vmx.c 126 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <linux/tboot.h>
  30. #include "kvm_cache_regs.h"
  31. #include "x86.h"
  32. #include <asm/io.h>
  33. #include <asm/desc.h>
  34. #include <asm/vmx.h>
  35. #include <asm/virtext.h>
  36. #include <asm/mce.h>
  37. #include <asm/i387.h>
  38. #include <asm/xcr.h>
  39. #include "trace.h"
  40. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  41. #define __ex_clear(x, reg) \
  42. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static int __read_mostly bypass_guest_pf = 1;
  46. module_param(bypass_guest_pf, bool, S_IRUGO);
  47. static int __read_mostly enable_vpid = 1;
  48. module_param_named(vpid, enable_vpid, bool, 0444);
  49. static int __read_mostly flexpriority_enabled = 1;
  50. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  51. static int __read_mostly enable_ept = 1;
  52. module_param_named(ept, enable_ept, bool, S_IRUGO);
  53. static int __read_mostly enable_unrestricted_guest = 1;
  54. module_param_named(unrestricted_guest,
  55. enable_unrestricted_guest, bool, S_IRUGO);
  56. static int __read_mostly emulate_invalid_guest_state = 0;
  57. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  58. static int __read_mostly vmm_exclusive = 1;
  59. module_param(vmm_exclusive, bool, S_IRUGO);
  60. static int __read_mostly yield_on_hlt = 1;
  61. module_param(yield_on_hlt, bool, S_IRUGO);
  62. /*
  63. * If nested=1, nested virtualization is supported, i.e., guests may use
  64. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  65. * use VMX instructions.
  66. */
  67. static int __read_mostly nested = 0;
  68. module_param(nested, bool, S_IRUGO);
  69. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  70. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  71. #define KVM_GUEST_CR0_MASK \
  72. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  73. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  74. (X86_CR0_WP | X86_CR0_NE)
  75. #define KVM_VM_CR0_ALWAYS_ON \
  76. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  77. #define KVM_CR4_GUEST_OWNED_BITS \
  78. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  79. | X86_CR4_OSXMMEXCPT)
  80. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  81. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  82. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  83. /*
  84. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  85. * ple_gap: upper bound on the amount of time between two successive
  86. * executions of PAUSE in a loop. Also indicate if ple enabled.
  87. * According to test, this time is usually smaller than 128 cycles.
  88. * ple_window: upper bound on the amount of time a guest is allowed to execute
  89. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  90. * less than 2^12 cycles
  91. * Time is measured based on a counter that runs at the same rate as the TSC,
  92. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  93. */
  94. #define KVM_VMX_DEFAULT_PLE_GAP 128
  95. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  96. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  97. module_param(ple_gap, int, S_IRUGO);
  98. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  99. module_param(ple_window, int, S_IRUGO);
  100. #define NR_AUTOLOAD_MSRS 1
  101. struct vmcs {
  102. u32 revision_id;
  103. u32 abort;
  104. char data[0];
  105. };
  106. /*
  107. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  108. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  109. * loaded on this CPU (so we can clear them if the CPU goes down).
  110. */
  111. struct loaded_vmcs {
  112. struct vmcs *vmcs;
  113. int cpu;
  114. int launched;
  115. struct list_head loaded_vmcss_on_cpu_link;
  116. };
  117. struct shared_msr_entry {
  118. unsigned index;
  119. u64 data;
  120. u64 mask;
  121. };
  122. /*
  123. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  124. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  125. */
  126. struct nested_vmx {
  127. /* Has the level1 guest done vmxon? */
  128. bool vmxon;
  129. };
  130. struct vcpu_vmx {
  131. struct kvm_vcpu vcpu;
  132. unsigned long host_rsp;
  133. u8 fail;
  134. u8 cpl;
  135. bool nmi_known_unmasked;
  136. u32 exit_intr_info;
  137. u32 idt_vectoring_info;
  138. ulong rflags;
  139. struct shared_msr_entry *guest_msrs;
  140. int nmsrs;
  141. int save_nmsrs;
  142. #ifdef CONFIG_X86_64
  143. u64 msr_host_kernel_gs_base;
  144. u64 msr_guest_kernel_gs_base;
  145. #endif
  146. /*
  147. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  148. * non-nested (L1) guest, it always points to vmcs01. For a nested
  149. * guest (L2), it points to a different VMCS.
  150. */
  151. struct loaded_vmcs vmcs01;
  152. struct loaded_vmcs *loaded_vmcs;
  153. bool __launched; /* temporary, used in vmx_vcpu_run */
  154. struct msr_autoload {
  155. unsigned nr;
  156. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  157. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  158. } msr_autoload;
  159. struct {
  160. int loaded;
  161. u16 fs_sel, gs_sel, ldt_sel;
  162. int gs_ldt_reload_needed;
  163. int fs_reload_needed;
  164. } host_state;
  165. struct {
  166. int vm86_active;
  167. ulong save_rflags;
  168. struct kvm_save_segment {
  169. u16 selector;
  170. unsigned long base;
  171. u32 limit;
  172. u32 ar;
  173. } tr, es, ds, fs, gs;
  174. } rmode;
  175. struct {
  176. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  177. struct kvm_save_segment seg[8];
  178. } segment_cache;
  179. int vpid;
  180. bool emulation_required;
  181. /* Support for vnmi-less CPUs */
  182. int soft_vnmi_blocked;
  183. ktime_t entry_time;
  184. s64 vnmi_blocked_time;
  185. u32 exit_reason;
  186. bool rdtscp_enabled;
  187. /* Support for a guest hypervisor (nested VMX) */
  188. struct nested_vmx nested;
  189. };
  190. enum segment_cache_field {
  191. SEG_FIELD_SEL = 0,
  192. SEG_FIELD_BASE = 1,
  193. SEG_FIELD_LIMIT = 2,
  194. SEG_FIELD_AR = 3,
  195. SEG_FIELD_NR = 4
  196. };
  197. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  198. {
  199. return container_of(vcpu, struct vcpu_vmx, vcpu);
  200. }
  201. static u64 construct_eptp(unsigned long root_hpa);
  202. static void kvm_cpu_vmxon(u64 addr);
  203. static void kvm_cpu_vmxoff(void);
  204. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  205. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  206. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  207. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  208. /*
  209. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  210. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  211. */
  212. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  213. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  214. static unsigned long *vmx_io_bitmap_a;
  215. static unsigned long *vmx_io_bitmap_b;
  216. static unsigned long *vmx_msr_bitmap_legacy;
  217. static unsigned long *vmx_msr_bitmap_longmode;
  218. static bool cpu_has_load_ia32_efer;
  219. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  220. static DEFINE_SPINLOCK(vmx_vpid_lock);
  221. static struct vmcs_config {
  222. int size;
  223. int order;
  224. u32 revision_id;
  225. u32 pin_based_exec_ctrl;
  226. u32 cpu_based_exec_ctrl;
  227. u32 cpu_based_2nd_exec_ctrl;
  228. u32 vmexit_ctrl;
  229. u32 vmentry_ctrl;
  230. } vmcs_config;
  231. static struct vmx_capability {
  232. u32 ept;
  233. u32 vpid;
  234. } vmx_capability;
  235. #define VMX_SEGMENT_FIELD(seg) \
  236. [VCPU_SREG_##seg] = { \
  237. .selector = GUEST_##seg##_SELECTOR, \
  238. .base = GUEST_##seg##_BASE, \
  239. .limit = GUEST_##seg##_LIMIT, \
  240. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  241. }
  242. static struct kvm_vmx_segment_field {
  243. unsigned selector;
  244. unsigned base;
  245. unsigned limit;
  246. unsigned ar_bytes;
  247. } kvm_vmx_segment_fields[] = {
  248. VMX_SEGMENT_FIELD(CS),
  249. VMX_SEGMENT_FIELD(DS),
  250. VMX_SEGMENT_FIELD(ES),
  251. VMX_SEGMENT_FIELD(FS),
  252. VMX_SEGMENT_FIELD(GS),
  253. VMX_SEGMENT_FIELD(SS),
  254. VMX_SEGMENT_FIELD(TR),
  255. VMX_SEGMENT_FIELD(LDTR),
  256. };
  257. static u64 host_efer;
  258. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  259. /*
  260. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  261. * away by decrementing the array size.
  262. */
  263. static const u32 vmx_msr_index[] = {
  264. #ifdef CONFIG_X86_64
  265. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  266. #endif
  267. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  268. };
  269. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  270. static inline bool is_page_fault(u32 intr_info)
  271. {
  272. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  273. INTR_INFO_VALID_MASK)) ==
  274. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  275. }
  276. static inline bool is_no_device(u32 intr_info)
  277. {
  278. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  279. INTR_INFO_VALID_MASK)) ==
  280. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  281. }
  282. static inline bool is_invalid_opcode(u32 intr_info)
  283. {
  284. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  285. INTR_INFO_VALID_MASK)) ==
  286. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  287. }
  288. static inline bool is_external_interrupt(u32 intr_info)
  289. {
  290. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  291. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  292. }
  293. static inline bool is_machine_check(u32 intr_info)
  294. {
  295. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  296. INTR_INFO_VALID_MASK)) ==
  297. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  298. }
  299. static inline bool cpu_has_vmx_msr_bitmap(void)
  300. {
  301. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  302. }
  303. static inline bool cpu_has_vmx_tpr_shadow(void)
  304. {
  305. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  306. }
  307. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  308. {
  309. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  310. }
  311. static inline bool cpu_has_secondary_exec_ctrls(void)
  312. {
  313. return vmcs_config.cpu_based_exec_ctrl &
  314. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  315. }
  316. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  317. {
  318. return vmcs_config.cpu_based_2nd_exec_ctrl &
  319. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  320. }
  321. static inline bool cpu_has_vmx_flexpriority(void)
  322. {
  323. return cpu_has_vmx_tpr_shadow() &&
  324. cpu_has_vmx_virtualize_apic_accesses();
  325. }
  326. static inline bool cpu_has_vmx_ept_execute_only(void)
  327. {
  328. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  329. }
  330. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  331. {
  332. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  333. }
  334. static inline bool cpu_has_vmx_eptp_writeback(void)
  335. {
  336. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  337. }
  338. static inline bool cpu_has_vmx_ept_2m_page(void)
  339. {
  340. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  341. }
  342. static inline bool cpu_has_vmx_ept_1g_page(void)
  343. {
  344. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  345. }
  346. static inline bool cpu_has_vmx_ept_4levels(void)
  347. {
  348. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  349. }
  350. static inline bool cpu_has_vmx_invept_individual_addr(void)
  351. {
  352. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  353. }
  354. static inline bool cpu_has_vmx_invept_context(void)
  355. {
  356. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  357. }
  358. static inline bool cpu_has_vmx_invept_global(void)
  359. {
  360. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  361. }
  362. static inline bool cpu_has_vmx_invvpid_single(void)
  363. {
  364. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  365. }
  366. static inline bool cpu_has_vmx_invvpid_global(void)
  367. {
  368. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  369. }
  370. static inline bool cpu_has_vmx_ept(void)
  371. {
  372. return vmcs_config.cpu_based_2nd_exec_ctrl &
  373. SECONDARY_EXEC_ENABLE_EPT;
  374. }
  375. static inline bool cpu_has_vmx_unrestricted_guest(void)
  376. {
  377. return vmcs_config.cpu_based_2nd_exec_ctrl &
  378. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  379. }
  380. static inline bool cpu_has_vmx_ple(void)
  381. {
  382. return vmcs_config.cpu_based_2nd_exec_ctrl &
  383. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  384. }
  385. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  386. {
  387. return flexpriority_enabled && irqchip_in_kernel(kvm);
  388. }
  389. static inline bool cpu_has_vmx_vpid(void)
  390. {
  391. return vmcs_config.cpu_based_2nd_exec_ctrl &
  392. SECONDARY_EXEC_ENABLE_VPID;
  393. }
  394. static inline bool cpu_has_vmx_rdtscp(void)
  395. {
  396. return vmcs_config.cpu_based_2nd_exec_ctrl &
  397. SECONDARY_EXEC_RDTSCP;
  398. }
  399. static inline bool cpu_has_virtual_nmis(void)
  400. {
  401. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  402. }
  403. static inline bool cpu_has_vmx_wbinvd_exit(void)
  404. {
  405. return vmcs_config.cpu_based_2nd_exec_ctrl &
  406. SECONDARY_EXEC_WBINVD_EXITING;
  407. }
  408. static inline bool report_flexpriority(void)
  409. {
  410. return flexpriority_enabled;
  411. }
  412. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  413. {
  414. int i;
  415. for (i = 0; i < vmx->nmsrs; ++i)
  416. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  417. return i;
  418. return -1;
  419. }
  420. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  421. {
  422. struct {
  423. u64 vpid : 16;
  424. u64 rsvd : 48;
  425. u64 gva;
  426. } operand = { vpid, 0, gva };
  427. asm volatile (__ex(ASM_VMX_INVVPID)
  428. /* CF==1 or ZF==1 --> rc = -1 */
  429. "; ja 1f ; ud2 ; 1:"
  430. : : "a"(&operand), "c"(ext) : "cc", "memory");
  431. }
  432. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  433. {
  434. struct {
  435. u64 eptp, gpa;
  436. } operand = {eptp, gpa};
  437. asm volatile (__ex(ASM_VMX_INVEPT)
  438. /* CF==1 or ZF==1 --> rc = -1 */
  439. "; ja 1f ; ud2 ; 1:\n"
  440. : : "a" (&operand), "c" (ext) : "cc", "memory");
  441. }
  442. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  443. {
  444. int i;
  445. i = __find_msr_index(vmx, msr);
  446. if (i >= 0)
  447. return &vmx->guest_msrs[i];
  448. return NULL;
  449. }
  450. static void vmcs_clear(struct vmcs *vmcs)
  451. {
  452. u64 phys_addr = __pa(vmcs);
  453. u8 error;
  454. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  455. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  456. : "cc", "memory");
  457. if (error)
  458. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  459. vmcs, phys_addr);
  460. }
  461. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  462. {
  463. vmcs_clear(loaded_vmcs->vmcs);
  464. loaded_vmcs->cpu = -1;
  465. loaded_vmcs->launched = 0;
  466. }
  467. static void vmcs_load(struct vmcs *vmcs)
  468. {
  469. u64 phys_addr = __pa(vmcs);
  470. u8 error;
  471. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  472. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  473. : "cc", "memory");
  474. if (error)
  475. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  476. vmcs, phys_addr);
  477. }
  478. static void __loaded_vmcs_clear(void *arg)
  479. {
  480. struct loaded_vmcs *loaded_vmcs = arg;
  481. int cpu = raw_smp_processor_id();
  482. if (loaded_vmcs->cpu != cpu)
  483. return; /* vcpu migration can race with cpu offline */
  484. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  485. per_cpu(current_vmcs, cpu) = NULL;
  486. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  487. loaded_vmcs_init(loaded_vmcs);
  488. }
  489. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  490. {
  491. if (loaded_vmcs->cpu != -1)
  492. smp_call_function_single(
  493. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  494. }
  495. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  496. {
  497. if (vmx->vpid == 0)
  498. return;
  499. if (cpu_has_vmx_invvpid_single())
  500. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  501. }
  502. static inline void vpid_sync_vcpu_global(void)
  503. {
  504. if (cpu_has_vmx_invvpid_global())
  505. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  506. }
  507. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  508. {
  509. if (cpu_has_vmx_invvpid_single())
  510. vpid_sync_vcpu_single(vmx);
  511. else
  512. vpid_sync_vcpu_global();
  513. }
  514. static inline void ept_sync_global(void)
  515. {
  516. if (cpu_has_vmx_invept_global())
  517. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  518. }
  519. static inline void ept_sync_context(u64 eptp)
  520. {
  521. if (enable_ept) {
  522. if (cpu_has_vmx_invept_context())
  523. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  524. else
  525. ept_sync_global();
  526. }
  527. }
  528. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  529. {
  530. if (enable_ept) {
  531. if (cpu_has_vmx_invept_individual_addr())
  532. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  533. eptp, gpa);
  534. else
  535. ept_sync_context(eptp);
  536. }
  537. }
  538. static __always_inline unsigned long vmcs_readl(unsigned long field)
  539. {
  540. unsigned long value;
  541. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  542. : "=a"(value) : "d"(field) : "cc");
  543. return value;
  544. }
  545. static __always_inline u16 vmcs_read16(unsigned long field)
  546. {
  547. return vmcs_readl(field);
  548. }
  549. static __always_inline u32 vmcs_read32(unsigned long field)
  550. {
  551. return vmcs_readl(field);
  552. }
  553. static __always_inline u64 vmcs_read64(unsigned long field)
  554. {
  555. #ifdef CONFIG_X86_64
  556. return vmcs_readl(field);
  557. #else
  558. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  559. #endif
  560. }
  561. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  562. {
  563. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  564. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  565. dump_stack();
  566. }
  567. static void vmcs_writel(unsigned long field, unsigned long value)
  568. {
  569. u8 error;
  570. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  571. : "=q"(error) : "a"(value), "d"(field) : "cc");
  572. if (unlikely(error))
  573. vmwrite_error(field, value);
  574. }
  575. static void vmcs_write16(unsigned long field, u16 value)
  576. {
  577. vmcs_writel(field, value);
  578. }
  579. static void vmcs_write32(unsigned long field, u32 value)
  580. {
  581. vmcs_writel(field, value);
  582. }
  583. static void vmcs_write64(unsigned long field, u64 value)
  584. {
  585. vmcs_writel(field, value);
  586. #ifndef CONFIG_X86_64
  587. asm volatile ("");
  588. vmcs_writel(field+1, value >> 32);
  589. #endif
  590. }
  591. static void vmcs_clear_bits(unsigned long field, u32 mask)
  592. {
  593. vmcs_writel(field, vmcs_readl(field) & ~mask);
  594. }
  595. static void vmcs_set_bits(unsigned long field, u32 mask)
  596. {
  597. vmcs_writel(field, vmcs_readl(field) | mask);
  598. }
  599. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  600. {
  601. vmx->segment_cache.bitmask = 0;
  602. }
  603. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  604. unsigned field)
  605. {
  606. bool ret;
  607. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  608. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  609. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  610. vmx->segment_cache.bitmask = 0;
  611. }
  612. ret = vmx->segment_cache.bitmask & mask;
  613. vmx->segment_cache.bitmask |= mask;
  614. return ret;
  615. }
  616. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  617. {
  618. u16 *p = &vmx->segment_cache.seg[seg].selector;
  619. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  620. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  621. return *p;
  622. }
  623. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  624. {
  625. ulong *p = &vmx->segment_cache.seg[seg].base;
  626. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  627. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  628. return *p;
  629. }
  630. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  631. {
  632. u32 *p = &vmx->segment_cache.seg[seg].limit;
  633. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  634. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  635. return *p;
  636. }
  637. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  638. {
  639. u32 *p = &vmx->segment_cache.seg[seg].ar;
  640. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  641. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  642. return *p;
  643. }
  644. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  645. {
  646. u32 eb;
  647. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  648. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  649. if ((vcpu->guest_debug &
  650. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  651. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  652. eb |= 1u << BP_VECTOR;
  653. if (to_vmx(vcpu)->rmode.vm86_active)
  654. eb = ~0;
  655. if (enable_ept)
  656. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  657. if (vcpu->fpu_active)
  658. eb &= ~(1u << NM_VECTOR);
  659. vmcs_write32(EXCEPTION_BITMAP, eb);
  660. }
  661. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  662. {
  663. unsigned i;
  664. struct msr_autoload *m = &vmx->msr_autoload;
  665. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  666. vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  667. vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  668. return;
  669. }
  670. for (i = 0; i < m->nr; ++i)
  671. if (m->guest[i].index == msr)
  672. break;
  673. if (i == m->nr)
  674. return;
  675. --m->nr;
  676. m->guest[i] = m->guest[m->nr];
  677. m->host[i] = m->host[m->nr];
  678. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  679. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  680. }
  681. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  682. u64 guest_val, u64 host_val)
  683. {
  684. unsigned i;
  685. struct msr_autoload *m = &vmx->msr_autoload;
  686. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  687. vmcs_write64(GUEST_IA32_EFER, guest_val);
  688. vmcs_write64(HOST_IA32_EFER, host_val);
  689. vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  690. vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  691. return;
  692. }
  693. for (i = 0; i < m->nr; ++i)
  694. if (m->guest[i].index == msr)
  695. break;
  696. if (i == m->nr) {
  697. ++m->nr;
  698. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  699. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  700. }
  701. m->guest[i].index = msr;
  702. m->guest[i].value = guest_val;
  703. m->host[i].index = msr;
  704. m->host[i].value = host_val;
  705. }
  706. static void reload_tss(void)
  707. {
  708. /*
  709. * VT restores TR but not its size. Useless.
