(i) {
  6702. rq = cpu_rq(i);
  6703. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6704. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6705. if (!cfs_rq)
  6706. goto err;
  6707. se = kmalloc_node(sizeof(struct sched_entity),
  6708. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6709. if (!se)
  6710. goto err;
  6711. parent_se = parent ? parent->se[i] : NULL;
  6712. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  6713. }
  6714. return 1;
  6715. err:
  6716. return 0;
  6717. }
  6718. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6719. {
  6720. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6721. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6722. }
  6723. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6724. {
  6725. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6726. }
  6727. #else
  6728. static inline void free_fair_sched_group(struct task_group *tg)
  6729. {
  6730. }
  6731. static inline
  6732. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6733. {
  6734. return 1;
  6735. }
  6736. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6737. {
  6738. }
  6739. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6740. {
  6741. }
  6742. #endif
  6743. #ifdef CONFIG_RT_GROUP_SCHED
  6744. static void free_rt_sched_group(struct task_group *tg)
  6745. {
  6746. int i;
  6747. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6748. for_each_possible_cpu(i) {
  6749. if (tg->rt_rq)
  6750. kfree(tg->rt_rq[i]);
  6751. if (tg->rt_se)
  6752. kfree(tg->rt_se[i]);
  6753. }
  6754. kfree(tg->rt_rq);
  6755. kfree(tg->rt_se);
  6756. }
  6757. static
  6758. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6759. {
  6760. struct rt_rq *rt_rq;
  6761. struct sched_rt_entity *rt_se, *parent_se;
  6762. struct rq *rq;
  6763. int i;
  6764. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6765. if (!tg->rt_rq)
  6766. goto err;
  6767. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6768. if (!tg->rt_se)
  6769. goto err;
  6770. init_rt_bandwidth(&tg->rt_bandwidth,
  6771. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6772. for_each_possible_cpu(i) {
  6773. rq = cpu_rq(i);
  6774. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6775. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6776. if (!rt_rq)
  6777. goto err;
  6778. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6779. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6780. if (!rt_se)
  6781. goto err;
  6782. parent_se = parent ? parent->rt_se[i] : NULL;
  6783. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  6784. }
  6785. return 1;
  6786. err:
  6787. return 0;
  6788. }
  6789. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6790. {
  6791. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6792. &cpu_rq(cpu)->leaf_rt_rq_list);
  6793. }
  6794. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6795. {
  6796. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6797. }
  6798. #else
  6799. static inline void free_rt_sched_group(struct task_group *tg)
  6800. {
  6801. }
  6802. static inline
  6803. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6804. {
  6805. return 1;
  6806. }
  6807. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6808. {
  6809. }
  6810. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6811. {
  6812. }
  6813. #endif
  6814. #ifdef CONFIG_GROUP_SCHED
  6815. static void free_sched_group(struct task_group *tg)
  6816. {
  6817. free_fair_sched_group(tg);
  6818. free_rt_sched_group(tg);
  6819. kfree(tg);
  6820. }
  6821. /* allocate runqueue etc for a new task group */
  6822. struct task_group *sched_create_group(struct task_group *parent)
  6823. {
  6824. struct task_group *tg;
  6825. unsigned long flags;
  6826. int i;
  6827. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6828. if (!tg)
  6829. return ERR_PTR(-ENOMEM);
  6830. if (!alloc_fair_sched_group(tg, parent))
  6831. goto err;
  6832. if (!alloc_rt_sched_group(tg, parent))
  6833. goto err;
  6834. spin_lock_irqsave(&task_group_lock, flags);
  6835. for_each_possible_cpu(i) {
  6836. register_fair_sched_group(tg, i);
  6837. register_rt_sched_group(tg, i);
  6838. }
  6839. list_add_rcu(&tg->list, &task_groups);
  6840. spin_unlock_irqrestore(&task_group_lock, flags);
  6841. return tg;
  6842. err:
  6843. free_sched_group(tg);
  6844. return ERR_PTR(-ENOMEM);
  6845. }
  6846. /* rcu callback to free various structures associated with a task group */
  6847. static void free_sched_group_rcu(struct rcu_head *rhp)
  6848. {
  6849. /* now it should be safe to free those cfs_rqs */
  6850. free_sched_group(container_of(rhp, struct task_group, rcu));
  6851. }
  6852. /* Destroy runqueue etc associated with a task group */
  6853. void sched_destroy_group(struct task_group *tg)
  6854. {
  6855. unsigned long flags;
  6856. int i;
  6857. spin_lock_irqsave(&task_group_lock, flags);
  6858. for_each_possible_cpu(i) {
  6859. unregister_fair_sched_group(tg, i);
  6860. unregister_rt_sched_group(tg, i);
  6861. }
  6862. list_del_rcu(&tg->list);
  6863. spin_unlock_irqrestore(&task_group_lock, flags);
  6864. /* wait for possible concurrent references to cfs_rqs complete */
  6865. call_rcu(&tg->rcu, free_sched_group_rcu);
  6866. }
  6867. /* change task's runqueue when it moves between groups.
