perf_counter.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218
  1. /*
  2. * Performance counter x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. *
  10. * For licencing details see kernel-base/COPYING
  11. */
  12. #include <linux/perf_counter.h>
  13. #include <linux/capability.h>
  14. #include <linux/notifier.h>
  15. #include <linux/hardirq.h>
  16. #include <linux/kprobes.h>
  17. #include <linux/module.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/sched.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/apic.h>
  22. #include <asm/stacktrace.h>
  23. #include <asm/nmi.h>
  24. static u64 perf_counter_mask __read_mostly;
  25. struct cpu_hw_counters {
  26. struct perf_counter *counters[X86_PMC_IDX_MAX];
  27. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  28. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  29. unsigned long interrupts;
  30. u64 throttle_ctrl;
  31. int enabled;
  32. };
  33. /*
  34. * struct x86_pmu - generic x86 pmu
  35. */
  36. struct x86_pmu {
  37. const char *name;
  38. int version;
  39. int (*handle_irq)(struct pt_regs *, int);
  40. u64 (*save_disable_all)(void);
  41. void (*restore_all)(u64);
  42. void (*enable)(struct hw_perf_counter *, int);
  43. void (*disable)(struct hw_perf_counter *, int);
  44. unsigned eventsel;
  45. unsigned perfctr;
  46. u64 (*event_map)(int);
  47. u64 (*raw_event)(u64);
  48. int max_events;
  49. int num_counters;
  50. int num_counters_fixed;
  51. int counter_bits;
  52. u64 counter_mask;
  53. u64 max_period;
  54. };
  55. static struct x86_pmu x86_pmu __read_mostly;
  56. static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
  57. .enabled = 1,
  58. };
  59. /*
  60. * Intel PerfMon v3. Used on Core2 and later.
  61. */
  62. static const u64 intel_perfmon_event_map[] =
  63. {
  64. [PERF_COUNT_CPU_CYCLES] = 0x003c,
  65. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  66. [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e,
  67. [PERF_COUNT_CACHE_MISSES] = 0x412e,
  68. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  69. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  70. [PERF_COUNT_BUS_CYCLES] = 0x013c,
  71. };
  72. static u64 intel_pmu_event_map(int event)
  73. {
  74. return intel_perfmon_event_map[event];
  75. }
  76. static u64 intel_pmu_raw_event(u64 event)
  77. {
  78. #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
  79. #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
  80. #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
  81. #define CORE_EVNTSEL_MASK \
  82. (CORE_EVNTSEL_EVENT_MASK | \
  83. CORE_EVNTSEL_UNIT_MASK | \
  84. CORE_EVNTSEL_COUNTER_MASK)
  85. return event & CORE_EVNTSEL_MASK;
  86. }
  87. /*
  88. * AMD Performance Monitor K7 and later.
  89. */
  90. static const u64 amd_perfmon_event_map[] =
  91. {
  92. [PERF_COUNT_CPU_CYCLES] = 0x0076,
  93. [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
  94. [PERF_COUNT_CACHE_REFERENCES] = 0x0080,
  95. [PERF_COUNT_CACHE_MISSES] = 0x0081,
  96. [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
  97. [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
  98. };
  99. static u64 amd_pmu_event_map(int event)
  100. {
  101. return amd_perfmon_event_map[event];
  102. }
  103. static u64 amd_pmu_raw_event(u64 event)
  104. {
  105. #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
  106. #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
  107. #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
  108. #define K7_EVNTSEL_MASK \
  109. (K7_EVNTSEL_EVENT_MASK | \
  110. K7_EVNTSEL_UNIT_MASK | \
  111. K7_EVNTSEL_COUNTER_MASK)
  112. return event & K7_EVNTSEL_MASK;
  113. }
  114. /*
  115. * Propagate counter elapsed time into the generic counter.
  116. * Can only be executed on the CPU where the counter is active.
  117. * Returns the delta events processed.
  118. */
  119. static u64
  120. x86_perf_counter_update(struct perf_counter *counter,
  121. struct hw_perf_counter *hwc, int idx)
  122. {
  123. int shift = 64 - x86_pmu.counter_bits;
  124. u64 prev_raw_count, new_raw_count;
  125. s64 delta;
  126. /*
  127. * Careful: an NMI might modify the previous counter value.