  710. */
  711. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  712. struct desc_struct *descs;
  713. descs = (void *)gdt->address;
  714. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  715. load_TR_desc();
  716. }
  717. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  718. {
  719. u64 guest_efer;
  720. u64 ignore_bits;
  721. guest_efer = vmx->vcpu.arch.efer;
  722. /*
  723. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  724. * outside long mode
  725. */
  726. ignore_bits = EFER_NX | EFER_SCE;
  727. #ifdef CONFIG_X86_64
  728. ignore_bits |= EFER_LMA | EFER_LME;
  729. /* SCE is meaningful only in long mode on Intel */
  730. if (guest_efer & EFER_LMA)
  731. ignore_bits &= ~(u64)EFER_SCE;
  732. #endif
  733. guest_efer &= ~ignore_bits;
  734. guest_efer |= host_efer & ignore_bits;
  735. vmx->guest_msrs[efer_offset].data = guest_efer;
  736. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  737. clear_atomic_switch_msr(vmx, MSR_EFER);
  738. /* On ept, can't emulate nx, and must switch nx atomically */
  739. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  740. guest_efer = vmx->vcpu.arch.efer;
  741. if (!(guest_efer & EFER_LMA))
  742. guest_efer &= ~EFER_LME;
  743. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  744. return false;
  745. }
  746. return true;
  747. }
  748. static unsigned long segment_base(u16 selector)
  749. {
  750. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  751. struct desc_struct *d;
  752. unsigned long table_base;
  753. unsigned long v;
  754. if (!(selector & ~3))
  755. return 0;
  756. table_base = gdt->address;
  757. if (selector & 4) { /* from ldt */
  758. u16 ldt_selector = kvm_read_ldt();
  759. if (!(ldt_selector & ~3))
  760. return 0;
  761. table_base = segment_base(ldt_selector);
  762. }
  763. d = (struct desc_struct *)(table_base + (selector & ~7));
  764. v = get_desc_base(d);
  765. #ifdef CONFIG_X86_64
  766. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  767. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  768. #endif
  769. return v;
  770. }
  771. static inline unsigned long kvm_read_tr_base(void)
  772. {
  773. u16 tr;
  774. asm("str %0" : "=g"(tr));
  775. return segment_base(tr);
  776. }
  777. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  778. {
  779. struct vcpu_vmx *vmx = to_vmx(vcpu);
  780. int i;
  781. if (vmx->host_state.loaded)
  782. return;
  783. vmx->host_state.loaded = 1;
  784. /*
  785. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  786. * allow segment selectors with cpl > 0 or ti == 1.
  787. */
  788. vmx->host_state.ldt_sel = kvm_read_ldt();
  789. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  790. savesegment(fs, vmx->host_state.fs_sel);
  791. if (!(vmx->host_state.fs_sel & 7)) {
  792. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  793. vmx->host_state.fs_reload_needed = 0;
  794. } else {
  795. vmcs_write16(HOST_FS_SELECTOR, 0);
  796. vmx->host_state.fs_reload_needed = 1;
  797. }
  798. savesegment(gs, vmx->host_state.gs_sel);
  799. if (!(vmx->host_state.gs_sel & 7))
  800. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  801. else {
  802. vmcs_write16(HOST_GS_SELECTOR, 0);
  803. vmx->host_state.gs_ldt_reload_needed = 1;
  804. }
  805. #ifdef CONFIG_X86_64
  806. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  807. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  808. #else
  809. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  810. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  811. #endif
  812. #ifdef CONFIG_X86_64
  813. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  814. if (is_long_mode(&vmx->vcpu))
  815. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  816. #endif
  817. for (i = 0; i < vmx->save_nmsrs; ++i)
  818. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  819. vmx->guest_msrs[i].data,
  820. vmx->guest_msrs[i].mask);
  821. }
  822. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  823. {
  824. if (!vmx->host_state.loaded)
  825. return;
  826. ++vmx->vcpu.stat.host_state_reload;
  827. vmx->host_state.loaded = 0;
  828. #ifdef CONFIG_X86_64
  829. if (is_long_mode(&vmx->vcpu))
  830. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  831. #endif
  832. if (vmx->host_state.gs_ldt_reload_needed) {
  833. kvm_load_ldt(vmx->host_state.ldt_sel);
  834. #ifdef CONFIG_X86_64
  835. load_gs_index(vmx->host_state.gs_sel);
  836. #else
  837. loadsegment(gs, vmx->host_state.gs_sel);
  838. #endif
  839. }
  840. if (vmx->host_state.fs_reload_needed)
  841. loadsegment(fs, vmx->host_state.fs_sel);
  842. reload_tss();
  843. #ifdef CONFIG_X86_64
  844. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  845. #endif
  846. if (current_thread_info()->status & TS_USEDFPU)
  847. clts();
  848. load_gdt(&__get_cpu_var(host_gdt));
  849. }
  850. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  851. {
  852. preempt_disable();
  853. __vmx_load_host_state(vmx);
  854. preempt_enable();
  855. }
  856. /*
  857. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  858. * vcpu mutex is already taken.
  859. */
  860. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  861. {
  862. struct vcpu_vmx *vmx = to_vmx(vcpu);
  863. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  864. if (!vmm_exclusive)
  865. kvm_cpu_vmxon(phys_addr);
  866. else if (vmx->loaded_vmcs->cpu != cpu)
  867. loaded_vmcs_clear(vmx->loaded_vmcs);
  868. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  869. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  870. vmcs_load(vmx->loaded_vmcs->vmcs);
  871. }
  872. if (vmx->loaded_vmcs->cpu != cpu) {
  873. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  874. unsigned long sysenter_esp;
  875. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  876. local_irq_disable();
  877. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  878. &per_cpu(loaded_vmcss_on_cpu, cpu));
  879. local_irq_enable();
  880. /*
  881. * Linux uses per-cpu TSS and GDT, so set these when switching
  882. * processors.
  883. */
  884. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  885. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  886. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  887. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  888. vmx->loaded_vmcs->cpu = cpu;
  889. }
  890. }
  891. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  892. {
  893. __vmx_load_host_state(to_vmx(vcpu));
  894. if (!vmm_exclusive) {
  895. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  896. vcpu->cpu = -1;
  897. kvm_cpu_vmxoff();
  898. }
  899. }
  900. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  901. {
  902. ulong cr0;
  903. if (vcpu->fpu_active)
  904. return;
  905. vcpu->fpu_active = 1;
  906. cr0 = vmcs_readl(GUEST_CR0);
  907. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  908. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  909. vmcs_writel(GUEST_CR0, cr0);
  910. update_exception_bitmap(vcpu);
  911. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  912. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  913. }
  914. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  915. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  916. {
  917. vmx_decache_cr0_guest_bits(vcpu);
  918. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  919. update_exception_bitmap(vcpu);
  920. vcpu->arch.cr0_guest_owned_bits = 0;
  921. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  922. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  923. }
  924. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  925. {
  926. unsigned long rflags, save_rflags;
  927. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  928. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  929. rflags = vmcs_readl(GUEST_RFLAGS);
  930. if (to_vmx(vcpu)->rmode.vm86_active) {
  931. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  932. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  933. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  934. }
  935. to_vmx(vcpu)->rflags = rflags;
  936. }
  937. return to_vmx(vcpu)->rflags;
  938. }
  939. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  940. {
  941. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  942. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  943. to_vmx(vcpu)->rflags = rflags;
  944. if (to_vmx(vcpu)->rmode.vm86_active) {
  945. to_vmx(vcpu)->rmode.save_rflags = rflags;
  946. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  947. }
  948. vmcs_writel(GUEST_RFLAGS, rflags);
  949. }
  950. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  951. {
  952. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  953. int ret = 0;
  954. if (interruptibility & GUEST_INTR_STATE_STI)
  955. ret |= KVM_X86_SHADOW_INT_STI;
  956. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  957. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  958. return ret & mask;
  959. }
  960. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  961. {
  962. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  963. u32 interruptibility = interruptibility_old;
  964. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  965. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  966. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  967. else if (mask & KVM_X86_SHADOW_INT_STI)
  968. interruptibility |= GUEST_INTR_STATE_STI;
  969. if ((interruptibility != interruptibility_old))
  970. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  971. }
  972. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  973. {
  974. unsigned long rip;
  975. rip = kvm_rip_read(vcpu);
  976. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  977. kvm_rip_write(vcpu, rip);
  978. /* skipping an emulated instruction also counts */
  979. vmx_set_interrupt_shadow(vcpu, 0);
  980. }
  981. static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
  982. {
  983. /* Ensure that we clear the HLT state in the VMCS. We don't need to
  984. * explicitly skip the instruction because if the HLT state is set, then
  985. * the instruction is already executing and RIP has already been
  986. * advanced. */
  987. if (!yield_on_hlt &&
  988. vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
  989. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  990. }
  991. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  992. bool has_error_code, u32 error_code,
  993. bool reinject)
  994. {
  995. struct vcpu_vmx *vmx = to_vmx(vcpu);
  996. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  997. if (has_error_code) {
  998. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  999. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1000. }
  1001. if (vmx->rmode.vm86_active) {
  1002. int inc_eip = 0;
  1003. if (kvm_exception_is_soft(nr))
  1004. inc_eip = vcpu->arch.event_exit_inst_len;
  1005. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1006. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1007. return;
  1008. }
  1009. if (kvm_exception_is_soft(nr)) {
  1010. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1011. vmx->vcpu.arch.event_exit_inst_len);
  1012. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1013. } else
  1014. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1015. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1016. vmx_clear_hlt(vcpu);
  1017. }
  1018. static bool vmx_rdtscp_supported(void)
  1019. {
  1020. return cpu_has_vmx_rdtscp();
  1021. }
  1022. /*
  1023. * Swap MSR entry in host/guest MSR entry array.
  1024. */
  1025. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1026. {
  1027. struct shared_msr_entry tmp;
  1028. tmp = vmx->guest_msrs[to];
  1029. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1030. vmx->guest_msrs[from] = tmp;
  1031. }
  1032. /*
  1033. * Set up the vmcs to automatically save and restore system
  1034. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1035. * mode, as fiddling with msrs is very expensive.
  1036. */
  1037. static void setup_msrs(struct vcpu_vmx *vmx)
  1038. {
  1039. int save_nmsrs, index;
  1040. unsigned long *msr_bitmap;
  1041. vmx_load_host_state(vmx);
  1042. save_nmsrs = 0;
  1043. #ifdef CONFIG_X86_64
  1044. if (is_long_mode(&vmx->vcpu)) {
  1045. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1046. if (index >= 0)
  1047. move_msr_up(vmx, index, save_nmsrs++);
  1048. index = __find_msr_index(vmx, MSR_LSTAR);
  1049. if (index >= 0)
  1050. move_msr_up(vmx, index, save_nmsrs++);
  1051. index = __find_msr_index(vmx, MSR_CSTAR);
  1052. if (index >= 0)
  1053. move_msr_up(vmx, index, save_nmsrs++);
  1054. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1055. if (index >= 0 && vmx->rdtscp_enabled)
  1056. move_msr_up(vmx, index, save_nmsrs++);
  1057. /*
  1058. * MSR_STAR is only needed on long mode guests, and only
  1059. * if efer.sce is enabled.
  1060. */
  1061. index = __find_msr_index(vmx, MSR_STAR);
  1062. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1063. move_msr_up(vmx, index, save_nmsrs++);
  1064. }
  1065. #endif
  1066. index = __find_msr_index(vmx, MSR_EFER);
  1067. if (index >= 0 && update_transition_efer(vmx, index))
  1068. move_msr_up(vmx, index, save_nmsrs++);
  1069. vmx->save_nmsrs = save_nmsrs;
  1070. if (cpu_has_vmx_msr_bitmap()) {
  1071. if (is_long_mode(&vmx->vcpu))
  1072. msr_bitmap = vmx_msr_bitmap_longmode;
  1073. else
  1074. msr_bitmap = vmx_msr_bitmap_legacy;
  1075. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1076. }
  1077. }
  1078. /*
  1079. * reads and returns guest's timestamp counter "register"
  1080. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1081. */
  1082. static u64 guest_read_tsc(void)
  1083. {
  1084. u64 host_tsc, tsc_offset;
  1085. rdtscll(host_tsc);
  1086. tsc_offset = vmcs_read64(TSC_OFFSET);
  1087. return host_tsc + tsc_offset;
  1088. }
  1089. /*
  1090. * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
  1091. * ioctl. In this case the call-back should update internal vmx state to make
  1092. * the changes effective.