  6868. * The caller of this function should have put the task in its new group
  6869. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6870. * reflect its new group.
  6871. */
  6872. void sched_move_task(struct task_struct *tsk)
  6873. {
  6874. int on_rq, running;
  6875. unsigned long flags;
  6876. struct rq *rq;
  6877. rq = task_rq_lock(tsk, &flags);
  6878. update_rq_clock(rq);
  6879. running = task_current(rq, tsk);
  6880. on_rq = tsk->se.on_rq;
  6881. if (on_rq)
  6882. dequeue_task(rq, tsk, 0);
  6883. if (unlikely(running))
  6884. tsk->sched_class->put_prev_task(rq, tsk);
  6885. set_task_rq(tsk, task_cpu(tsk));
  6886. #ifdef CONFIG_FAIR_GROUP_SCHED
  6887. if (tsk->sched_class->moved_group)
  6888. tsk->sched_class->moved_group(tsk);
  6889. #endif
  6890. if (unlikely(running))
  6891. tsk->sched_class->set_curr_task(rq);
  6892. if (on_rq)
  6893. enqueue_task(rq, tsk, 0);
  6894. task_rq_unlock(rq, &flags);
  6895. }
  6896. #endif
  6897. #ifdef CONFIG_FAIR_GROUP_SCHED
  6898. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6899. {
  6900. struct cfs_rq *cfs_rq = se->cfs_rq;
  6901. struct rq *rq = cfs_rq->rq;
  6902. int on_rq;
  6903. spin_lock_irq(&rq->lock);
  6904. on_rq = se->on_rq;
  6905. if (on_rq)
  6906. dequeue_entity(cfs_rq, se, 0);
  6907. se->load.weight = shares;
  6908. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6909. if (on_rq)
  6910. enqueue_entity(cfs_rq, se, 0);
  6911. spin_unlock_irq(&rq->lock);
  6912. }
  6913. static DEFINE_MUTEX(shares_mutex);
  6914. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6915. {
  6916. int i;
  6917. unsigned long flags;
  6918. /*
  6919. * We can't change the weight of the root cgroup.
  6920. */
  6921. if (!tg->se[0])
  6922. return -EINVAL;
  6923. /*
  6924. * A weight of 0 or 1 can cause arithmetics problems.
  6925. * (The default weight is 1024 - so there's no practical
  6926. * limitation from this.)
  6927. */
  6928. if (shares < 2)
  6929. shares = 2;
  6930. mutex_lock(&shares_mutex);
  6931. if (tg->shares == shares)
  6932. goto done;
  6933. spin_lock_irqsave(&task_group_lock, flags);
  6934. for_each_possible_cpu(i)
  6935. unregister_fair_sched_group(tg, i);
  6936. spin_unlock_irqrestore(&task_group_lock, flags);
  6937. /* wait for any ongoing reference to this group to finish */
  6938. synchronize_sched();
  6939. /*
  6940. * Now we are free to modify the group's share on each cpu
  6941. * w/o tripping rebalance_share or load_balance_fair.
  6942. */
  6943. tg->shares = shares;
  6944. for_each_possible_cpu(i)
  6945. set_se_shares(tg->se[i], shares);
  6946. /*
  6947. * Enable load balance activity on this group, by inserting it back on
  6948. * each cpu's rq->leaf_cfs_rq_list.
  6949. */
  6950. spin_lock_irqsave(&task_group_lock, flags);
  6951. for_each_possible_cpu(i)
  6952. register_fair_sched_group(tg, i);
  6953. spin_unlock_irqrestore(&task_group_lock, flags);
  6954. done:
  6955. mutex_unlock(&shares_mutex);
  6956. return 0;
  6957. }
  6958. unsigned long sched_group_shares(struct task_group *tg)
  6959. {
  6960. return tg->shares;
  6961. }
  6962. #endif
  6963. #ifdef CONFIG_RT_GROUP_SCHED
  6964. /*
  6965. * Ensure that the real time constraints are schedulable.