  128. *
  129. * Our tactic to handle this is to first atomically read and
  130. * exchange a new raw count - then add that new-prev delta
  131. * count to the generic counter atomically:
  132. */
  133. again:
  134. prev_raw_count = atomic64_read(&hwc->prev_count);
  135. rdmsrl(hwc->counter_base + idx, new_raw_count);
  136. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  137. new_raw_count) != prev_raw_count)
  138. goto again;
  139. /*
  140. * Now we have the new raw value and have updated the prev
  141. * timestamp already. We can now calculate the elapsed delta
  142. * (counter-)time and add that to the generic counter.
  143. *
  144. * Careful, not all hw sign-extends above the physical width
  145. * of the count.
  146. */
  147. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  148. delta >>= shift;
  149. atomic64_add(delta, &counter->count);
  150. atomic64_sub(delta, &hwc->period_left);
  151. return new_raw_count;
  152. }
  153. static atomic_t active_counters;
  154. static DEFINE_MUTEX(pmc_reserve_mutex);
  155. static bool reserve_pmc_hardware(void)
  156. {
  157. int i;
  158. if (nmi_watchdog == NMI_LOCAL_APIC)
  159. disable_lapic_nmi_watchdog();
  160. for (i = 0; i < x86_pmu.num_counters; i++) {
  161. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  162. goto perfctr_fail;
  163. }
  164. for (i = 0; i < x86_pmu.num_counters; i++) {
  165. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  166. goto eventsel_fail;
  167. }
  168. return true;
  169. eventsel_fail:
  170. for (i--; i >= 0; i--)
  171. release_evntsel_nmi(x86_pmu.eventsel + i);
  172. i = x86_pmu.num_counters;
  173. perfctr_fail:
  174. for (i--; i >= 0; i--)
  175. release_perfctr_nmi(x86_pmu.perfctr + i);
  176. if (nmi_watchdog == NMI_LOCAL_APIC)
  177. enable_lapic_nmi_watchdog();
  178. return false;
  179. }
  180. static void release_pmc_hardware(void)
  181. {
  182. int i;
  183. for (i = 0; i < x86_pmu.num_counters; i++) {
  184. release_perfctr_nmi(x86_pmu.perfctr + i);
  185. release_evntsel_nmi(x86_pmu.eventsel + i);
  186. }
  187. if (nmi_watchdog == NMI_LOCAL_APIC)
  188. enable_lapic_nmi_watchdog();
  189. }
  190. static void hw_perf_counter_destroy(struct perf_counter *counter)
  191. {
  192. if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
  193. release_pmc_hardware();
  194. mutex_unlock(&pmc_reserve_mutex);
  195. }
  196. }
  197. static inline int x86_pmu_initialized(void)
  198. {
  199. return x86_pmu.handle_irq != NULL;
  200. }
  201. /*
  202. * Setup the hardware configuration for a given hw_event_type
  203. */
  204. static int __hw_perf_counter_init(struct perf_counter *counter)
  205. {
  206. struct perf_counter_hw_event *hw_event = &counter->hw_event;
  207. struct hw_perf_counter *hwc = &counter->hw;
  208. int err;
  209. if (!x86_pmu_initialized())
  210. return -ENODEV;
  211. err = 0;
  212. if (!atomic_inc_not_zero(&active_counters)) {
  213. mutex_lock(&pmc_reserve_mutex);
  214. if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
  215. err = -EBUSY;
  216. else
  217. atomic_inc(&active_counters);
  218. mutex_unlock(&pmc_reserve_mutex);
  219. }
  220. if (err)
  221. return err;
  222. /*
  223. * Generate PMC IRQs:
  224. * (keep 'enabled' bit clear for now)
  225. */
  226. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  227. /*
  228. * Count user and OS events unless requested not to.