  1093. */
  1094. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
  1095. {
  1096. /* Nothing to do here */
  1097. }
  1098. /*
  1099. * writes 'offset' into guest's timestamp counter offset register
  1100. */
  1101. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1102. {
  1103. vmcs_write64(TSC_OFFSET, offset);
  1104. }
  1105. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  1106. {
  1107. u64 offset = vmcs_read64(TSC_OFFSET);
  1108. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1109. }
  1110. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1111. {
  1112. return target_tsc - native_read_tsc();
  1113. }
  1114. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1115. {
  1116. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1117. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1118. }
  1119. /*
  1120. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1121. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1122. * all guests if the "nested" module option is off, and can also be disabled
  1123. * for a single guest by disabling its VMX cpuid bit.
  1124. */
  1125. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1126. {
  1127. return nested && guest_cpuid_has_vmx(vcpu);
  1128. }
  1129. /*
  1130. * Reads an msr value (of 'msr_index') into 'pdata'.
  1131. * Returns 0 on success, non-0 otherwise.
  1132. * Assumes vcpu_load() was already called.
  1133. */
  1134. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1135. {
  1136. u64 data;
  1137. struct shared_msr_entry *msr;
  1138. if (!pdata) {
  1139. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1140. return -EINVAL;
  1141. }
  1142. switch (msr_index) {
  1143. #ifdef CONFIG_X86_64
  1144. case MSR_FS_BASE:
  1145. data = vmcs_readl(GUEST_FS_BASE);
  1146. break;
  1147. case MSR_GS_BASE:
  1148. data = vmcs_readl(GUEST_GS_BASE);
  1149. break;
  1150. case MSR_KERNEL_GS_BASE:
  1151. vmx_load_host_state(to_vmx(vcpu));
  1152. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1153. break;
  1154. #endif
  1155. case MSR_EFER:
  1156. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1157. case MSR_IA32_TSC:
  1158. data = guest_read_tsc();
  1159. break;
  1160. case MSR_IA32_SYSENTER_CS:
  1161. data = vmcs_read32(GUEST_SYSENTER_CS);
  1162. break;
  1163. case MSR_IA32_SYSENTER_EIP:
  1164. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1165. break;
  1166. case MSR_IA32_SYSENTER_ESP:
  1167. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1168. break;
  1169. case MSR_TSC_AUX:
  1170. if (!to_vmx(vcpu)->rdtscp_enabled)
  1171. return 1;
  1172. /* Otherwise falls through */
  1173. default:
  1174. vmx_load_host_state(to_vmx(vcpu));
  1175. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1176. if (msr) {
  1177. vmx_load_host_state(to_vmx(vcpu));
  1178. data = msr->data;
  1179. break;
  1180. }
  1181. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1182. }
  1183. *pdata = data;
  1184. return 0;
  1185. }
  1186. /*
  1187. * Writes msr value into into the appropriate "register".
  1188. * Returns 0 on success, non-0 otherwise.
  1189. * Assumes vcpu_load() was already called.
  1190. */
  1191. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1192. {
  1193. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1194. struct shared_msr_entry *msr;
  1195. int ret = 0;
  1196. switch (msr_index) {
  1197. case MSR_EFER:
  1198. vmx_load_host_state(vmx);
  1199. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1200. break;
  1201. #ifdef CONFIG_X86_64
  1202. case MSR_FS_BASE:
  1203. vmx_segment_cache_clear(vmx);
  1204. vmcs_writel(GUEST_FS_BASE, data);
  1205. break;
  1206. case MSR_GS_BASE:
  1207. vmx_segment_cache_clear(vmx);
  1208. vmcs_writel(GUEST_GS_BASE, data);
  1209. break;
  1210. case MSR_KERNEL_GS_BASE:
  1211. vmx_load_host_state(vmx);
  1212. vmx->msr_guest_kernel_gs_base = data;
  1213. break;
  1214. #endif
  1215. case MSR_IA32_SYSENTER_CS:
  1216. vmcs_write32(GUEST_SYSENTER_CS, data);
  1217. break;
  1218. case MSR_IA32_SYSENTER_EIP:
  1219. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1220. break;
  1221. case MSR_IA32_SYSENTER_ESP:
  1222. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1223. break;
  1224. case MSR_IA32_TSC:
  1225. kvm_write_tsc(vcpu, data);
  1226. break;
  1227. case MSR_IA32_CR_PAT:
  1228. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1229. vmcs_write64(GUEST_IA32_PAT, data);
  1230. vcpu->arch.pat = data;
  1231. break;
  1232. }
  1233. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1234. break;
  1235. case MSR_TSC_AUX:
  1236. if (!vmx->rdtscp_enabled)
  1237. return 1;
  1238. /* Check reserved bit, higher 32 bits should be zero */
  1239. if ((data >> 32) != 0)
  1240. return 1;
  1241. /* Otherwise falls through */
  1242. default:
  1243. msr = find_msr_entry(vmx, msr_index);
  1244. if (msr) {
  1245. vmx_load_host_state(vmx);
  1246. msr->data = data;
  1247. break;
  1248. }
  1249. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1250. }
  1251. return ret;
  1252. }
  1253. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1254. {
  1255. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1256. switch (reg) {
  1257. case VCPU_REGS_RSP:
  1258. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1259. break;
  1260. case VCPU_REGS_RIP:
  1261. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1262. break;
  1263. case VCPU_EXREG_PDPTR:
  1264. if (enable_ept)
  1265. ept_save_pdptrs(vcpu);
  1266. break;
  1267. default:
  1268. break;
  1269. }
  1270. }
  1271. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1272. {
  1273. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1274. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1275. else
  1276. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1277. update_exception_bitmap(vcpu);
  1278. }
  1279. static __init int cpu_has_kvm_support(void)
  1280. {
  1281. return cpu_has_vmx();
  1282. }
  1283. static __init int vmx_disabled_by_bios(void)
  1284. {
  1285. u64 msr;
  1286. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1287. if (msr & FEATURE_CONTROL_LOCKED) {
  1288. /* launched w/ TXT and VMX disabled */
  1289. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1290. && tboot_enabled())
  1291. return 1;
  1292. /* launched w/o TXT and VMX only enabled w/ TXT */
  1293. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1294. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1295. && !tboot_enabled()) {
  1296. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  1297. "activate TXT before enabling KVM\n");
  1298. return 1;
  1299. }
  1300. /* launched w/o TXT and VMX disabled */
  1301. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1302. && !tboot_enabled())
  1303. return 1;
  1304. }
  1305. return 0;
  1306. }
  1307. static void kvm_cpu_vmxon(u64 addr)
  1308. {
  1309. asm volatile (ASM_VMX_VMXON_RAX
  1310. : : "a"(&addr), "m"(addr)
  1311. : "memory", "cc");
  1312. }
  1313. static int hardware_enable(void *garbage)
  1314. {
  1315. int cpu = raw_smp_processor_id();
  1316. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1317. u64 old, test_bits;
  1318. if (read_cr4() & X86_CR4_VMXE)
  1319. return -EBUSY;
  1320. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  1321. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1322. test_bits = FEATURE_CONTROL_LOCKED;
  1323. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1324. if (tboot_enabled())
  1325. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1326. if ((old & test_bits) != test_bits) {
  1327. /* enable and lock */
  1328. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1329. }
  1330. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1331. if (vmm_exclusive) {
  1332. kvm_cpu_vmxon(phys_addr);
  1333. ept_sync_global();
  1334. }
  1335. store_gdt(&__get_cpu_var(host_gdt));
  1336. return 0;
  1337. }
  1338. static void vmclear_local_loaded_vmcss(void)
  1339. {
  1340. int cpu = raw_smp_processor_id();
  1341. struct loaded_vmcs *v, *n;
  1342. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  1343. loaded_vmcss_on_cpu_link)
  1344. __loaded_vmcs_clear(v);
  1345. }
  1346. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1347. * tricks.
  1348. */
  1349. static void kvm_cpu_vmxoff(void)
  1350. {
  1351. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1352. }
  1353. static void hardware_disable(void *garbage)
  1354. {
  1355. if (vmm_exclusive) {
  1356. vmclear_local_loaded_vmcss();
  1357. kvm_cpu_vmxoff();
  1358. }
  1359. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1360. }
  1361. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1362. u32 msr, u32 *result)
  1363. {
  1364. u32 vmx_msr_low, vmx_msr_high;
  1365. u32 ctl = ctl_min | ctl_opt;
  1366. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1367. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1368. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1369. /* Ensure minimum (required) set of control bits are supported. */
  1370. if (ctl_min & ~ctl)
  1371. return -EIO;
  1372. *result = ctl;
  1373. return 0;
  1374. }
  1375. static __init bool allow_1_setting(u32 msr, u32 ctl)
  1376. {
  1377. u32 vmx_msr_low, vmx_msr_high;
  1378. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1379. return vmx_msr_high & ctl;
  1380. }
  1381. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1382. {
  1383. u32 vmx_msr_low, vmx_msr_high;
  1384. u32 min, opt, min2, opt2;
  1385. u32 _pin_based_exec_control = 0;
  1386. u32 _cpu_based_exec_control = 0;
  1387. u32 _cpu_based_2nd_exec_control = 0;
  1388. u32 _vmexit_control = 0;
  1389. u32 _vmentry_control = 0;
  1390. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1391. opt = PIN_BASED_VIRTUAL_NMIS;
  1392. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1393. &_pin_based_exec_control) < 0)
  1394. return -EIO;
  1395. min =
  1396. #ifdef CONFIG_X86_64
  1397. CPU_BASED_CR8_LOAD_EXITING |
  1398. CPU_BASED_CR8_STORE_EXITING |
  1399. #endif
  1400. CPU_BASED_CR3_LOAD_EXITING |
  1401. CPU_BASED_CR3_STORE_EXITING |
  1402. CPU_BASED_USE_IO_BITMAPS |
  1403. CPU_BASED_MOV_DR_EXITING |
  1404. CPU_BASED_USE_TSC_OFFSETING |
  1405. CPU_BASED_MWAIT_EXITING |
  1406. CPU_BASED_MONITOR_EXITING |
  1407. CPU_BASED_INVLPG_EXITING;
  1408. if (yield_on_hlt)
  1409. min |= CPU_BASED_HLT_EXITING;
  1410. opt = CPU_BASED_TPR_SHADOW |
  1411. CPU_BASED_USE_MSR_BITMAPS |
  1412. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1413. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1414. &_cpu_based_exec_control) < 0)
  1415. return -EIO;
  1416. #ifdef CONFIG_X86_64
  1417. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1418. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1419. ~CPU_BASED_CR8_STORE_EXITING;
  1420. #endif
  1421. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1422. min2 = 0;
  1423. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1424. SECONDARY_EXEC_WBINVD_EXITING |
  1425. SECONDARY_EXEC_ENABLE_VPID |
  1426. SECONDARY_EXEC_ENABLE_EPT |
  1427. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1428. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1429. SECONDARY_EXEC_RDTSCP;
  1430. if (adjust_vmx_controls(min2, opt2,
  1431. MSR_IA32_VMX_PROCBASED_CTLS2,
  1432. &_cpu_based_2nd_exec_control) < 0)
  1433. return -EIO;
  1434. }
  1435. #ifndef CONFIG_X86_64
  1436. if (!(_cpu_based_2nd_exec_control &
  1437. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1438. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1439. #endif
  1440. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1441. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1442. enabled */
  1443. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1444. CPU_BASED_CR3_STORE_EXITING |
  1445. CPU_BASED_INVLPG_EXITING);
  1446. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1447. vmx_capability.ept, vmx_capability.vpid);
  1448. }
  1449. min = 0;
  1450. #ifdef CONFIG_X86_64
  1451. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1452. #endif
  1453. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1454. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1455. &_vmexit_control) < 0)
  1456. return -EIO;
  1457. min = 0;
  1458. opt = VM_ENTRY_LOAD_IA32_PAT;
  1459. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1460. &_vmentry_control) < 0)
  1461. return -EIO;
  1462. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1463. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1464. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1465. return -EIO;
  1466. #ifdef CONFIG_X86_64
  1467. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1468. if (vmx_msr_high & (1u<<16))
  1469. return -EIO;
  1470. #endif
  1471. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1472. if (((vmx_msr_high >> 18) & 15) != 6)
  1473. return -EIO;
  1474. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1475. vmcs_conf->order = get_order(vmcs_config.size);
  1476. vmcs_conf->revision_id = vmx_msr_low;
  1477. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1478. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1479. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1480. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1481. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1482. cpu_has_load_ia32_efer =
  1483. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  1484. VM_ENTRY_LOAD_IA32_EFER)
  1485. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  1486. VM_EXIT_LOAD_IA32_EFER);
  1487. return 0;
  1488. }
  1489. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1490. {
  1491. int node = cpu_to_node(cpu);
  1492. struct page *pages;
  1493. struct vmcs *vmcs;
  1494. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1495. if (!pages)
  1496. return NULL;
  1497. vmcs = page_address(pages);
  1498. memset(vmcs, 0, vmcs_config.size);
  1499. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1500. return vmcs;
  1501. }
  1502. static struct vmcs *alloc_vmcs(void)
  1503. {
  1504. return alloc_vmcs_cpu(raw_smp_processor_id());
  1505. }
  1506. static void free_vmcs(struct vmcs *vmcs)
  1507. {
  1508. free_pages((unsigned long)vmcs, vmcs_config.order);
  1509. }
  1510. /*
  1511. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  1512. */
  1513. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  1514. {
  1515. if (!loaded_vmcs->vmcs)
  1516. return;
  1517. loaded_vmcs_clear(loaded_vmcs);
  1518. free_vmcs(loaded_vmcs->vmcs);
  1519. loaded_vmcs->vmcs = NULL;
  1520. }
  1521. static void free_kvm_area(void)
  1522. {
  1523. int cpu;
  1524. for_each_possible_cpu(cpu) {
  1525. free_vmcs(per_cpu(vmxarea, cpu));
  1526. per_cpu(vmxarea, cpu) = NULL;
  1527. }
  1528. }
  1529. static __init int alloc_kvm_area(void)
  1530. {
  1531. int cpu;
  1532. for_each_possible_cpu(cpu) {
  1533. struct vmcs *vmcs;
  1534. vmcs = alloc_vmcs_cpu(cpu);
  1535. if (!vmcs) {
  1536. free_kvm_area();
  1537. return -ENOMEM;
  1538. }
  1539. per_cpu(vmxarea, cpu) = vmcs;
  1540. }
  1541. return 0;
  1542. }
  1543. static __init int hardware_setup(void)
  1544. {
  1545. if (setup_vmcs_config(&vmcs_config) < 0)
  1546. return -EIO;
  1547. if (boot_cpu_has(X86_FEATURE_NX))
  1548. kvm_enable_efer_bits(EFER_NX);
  1549. if (!cpu_has_vmx_vpid())
  1550. enable_vpid = 0;
  1551. if (!cpu_has_vmx_ept() ||
  1552. !cpu_has_vmx_ept_4levels()) {
  1553. enable_ept = 0;
  1554. enable_unrestricted_guest = 0;
  1555. }
  1556. if (!cpu_has_vmx_unrestricted_guest())
  1557. enable_unrestricted_guest = 0;
  1558. if (!cpu_has_vmx_flexpriority())
  1559. flexpriority_enabled = 0;
  1560. if (!cpu_has_vmx_tpr_shadow())
  1561. kvm_x86_ops->update_cr8_intercept = NULL;
  1562. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1563. kvm_disable_largepages();
  1564. if (!cpu_has_vmx_ple())
  1565. ple_gap = 0;
  1566. return alloc_kvm_area();
  1567. }
  1568. static __exit void hardware_unsetup(void)
  1569. {
  1570. free_kvm_area();
  1571. }
  1572. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1573. {
  1574. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1575. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1576. vmcs_write16(sf->selector, save->selector);
  1577. vmcs_writel(sf->base, save->base);
  1578. vmcs_write32(sf->limit, save->limit);
  1579. vmcs_write32(sf->ar_bytes, save->ar);
  1580. } else {
  1581. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1582. << AR_DPL_SHIFT;
  1583. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1584. }
  1585. }
  1586. static void enter_pmode(struct kvm_vcpu *vcpu)
  1587. {
  1588. unsigned long flags;
  1589. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1590. vmx->emulation_required = 1;
  1591. vmx->rmode.vm86_active = 0;
  1592. vmx_segment_cache_clear(vmx);
  1593. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  1594. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1595. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1596. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1597. flags = vmcs_readl(GUEST_RFLAGS);
  1598. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1599. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1600. vmcs_writel(GUEST_RFLAGS, flags);
  1601. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1602. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1603. update_exception_bitmap(vcpu);
  1604. if (emulate_invalid_guest_state)
  1605. return;
  1606. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1607. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1608. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1609. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1610. vmx_segment_cache_clear(vmx);
  1611. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1612. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1613. vmcs_write16(GUEST_CS_SELECTOR,
  1614. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1615. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1616. }
  1617. static gva_t rmode_tss_base(struct kvm *kvm)
  1618. {
  1619. if (!kvm->arch.tss_addr) {
  1620. struct kvm_memslots *slots;
  1621. gfn_t base_gfn;
  1622. slots = kvm_memslots(kvm);
  1623. base_gfn = slots->memslots[0].base_gfn +
  1624. kvm->memslots->memslots[0].npages - 3;
  1625. return base_gfn << PAGE_SHIFT;
  1626. }
  1627. return kvm->arch.tss_addr;
  1628. }
  1629. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1630. {
  1631. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1632. save->selector = vmcs_read16(sf->selector);
  1633. save->base = vmcs_readl(sf->base);
  1634. save->limit = vmcs_read32(sf->limit);
  1635. save->ar = vmcs_read32(sf->ar_bytes);
  1636. vmcs_write16(sf->selector, save->base >> 4);
  1637. vmcs_write32(sf->base, save->base & 0xffff0);
  1638. vmcs_write32(sf->limit, 0xffff);
  1639. vmcs_write32(sf->ar_bytes, 0xf3);
  1640. if (save->base & 0xf)
  1641. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  1642. " aligned when entering protected mode (seg=%d)",
  1643. seg);
  1644. }
  1645. static void enter_rmode(struct kvm_vcpu *vcpu)
  1646. {
  1647. unsigned long flags;
  1648. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1649. if (enable_unrestricted_guest)
  1650. return;
  1651. vmx->emulation_required = 1;
  1652. vmx->rmode.vm86_active = 1;
  1653. /*
  1654. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  1655. * vcpu. Call it here with phys address pointing 16M below 4G.