  6966. */
  6967. static DEFINE_MUTEX(rt_constraints_mutex);
  6968. static unsigned long to_ratio(u64 period, u64 runtime)
  6969. {
  6970. if (runtime == RUNTIME_INF)
  6971. return 1ULL << 16;
  6972. return div64_64(runtime << 16, period);
  6973. }
  6974. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6975. {
  6976. struct task_group *tgi;
  6977. unsigned long total = 0;
  6978. unsigned long global_ratio =
  6979. to_ratio(global_rt_period(), global_rt_runtime());
  6980. rcu_read_lock();
  6981. list_for_each_entry_rcu(tgi, &task_groups, list) {
  6982. if (tgi == tg)
  6983. continue;
  6984. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  6985. tgi->rt_bandwidth.rt_runtime);
  6986. }
  6987. rcu_read_unlock();
  6988. return total + to_ratio(period, runtime) < global_ratio;
  6989. }
  6990. /* Must be called with tasklist_lock held */
  6991. static inline int tg_has_rt_tasks(struct task_group *tg)
  6992. {
  6993. struct task_struct *g, *p;
  6994. do_each_thread(g, p) {
  6995. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  6996. return 1;
  6997. } while_each_thread(g, p);
  6998. return 0;
  6999. }
  7000. static int tg_set_bandwidth(struct task_group *tg,
  7001. u64 rt_period, u64 rt_runtime)
  7002. {
  7003. int i, err = 0;
  7004. mutex_lock(&rt_constraints_mutex);
  7005. read_lock(&tasklist_lock);
  7006. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7007. err = -EBUSY;
  7008. goto unlock;
  7009. }
  7010. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7011. err = -EINVAL;
  7012. goto unlock;
  7013. }
  7014. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7015. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7016. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7017. for_each_possible_cpu(i) {
  7018. struct rt_rq *rt_rq = tg->rt_rq[i];
  7019. spin_lock(&rt_rq->rt_runtime_lock);
  7020. rt_rq->rt_runtime = rt_runtime;
  7021. spin_unlock(&rt_rq->rt_runtime_lock);
  7022. }
  7023. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7024. unlock:
  7025. read_unlock(&tasklist_lock);
  7026. mutex_unlock(&rt_constraints_mutex);
  7027. return err;
  7028. }
  7029. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7030. {
  7031. u64 rt_runtime, rt_period;
  7032. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7033. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7034. if (rt_runtime_us < 0)
  7035. rt_runtime = RUNTIME_INF;
  7036. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7037. }
  7038. long sched_group_rt_runtime(struct task_group *tg)
  7039. {
  7040. u64 rt_runtime_us;
  7041. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7042. return -1;
  7043. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7044. do_div(rt_runtime_us, NSEC_PER_USEC);
  7045. return rt_runtime_us;
  7046. }
  7047. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7048. {
  7049. u64 rt_runtime, rt_period;
  7050. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7051. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7052. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7053. }
  7054. long sched_group_rt_period(struct task_group *tg)
  7055. {
  7056. u64 rt_period_us;
  7057. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7058. do_div(rt_period_us, NSEC_PER_USEC);
  7059. return rt_period_us;
  7060. }
  7061. static int sched_rt_global_constraints(void)
  7062. {
  7063. int ret = 0;
  7064. mutex_lock(&rt_constraints_mutex);
  7065. if (!__rt_schedulable(NULL, 1, 0))
  7066. ret = -EINVAL;
  7067. mutex_unlock(&rt_constraints_mutex);
  7068. return ret;
  7069. }
  7070. #else
  7071. static int sched_rt_global_constraints(void)
  7072. {
  7073. unsigned long flags;
  7074. int i;
  7075. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7076. for_each_possible_cpu(i) {
  7077. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7078. spin_lock(&rt_rq->rt_runtime_lock);
  7079. rt_rq->rt_runtime = global_rt_runtime();
  7080. spin_unlock(&rt_rq->rt_runtime_lock);
  7081. }
  7082. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7083. return 0;
  7084. }
  7085. #endif
  7086. int sched_rt_handler(struct ctl_table *table, int write,
  7087. struct file *filp, void __user *buffer, size_t *lenp,
  7088. loff_t *ppos)
  7089. {
  7090. int ret;
  7091. int old_period, old_runtime;
  7092. static DEFINE_MUTEX(mutex);
  7093. mutex_lock(&mutex);
  7094. old_period = sysctl_sched_rt_period;
  7095. old_runtime = sysctl_sched_rt_runtime;
  7096. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7097. if (!ret && write) {
  7098. ret = sched_rt_global_constraints();
  7099. if (ret) {
  7100. sysctl_sched_rt_period = old_period;
  7101. sysctl_sched_rt_runtime = old_runtime;
  7102. } else {
  7103. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7104. def_rt_bandwidth.rt_period =
  7105. ns_to_ktime(global_rt_period());
  7106. }
  7107. }
  7108. mutex_unlock(&mutex);