  229. */
  230. if (!hw_event->exclude_user)
  231. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  232. if (!hw_event->exclude_kernel)
  233. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  234. /*
  235. * If privileged enough, allow NMI events:
  236. */
  237. hwc->nmi = 0;
  238. if (capable(CAP_SYS_ADMIN) && hw_event->nmi)
  239. hwc->nmi = 1;
  240. hwc->irq_period = hw_event->irq_period;
  241. if ((s64)hwc->irq_period <= 0 || hwc->irq_period > x86_pmu.max_period)
  242. hwc->irq_period = x86_pmu.max_period;
  243. atomic64_set(&hwc->period_left, hwc->irq_period);
  244. /*
  245. * Raw event type provide the config in the event structure
  246. */
  247. if (perf_event_raw(hw_event)) {
  248. hwc->config |= x86_pmu.raw_event(perf_event_config(hw_event));
  249. } else {
  250. if (perf_event_id(hw_event) >= x86_pmu.max_events)
  251. return -EINVAL;
  252. /*
  253. * The generic map:
  254. */
  255. hwc->config |= x86_pmu.event_map(perf_event_id(hw_event));
  256. }
  257. counter->destroy = hw_perf_counter_destroy;
  258. return 0;
  259. }
  260. static u64 intel_pmu_save_disable_all(void)
  261. {
  262. u64 ctrl;
  263. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  264. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  265. return ctrl;
  266. }
  267. static u64 amd_pmu_save_disable_all(void)
  268. {
  269. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  270. int enabled, idx;
  271. enabled = cpuc->enabled;
  272. cpuc->enabled = 0;
  273. /*
  274. * ensure we write the disable before we start disabling the
  275. * counters proper, so that amd_pmu_enable_counter() does the
  276. * right thing.
  277. */
  278. barrier();
  279. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  280. u64 val;
  281. if (!test_bit(idx, cpuc->active_mask))
  282. continue;
  283. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  284. if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
  285. continue;
  286. val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
  287. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  288. }
  289. return enabled;
  290. }
  291. u64 hw_perf_save_disable(void)
  292. {
  293. if (!x86_pmu_initialized())
  294. return 0;
  295. return x86_pmu.save_disable_all();
  296. }
  297. /*
  298. * Exported because of ACPI idle
  299. */
  300. EXPORT_SYMBOL_GPL(hw_perf_save_disable);
  301. static void intel_pmu_restore_all(u64 ctrl)
  302. {
  303. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  304. }
  305. static void amd_pmu_restore_all(u64 ctrl)
  306. {
  307. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  308. int idx;
  309. cpuc->enabled = ctrl;
  310. barrier();
  311. if (!ctrl)
  312. return;
  313. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  314. u64 val;
  315. if (!test_bit(idx, cpuc->active_mask))
  316. continue;
  317. rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
  318. if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
  319. continue;
  320. val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
  321. wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
  322. }
  323. }
  324. void hw_perf_restore(u64 ctrl)
  325. {
  326. if (!x86_pmu_initialized())
  327. return;
  328. x86_pmu.restore_all(ctrl);
  329. }
  330. /*
  331. * Exported because of ACPI idle
  332. */
  333. EXPORT_SYMBOL_GPL(hw_perf_restore);
  334. static inline u64 intel_pmu_get_status(void)
  335. {
  336. u64 status;
  337. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  338. return status;
  339. }
  340. static inline void intel_pmu_ack_status(u64 ack)
  341. {
  342. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  343. }
  344. static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  345. {
  346. int err;
  347. err = checking_wrmsrl(hwc->config_base + idx,
  348. hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
  349. }
  350. static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  351. {
  352. int err;
  353. err = checking_wrmsrl(hwc->config_base + idx,
  354. hwc->config);
  355. }
  356. static inline void
  357. intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
  358. {
  359. int idx = __idx - X86_PMC_IDX_FIXED;
  360. u64 ctrl_val, mask;
  361. int err;
  362. mask = 0xfULL << (idx * 4);
  363. rdmsrl(hwc->config_base, ctrl_val);
  364. ctrl_val &= ~mask;
  365. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  366. }
  367. static inline void
  368. intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  369. {
  370. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  371. intel_pmu_disable_fixed(hwc, idx);
  372. return;
  373. }
  374. x86_pmu_disable_counter(hwc, idx);
  375. }
  376. static inline void
  377. amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
  378. {
  379. x86_pmu_disable_counter(hwc, idx);
  380. }
  381. static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
  382. /*
  383. * Set the next IRQ period, based on the hwc->period_left value.