  1656. */
  1657. if (!vcpu->kvm->arch.tss_addr) {
  1658. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  1659. "called before entering vcpu\n");
  1660. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  1661. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  1662. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  1663. }
  1664. vmx_segment_cache_clear(vmx);
  1665. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  1666. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1667. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1668. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1669. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1670. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1671. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1672. flags = vmcs_readl(GUEST_RFLAGS);
  1673. vmx->rmode.save_rflags = flags;
  1674. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1675. vmcs_writel(GUEST_RFLAGS, flags);
  1676. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1677. update_exception_bitmap(vcpu);
  1678. if (emulate_invalid_guest_state)
  1679. goto continue_rmode;
  1680. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1681. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1682. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1683. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1684. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1685. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1686. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1687. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1688. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1689. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1690. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1691. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1692. continue_rmode:
  1693. kvm_mmu_reset_context(vcpu);
  1694. }
  1695. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1696. {
  1697. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1698. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1699. if (!msr)
  1700. return;
  1701. /*
  1702. * Force kernel_gs_base reloading before EFER changes, as control
  1703. * of this msr depends on is_long_mode().
  1704. */
  1705. vmx_load_host_state(to_vmx(vcpu));
  1706. vcpu->arch.efer = efer;
  1707. if (efer & EFER_LMA) {
  1708. vmcs_write32(VM_ENTRY_CONTROLS,
  1709. vmcs_read32(VM_ENTRY_CONTROLS) |
  1710. VM_ENTRY_IA32E_MODE);
  1711. msr->data = efer;
  1712. } else {
  1713. vmcs_write32(VM_ENTRY_CONTROLS,
  1714. vmcs_read32(VM_ENTRY_CONTROLS) &
  1715. ~VM_ENTRY_IA32E_MODE);
  1716. msr->data = efer & ~EFER_LME;
  1717. }
  1718. setup_msrs(vmx);
  1719. }
  1720. #ifdef CONFIG_X86_64
  1721. static void enter_lmode(struct kvm_vcpu *vcpu)
  1722. {
  1723. u32 guest_tr_ar;
  1724. vmx_segment_cache_clear(to_vmx(vcpu));
  1725. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1726. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1727. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1728. __func__);
  1729. vmcs_write32(GUEST_TR_AR_BYTES,
  1730. (guest_tr_ar & ~AR_TYPE_MASK)
  1731. | AR_TYPE_BUSY_64_TSS);
  1732. }
  1733. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  1734. }
  1735. static void exit_lmode(struct kvm_vcpu *vcpu)
  1736. {
  1737. vmcs_write32(VM_ENTRY_CONTROLS,
  1738. vmcs_read32(VM_ENTRY_CONTROLS)
  1739. & ~VM_ENTRY_IA32E_MODE);
  1740. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  1741. }
  1742. #endif
  1743. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1744. {
  1745. vpid_sync_context(to_vmx(vcpu));
  1746. if (enable_ept) {
  1747. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1748. return;
  1749. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1750. }
  1751. }
  1752. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1753. {
  1754. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1755. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1756. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1757. }
  1758. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  1759. {
  1760. if (enable_ept && is_paging(vcpu))
  1761. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  1762. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  1763. }
  1764. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1765. {
  1766. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1767. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1768. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1769. }
  1770. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1771. {
  1772. if (!test_bit(VCPU_EXREG_PDPTR,
  1773. (unsigned long *)&vcpu->arch.regs_dirty))
  1774. return;
  1775. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1776. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  1777. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  1778. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  1779. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  1780. }
  1781. }
  1782. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1783. {
  1784. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1785. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1786. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1787. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1788. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1789. }
  1790. __set_bit(VCPU_EXREG_PDPTR,
  1791. (unsigned long *)&vcpu->arch.regs_avail);
  1792. __set_bit(VCPU_EXREG_PDPTR,
  1793. (unsigned long *)&vcpu->arch.regs_dirty);
  1794. }
  1795. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1796. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1797. unsigned long cr0,
  1798. struct kvm_vcpu *vcpu)
  1799. {
  1800. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  1801. vmx_decache_cr3(vcpu);
  1802. if (!(cr0 & X86_CR0_PG)) {
  1803. /* From paging/starting to nonpaging */
  1804. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1805. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1806. (CPU_BASED_CR3_LOAD_EXITING |
  1807. CPU_BASED_CR3_STORE_EXITING));
  1808. vcpu->arch.cr0 = cr0;
  1809. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1810. } else if (!is_paging(vcpu)) {
  1811. /* From nonpaging to paging */
  1812. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1813. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1814. ~(CPU_BASED_CR3_LOAD_EXITING |
  1815. CPU_BASED_CR3_STORE_EXITING));
  1816. vcpu->arch.cr0 = cr0;
  1817. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1818. }
  1819. if (!(cr0 & X86_CR0_WP))
  1820. *hw_cr0 &= ~X86_CR0_WP;
  1821. }
  1822. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1823. {
  1824. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1825. unsigned long hw_cr0;
  1826. if (enable_unrestricted_guest)
  1827. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1828. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1829. else
  1830. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1831. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1832. enter_pmode(vcpu);
  1833. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1834. enter_rmode(vcpu);
  1835. #ifdef CONFIG_X86_64
  1836. if (vcpu->arch.efer & EFER_LME) {
  1837. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1838. enter_lmode(vcpu);
  1839. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1840. exit_lmode(vcpu);
  1841. }
  1842. #endif
  1843. if (enable_ept)
  1844. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1845. if (!vcpu->fpu_active)
  1846. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  1847. vmcs_writel(CR0_READ_SHADOW, cr0);
  1848. vmcs_writel(GUEST_CR0, hw_cr0);
  1849. vcpu->arch.cr0 = cr0;
  1850. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1851. }
  1852. static u64 construct_eptp(unsigned long root_hpa)
  1853. {
  1854. u64 eptp;
  1855. /* TODO write the value reading from MSR */
  1856. eptp = VMX_EPT_DEFAULT_MT |
  1857. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1858. eptp |= (root_hpa & PAGE_MASK);
  1859. return eptp;
  1860. }
  1861. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1862. {
  1863. unsigned long guest_cr3;
  1864. u64 eptp;
  1865. guest_cr3 = cr3;
  1866. if (enable_ept) {
  1867. eptp = construct_eptp(cr3);
  1868. vmcs_write64(EPT_POINTER, eptp);
  1869. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  1870. vcpu->kvm->arch.ept_identity_map_addr;
  1871. ept_load_pdptrs(vcpu);
  1872. }
  1873. vmx_flush_tlb(vcpu);
  1874. vmcs_writel(GUEST_CR3, guest_cr3);
  1875. }
  1876. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1877. {
  1878. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1879. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1880. vcpu->arch.cr4 = cr4;
  1881. if (enable_ept) {
  1882. if (!is_paging(vcpu)) {
  1883. hw_cr4 &= ~X86_CR4_PAE;
  1884. hw_cr4 |= X86_CR4_PSE;
  1885. } else if (!(cr4 & X86_CR4_PAE)) {
  1886. hw_cr4 &= ~X86_CR4_PAE;
  1887. }
  1888. }
  1889. vmcs_writel(CR4_READ_SHADOW, cr4);
  1890. vmcs_writel(GUEST_CR4, hw_cr4);
  1891. }
  1892. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1893. struct kvm_segment *var, int seg)
  1894. {
  1895. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1896. struct kvm_save_segment *save;
  1897. u32 ar;
  1898. if (vmx->rmode.vm86_active
  1899. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  1900. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  1901. || seg == VCPU_SREG_GS)
  1902. && !emulate_invalid_guest_state) {
  1903. switch (seg) {
  1904. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  1905. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  1906. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  1907. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  1908. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  1909. default: BUG();
  1910. }
  1911. var->selector = save->selector;
  1912. var->base = save->base;
  1913. var->limit = save->limit;
  1914. ar = save->ar;
  1915. if (seg == VCPU_SREG_TR
  1916. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  1917. goto use_saved_rmode_seg;
  1918. }
  1919. var->base = vmx_read_guest_seg_base(vmx, seg);
  1920. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  1921. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  1922. ar = vmx_read_guest_seg_ar(vmx, seg);
  1923. use_saved_rmode_seg:
  1924. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1925. ar = 0;
  1926. var->type = ar & 15;
  1927. var->s = (ar >> 4) & 1;
  1928. var->dpl = (ar >> 5) & 3;
  1929. var->present = (ar >> 7) & 1;
  1930. var->avl = (ar >> 12) & 1;
  1931. var->l = (ar >> 13) & 1;
  1932. var->db = (ar >> 14) & 1;
  1933. var->g = (ar >> 15) & 1;
  1934. var->unusable = (ar >> 16) & 1;
  1935. }
  1936. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1937. {
  1938. struct kvm_segment s;
  1939. if (to_vmx(vcpu)->rmode.vm86_active) {
  1940. vmx_get_segment(vcpu, &s, seg);
  1941. return s.base;
  1942. }
  1943. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  1944. }
  1945. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  1946. {
  1947. if (!is_protmode(vcpu))
  1948. return 0;
  1949. if (!is_long_mode(vcpu)
  1950. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  1951. return 3;
  1952. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  1953. }
  1954. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1955. {
  1956. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  1957. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1958. to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
  1959. }
  1960. return to_vmx(vcpu)->cpl;
  1961. }
  1962. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1963. {
  1964. u32 ar;
  1965. if (var->unusable)
  1966. ar = 1 << 16;
  1967. else {
  1968. ar = var->type & 15;
  1969. ar |= (var->s & 1) << 4;
  1970. ar |= (var->dpl & 3) << 5;
  1971. ar |= (var->present & 1) << 7;
  1972. ar |= (var->avl & 1) << 12;
  1973. ar |= (var->l & 1) << 13;
  1974. ar |= (var->db & 1) << 14;
  1975. ar |= (var->g & 1) << 15;
  1976. }
  1977. if (ar == 0) /* a 0 value means unusable */
  1978. ar = AR_UNUSABLE_MASK;
  1979. return ar;
  1980. }
  1981. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1982. struct kvm_segment *var, int seg)
  1983. {
  1984. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1985. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1986. u32 ar;
  1987. vmx_segment_cache_clear(vmx);
  1988. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1989. vmcs_write16(sf->selector, var->selector);
  1990. vmx->rmode.tr.selector = var->selector;
  1991. vmx->rmode.tr.base = var->base;
  1992. vmx->rmode.tr.limit = var->limit;
  1993. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1994. return;
  1995. }
  1996. vmcs_writel(sf->base, var->base);
  1997. vmcs_write32(sf->limit, var->limit);
  1998. vmcs_write16(sf->selector, var->selector);
  1999. if (vmx->rmode.vm86_active && var->s) {
  2000. /*
  2001. * Hack real-mode segments into vm86 compatibility.
  2002. */
  2003. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2004. vmcs_writel(sf->base, 0xf0000);
  2005. ar = 0xf3;
  2006. } else
  2007. ar = vmx_segment_access_rights(var);
  2008. /*
  2009. * Fix the "Accessed" bit in AR field of segment registers for older
  2010. * qemu binaries.
  2011. * IA32 arch specifies that at the time of processor reset the
  2012. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2013. * is setting it to 0 in the usedland code. This causes invalid guest
  2014. * state vmexit when "unrestricted guest" mode is turned on.
  2015. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2016. * tree. Newer qemu binaries with that qemu fix would not need this
  2017. * kvm hack.
  2018. */
  2019. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2020. ar |= 0x1; /* Accessed */
  2021. vmcs_write32(sf->ar_bytes, ar);
  2022. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2023. }
  2024. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2025. {
  2026. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2027. *db = (ar >> 14) & 1;
  2028. *l = (ar >> 13) & 1;
  2029. }
  2030. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2031. {
  2032. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2033. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2034. }
  2035. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2036. {
  2037. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2038. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2039. }
  2040. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2041. {
  2042. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2043. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2044. }
  2045. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2046. {
  2047. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2048. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2049. }
  2050. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2051. {
  2052. struct kvm_segment var;
  2053. u32 ar;
  2054. vmx_get_segment(vcpu, &var, seg);
  2055. ar = vmx_segment_access_rights(&var);
  2056. if (var.base != (var.selector << 4))
  2057. return false;
  2058. if (var.limit != 0xffff)
  2059. return false;
  2060. if (ar != 0xf3)
  2061. return false;
  2062. return true;
  2063. }
  2064. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2065. {
  2066. struct kvm_segment cs;
  2067. unsigned int cs_rpl;
  2068. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2069. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2070. if (cs.unusable)
  2071. return false;
  2072. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2073. return false;
  2074. if (!cs.s)
  2075. return false;
  2076. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2077. if (cs.dpl > cs_rpl)
  2078. return false;
  2079. } else {
  2080. if (cs.dpl != cs_rpl)
  2081. return false;
  2082. }
  2083. if (!cs.present)
  2084. return false;
  2085. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2086. return true;
  2087. }
  2088. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2089. {
  2090. struct kvm_segment ss;
  2091. unsigned int ss_rpl;
  2092. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2093. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2094. if (ss.unusable)
  2095. return true;
  2096. if (ss.type != 3 && ss.type != 7)
  2097. return false;
  2098. if (!ss.s)
  2099. return false;
  2100. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2101. return false;
  2102. if (!ss.present)
  2103. return false;
  2104. return true;
  2105. }
  2106. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2107. {
  2108. struct kvm_segment var;
  2109. unsigned int rpl;
  2110. vmx_get_segment(vcpu, &var, seg);
  2111. rpl = var.selector & SELECTOR_RPL_MASK;
  2112. if (var.unusable)
  2113. return true;
  2114. if (!var.s)
  2115. return false;
  2116. if (!var.present)
  2117. return false;
  2118. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2119. if (var.dpl < rpl) /* DPL < RPL */
  2120. return false;
  2121. }
  2122. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2123. * rights flags
  2124. */
  2125. return true;
  2126. }
  2127. static bool tr_valid(struct kvm_vcpu *vcpu)
  2128. {
  2129. struct kvm_segment tr;
  2130. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2131. if (tr.unusable)
  2132. return false;
  2133. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2134. return false;
  2135. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2136. return false;
  2137. if (!tr.present)
  2138. return false;
  2139. return true;
  2140. }
  2141. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2142. {
  2143. struct kvm_segment ldtr;
  2144. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  2145. if (ldtr.unusable)
  2146. return true;
  2147. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2148. return false;
  2149. if (ldtr.type != 2)
  2150. return false;
  2151. if (!ldtr.present)
  2152. return false;
  2153. return true;
  2154. }
  2155. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  2156. {
  2157. struct kvm_segment cs, ss;
  2158. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2159. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2160. return ((cs.selector & SELECTOR_RPL_MASK) ==
  2161. (ss.selector & SELECTOR_RPL_MASK));
  2162. }
  2163. /*
  2164. * Check if guest state is valid. Returns true if valid, false if
  2165. * not.