  7109. return ret;
  7110. }
  7111. #ifdef CONFIG_CGROUP_SCHED
  7112. /* return corresponding task_group object of a cgroup */
  7113. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7114. {
  7115. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7116. struct task_group, css);
  7117. }
  7118. static struct cgroup_subsys_state *
  7119. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7120. {
  7121. struct task_group *tg, *parent;
  7122. if (!cgrp->parent) {
  7123. /* This is early initialization for the top cgroup */
  7124. init_task_group.css.cgroup = cgrp;
  7125. return &init_task_group.css;
  7126. }
  7127. parent = cgroup_tg(cgrp->parent);
  7128. tg = sched_create_group(parent);
  7129. if (IS_ERR(tg))
  7130. return ERR_PTR(-ENOMEM);
  7131. /* Bind the cgroup to task_group object we just created */
  7132. tg->css.cgroup = cgrp;
  7133. return &tg->css;
  7134. }
  7135. static void
  7136. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7137. {
  7138. struct task_group *tg = cgroup_tg(cgrp);
  7139. sched_destroy_group(tg);
  7140. }
  7141. static int
  7142. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7143. struct task_struct *tsk)
  7144. {
  7145. #ifdef CONFIG_RT_GROUP_SCHED
  7146. /* Don't accept realtime tasks when there is no way for them to run */
  7147. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7148. return -EINVAL;
  7149. #else
  7150. /* We don't support RT-tasks being in separate groups */
  7151. if (tsk->sched_class != &fair_sched_class)
  7152. return -EINVAL;
  7153. #endif
  7154. return 0;
  7155. }
  7156. static void
  7157. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7158. struct cgroup *old_cont, struct task_struct *tsk)
  7159. {
  7160. sched_move_task(tsk);
  7161. }
  7162. #ifdef CONFIG_FAIR_GROUP_SCHED
  7163. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7164. u64 shareval)
  7165. {
  7166. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7167. }
  7168. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7169. {
  7170. struct task_group *tg = cgroup_tg(cgrp);
  7171. return (u64) tg->shares;
  7172. }
  7173. #endif
  7174. #ifdef CONFIG_RT_GROUP_SCHED
  7175. static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7176. struct file *file,
  7177. const char __user *userbuf,
  7178. size_t nbytes, loff_t *unused_ppos)
  7179. {
  7180. char buffer[64];
  7181. int retval = 0;
  7182. s64 val;
  7183. char *end;
  7184. if (!nbytes)
  7185. return -EINVAL;
  7186. if (nbytes >= sizeof(buffer))
  7187. return -E2BIG;
  7188. if (copy_from_user(buffer, userbuf, nbytes))
  7189. return -EFAULT;
  7190. buffer[nbytes] = 0; /* nul-terminate */
  7191. /* strip newline if necessary */
  7192. if (nbytes && (buffer[nbytes-1] == '\n'))
  7193. buffer[nbytes-1] = 0;
  7194. val = simple_strtoll(buffer, &end, 0);
  7195. if (*end)
  7196. return -EINVAL;
  7197. /* Pass to subsystem */
  7198. retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7199. if (!retval)
  7200. retval = nbytes;
  7201. return retval;
  7202. }
  7203. static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
  7204. struct file *file,
  7205. char __user *buf, size_t nbytes,
  7206. loff_t *ppos)
  7207. {
  7208. char tmp[64];
  7209. long val = sched_group_rt_runtime(cgroup_tg(cgrp));
  7210. int len = sprintf(tmp, "%ld\n", val);
  7211. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  7212. }
  7213. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7214. u64 rt_period_us)
  7215. {
  7216. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7217. }
  7218. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7219. {
  7220. return sched_group_rt_period(cgroup_tg(cgrp));
  7221. }
  7222. #endif
  7223. static struct cftype cpu_files[] = {
  7224. #ifdef CONFIG_FAIR_GROUP_SCHED
  7225. {
  7226. .name = "shares",
  7227. .read_uint = cpu_shares_read_uint,
  7228. .write_uint = cpu_shares_write_uint,
  7229. },
  7230. #endif
  7231. #ifdef CONFIG_RT_GROUP_SCHED
  7232. {
  7233. .name = "rt_runtime_us",
  7234. .read = cpu_rt_runtime_read,
  7235. .write = cpu_rt_runtime_write,
  7236. },
  7237. {
  7238. .name = "rt_period_us",
  7239. .read_uint = cpu_rt_period_read_uint,
  7240. .write_uint = cpu_rt_period_write_uint,
  7241. },
  7242. #endif
  7243. };
  7244. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7245. {
  7246. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7247. }
  7248. struct cgroup_subsys cpu_cgroup_subsys = {
  7249. .name = "cpu",
  7250. .create = cpu_cgroup_create,
  7251. .destroy = cpu_cgroup_destroy,
  7252. .can_attach = cpu_cgroup_can_attach,
  7253. .attach = cpu_cgroup_attach,
  7254. .populate = cpu_cgroup_populate,
  7255. .subsys_id = cpu_cgroup_subsys_id,
  7256. .early_init = 1,
  7257. };
  7258. #endif /* CONFIG_CGROUP_SCHED */
  7259. #ifdef CONFIG_CGROUP_CPUACCT
  7260. /*
  7261. * CPU accounting code for task groups.