  384. * To be called with the counter disabled in hw:
  385. */
  386. static void
  387. x86_perf_counter_set_period(struct perf_counter *counter,
  388. struct hw_perf_counter *hwc, int idx)
  389. {
  390. s64 left = atomic64_read(&hwc->period_left);
  391. s64 period = hwc->irq_period;
  392. int err;
  393. /*
  394. * If we are way outside a reasoable range then just skip forward:
  395. */
  396. if (unlikely(left <= -period)) {
  397. left = period;
  398. atomic64_set(&hwc->period_left, left);
  399. }
  400. if (unlikely(left <= 0)) {
  401. left += period;
  402. atomic64_set(&hwc->period_left, left);
  403. }
  404. per_cpu(prev_left[idx], smp_processor_id()) = left;
  405. /*
  406. * The hw counter starts counting from this counter offset,
  407. * mark it to be able to extra future deltas:
  408. */
  409. atomic64_set(&hwc->prev_count, (u64)-left);
  410. err = checking_wrmsrl(hwc->counter_base + idx,
  411. (u64)(-left) & x86_pmu.counter_mask);
  412. }
  413. static inline void
  414. intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
  415. {
  416. int idx = __idx - X86_PMC_IDX_FIXED;
  417. u64 ctrl_val, bits, mask;
  418. int err;
  419. /*
  420. * Enable IRQ generation (0x8),
  421. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  422. * if requested:
  423. */
  424. bits = 0x8ULL;
  425. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  426. bits |= 0x2;
  427. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  428. bits |= 0x1;
  429. bits <<= (idx * 4);
  430. mask = 0xfULL << (idx * 4);
  431. rdmsrl(hwc->config_base, ctrl_val);
  432. ctrl_val &= ~mask;
  433. ctrl_val |= bits;
  434. err = checking_wrmsrl(hwc->config_base, ctrl_val);
  435. }
  436. static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  437. {
  438. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  439. intel_pmu_enable_fixed(hwc, idx);
  440. return;
  441. }
  442. x86_pmu_enable_counter(hwc, idx);
  443. }
  444. static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
  445. {
  446. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  447. if (cpuc->enabled)
  448. x86_pmu_enable_counter(hwc, idx);
  449. else
  450. x86_pmu_disable_counter(hwc, idx);
  451. }
  452. static int
  453. fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
  454. {
  455. unsigned int event;
  456. if (!x86_pmu.num_counters_fixed)
  457. return -1;
  458. if (unlikely(hwc->nmi))
  459. return -1;
  460. event = hwc->config & ARCH_PERFMON_EVENT_MASK;
  461. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_INSTRUCTIONS)))
  462. return X86_PMC_IDX_FIXED_INSTRUCTIONS;
  463. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_CPU_CYCLES)))
  464. return X86_PMC_IDX_FIXED_CPU_CYCLES;
  465. if (unlikely(event == x86_pmu.event_map(PERF_COUNT_BUS_CYCLES)))
  466. return X86_PMC_IDX_FIXED_BUS_CYCLES;
  467. return -1;
  468. }
  469. /*
  470. * Find a PMC slot for the freshly enabled / scheduled in counter:
  471. */
  472. static int x86_pmu_enable(struct perf_counter *counter)
  473. {
  474. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  475. struct hw_perf_counter *hwc = &counter->hw;
  476. int idx;
  477. idx = fixed_mode_idx(counter, hwc);
  478. if (idx >= 0) {
  479. /*
  480. * Try to get the fixed counter, if that is already taken
  481. * then try to get a generic counter:
  482. */
  483. if (test_and_set_bit(idx, cpuc->used_mask))
  484. goto try_generic;
  485. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  486. /*
  487. * We set it so that counter_base + idx in wrmsr/rdmsr maps to
  488. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  489. */
  490. hwc->counter_base =
  491. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  492. hwc->idx = idx;
  493. } else {
  494. idx = hwc->idx;
  495. /* Try to get the previous generic counter again */
  496. if (test_and_set_bit(idx, cpuc->used_mask)) {
  497. try_generic:
  498. idx = find_first_zero_bit(cpuc->used_mask,
  499. x86_pmu.num_counters);
  500. if (idx == x86_pmu.num_counters)
  501. return -EAGAIN;
  502. set_bit(idx, cpuc->used_mask);
  503. hwc->idx = idx;
  504. }
  505. hwc->config_base = x86_pmu.eventsel;