  2166. * We assume that registers are always usable
  2167. */
  2168. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  2169. {
  2170. /* real mode guest state checks */
  2171. if (!is_protmode(vcpu)) {
  2172. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  2173. return false;
  2174. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  2175. return false;
  2176. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  2177. return false;
  2178. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  2179. return false;
  2180. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  2181. return false;
  2182. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  2183. return false;
  2184. } else {
  2185. /* protected mode guest state checks */
  2186. if (!cs_ss_rpl_check(vcpu))
  2187. return false;
  2188. if (!code_segment_valid(vcpu))
  2189. return false;
  2190. if (!stack_segment_valid(vcpu))
  2191. return false;
  2192. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  2193. return false;
  2194. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  2195. return false;
  2196. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  2197. return false;
  2198. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  2199. return false;
  2200. if (!tr_valid(vcpu))
  2201. return false;
  2202. if (!ldtr_valid(vcpu))
  2203. return false;
  2204. }
  2205. /* TODO:
  2206. * - Add checks on RIP
  2207. * - Add checks on RFLAGS
  2208. */
  2209. return true;
  2210. }
  2211. static int init_rmode_tss(struct kvm *kvm)
  2212. {
  2213. gfn_t fn;
  2214. u16 data = 0;
  2215. int r, idx, ret = 0;
  2216. idx = srcu_read_lock(&kvm->srcu);
  2217. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  2218. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2219. if (r < 0)
  2220. goto out;
  2221. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  2222. r = kvm_write_guest_page(kvm, fn++, &data,
  2223. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  2224. if (r < 0)
  2225. goto out;
  2226. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  2227. if (r < 0)
  2228. goto out;
  2229. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2230. if (r < 0)
  2231. goto out;
  2232. data = ~0;
  2233. r = kvm_write_guest_page(kvm, fn, &data,
  2234. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  2235. sizeof(u8));
  2236. if (r < 0)
  2237. goto out;
  2238. ret = 1;
  2239. out:
  2240. srcu_read_unlock(&kvm->srcu, idx);
  2241. return ret;
  2242. }
  2243. static int init_rmode_identity_map(struct kvm *kvm)
  2244. {
  2245. int i, idx, r, ret;
  2246. pfn_t identity_map_pfn;
  2247. u32 tmp;
  2248. if (!enable_ept)
  2249. return 1;
  2250. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  2251. printk(KERN_ERR "EPT: identity-mapping pagetable "
  2252. "haven't been allocated!\n");
  2253. return 0;
  2254. }
  2255. if (likely(kvm->arch.ept_identity_pagetable_done))
  2256. return 1;
  2257. ret = 0;
  2258. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  2259. idx = srcu_read_lock(&kvm->srcu);
  2260. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  2261. if (r < 0)
  2262. goto out;
  2263. /* Set up identity-mapping pagetable for EPT in real mode */
  2264. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  2265. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  2266. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  2267. r = kvm_write_guest_page(kvm, identity_map_pfn,
  2268. &tmp, i * sizeof(tmp), sizeof(tmp));
  2269. if (r < 0)
  2270. goto out;
  2271. }
  2272. kvm->arch.ept_identity_pagetable_done = true;
  2273. ret = 1;
  2274. out:
  2275. srcu_read_unlock(&kvm->srcu, idx);
  2276. return ret;
  2277. }
  2278. static void seg_setup(int seg)
  2279. {
  2280. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2281. unsigned int ar;
  2282. vmcs_write16(sf->selector, 0);
  2283. vmcs_writel(sf->base, 0);
  2284. vmcs_write32(sf->limit, 0xffff);
  2285. if (enable_unrestricted_guest) {
  2286. ar = 0x93;
  2287. if (seg == VCPU_SREG_CS)
  2288. ar |= 0x08; /* code segment */
  2289. } else
  2290. ar = 0xf3;
  2291. vmcs_write32(sf->ar_bytes, ar);
  2292. }
  2293. static int alloc_apic_access_page(struct kvm *kvm)
  2294. {
  2295. struct kvm_userspace_memory_region kvm_userspace_mem;
  2296. int r = 0;
  2297. mutex_lock(&kvm->slots_lock);
  2298. if (kvm->arch.apic_access_page)
  2299. goto out;
  2300. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  2301. kvm_userspace_mem.flags = 0;
  2302. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  2303. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2304. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2305. if (r)
  2306. goto out;
  2307. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2308. out:
  2309. mutex_unlock(&kvm->slots_lock);
  2310. return r;
  2311. }
  2312. static int alloc_identity_pagetable(struct kvm *kvm)
  2313. {
  2314. struct kvm_userspace_memory_region kvm_userspace_mem;
  2315. int r = 0;
  2316. mutex_lock(&kvm->slots_lock);
  2317. if (kvm->arch.ept_identity_pagetable)
  2318. goto out;
  2319. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2320. kvm_userspace_mem.flags = 0;
  2321. kvm_userspace_mem.guest_phys_addr =
  2322. kvm->arch.ept_identity_map_addr;
  2323. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2324. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2325. if (r)
  2326. goto out;
  2327. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2328. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2329. out:
  2330. mutex_unlock(&kvm->slots_lock);
  2331. return r;
  2332. }
  2333. static void allocate_vpid(struct vcpu_vmx *vmx)
  2334. {
  2335. int vpid;
  2336. vmx->vpid = 0;
  2337. if (!enable_vpid)
  2338. return;
  2339. spin_lock(&vmx_vpid_lock);
  2340. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  2341. if (vpid < VMX_NR_VPIDS) {
  2342. vmx->vpid = vpid;
  2343. __set_bit(vpid, vmx_vpid_bitmap);
  2344. }
  2345. spin_unlock(&vmx_vpid_lock);
  2346. }
  2347. static void free_vpid(struct vcpu_vmx *vmx)
  2348. {
  2349. if (!enable_vpid)
  2350. return;
  2351. spin_lock(&vmx_vpid_lock);
  2352. if (vmx->vpid != 0)
  2353. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2354. spin_unlock(&vmx_vpid_lock);
  2355. }
  2356. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  2357. {
  2358. int f = sizeof(unsigned long);
  2359. if (!cpu_has_vmx_msr_bitmap())
  2360. return;
  2361. /*
  2362. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  2363. * have the write-low and read-high bitmap offsets the wrong way round.
  2364. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  2365. */
  2366. if (msr <= 0x1fff) {
  2367. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  2368. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  2369. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  2370. msr &= 0x1fff;
  2371. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  2372. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  2373. }
  2374. }
  2375. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  2376. {
  2377. if (!longmode_only)
  2378. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  2379. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  2380. }
  2381. /*
  2382. * Sets up the vmcs for emulated real mode.
  2383. */
  2384. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  2385. {
  2386. u32 host_sysenter_cs, msr_low, msr_high;
  2387. u32 junk;
  2388. u64 host_pat;
  2389. unsigned long a;
  2390. struct desc_ptr dt;
  2391. int i;
  2392. unsigned long kvm_vmx_return;
  2393. u32 exec_control;
  2394. /* I/O */
  2395. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  2396. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  2397. if (cpu_has_vmx_msr_bitmap())
  2398. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  2399. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  2400. /* Control */
  2401. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  2402. vmcs_config.pin_based_exec_ctrl);
  2403. exec_control = vmcs_config.cpu_based_exec_ctrl;
  2404. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  2405. exec_control &= ~CPU_BASED_TPR_SHADOW;
  2406. #ifdef CONFIG_X86_64
  2407. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  2408. CPU_BASED_CR8_LOAD_EXITING;
  2409. #endif
  2410. }
  2411. if (!enable_ept)
  2412. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2413. CPU_BASED_CR3_LOAD_EXITING |
  2414. CPU_BASED_INVLPG_EXITING;
  2415. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2416. if (cpu_has_secondary_exec_ctrls()) {
  2417. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2418. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2419. exec_control &=
  2420. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2421. if (vmx->vpid == 0)
  2422. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2423. if (!enable_ept) {
  2424. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2425. enable_unrestricted_guest = 0;
  2426. }
  2427. if (!enable_unrestricted_guest)
  2428. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2429. if (!ple_gap)
  2430. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2431. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2432. }
  2433. if (ple_gap) {
  2434. vmcs_write32(PLE_GAP, ple_gap);
  2435. vmcs_write32(PLE_WINDOW, ple_window);
  2436. }
  2437. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2438. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2439. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2440. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  2441. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2442. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2443. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2444. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2445. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2446. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  2447. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  2448. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2449. #ifdef CONFIG_X86_64
  2450. rdmsrl(MSR_FS_BASE, a);
  2451. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2452. rdmsrl(MSR_GS_BASE, a);
  2453. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2454. #else
  2455. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2456. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2457. #endif
  2458. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2459. native_store_idt(&dt);
  2460. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  2461. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2462. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2463. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2464. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2465. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  2466. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2467. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  2468. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2469. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2470. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2471. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2472. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2473. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2474. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2475. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2476. host_pat = msr_low | ((u64) msr_high << 32);
  2477. vmcs_write64(HOST_IA32_PAT, host_pat);
  2478. }
  2479. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2480. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2481. host_pat = msr_low | ((u64) msr_high << 32);
  2482. /* Write the default value follow host pat */
  2483. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2484. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2485. vmx->vcpu.arch.pat = host_pat;
  2486. }
  2487. for (i = 0; i < NR_VMX_MSR; ++i) {
  2488. u32 index = vmx_msr_index[i];
  2489. u32 data_low, data_high;
  2490. int j = vmx->nmsrs;
  2491. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2492. continue;
  2493. if (wrmsr_safe(index, data_low, data_high) < 0)
  2494. continue;
  2495. vmx->guest_msrs[j].index = i;
  2496. vmx->guest_msrs[j].data = 0;
  2497. vmx->guest_msrs[j].mask = -1ull;
  2498. ++vmx->nmsrs;
  2499. }
  2500. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2501. /* 22.2.1, 20.8.1 */
  2502. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2503. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2504. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2505. if (enable_ept)
  2506. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2507. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2508. kvm_write_tsc(&vmx->vcpu, 0);
  2509. return 0;
  2510. }
  2511. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2512. {
  2513. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2514. u64 msr;
  2515. int ret;
  2516. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2517. vmx->rmode.vm86_active = 0;
  2518. vmx->soft_vnmi_blocked = 0;
  2519. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2520. kvm_set_cr8(&vmx->vcpu, 0);
  2521. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2522. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2523. msr |= MSR_IA32_APICBASE_BSP;
  2524. kvm_set_apic_base(&vmx->vcpu, msr);
  2525. ret = fx_init(&vmx->vcpu);
  2526. if (ret != 0)
  2527. goto out;
  2528. vmx_segment_cache_clear(vmx);
  2529. seg_setup(VCPU_SREG_CS);
  2530. /*
  2531. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2532. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2533. */
  2534. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2535. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2536. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2537. } else {
  2538. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2539. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2540. }
  2541. seg_setup(VCPU_SREG_DS);
  2542. seg_setup(VCPU_SREG_ES);
  2543. seg_setup(VCPU_SREG_FS);
  2544. seg_setup(VCPU_SREG_GS);
  2545. seg_setup(VCPU_SREG_SS);
  2546. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2547. vmcs_writel(GUEST_TR_BASE, 0);
  2548. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2549. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2550. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2551. vmcs_writel(GUEST_LDTR_BASE, 0);
  2552. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2553. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2554. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2555. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2556. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2557. vmcs_writel(GUEST_RFLAGS, 0x02);
  2558. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2559. kvm_rip_write(vcpu, 0xfff0);
  2560. else
  2561. kvm_rip_write(vcpu, 0);
  2562. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2563. vmcs_writel(GUEST_DR7, 0x400);
  2564. vmcs_writel(GUEST_GDTR_BASE, 0);
  2565. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2566. vmcs_writel(GUEST_IDTR_BASE, 0);
  2567. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2568. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  2569. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2570. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2571. /* Special registers */
  2572. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2573. setup_msrs(vmx);
  2574. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2575. if (cpu_has_vmx_tpr_shadow()) {
  2576. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2577. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2578. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2579. __pa(vmx->vcpu.arch.apic->regs));
  2580. vmcs_write32(TPR_THRESHOLD, 0);
  2581. }
  2582. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2583. vmcs_write64(APIC_ACCESS_ADDR,
  2584. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2585. if (vmx->vpid != 0)
  2586. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2587. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2588. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2589. vmx_set_cr4(&vmx->vcpu, 0);
  2590. vmx_set_efer(&vmx->vcpu, 0);
  2591. vmx_fpu_activate(&vmx->vcpu);
  2592. update_exception_bitmap(&vmx->vcpu);
  2593. vpid_sync_context(vmx);
  2594. ret = 0;
  2595. /* HACK: Don't enable emulation on guest boot/reset */
  2596. vmx->emulation_required = 0;
  2597. out:
  2598. return ret;
  2599. }
  2600. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2601. {
  2602. u32 cpu_based_vm_exec_control;
  2603. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2604. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2605. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2606. }
  2607. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2608. {
  2609. u32 cpu_based_vm_exec_control;
  2610. if (!cpu_has_virtual_nmis()) {
  2611. enable_irq_window(vcpu);
  2612. return;
  2613. }
  2614. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  2615. enable_irq_window(vcpu);
  2616. return;
  2617. }
  2618. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2619. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2620. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2621. }
  2622. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2623. {
  2624. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2625. uint32_t intr;
  2626. int irq = vcpu->arch.interrupt.nr;
  2627. trace_kvm_inj_virq(irq);
  2628. ++vcpu->stat.irq_injections;
  2629. if (vmx->rmode.vm86_active) {
  2630. int inc_eip = 0;
  2631. if (vcpu->arch.interrupt.soft)
  2632. inc_eip = vcpu->arch.event_exit_inst_len;
  2633. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  2634. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2635. return;
  2636. }
  2637. intr = irq | INTR_INFO_VALID_MASK;
  2638. if (vcpu->arch.interrupt.soft) {
  2639. intr |= INTR_TYPE_SOFT_INTR;
  2640. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2641. vmx->vcpu.arch.event_exit_inst_len);
  2642. } else
  2643. intr |= INTR_TYPE_EXT_INTR;
  2644. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2645. vmx_clear_hlt(vcpu);
  2646. }
  2647. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2648. {
  2649. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2650. if (!cpu_has_virtual_nmis()) {
  2651. /*
  2652. * Tracking the NMI-blocked state in software is built upon
  2653. * finding the next open IRQ window. This, in turn, depends on
  2654. * well-behaving guests: They have to keep IRQs disabled at
  2655. * least as long as the NMI handler runs. Otherwise we may
  2656. * cause NMI nesting, maybe breaking the guest. But as this is
  2657. * highly unlikely, we can live with the residual risk.
  2658. */
  2659. vmx->soft_vnmi_blocked = 1;
  2660. vmx->vnmi_blocked_time = 0;
  2661. }
  2662. ++vcpu->stat.nmi_injections;
  2663. vmx->nmi_known_unmasked = false;
  2664. if (vmx->rmode.vm86_active) {
  2665. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  2666. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2667. return;
  2668. }
  2669. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2670. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2671. vmx_clear_hlt(vcpu);
  2672. }
  2673. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2674. {
  2675. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2676. return 0;
  2677. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2678. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  2679. | GUEST_INTR_STATE_NMI));
  2680. }
  2681. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2682. {
  2683. if (!cpu_has_virtual_nmis())
  2684. return to_vmx(vcpu)->soft_vnmi_blocked;
  2685. if (to_vmx(vcpu)->nmi_known_unmasked)
  2686. return false;
  2687. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  2688. }
  2689. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2690. {
  2691. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2692. if (!cpu_has_virtual_nmis()) {
  2693. if (vmx->soft_vnmi_blocked != masked) {
  2694. vmx->soft_vnmi_blocked = masked;
  2695. vmx->vnmi_blocked_time = 0;
  2696. }
  2697. } else {
  2698. vmx->nmi_known_unmasked = !masked;
  2699. if (masked)
  2700. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2701. GUEST_INTR_STATE_NMI);
  2702. else
  2703. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2704. GUEST_INTR_STATE_NMI);
  2705. }
  2706. }
  2707. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2708. {
  2709. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2710. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2711. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2712. }
  2713. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2714. {
  2715. int ret;
  2716. struct kvm_userspace_memory_region tss_mem = {
  2717. .slot = TSS_PRIVATE_MEMSLOT,
  2718. .guest_phys_addr = addr,
  2719. .memory_size = PAGE_SIZE * 3,
  2720. .flags = 0,
  2721. };
  2722. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2723. if (ret)
  2724. return ret;
  2725. kvm->arch.tss_addr = addr;
  2726. if (!init_rmode_tss(kvm))
  2727. return -ENOMEM;
  2728. return 0;
  2729. }
  2730. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2731. int vec, u32 err_code)
  2732. {
  2733. /*
  2734. * Instruction with address size override prefix opcode 0x67
  2735. * Cause the #SS fault with 0 error code in VM86 mode.