  7262. *
  7263. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7264. * (balbir@in.ibm.com).
  7265. */
  7266. /* track cpu usage of a group of tasks */
  7267. struct cpuacct {
  7268. struct cgroup_subsys_state css;
  7269. /* cpuusage holds pointer to a u64-type object on every cpu */
  7270. u64 *cpuusage;
  7271. };
  7272. struct cgroup_subsys cpuacct_subsys;
  7273. /* return cpu accounting group corresponding to this container */
  7274. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7275. {
  7276. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7277. struct cpuacct, css);
  7278. }
  7279. /* return cpu accounting group to which this task belongs */
  7280. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7281. {
  7282. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7283. struct cpuacct, css);
  7284. }
  7285. /* create a new cpu accounting group */
  7286. static struct cgroup_subsys_state *cpuacct_create(
  7287. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7288. {
  7289. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7290. if (!ca)
  7291. return ERR_PTR(-ENOMEM);
  7292. ca->cpuusage = alloc_percpu(u64);
  7293. if (!ca->cpuusage) {
  7294. kfree(ca);
  7295. return ERR_PTR(-ENOMEM);
  7296. }
  7297. return &ca->css;
  7298. }
  7299. /* destroy an existing cpu accounting group */
  7300. static void
  7301. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7302. {
  7303. struct cpuacct *ca = cgroup_ca(cgrp);
  7304. free_percpu(ca->cpuusage);
  7305. kfree(ca);
  7306. }
  7307. /* return total cpu usage (in nanoseconds) of a group */
  7308. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7309. {
  7310. struct cpuacct *ca = cgroup_ca(cgrp);
  7311. u64 totalcpuusage = 0;
  7312. int i;
  7313. for_each_possible_cpu(i) {
  7314. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7315. /*
  7316. * Take rq->lock to make 64-bit addition safe on 32-bit
  7317. * platforms.
  7318. */
  7319. spin_lock_irq(&cpu_rq(i)->lock);
  7320. totalcpuusage += *cpuusage;
  7321. spin_unlock_irq(&cpu_rq(i)->lock);
  7322. }
  7323. return totalcpuusage;
  7324. }
  7325. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7326. u64 reset)
  7327. {
  7328. struct cpuacct *ca = cgroup_ca(cgrp);
  7329. int err = 0;
  7330. int i;
  7331. if (reset) {
  7332. err = -EINVAL;
  7333. goto out;
  7334. }
  7335. for_each_possible_cpu(i) {
  7336. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7337. spin_lock_irq(&cpu_rq(i)->lock);
  7338. *cpuusage = 0;
  7339. spin_unlock_irq(&cpu_rq(i)->lock);
  7340. }
  7341. out:
  7342. return err;
  7343. }
  7344. static struct cftype files[] = {
  7345. {
  7346. .name = "usage",
  7347. .read_uint = cpuusage_read,
  7348. .write_uint = cpuusage_write,
  7349. },
  7350. };
  7351. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7352. {
  7353. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7354. }
  7355. /*
  7356. * charge this task's execution time to its accounting group.
  7357. *
  7358. * called with rq->lock held.
  7359. */
  7360. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7361. {
  7362. struct cpuacct *ca;
  7363. if (!cpuacct_subsys.active)
  7364. return;
  7365. ca = task_ca(tsk);
  7366. if (ca) {
  7367. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7368. *cpuusage += cputime;
  7369. }
  7370. }
  7371. struct cgroup_subsys cpuacct_subsys = {
  7372. .name = "cpuacct",
  7373. .create = cpuacct_create,
  7374. .destroy = cpuacct_destroy,
  7375. .populate = cpuacct_populate,
  7376. .subsys_id = cpuacct_subsys_id,
  7377. };
  7378. #endif /* CONFIG_CGROUP_CPUACCT */