  506. hwc->counter_base = x86_pmu.perfctr;
  507. }
  508. perf_counters_lapic_init(hwc->nmi);
  509. x86_pmu.disable(hwc, idx);
  510. cpuc->counters[idx] = counter;
  511. set_bit(idx, cpuc->active_mask);
  512. x86_perf_counter_set_period(counter, hwc, idx);
  513. x86_pmu.enable(hwc, idx);
  514. return 0;
  515. }
  516. void perf_counter_print_debug(void)
  517. {
  518. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  519. struct cpu_hw_counters *cpuc;
  520. unsigned long flags;
  521. int cpu, idx;
  522. if (!x86_pmu.num_counters)
  523. return;
  524. local_irq_save(flags);
  525. cpu = smp_processor_id();
  526. cpuc = &per_cpu(cpu_hw_counters, cpu);
  527. if (x86_pmu.version >= 2) {
  528. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  529. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  530. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  531. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  532. pr_info("\n");
  533. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  534. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  535. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  536. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  537. }
  538. pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
  539. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  540. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  541. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  542. prev_left = per_cpu(prev_left[idx], cpu);
  543. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  544. cpu, idx, pmc_ctrl);
  545. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  546. cpu, idx, pmc_count);
  547. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  548. cpu, idx, prev_left);
  549. }
  550. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  551. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  552. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  553. cpu, idx, pmc_count);
  554. }
  555. local_irq_restore(flags);
  556. }
  557. static void x86_pmu_disable(struct perf_counter *counter)
  558. {
  559. struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
  560. struct hw_perf_counter *hwc = &counter->hw;
  561. int idx = hwc->idx;
  562. /*
  563. * Must be done before we disable, otherwise the nmi handler
  564. * could reenable again:
  565. */
  566. clear_bit(idx, cpuc->active_mask);
  567. x86_pmu.disable(hwc, idx);
  568. /*
  569. * Make sure the cleared pointer becomes visible before we
  570. * (potentially) free the counter:
  571. */
  572. barrier();
  573. /*
  574. * Drain the remaining delta count out of a counter
  575. * that we are disabling:
  576. */
  577. x86_perf_counter_update(counter, hwc, idx);
  578. cpuc->counters[idx] = NULL;
  579. clear_bit(idx, cpuc->used_mask);
  580. }
  581. /*
  582. * Save and restart an expired counter. Called by NMI contexts,
  583. * so it has to be careful about preempting normal counter ops:
  584. */
  585. static void intel_pmu_save_and_restart(struct perf_counter *counter)
  586. {
  587. struct hw_perf_counter *hwc = &counter->hw;
  588. int idx = hwc->idx;
  589. x86_perf_counter_update(counter, hwc, idx);
  590. x86_perf_counter_set_period(counter, hwc, idx);
  591. if (counter->state == PERF_COUNTER_STATE_ACTIVE)
  592. intel_pmu_enable_counter(hwc, idx);
  593. }
  594. /*
  595. * Maximum interrupt frequency of 100KHz per CPU
  596. */
  597. #define PERFMON_MAX_INTERRUPTS (100000/HZ)
  598. /*
  599. * This handler is triggered by the local APIC, so the APIC IRQ handling
  600. * rules apply:
  601. */
  602. static int intel_pmu_handle_irq(struct pt_regs *regs, int nmi)
  603. {
  604. int bit, cpu = smp_processor_id();
  605. u64 ack, status;
  606. struct cpu_hw_counters *cpuc = &per_cpu(cpu_hw_counters, cpu);
  607. int ret = 0;
  608. cpuc->throttle_ctrl = intel_pmu_save_disable_all();
  609. status = intel_pmu_get_status();
  610. if (!status)
  611. goto out;
  612. ret = 1;
  613. again:
  614. inc_irq_stat(apic_perf_irqs);
  615. ack = status;
  616. for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  617. struct perf_counter *counter = cpuc->counters[bit];