  2736. */
  2737. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2738. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  2739. return 1;
  2740. /*
  2741. * Forward all other exceptions that are valid in real mode.
  2742. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2743. * the required debugging infrastructure rework.
  2744. */
  2745. switch (vec) {
  2746. case DB_VECTOR:
  2747. if (vcpu->guest_debug &
  2748. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2749. return 0;
  2750. kvm_queue_exception(vcpu, vec);
  2751. return 1;
  2752. case BP_VECTOR:
  2753. /*
  2754. * Update instruction length as we may reinject the exception
  2755. * from user space while in guest debugging mode.
  2756. */
  2757. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  2758. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2759. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2760. return 0;
  2761. /* fall through */
  2762. case DE_VECTOR:
  2763. case OF_VECTOR:
  2764. case BR_VECTOR:
  2765. case UD_VECTOR:
  2766. case DF_VECTOR:
  2767. case SS_VECTOR:
  2768. case GP_VECTOR:
  2769. case MF_VECTOR:
  2770. kvm_queue_exception(vcpu, vec);
  2771. return 1;
  2772. }
  2773. return 0;
  2774. }
  2775. /*
  2776. * Trigger machine check on the host. We assume all the MSRs are already set up
  2777. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2778. * We pass a fake environment to the machine check handler because we want
  2779. * the guest to be always treated like user space, no matter what context
  2780. * it used internally.
  2781. */
  2782. static void kvm_machine_check(void)
  2783. {
  2784. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2785. struct pt_regs regs = {
  2786. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2787. .flags = X86_EFLAGS_IF,
  2788. };
  2789. do_machine_check(&regs, 0);
  2790. #endif
  2791. }
  2792. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2793. {
  2794. /* already handled by vcpu_run */
  2795. return 1;
  2796. }
  2797. static int handle_exception(struct kvm_vcpu *vcpu)
  2798. {
  2799. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2800. struct kvm_run *kvm_run = vcpu->run;
  2801. u32 intr_info, ex_no, error_code;
  2802. unsigned long cr2, rip, dr6;
  2803. u32 vect_info;
  2804. enum emulation_result er;
  2805. vect_info = vmx->idt_vectoring_info;
  2806. intr_info = vmx->exit_intr_info;
  2807. if (is_machine_check(intr_info))
  2808. return handle_machine_check(vcpu);
  2809. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2810. !is_page_fault(intr_info)) {
  2811. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2812. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2813. vcpu->run->internal.ndata = 2;
  2814. vcpu->run->internal.data[0] = vect_info;
  2815. vcpu->run->internal.data[1] = intr_info;
  2816. return 0;
  2817. }
  2818. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2819. return 1; /* already handled by vmx_vcpu_run() */
  2820. if (is_no_device(intr_info)) {
  2821. vmx_fpu_activate(vcpu);
  2822. return 1;
  2823. }
  2824. if (is_invalid_opcode(intr_info)) {
  2825. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  2826. if (er != EMULATE_DONE)
  2827. kvm_queue_exception(vcpu, UD_VECTOR);
  2828. return 1;
  2829. }
  2830. error_code = 0;
  2831. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2832. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2833. if (is_page_fault(intr_info)) {
  2834. /* EPT won't cause page fault directly */
  2835. if (enable_ept)
  2836. BUG();
  2837. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2838. trace_kvm_page_fault(cr2, error_code);
  2839. if (kvm_event_needs_reinjection(vcpu))
  2840. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2841. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  2842. }
  2843. if (vmx->rmode.vm86_active &&
  2844. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2845. error_code)) {
  2846. if (vcpu->arch.halt_request) {
  2847. vcpu->arch.halt_request = 0;
  2848. return kvm_emulate_halt(vcpu);
  2849. }
  2850. return 1;
  2851. }
  2852. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2853. switch (ex_no) {
  2854. case DB_VECTOR:
  2855. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2856. if (!(vcpu->guest_debug &
  2857. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2858. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2859. kvm_queue_exception(vcpu, DB_VECTOR);
  2860. return 1;
  2861. }
  2862. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2863. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2864. /* fall through */
  2865. case BP_VECTOR:
  2866. /*
  2867. * Update instruction length as we may reinject #BP from
  2868. * user space while in guest debugging mode. Reading it for
  2869. * #DB as well causes no harm, it is not used in that case.
  2870. */
  2871. vmx->vcpu.arch.event_exit_inst_len =
  2872. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2873. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2874. rip = kvm_rip_read(vcpu);
  2875. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2876. kvm_run->debug.arch.exception = ex_no;
  2877. break;
  2878. default:
  2879. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2880. kvm_run->ex.exception = ex_no;
  2881. kvm_run->ex.error_code = error_code;
  2882. break;
  2883. }
  2884. return 0;
  2885. }
  2886. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2887. {
  2888. ++vcpu->stat.irq_exits;
  2889. return 1;
  2890. }
  2891. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2892. {
  2893. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2894. return 0;
  2895. }
  2896. static int handle_io(struct kvm_vcpu *vcpu)
  2897. {
  2898. unsigned long exit_qualification;
  2899. int size, in, string;
  2900. unsigned port;
  2901. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2902. string = (exit_qualification & 16) != 0;
  2903. in = (exit_qualification & 8) != 0;
  2904. ++vcpu->stat.io_exits;
  2905. if (string || in)
  2906. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  2907. port = exit_qualification >> 16;
  2908. size = (exit_qualification & 7) + 1;
  2909. skip_emulated_instruction(vcpu);
  2910. return kvm_fast_pio_out(vcpu, size, port);
  2911. }
  2912. static void
  2913. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2914. {
  2915. /*
  2916. * Patch in the VMCALL instruction:
  2917. */
  2918. hypercall[0] = 0x0f;
  2919. hypercall[1] = 0x01;
  2920. hypercall[2] = 0xc1;
  2921. }
  2922. static int handle_cr(struct kvm_vcpu *vcpu)
  2923. {
  2924. unsigned long exit_qualification, val;
  2925. int cr;
  2926. int reg;
  2927. int err;
  2928. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2929. cr = exit_qualification & 15;
  2930. reg = (exit_qualification >> 8) & 15;
  2931. switch ((exit_qualification >> 4) & 3) {
  2932. case 0: /* mov to cr */
  2933. val = kvm_register_read(vcpu, reg);
  2934. trace_kvm_cr_write(cr, val);
  2935. switch (cr) {
  2936. case 0:
  2937. err = kvm_set_cr0(vcpu, val);
  2938. kvm_complete_insn_gp(vcpu, err);
  2939. return 1;
  2940. case 3:
  2941. err = kvm_set_cr3(vcpu, val);
  2942. kvm_complete_insn_gp(vcpu, err);
  2943. return 1;
  2944. case 4:
  2945. err = kvm_set_cr4(vcpu, val);
  2946. kvm_complete_insn_gp(vcpu, err);
  2947. return 1;
  2948. case 8: {
  2949. u8 cr8_prev = kvm_get_cr8(vcpu);
  2950. u8 cr8 = kvm_register_read(vcpu, reg);
  2951. err = kvm_set_cr8(vcpu, cr8);
  2952. kvm_complete_insn_gp(vcpu, err);
  2953. if (irqchip_in_kernel(vcpu->kvm))
  2954. return 1;
  2955. if (cr8_prev <= cr8)
  2956. return 1;
  2957. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2958. return 0;
  2959. }
  2960. };
  2961. break;
  2962. case 2: /* clts */
  2963. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2964. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2965. skip_emulated_instruction(vcpu);
  2966. vmx_fpu_activate(vcpu);
  2967. return 1;
  2968. case 1: /*mov from cr*/
  2969. switch (cr) {
  2970. case 3:
  2971. val = kvm_read_cr3(vcpu);
  2972. kvm_register_write(vcpu, reg, val);
  2973. trace_kvm_cr_read(cr, val);
  2974. skip_emulated_instruction(vcpu);
  2975. return 1;
  2976. case 8:
  2977. val = kvm_get_cr8(vcpu);
  2978. kvm_register_write(vcpu, reg, val);
  2979. trace_kvm_cr_read(cr, val);
  2980. skip_emulated_instruction(vcpu);
  2981. return 1;
  2982. }
  2983. break;
  2984. case 3: /* lmsw */
  2985. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2986. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2987. kvm_lmsw(vcpu, val);
  2988. skip_emulated_instruction(vcpu);
  2989. return 1;
  2990. default:
  2991. break;
  2992. }
  2993. vcpu->run->exit_reason = 0;
  2994. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2995. (int)(exit_qualification >> 4) & 3, cr);
  2996. return 0;
  2997. }
  2998. static int handle_dr(struct kvm_vcpu *vcpu)
  2999. {
  3000. unsigned long exit_qualification;
  3001. int dr, reg;
  3002. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  3003. if (!kvm_require_cpl(vcpu, 0))
  3004. return 1;
  3005. dr = vmcs_readl(GUEST_DR7);
  3006. if (dr & DR7_GD) {
  3007. /*
  3008. * As the vm-exit takes precedence over the debug trap, we
  3009. * need to emulate the latter, either for the host or the
  3010. * guest debugging itself.
  3011. */
  3012. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3013. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  3014. vcpu->run->debug.arch.dr7 = dr;
  3015. vcpu->run->debug.arch.pc =
  3016. vmcs_readl(GUEST_CS_BASE) +
  3017. vmcs_readl(GUEST_RIP);
  3018. vcpu->run->debug.arch.exception = DB_VECTOR;
  3019. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  3020. return 0;
  3021. } else {
  3022. vcpu->arch.dr7 &= ~DR7_GD;
  3023. vcpu->arch.dr6 |= DR6_BD;
  3024. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  3025. kvm_queue_exception(vcpu, DB_VECTOR);
  3026. return 1;
  3027. }
  3028. }
  3029. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3030. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  3031. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  3032. if (exit_qualification & TYPE_MOV_FROM_DR) {
  3033. unsigned long val;
  3034. if (!kvm_get_dr(vcpu, dr, &val))
  3035. kvm_register_write(vcpu, reg, val);
  3036. } else
  3037. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  3038. skip_emulated_instruction(vcpu);
  3039. return 1;
  3040. }
  3041. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  3042. {
  3043. vmcs_writel(GUEST_DR7, val);
  3044. }
  3045. static int handle_cpuid(struct kvm_vcpu *vcpu)
  3046. {
  3047. kvm_emulate_cpuid(vcpu);
  3048. return 1;
  3049. }
  3050. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  3051. {
  3052. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3053. u64 data;
  3054. if (vmx_get_msr(vcpu, ecx, &data)) {
  3055. trace_kvm_msr_read_ex(ecx);
  3056. kvm_inject_gp(vcpu, 0);
  3057. return 1;
  3058. }
  3059. trace_kvm_msr_read(ecx, data);
  3060. /* FIXME: handling of bits 32:63 of rax, rdx */
  3061. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  3062. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  3063. skip_emulated_instruction(vcpu);
  3064. return 1;
  3065. }
  3066. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  3067. {
  3068. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3069. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  3070. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  3071. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  3072. trace_kvm_msr_write_ex(ecx, data);
  3073. kvm_inject_gp(vcpu, 0);
  3074. return 1;
  3075. }
  3076. trace_kvm_msr_write(ecx, data);
  3077. skip_emulated_instruction(vcpu);
  3078. return 1;
  3079. }
  3080. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  3081. {
  3082. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3083. return 1;
  3084. }
  3085. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  3086. {
  3087. u32 cpu_based_vm_exec_control;
  3088. /* clear pending irq */
  3089. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3090. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  3091. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3092. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3093. ++vcpu->stat.irq_window_exits;
  3094. /*
  3095. * If the user space waits to inject interrupts, exit as soon as
  3096. * possible
  3097. */
  3098. if (!irqchip_in_kernel(vcpu->kvm) &&
  3099. vcpu->run->request_interrupt_window &&
  3100. !kvm_cpu_has_interrupt(vcpu)) {
  3101. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  3102. return 0;
  3103. }
  3104. return 1;
  3105. }
  3106. static int handle_halt(struct kvm_vcpu *vcpu)
  3107. {
  3108. skip_emulated_instruction(vcpu);
  3109. return kvm_emulate_halt(vcpu);
  3110. }
  3111. static int handle_vmcall(struct kvm_vcpu *vcpu)
  3112. {
  3113. skip_emulated_instruction(vcpu);
  3114. kvm_emulate_hypercall(vcpu);
  3115. return 1;
  3116. }
  3117. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  3118. {
  3119. kvm_queue_exception(vcpu, UD_VECTOR);
  3120. return 1;
  3121. }
  3122. static int handle_invd(struct kvm_vcpu *vcpu)
  3123. {
  3124. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3125. }
  3126. static int handle_invlpg(struct kvm_vcpu *vcpu)
  3127. {
  3128. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3129. kvm_mmu_invlpg(vcpu, exit_qualification);
  3130. skip_emulated_instruction(vcpu);
  3131. return 1;
  3132. }
  3133. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  3134. {
  3135. skip_emulated_instruction(vcpu);
  3136. kvm_emulate_wbinvd(vcpu);
  3137. return 1;
  3138. }
  3139. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  3140. {
  3141. u64 new_bv = kvm_read_edx_eax(vcpu);
  3142. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3143. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  3144. skip_emulated_instruction(vcpu);
  3145. return 1;
  3146. }
  3147. static int handle_apic_access(struct kvm_vcpu *vcpu)
  3148. {
  3149. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3150. }
  3151. static int handle_task_switch(struct kvm_vcpu *vcpu)
  3152. {
  3153. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3154. unsigned long exit_qualification;
  3155. bool has_error_code = false;
  3156. u32 error_code = 0;
  3157. u16 tss_selector;
  3158. int reason, type, idt_v;
  3159. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  3160. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  3161. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3162. reason = (u32)exit_qualification >> 30;
  3163. if (reason == TASK_SWITCH_GATE && idt_v) {
  3164. switch (type) {
  3165. case INTR_TYPE_NMI_INTR:
  3166. vcpu->arch.nmi_injected = false;
  3167. vmx_set_nmi_mask(vcpu, true);
  3168. break;
  3169. case INTR_TYPE_EXT_INTR:
  3170. case INTR_TYPE_SOFT_INTR:
  3171. kvm_clear_interrupt_queue(vcpu);
  3172. break;
  3173. case INTR_TYPE_HARD_EXCEPTION:
  3174. if (vmx->idt_vectoring_info &
  3175. VECTORING_INFO_DELIVER_CODE_MASK) {
  3176. has_error_code = true;
  3177. error_code =
  3178. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3179. }
  3180. /* fall through */
  3181. case INTR_TYPE_SOFT_EXCEPTION:
  3182. kvm_clear_exception_queue(vcpu);
  3183. break;
  3184. default:
  3185. break;
  3186. }
  3187. }
  3188. tss_selector = exit_qualification;
  3189. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  3190. type != INTR_TYPE_EXT_INTR &&
  3191. type != INTR_TYPE_NMI_INTR))
  3192. skip_emulated_instruction(vcpu);
  3193. if (kvm_task_switch(vcpu, tss_selector, reason,
  3194. has_error_code, error_code) == EMULATE_FAIL) {
  3195. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3196. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3197. vcpu->run->internal.ndata = 0;
  3198. return 0;
  3199. }
  3200. /* clear all local breakpoint enable flags */
  3201. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  3202. /*
  3203. * TODO: What about debug traps on tss switch?
  3204. * Are we supposed to inject them and update dr6?