  618. clear_bit(bit, (unsigned long *) &status);
  619. if (!test_bit(bit, cpuc->active_mask))
  620. continue;
  621. intel_pmu_save_and_restart(counter);
  622. if (perf_counter_overflow(counter, nmi, regs, 0))
  623. intel_pmu_disable_counter(&counter->hw, bit);
  624. }
  625. intel_pmu_ack_status(ack);
  626. /*
  627. * Repeat if there is more work to be done:
  628. */
  629. status = intel_pmu_get_status();
  630. if (status)
  631. goto again;
  632. out:
  633. /*
  634. * Restore - do not reenable when global enable is off or throttled:
  635. */
  636. if (++cpuc->interrupts < PERFMON_MAX_INTERRUPTS)
  637. intel_pmu_restore_all(cpuc->throttle_ctrl);
  638. return ret;
  639. }
  640. static int amd_pmu_handle_irq(struct pt_regs *regs, int nmi)
  641. {
  642. int cpu = smp_processor_id();
  643. struct cpu_hw_counters *cpuc = &per_cpu(cpu_hw_counters, cpu);
  644. u64 val;
  645. int handled = 0;
  646. struct perf_counter *counter;
  647. struct hw_perf_counter *hwc;
  648. int idx;
  649. ++cpuc->interrupts;
  650. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  651. if (!test_bit(idx, cpuc->active_mask))
  652. continue;
  653. counter = cpuc->counters[idx];
  654. hwc = &counter->hw;
  655. val = x86_perf_counter_update(counter, hwc, idx);
  656. if (val & (1ULL << (x86_pmu.counter_bits - 1)))
  657. continue;
  658. /* counter overflow */
  659. x86_perf_counter_set_period(counter, hwc, idx);
  660. handled = 1;
  661. inc_irq_stat(apic_perf_irqs);
  662. if (perf_counter_overflow(counter, nmi, regs, 0))
  663. amd_pmu_disable_counter(hwc, idx);
  664. else if (cpuc->interrupts >= PERFMON_MAX_INTERRUPTS)
  665. /*
  666. * do not reenable when throttled, but reload
  667. * the register
  668. */
  669. amd_pmu_disable_counter(hwc, idx);
  670. else if (counter->state == PERF_COUNTER_STATE_ACTIVE)
  671. amd_pmu_enable_counter(hwc, idx);
  672. }
  673. return handled;
  674. }
  675. void perf_counter_unthrottle(void)
  676. {
  677. struct cpu_hw_counters *cpuc;
  678. if (!x86_pmu_initialized())
  679. return;
  680. cpuc = &__get_cpu_var(cpu_hw_counters);
  681. if (cpuc->interrupts >= PERFMON_MAX_INTERRUPTS) {
  682. if (printk_ratelimit())
  683. printk(KERN_WARNING "perfcounters: max interrupts exceeded!\n");
  684. hw_perf_restore(cpuc->throttle_ctrl);
  685. }
  686. cpuc->interrupts = 0;
  687. }
  688. void smp_perf_counter_interrupt(struct pt_regs *regs)
  689. {
  690. irq_enter();
  691. apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
  692. ack_APIC_irq();
  693. x86_pmu.handle_irq(regs, 0);
  694. irq_exit();
  695. }
  696. void smp_perf_pending_interrupt(struct pt_regs *regs)
  697. {
  698. irq_enter();
  699. ack_APIC_irq();
  700. inc_irq_stat(apic_pending_irqs);
  701. perf_counter_do_pending();
  702. irq_exit();
  703. }
  704. void set_perf_counter_pending(void)
  705. {
  706. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  707. }
  708. void perf_counters_lapic_init(int nmi)
  709. {
  710. u32 apic_val;
  711. if (!x86_pmu_initialized())
  712. return;
  713. /*
  714. * Enable the performance counter vector in the APIC LVT:
  715. */
  716. apic_val = apic_read(APIC_LVTERR);
  717. apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED);
  718. if (nmi)
  719. apic_write(APIC_LVTPC, APIC_DM_NMI);
  720. else
  721. apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
  722. apic_write(APIC_LVTERR, apic_val);
  723. }
  724. static int __kprobes
  725. perf_counter_nmi_handler(struct notifier_block *self,
  726. unsigned long cmd, void *__args)
  727. {
  728. struct die_args *args = __args;
  729. struct pt_regs *regs;
  730. int ret;
  731. if (!atomic_read(&active_counters))
  732. return NOTIFY_DONE;
  733. switch (cmd) {
  734. case DIE_NMI:
  735. case DIE_NMI_IPI:
  736. break;
  737. default:
  738. return NOTIFY_DONE;
  739. }
  740. regs = args->regs;
  741. apic_write(APIC_LVTPC, APIC_DM_NMI);
  742. ret = x86_pmu.handle_irq(regs, 1);
  743. return ret ? NOTIFY_STOP : NOTIFY_OK;
  744. }
  745. static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
  746. .notifier_call = perf_counter_nmi_handler,
  747. .next = NULL,
  748. .priority = 1
  749. };
  750. static struct x86_pmu intel_pmu = {
  751. .name = "Intel",
  752. .handle_irq = intel_pmu_handle_irq,
  753. .save_disable_all = intel_pmu_save_disable_all,
  754. .restore_all = intel_pmu_restore_all,
  755. .enable = intel_pmu_enable_counter,
  756. .disable = intel_pmu_disable_counter,
  757. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  758. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  759. .event_map = intel_pmu_event_map,
  760. .raw_event = intel_pmu_raw_event,
  761. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  762. /*
  763. * Intel PMCs cannot be accessed sanely above 32 bit width,
  764. * so we install an artificial 1<<31 period regardless of
  765. * the generic counter period:
  766. */
  767. .max_period = (1ULL << 31) - 1,
  768. };
  769. static struct x86_pmu amd_pmu = {
  770. .name = "AMD",
  771. .handle_irq = amd_pmu_handle_irq,
  772. .save_disable_all = amd_pmu_save_disable_all,
  773. .restore_all = amd_pmu_restore_all,
  774. .enable = amd_pmu_enable_counter,
  775. .disable = amd_pmu_disable_counter,
  776. .eventsel = MSR_K7_EVNTSEL0,
  777. .perfctr = MSR_K7_PERFCTR0,
  778. .event_map = amd_pmu_event_map,
  779. .raw_event = amd_pmu_raw_event,
  780. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  781. .num_counters = 4,
  782. .counter_bits = 48,
  783. .counter_mask = (1ULL << 48) - 1,
  784. /* use highest bit to detect overflow */
  785. .max_period = (1ULL << 47) - 1,
  786. };
  787. static int intel_pmu_init(void)
  788. {
  789. union cpuid10_edx edx;
  790. union cpuid10_eax eax;
  791. unsigned int unused;
  792. unsigned int ebx;
  793. int version;
  794. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
  795. return -ENODEV;
  796. /*
  797. * Check whether the Architectural PerfMon supports
  798. * Branch Misses Retired Event or not.
  799. */
  800. cpuid(10, &eax.full, &ebx, &unused, &edx.full);
  801. if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
  802. return -ENODEV;
  803. version = eax.split.version_id;
  804. if (version < 2)
  805. return -ENODEV;
  806. x86_pmu = intel_pmu;
  807. x86_pmu.version = version;
  808. x86_pmu.num_counters = eax.split.num_counters;
  809. /*
  810. * Quirk: v2 perfmon does not report fixed-purpose counters, so
  811. * assume at least 3 counters:
  812. */
  813. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  814. x86_pmu.counter_bits = eax.split.bit_width;
  815. x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
  816. return 0;
  817. }
  818. static int amd_pmu_init(void)
  819. {
  820. x86_pmu = amd_pmu;
  821. return 0;
  822. }
  823. void __init init_hw_perf_counters(void)
  824. {
  825. int err;
  826. switch (boot_cpu_data.x86_vendor) {
  827. case X86_VENDOR_INTEL:
  828. err = intel_pmu_init();
  829. break;
  830. case X86_VENDOR_AMD:
  831. err = amd_pmu_init();
  832. break;
  833. default:
  834. return;
  835. }
  836. if (err != 0)
  837. return;
  838. pr_info("%s Performance Monitoring support detected.\n", x86_pmu.name);
  839. pr_info("... version: %d\n", x86_pmu.version);
  840. pr_info("... bit width: %d\n", x86_pmu.counter_bits);
  841. pr_info("... num counters: %d\n", x86_pmu.num_counters);
  842. if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
  843. x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
  844. WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
  845. x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
  846. }
  847. perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
  848. perf_max_counters = x86_pmu.num_counters;
  849. pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
  850. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  851. if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
  852. x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
  853. WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
  854. x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
  855. }
  856. pr_info("... fixed counters: %d\n", x86_pmu.num_counters_fixed);
  857. perf_counter_mask |=
  858. ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
  859. pr_info("... counter mask: %016Lx\n", perf_counter_mask);
  860. perf_counters_lapic_init(0);