  3205. */
  3206. return 1;
  3207. }
  3208. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  3209. {
  3210. unsigned long exit_qualification;
  3211. gpa_t gpa;
  3212. int gla_validity;
  3213. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3214. if (exit_qualification & (1 << 6)) {
  3215. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  3216. return -EINVAL;
  3217. }
  3218. gla_validity = (exit_qualification >> 7) & 0x3;
  3219. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  3220. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  3221. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  3222. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  3223. vmcs_readl(GUEST_LINEAR_ADDRESS));
  3224. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  3225. (long unsigned int)exit_qualification);
  3226. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3227. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  3228. return 0;
  3229. }
  3230. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3231. trace_kvm_page_fault(gpa, exit_qualification);
  3232. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  3233. }
  3234. static u64 ept_rsvd_mask(u64 spte, int level)
  3235. {
  3236. int i;
  3237. u64 mask = 0;
  3238. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  3239. mask |= (1ULL << i);
  3240. if (level > 2)
  3241. /* bits 7:3 reserved */
  3242. mask |= 0xf8;
  3243. else if (level == 2) {
  3244. if (spte & (1ULL << 7))
  3245. /* 2MB ref, bits 20:12 reserved */
  3246. mask |= 0x1ff000;
  3247. else
  3248. /* bits 6:3 reserved */
  3249. mask |= 0x78;
  3250. }
  3251. return mask;
  3252. }
  3253. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  3254. int level)
  3255. {
  3256. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  3257. /* 010b (write-only) */
  3258. WARN_ON((spte & 0x7) == 0x2);
  3259. /* 110b (write/execute) */
  3260. WARN_ON((spte & 0x7) == 0x6);
  3261. /* 100b (execute-only) and value not supported by logical processor */
  3262. if (!cpu_has_vmx_ept_execute_only())
  3263. WARN_ON((spte & 0x7) == 0x4);
  3264. /* not 000b */
  3265. if ((spte & 0x7)) {
  3266. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  3267. if (rsvd_bits != 0) {
  3268. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  3269. __func__, rsvd_bits);
  3270. WARN_ON(1);
  3271. }
  3272. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  3273. u64 ept_mem_type = (spte & 0x38) >> 3;
  3274. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  3275. ept_mem_type == 7) {
  3276. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  3277. __func__, ept_mem_type);
  3278. WARN_ON(1);
  3279. }
  3280. }
  3281. }
  3282. }
  3283. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  3284. {
  3285. u64 sptes[4];
  3286. int nr_sptes, i;
  3287. gpa_t gpa;
  3288. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3289. printk(KERN_ERR "EPT: Misconfiguration.\n");
  3290. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  3291. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  3292. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  3293. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  3294. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3295. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  3296. return 0;
  3297. }
  3298. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  3299. {
  3300. u32 cpu_based_vm_exec_control;
  3301. /* clear pending NMI */
  3302. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3303. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  3304. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3305. ++vcpu->stat.nmi_window_exits;
  3306. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3307. return 1;
  3308. }
  3309. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  3310. {
  3311. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3312. enum emulation_result err = EMULATE_DONE;
  3313. int ret = 1;
  3314. u32 cpu_exec_ctrl;
  3315. bool intr_window_requested;
  3316. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3317. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  3318. while (!guest_state_valid(vcpu)) {
  3319. if (intr_window_requested
  3320. && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
  3321. return handle_interrupt_window(&vmx->vcpu);
  3322. err = emulate_instruction(vcpu, 0);
  3323. if (err == EMULATE_DO_MMIO) {
  3324. ret = 0;
  3325. goto out;
  3326. }
  3327. if (err != EMULATE_DONE)
  3328. return 0;
  3329. if (signal_pending(current))
  3330. goto out;
  3331. if (need_resched())
  3332. schedule();
  3333. }
  3334. vmx->emulation_required = 0;
  3335. out:
  3336. return ret;
  3337. }
  3338. /*
  3339. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  3340. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  3341. */
  3342. static int handle_pause(struct kvm_vcpu *vcpu)
  3343. {
  3344. skip_emulated_instruction(vcpu);
  3345. kvm_vcpu_on_spin(vcpu);
  3346. return 1;
  3347. }
  3348. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  3349. {
  3350. kvm_queue_exception(vcpu, UD_VECTOR);
  3351. return 1;
  3352. }
  3353. /*
  3354. * Emulate the VMXON instruction.
  3355. * Currently, we just remember that VMX is active, and do not save or even
  3356. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  3357. * do not currently need to store anything in that guest-allocated memory
  3358. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  3359. * argument is different from the VMXON pointer (which the spec says they do).
  3360. */
  3361. static int handle_vmon(struct kvm_vcpu *vcpu)
  3362. {
  3363. struct kvm_segment cs;
  3364. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3365. /* The Intel VMX Instruction Reference lists a bunch of bits that
  3366. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  3367. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  3368. * Otherwise, we should fail with #UD. We test these now:
  3369. */
  3370. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  3371. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  3372. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  3373. kvm_queue_exception(vcpu, UD_VECTOR);
  3374. return 1;
  3375. }
  3376. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3377. if (is_long_mode(vcpu) && !cs.l) {
  3378. kvm_queue_exception(vcpu, UD_VECTOR);
  3379. return 1;
  3380. }
  3381. if (vmx_get_cpl(vcpu)) {
  3382. kvm_inject_gp(vcpu, 0);
  3383. return 1;
  3384. }
  3385. vmx->nested.vmxon = true;
  3386. skip_emulated_instruction(vcpu);
  3387. return 1;
  3388. }
  3389. /*
  3390. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  3391. * for running VMX instructions (except VMXON, whose prerequisites are
  3392. * slightly different). It also specifies what exception to inject otherwise.
  3393. */
  3394. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  3395. {
  3396. struct kvm_segment cs;
  3397. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3398. if (!vmx->nested.vmxon) {
  3399. kvm_queue_exception(vcpu, UD_VECTOR);
  3400. return 0;
  3401. }
  3402. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3403. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  3404. (is_long_mode(vcpu) && !cs.l)) {
  3405. kvm_queue_exception(vcpu, UD_VECTOR);
  3406. return 0;
  3407. }
  3408. if (vmx_get_cpl(vcpu)) {
  3409. kvm_inject_gp(vcpu, 0);
  3410. return 0;
  3411. }
  3412. return 1;
  3413. }
  3414. /*
  3415. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  3416. * just stops using VMX.
  3417. */
  3418. static void free_nested(struct vcpu_vmx *vmx)
  3419. {
  3420. if (!vmx->nested.vmxon)
  3421. return;
  3422. vmx->nested.vmxon = false;
  3423. }
  3424. /* Emulate the VMXOFF instruction */
  3425. static int handle_vmoff(struct kvm_vcpu *vcpu)
  3426. {
  3427. if (!nested_vmx_check_permission(vcpu))
  3428. return 1;
  3429. free_nested(to_vmx(vcpu));
  3430. skip_emulated_instruction(vcpu);
  3431. return 1;
  3432. }
  3433. /*
  3434. * The exit handlers return 1 if the exit was handled fully and guest execution
  3435. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  3436. * to be done to userspace and return 0.
  3437. */
  3438. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  3439. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  3440. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  3441. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  3442. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  3443. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  3444. [EXIT_REASON_CR_ACCESS] = handle_cr,
  3445. [EXIT_REASON_DR_ACCESS] = handle_dr,
  3446. [EXIT_REASON_CPUID] = handle_cpuid,
  3447. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  3448. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  3449. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  3450. [EXIT_REASON_HLT] = handle_halt,
  3451. [EXIT_REASON_INVD] = handle_invd,
  3452. [EXIT_REASON_INVLPG] = handle_invlpg,
  3453. [EXIT_REASON_VMCALL] = handle_vmcall,
  3454. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  3455. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  3456. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  3457. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  3458. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  3459. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3460. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3461. [EXIT_REASON_VMOFF] = handle_vmoff,
  3462. [EXIT_REASON_VMON] = handle_vmon,
  3463. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3464. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3465. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3466. [EXIT_REASON_XSETBV] = handle_xsetbv,
  3467. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3468. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3469. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3470. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3471. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3472. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3473. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3474. };
  3475. static const int kvm_vmx_max_exit_handlers =
  3476. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3477. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  3478. {
  3479. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  3480. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  3481. }
  3482. /*
  3483. * The guest has exited. See if we can fix it or if we need userspace
  3484. * assistance.
  3485. */
  3486. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3487. {
  3488. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3489. u32 exit_reason = vmx->exit_reason;
  3490. u32 vectoring_info = vmx->idt_vectoring_info;
  3491. trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
  3492. /* If guest state is invalid, start emulating */
  3493. if (vmx->emulation_required && emulate_invalid_guest_state)
  3494. return handle_invalid_guest_state(vcpu);
  3495. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  3496. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3497. vcpu->run->fail_entry.hardware_entry_failure_reason
  3498. = exit_reason;
  3499. return 0;
  3500. }
  3501. if (unlikely(vmx->fail)) {
  3502. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3503. vcpu->run->fail_entry.hardware_entry_failure_reason
  3504. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3505. return 0;
  3506. }
  3507. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3508. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3509. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3510. exit_reason != EXIT_REASON_TASK_SWITCH))
  3511. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3512. "(0x%x) and exit reason is 0x%x\n",
  3513. __func__, vectoring_info, exit_reason);
  3514. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3515. if (vmx_interrupt_allowed(vcpu)) {
  3516. vmx->soft_vnmi_blocked = 0;
  3517. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3518. vcpu->arch.nmi_pending) {
  3519. /*
  3520. * This CPU don't support us in finding the end of an
  3521. * NMI-blocked window if the guest runs with IRQs
  3522. * disabled. So we pull the trigger after 1 s of
  3523. * futile waiting, but inform the user about this.
  3524. */
  3525. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3526. "state on VCPU %d after 1 s timeout\n",
  3527. __func__, vcpu->vcpu_id);
  3528. vmx->soft_vnmi_blocked = 0;
  3529. }
  3530. }
  3531. if (exit_reason < kvm_vmx_max_exit_handlers
  3532. && kvm_vmx_exit_handlers[exit_reason])
  3533. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3534. else {
  3535. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3536. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3537. }
  3538. return 0;
  3539. }
  3540. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3541. {
  3542. if (irr == -1 || tpr < irr) {
  3543. vmcs_write32(TPR_THRESHOLD, 0);
  3544. return;
  3545. }
  3546. vmcs_write32(TPR_THRESHOLD, irr);
  3547. }
  3548. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  3549. {
  3550. u32 exit_intr_info;
  3551. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  3552. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  3553. return;
  3554. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3555. exit_intr_info = vmx->exit_intr_info;
  3556. /* Handle machine checks before interrupts are enabled */
  3557. if (is_machine_check(exit_intr_info))
  3558. kvm_machine_check();
  3559. /* We need to handle NMIs before interrupts are enabled */
  3560. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3561. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  3562. kvm_before_handle_nmi(&vmx->vcpu);
  3563. asm("int $2");
  3564. kvm_after_handle_nmi(&vmx->vcpu);
  3565. }
  3566. }
  3567. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  3568. {
  3569. u32 exit_intr_info;
  3570. bool unblock_nmi;
  3571. u8 vector;
  3572. bool idtv_info_valid;
  3573. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3574. if (cpu_has_virtual_nmis()) {
  3575. if (vmx->nmi_known_unmasked)
  3576. return;
  3577. /*
  3578. * Can't use vmx->exit_intr_info since we're not sure what
  3579. * the exit reason is.
  3580. */
  3581. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3582. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3583. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3584. /*
  3585. * SDM 3: 27.7.1.2 (September 2008)
  3586. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3587. * a guest IRET fault.
  3588. * SDM 3: 23.2.2 (September 2008)
  3589. * Bit 12 is undefined in any of the following cases:
  3590. * If the VM exit sets the valid bit in the IDT-vectoring
  3591. * information field.
  3592. * If the VM exit is due to a double fault.
  3593. */
  3594. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3595. vector != DF_VECTOR && !idtv_info_valid)
  3596. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3597. GUEST_INTR_STATE_NMI);
  3598. else
  3599. vmx->nmi_known_unmasked =
  3600. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  3601. & GUEST_INTR_STATE_NMI);
  3602. } else if (unlikely(vmx->soft_vnmi_blocked))
  3603. vmx->vnmi_blocked_time +=
  3604. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3605. }
  3606. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  3607. u32 idt_vectoring_info,
  3608. int instr_len_field,
  3609. int error_code_field)
  3610. {
  3611. u8 vector;
  3612. int type;
  3613. bool idtv_info_valid;
  3614. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3615. vmx->vcpu.arch.nmi_injected = false;
  3616. kvm_clear_exception_queue(&vmx->vcpu);
  3617. kvm_clear_interrupt_queue(&vmx->vcpu);
  3618. if (!idtv_info_valid)
  3619. return;
  3620. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  3621. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3622. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3623. switch (type) {
  3624. case INTR_TYPE_NMI_INTR:
  3625. vmx->vcpu.arch.nmi_injected = true;
  3626. /*
  3627. * SDM 3: 27.7.1.2 (September 2008)
  3628. * Clear bit "block by NMI" before VM entry if a NMI
  3629. * delivery faulted.