  861. register_die_notifier(&perf_counter_nmi_notifier);
  862. }
  863. static inline void x86_pmu_read(struct perf_counter *counter)
  864. {
  865. x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
  866. }
  867. static const struct pmu pmu = {
  868. .enable = x86_pmu_enable,
  869. .disable = x86_pmu_disable,
  870. .read = x86_pmu_read,
  871. };
  872. const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
  873. {
  874. int err;
  875. err = __hw_perf_counter_init(counter);
  876. if (err)
  877. return ERR_PTR(err);
  878. return &pmu;
  879. }
  880. /*
  881. * callchain support
  882. */
  883. static inline
  884. void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
  885. {
  886. if (entry->nr < MAX_STACK_DEPTH)
  887. entry->ip[entry->nr++] = ip;
  888. }
  889. static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
  890. static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
  891. static void
  892. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  893. {
  894. /* Ignore warnings */
  895. }
  896. static void backtrace_warning(void *data, char *msg)
  897. {
  898. /* Ignore warnings */
  899. }
  900. static int backtrace_stack(void *data, char *name)
  901. {
  902. /* Don't bother with IRQ stacks for now */
  903. return -1;
  904. }
  905. static void backtrace_address(void *data, unsigned long addr, int reliable)
  906. {
  907. struct perf_callchain_entry *entry = data;
  908. if (reliable)
  909. callchain_store(entry, addr);
  910. }
  911. static const struct stacktrace_ops backtrace_ops = {
  912. .warning = backtrace_warning,
  913. .warning_symbol = backtrace_warning_symbol,
  914. .stack = backtrace_stack,
  915. .address = backtrace_address,
  916. };
  917. static void
  918. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  919. {
  920. unsigned long bp;
  921. char *stack;
  922. int nr = entry->nr;
  923. callchain_store(entry, instruction_pointer(regs));
  924. stack = ((char *)regs + sizeof(struct pt_regs));
  925. #ifdef CONFIG_FRAME_POINTER
  926. bp = frame_pointer(regs);
  927. #else
  928. bp = 0;
  929. #endif
  930. dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry);
  931. entry->kernel = entry->nr - nr;
  932. }
  933. struct stack_frame {
  934. const void __user *next_fp;
  935. unsigned long return_address;
  936. };
  937. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  938. {
  939. int ret;
  940. if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
  941. return 0;
  942. ret = 1;
  943. pagefault_disable();
  944. if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
  945. ret = 0;
  946. pagefault_enable();
  947. return ret;
  948. }
  949. static void
  950. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  951. {
  952. struct stack_frame frame;
  953. const void __user *fp;
  954. int nr = entry->nr;
  955. regs = (struct pt_regs *)current->thread.sp0 - 1;
  956. fp = (void __user *)regs->bp;
  957. callchain_store(entry, regs->ip);
  958. while (entry->nr < MAX_STACK_DEPTH) {
  959. frame.next_fp = NULL;
  960. frame.return_address = 0;
  961. if (!copy_stack_frame(fp, &frame))
  962. break;
  963. if ((unsigned long)fp < user_stack_pointer(regs))
  964. break;
  965. callchain_store(entry, frame.return_address);
  966. fp = frame.next_fp;
  967. }
  968. entry->user = entry->nr - nr;
  969. }
  970. static void
  971. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  972. {
  973. int is_user;
  974. if (!regs)
  975. return;
  976. is_user = user_mode(regs);
  977. if (!current || current->pid == 0)
  978. return;
  979. if (is_user && current->state != TASK_RUNNING)
  980. return;
  981. if (!is_user)
  982. perf_callchain_kernel(regs, entry);
  983. if (current->mm)
  984. perf_callchain_user(regs, entry);
  985. }
  986. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  987. {
  988. struct perf_callchain_entry *entry;
  989. if (in_nmi())
  990. entry = &__get_cpu_var(nmi_entry);
  991. else
  992. entry = &__get_cpu_var(irq_entry);
  993. entry->nr = 0;
  994. entry->hv = 0;
  995. entry->kernel = 0;
  996. entry->user = 0;
  997. perf_do_callchain(regs, entry);
  998. return entry;
  999. }