  3630. */
  3631. vmx_set_nmi_mask(&vmx->vcpu, false);
  3632. break;
  3633. case INTR_TYPE_SOFT_EXCEPTION:
  3634. vmx->vcpu.arch.event_exit_inst_len =
  3635. vmcs_read32(instr_len_field);
  3636. /* fall through */
  3637. case INTR_TYPE_HARD_EXCEPTION:
  3638. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3639. u32 err = vmcs_read32(error_code_field);
  3640. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3641. } else
  3642. kvm_queue_exception(&vmx->vcpu, vector);
  3643. break;
  3644. case INTR_TYPE_SOFT_INTR:
  3645. vmx->vcpu.arch.event_exit_inst_len =
  3646. vmcs_read32(instr_len_field);
  3647. /* fall through */
  3648. case INTR_TYPE_EXT_INTR:
  3649. kvm_queue_interrupt(&vmx->vcpu, vector,
  3650. type == INTR_TYPE_SOFT_INTR);
  3651. break;
  3652. default:
  3653. break;
  3654. }
  3655. }
  3656. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3657. {
  3658. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  3659. VM_EXIT_INSTRUCTION_LEN,
  3660. IDT_VECTORING_ERROR_CODE);
  3661. }
  3662. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  3663. {
  3664. __vmx_complete_interrupts(to_vmx(vcpu),
  3665. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  3666. VM_ENTRY_INSTRUCTION_LEN,
  3667. VM_ENTRY_EXCEPTION_ERROR_CODE);
  3668. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  3669. }
  3670. #ifdef CONFIG_X86_64
  3671. #define R "r"
  3672. #define Q "q"
  3673. #else
  3674. #define R "e"
  3675. #define Q "l"
  3676. #endif
  3677. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3678. {
  3679. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3680. /* Record the guest's net vcpu time for enforced NMI injections. */
  3681. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3682. vmx->entry_time = ktime_get();
  3683. /* Don't enter VMX if guest state is invalid, let the exit handler
  3684. start emulation until we arrive back to a valid state */
  3685. if (vmx->emulation_required && emulate_invalid_guest_state)
  3686. return;
  3687. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3688. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3689. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3690. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3691. /* When single-stepping over STI and MOV SS, we must clear the
  3692. * corresponding interruptibility bits in the guest state. Otherwise
  3693. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3694. * exceptions being set, but that's not correct for the guest debugging
  3695. * case. */
  3696. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3697. vmx_set_interrupt_shadow(vcpu, 0);
  3698. vmx->__launched = vmx->loaded_vmcs->launched;
  3699. asm(
  3700. /* Store host registers */
  3701. "push %%"R"dx; push %%"R"bp;"
  3702. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  3703. "push %%"R"cx \n\t"
  3704. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3705. "je 1f \n\t"
  3706. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3707. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3708. "1: \n\t"
  3709. /* Reload cr2 if changed */
  3710. "mov %c[cr2](%0), %%"R"ax \n\t"
  3711. "mov %%cr2, %%"R"dx \n\t"
  3712. "cmp %%"R"ax, %%"R"dx \n\t"
  3713. "je 2f \n\t"
  3714. "mov %%"R"ax, %%cr2 \n\t"
  3715. "2: \n\t"
  3716. /* Check if vmlaunch of vmresume is needed */
  3717. "cmpl $0, %c[launched](%0) \n\t"
  3718. /* Load guest registers. Don't clobber flags. */
  3719. "mov %c[rax](%0), %%"R"ax \n\t"
  3720. "mov %c[rbx](%0), %%"R"bx \n\t"
  3721. "mov %c[rdx](%0), %%"R"dx \n\t"
  3722. "mov %c[rsi](%0), %%"R"si \n\t"
  3723. "mov %c[rdi](%0), %%"R"di \n\t"
  3724. "mov %c[rbp](%0), %%"R"bp \n\t"
  3725. #ifdef CONFIG_X86_64
  3726. "mov %c[r8](%0), %%r8 \n\t"
  3727. "mov %c[r9](%0), %%r9 \n\t"
  3728. "mov %c[r10](%0), %%r10 \n\t"
  3729. "mov %c[r11](%0), %%r11 \n\t"
  3730. "mov %c[r12](%0), %%r12 \n\t"
  3731. "mov %c[r13](%0), %%r13 \n\t"
  3732. "mov %c[r14](%0), %%r14 \n\t"
  3733. "mov %c[r15](%0), %%r15 \n\t"
  3734. #endif
  3735. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3736. /* Enter guest mode */
  3737. "jne .Llaunched \n\t"
  3738. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3739. "jmp .Lkvm_vmx_return \n\t"
  3740. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3741. ".Lkvm_vmx_return: "
  3742. /* Save guest registers, load host registers, keep flags */
  3743. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  3744. "pop %0 \n\t"
  3745. "mov %%"R"ax, %c[rax](%0) \n\t"
  3746. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3747. "pop"Q" %c[rcx](%0) \n\t"
  3748. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3749. "mov %%"R"si, %c[rsi](%0) \n\t"
  3750. "mov %%"R"di, %c[rdi](%0) \n\t"
  3751. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3752. #ifdef CONFIG_X86_64
  3753. "mov %%r8, %c[r8](%0) \n\t"
  3754. "mov %%r9, %c[r9](%0) \n\t"
  3755. "mov %%r10, %c[r10](%0) \n\t"
  3756. "mov %%r11, %c[r11](%0) \n\t"
  3757. "mov %%r12, %c[r12](%0) \n\t"
  3758. "mov %%r13, %c[r13](%0) \n\t"
  3759. "mov %%r14, %c[r14](%0) \n\t"
  3760. "mov %%r15, %c[r15](%0) \n\t"
  3761. #endif
  3762. "mov %%cr2, %%"R"ax \n\t"
  3763. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3764. "pop %%"R"bp; pop %%"R"dx \n\t"
  3765. "setbe %c[fail](%0) \n\t"
  3766. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3767. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  3768. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3769. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3770. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3771. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3772. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3773. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3774. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3775. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3776. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3777. #ifdef CONFIG_X86_64
  3778. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3779. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3780. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3781. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3782. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3783. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3784. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3785. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3786. #endif
  3787. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  3788. [wordsize]"i"(sizeof(ulong))
  3789. : "cc", "memory"
  3790. , R"ax", R"bx", R"di", R"si"
  3791. #ifdef CONFIG_X86_64
  3792. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3793. #endif
  3794. );
  3795. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3796. | (1 << VCPU_EXREG_RFLAGS)
  3797. | (1 << VCPU_EXREG_CPL)
  3798. | (1 << VCPU_EXREG_PDPTR)
  3799. | (1 << VCPU_EXREG_SEGMENTS)
  3800. | (1 << VCPU_EXREG_CR3));
  3801. vcpu->arch.regs_dirty = 0;
  3802. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3803. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3804. vmx->loaded_vmcs->launched = 1;
  3805. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3806. vmx_complete_atomic_exit(vmx);
  3807. vmx_recover_nmi_blocking(vmx);
  3808. vmx_complete_interrupts(vmx);
  3809. }
  3810. #undef R
  3811. #undef Q
  3812. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3813. {
  3814. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3815. free_vpid(vmx);
  3816. free_nested(vmx);
  3817. free_loaded_vmcs(vmx->loaded_vmcs);
  3818. kfree(vmx->guest_msrs);
  3819. kvm_vcpu_uninit(vcpu);
  3820. kmem_cache_free(kvm_vcpu_cache, vmx);
  3821. }
  3822. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3823. {
  3824. int err;
  3825. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3826. int cpu;
  3827. if (!vmx)
  3828. return ERR_PTR(-ENOMEM);
  3829. allocate_vpid(vmx);
  3830. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3831. if (err)
  3832. goto free_vcpu;
  3833. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3834. err = -ENOMEM;
  3835. if (!vmx->guest_msrs) {
  3836. goto uninit_vcpu;
  3837. }
  3838. vmx->loaded_vmcs = &vmx->vmcs01;
  3839. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  3840. if (!vmx->loaded_vmcs->vmcs)
  3841. goto free_msrs;
  3842. if (!vmm_exclusive)
  3843. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  3844. loaded_vmcs_init(vmx->loaded_vmcs);
  3845. if (!vmm_exclusive)
  3846. kvm_cpu_vmxoff();
  3847. cpu = get_cpu();
  3848. vmx_vcpu_load(&vmx->vcpu, cpu);
  3849. vmx->vcpu.cpu = cpu;
  3850. err = vmx_vcpu_setup(vmx);
  3851. vmx_vcpu_put(&vmx->vcpu);
  3852. put_cpu();
  3853. if (err)
  3854. goto free_vmcs;
  3855. if (vm_need_virtualize_apic_accesses(kvm))
  3856. err = alloc_apic_access_page(kvm);
  3857. if (err)
  3858. goto free_vmcs;
  3859. if (enable_ept) {
  3860. if (!kvm->arch.ept_identity_map_addr)
  3861. kvm->arch.ept_identity_map_addr =
  3862. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3863. err = -ENOMEM;
  3864. if (alloc_identity_pagetable(kvm) != 0)
  3865. goto free_vmcs;
  3866. if (!init_rmode_identity_map(kvm))
  3867. goto free_vmcs;
  3868. }
  3869. return &vmx->vcpu;
  3870. free_vmcs:
  3871. free_vmcs(vmx->loaded_vmcs->vmcs);
  3872. free_msrs:
  3873. kfree(vmx->guest_msrs);
  3874. uninit_vcpu:
  3875. kvm_vcpu_uninit(&vmx->vcpu);
  3876. free_vcpu:
  3877. free_vpid(vmx);
  3878. kmem_cache_free(kvm_vcpu_cache, vmx);
  3879. return ERR_PTR(err);
  3880. }
  3881. static void __init vmx_check_processor_compat(void *rtn)
  3882. {
  3883. struct vmcs_config vmcs_conf;
  3884. *(int *)rtn = 0;
  3885. if (setup_vmcs_config(&vmcs_conf) < 0)
  3886. *(int *)rtn = -EIO;
  3887. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3888. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3889. smp_processor_id());
  3890. *(int *)rtn = -EIO;
  3891. }
  3892. }
  3893. static int get_ept_level(void)
  3894. {
  3895. return VMX_EPT_DEFAULT_GAW + 1;
  3896. }
  3897. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3898. {
  3899. u64 ret;
  3900. /* For VT-d and EPT combination
  3901. * 1. MMIO: always map as UC
  3902. * 2. EPT with VT-d:
  3903. * a. VT-d without snooping control feature: can't guarantee the
  3904. * result, try to trust guest.
  3905. * b. VT-d with snooping control feature: snooping control feature of
  3906. * VT-d engine can guarantee the cache correctness. Just set it
  3907. * to WB to keep consistent with host. So the same as item 3.
  3908. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  3909. * consistent with host MTRR
  3910. */
  3911. if (is_mmio)
  3912. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3913. else if (vcpu->kvm->arch.iommu_domain &&
  3914. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3915. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3916. VMX_EPT_MT_EPTE_SHIFT;
  3917. else
  3918. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3919. | VMX_EPT_IPAT_BIT;
  3920. return ret;
  3921. }
  3922. #define _ER(x) { EXIT_REASON_##x, #x }
  3923. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3924. _ER(EXCEPTION_NMI),
  3925. _ER(EXTERNAL_INTERRUPT),
  3926. _ER(TRIPLE_FAULT),
  3927. _ER(PENDING_INTERRUPT),
  3928. _ER(NMI_WINDOW),
  3929. _ER(TASK_SWITCH),
  3930. _ER(CPUID),
  3931. _ER(HLT),
  3932. _ER(INVLPG),
  3933. _ER(RDPMC),
  3934. _ER(RDTSC),
  3935. _ER(VMCALL),
  3936. _ER(VMCLEAR),
  3937. _ER(VMLAUNCH),
  3938. _ER(VMPTRLD),
  3939. _ER(VMPTRST),
  3940. _ER(VMREAD),
  3941. _ER(VMRESUME),
  3942. _ER(VMWRITE),
  3943. _ER(VMOFF),
  3944. _ER(VMON),
  3945. _ER(CR_ACCESS),
  3946. _ER(DR_ACCESS),
  3947. _ER(IO_INSTRUCTION),
  3948. _ER(MSR_READ),
  3949. _ER(MSR_WRITE),
  3950. _ER(MWAIT_INSTRUCTION),
  3951. _ER(MONITOR_INSTRUCTION),
  3952. _ER(PAUSE_INSTRUCTION),
  3953. _ER(MCE_DURING_VMENTRY),
  3954. _ER(TPR_BELOW_THRESHOLD),
  3955. _ER(APIC_ACCESS),
  3956. _ER(EPT_VIOLATION),
  3957. _ER(EPT_MISCONFIG),
  3958. _ER(WBINVD),
  3959. { -1, NULL }
  3960. };
  3961. #undef _ER
  3962. static int vmx_get_lpage_level(void)
  3963. {
  3964. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3965. return PT_DIRECTORY_LEVEL;
  3966. else
  3967. /* For shadow and EPT supported 1GB page */
  3968. return PT_PDPE_LEVEL;
  3969. }
  3970. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3971. {
  3972. struct kvm_cpuid_entry2 *best;
  3973. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3974. u32 exec_control;
  3975. vmx->rdtscp_enabled = false;
  3976. if (vmx_rdtscp_supported()) {
  3977. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3978. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3979. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3980. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3981. vmx->rdtscp_enabled = true;
  3982. else {
  3983. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3984. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3985. exec_control);
  3986. }
  3987. }
  3988. }
  3989. }
  3990. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  3991. {
  3992. }
  3993. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  3994. struct x86_instruction_info *info,
  3995. enum x86_intercept_stage stage)
  3996. {
  3997. return X86EMUL_CONTINUE;
  3998. }
  3999. static struct kvm_x86_ops vmx_x86_ops = {
  4000. .cpu_has_kvm_support = cpu_has_kvm_support,
  4001. .disabled_by_bios = vmx_disabled_by_bios,
  4002. .hardware_setup = hardware_setup,
  4003. .hardware_unsetup = hardware_unsetup,
  4004. .check_processor_compatibility = vmx_check_processor_compat,
  4005. .hardware_enable = hardware_enable,
  4006. .hardware_disable = hardware_disable,
  4007. .cpu_has_accelerated_tpr = report_flexpriority,
  4008. .vcpu_create = vmx_create_vcpu,
  4009. .vcpu_free = vmx_free_vcpu,
  4010. .vcpu_reset = vmx_vcpu_reset,
  4011. .prepare_guest_switch = vmx_save_host_state,
  4012. .vcpu_load = vmx_vcpu_load,
  4013. .vcpu_put = vmx_vcpu_put,
  4014. .set_guest_debug = set_guest_debug,
  4015. .get_msr = vmx_get_msr,
  4016. .set_msr = vmx_set_msr,
  4017. .get_segment_base = vmx_get_segment_base,
  4018. .get_segment = vmx_get_segment,
  4019. .set_segment = vmx_set_segment,
  4020. .get_cpl = vmx_get_cpl,
  4021. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  4022. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  4023. .decache_cr3 = vmx_decache_cr3,
  4024. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  4025. .set_cr0 = vmx_set_cr0,
  4026. .set_cr3 = vmx_set_cr3,
  4027. .set_cr4 = vmx_set_cr4,
  4028. .set_efer = vmx_set_efer,
  4029. .get_idt = vmx_get_idt,
  4030. .set_idt = vmx_set_idt,
  4031. .get_gdt = vmx_get_gdt,
  4032. .set_gdt = vmx_set_gdt,
  4033. .set_dr7 = vmx_set_dr7,
  4034. .cache_reg = vmx_cache_reg,
  4035. .get_rflags = vmx_get_rflags,
  4036. .set_rflags = vmx_set_rflags,
  4037. .fpu_activate = vmx_fpu_activate,
  4038. .fpu_deactivate = vmx_fpu_deactivate,
  4039. .tlb_flush = vmx_flush_tlb,
  4040. .run = vmx_vcpu_run,
  4041. .handle_exit = vmx_handle_exit,
  4042. .skip_emulated_instruction = skip_emulated_instruction,
  4043. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  4044. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  4045. .patch_hypercall = vmx_patch_hypercall,
  4046. .set_irq = vmx_inject_irq,
  4047. .set_nmi = vmx_inject_nmi,
  4048. .queue_exception = vmx_queue_exception,
  4049. .cancel_injection = vmx_cancel_injection,
  4050. .interrupt_allowed = vmx_interrupt_allowed,
  4051. .nmi_allowed = vmx_nmi_allowed,
  4052. .get_nmi_mask = vmx_get_nmi_mask,
  4053. .set_nmi_mask = vmx_set_nmi_mask,
  4054. .enable_nmi_window = enable_nmi_window,
  4055. .enable_irq_window = enable_irq_window,
  4056. .update_cr8_intercept = update_cr8_intercept,
  4057. .set_tss_addr = vmx_set_tss_addr,
  4058. .get_tdp_level = get_ept_level,
  4059. .get_mt_mask = vmx_get_mt_mask,
  4060. .get_exit_info = vmx_get_exit_info,
  4061. .exit_reasons_str = vmx_exit_reasons_str,
  4062. .get_lpage_level = vmx_get_lpage_level,
  4063. .cpuid_update = vmx_cpuid_update,
  4064. .rdtscp_supported = vmx_rdtscp_supported,
  4065. .set_supported_cpuid = vmx_set_supported_cpuid,
  4066. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  4067. .set_tsc_khz = vmx_set_tsc_khz,
  4068. .write_tsc_offset = vmx_write_tsc_offset,
  4069. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  4070. .compute_tsc_offset = vmx_compute_tsc_offset,
  4071. .set_tdp_cr3 = vmx_set_cr3,
  4072. .check_intercept = vmx_check_intercept,
  4073. };
  4074. static int __init vmx_init(void)
  4075. {
  4076. int r, i;
  4077. rdmsrl_safe(MSR_EFER, &host_efer);
  4078. for (i = 0; i < NR_VMX_MSR; ++i)
  4079. kvm_define_shared_msr(i, vmx_msr_index[i]);
  4080. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  4081. if (!vmx_io_bitmap_a)
  4082. return -ENOMEM;
  4083. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  4084. if (!vmx_io_bitmap_b) {
  4085. r = -ENOMEM;
  4086. goto out;
  4087. }
  4088. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  4089. if (!vmx_msr_bitmap_legacy) {
  4090. r = -ENOMEM;
  4091. goto out1;
  4092. }
  4093. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  4094. if (!vmx_msr_bitmap_longmode) {
  4095. r = -ENOMEM;
  4096. goto out2;
  4097. }
  4098. /*
  4099. * Allow direct access to the PC debug port (it is often used for I/O
  4100. * delays, but the vmexits simply slow things down).
  4101. */
  4102. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  4103. clear_bit(0x80, vmx_io_bitmap_a);
  4104. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  4105. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  4106. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  4107. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  4108. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  4109. __alignof__(struct vcpu_vmx), THIS_MODULE);
  4110. if (r)
  4111. goto out3;
  4112. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  4113. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  4114. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  4115. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  4116. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  4117. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  4118. if (enable_ept) {
  4119. bypass_guest_pf = 0;
  4120. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  4121. VMX_EPT_EXECUTABLE_MASK);
  4122. kvm_enable_tdp();
  4123. } else
  4124. kvm_disable_tdp();
  4125. if (bypass_guest_pf)
  4126. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  4127. return 0;
  4128. out3:
  4129. free_page((unsigned long)vmx_msr_bitmap_longmode);
  4130. out2:
  4131. free_page((unsigned long)vmx_msr_bitmap_legacy);
  4132. out1:
  4133. free_page((unsigned long)vmx_io_bitmap_b);
  4134. out:
  4135. free_page((unsigned long)vmx_io_bitmap_a);
  4136. return r;
  4137. }
  4138. static void __exit vmx_exit(void)
  4139. {
  4140. free_page((unsigned long)vmx_msr_bitmap_legacy);
  4141. free_page((unsigned long)vmx_msr_bitmap_longmode);
  4142. free_page((unsigned long)vmx_io_bitmap_b);
  4143. free_page((unsigned long)vmx_io_bitmap_a);
  4144. kvm_exit();
  4145. }
  4146. module_init(vmx_init)
  4147. module_exit(vmx_exit)