fork.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/mnt_namespace.h>
  19. #include <linux/personality.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/sem.h>
  22. #include <linux/file.h>
  23. #include <linux/key.h>
  24. #include <linux/binfmts.h>
  25. #include <linux/mman.h>
  26. #include <linux/fs.h>
  27. #include <linux/nsproxy.h>
  28. #include <linux/capability.h>
  29. #include <linux/cpu.h>
  30. #include <linux/cgroup.h>
  31. #include <linux/security.h>
  32. #include <linux/swap.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/futex.h>
  36. #include <linux/task_io_accounting_ops.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/profile.h>
  42. #include <linux/rmap.h>
  43. #include <linux/acct.h>
  44. #include <linux/tsacct_kern.h>
  45. #include <linux/cn_proc.h>
  46. #include <linux/freezer.h>
  47. #include <linux/delayacct.h>
  48. #include <linux/taskstats_kern.h>
  49. #include <linux/random.h>
  50. #include <linux/tty.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/blkdev.h>
  53. #include <asm/pgtable.h>
  54. #include <asm/pgalloc.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/cacheflush.h>
  58. #include <asm/tlbflush.h>
  59. /*
  60. * Protected counters by write_lock_irq(&tasklist_lock)
  61. */
  62. unsigned long total_forks; /* Handle normal Linux uptimes. */
  63. int nr_threads; /* The idle threads do not count.. */
  64. int max_threads; /* tunable limit on nr_threads */
  65. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  66. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  67. int nr_processes(void)
  68. {
  69. int cpu;
  70. int total = 0;
  71. for_each_online_cpu(cpu)
  72. total += per_cpu(process_counts, cpu);
  73. return total;
  74. }
  75. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  76. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  77. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  78. static struct kmem_cache *task_struct_cachep;
  79. #endif
  80. /* SLAB cache for signal_struct structures (tsk->signal) */
  81. static struct kmem_cache *signal_cachep;
  82. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  83. struct kmem_cache *sighand_cachep;
  84. /* SLAB cache for files_struct structures (tsk->files) */
  85. struct kmem_cache *files_cachep;
  86. /* SLAB cache for fs_struct structures (tsk->fs) */
  87. struct kmem_cache *fs_cachep;
  88. /* SLAB cache for vm_area_struct structures */
  89. struct kmem_cache *vm_area_cachep;
  90. /* SLAB cache for mm_struct structures (tsk->mm) */
  91. static struct kmem_cache *mm_cachep;
  92. void free_task(struct task_struct *tsk)
  93. {
  94. prop_local_destroy_single(&tsk->dirties);
  95. free_thread_info(tsk->stack);
  96. rt_mutex_debug_task_free(tsk);
  97. free_task_struct(tsk);
  98. }
  99. EXPORT_SYMBOL(free_task);
  100. void __put_task_struct(struct task_struct *tsk)
  101. {
  102. WARN_ON(!tsk->exit_state);
  103. WARN_ON(atomic_read(&tsk->usage));
  104. WARN_ON(tsk == current);
  105. security_task_free(tsk);
  106. free_uid(tsk->user);
  107. put_group_info(tsk->group_info);
  108. delayacct_tsk_free(tsk);
  109. if (!profile_handoff_task(tsk))
  110. free_task(tsk);
  111. }
  112. void __init fork_init(unsigned long mempages)
  113. {
  114. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  115. #ifndef ARCH_MIN_TASKALIGN
  116. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  117. #endif
  118. /* create a slab on which task_structs can be allocated */
  119. task_struct_cachep =
  120. kmem_cache_create("task_struct", sizeof(struct task_struct),
  121. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
  122. #endif
  123. /*
  124. * The default maximum number of threads is set to a safe
  125. * value: the thread structures can take up at most half
  126. * of memory.
  127. */
  128. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  129. /*
  130. * we need to allow at least 20 threads to boot a system
  131. */
  132. if(max_threads < 20)
  133. max_threads = 20;
  134. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  135. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  136. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  137. init_task.signal->rlim[RLIMIT_NPROC];
  138. }
  139. static struct task_struct *dup_task_struct(struct task_struct *orig)
  140. {
  141. struct task_struct *tsk;
  142. struct thread_info *ti;
  143. int err;
  144. prepare_to_copy(orig);
  145. tsk = alloc_task_struct();
  146. if (!tsk)
  147. return NULL;
  148. ti = alloc_thread_info(tsk);
  149. if (!ti) {
  150. free_task_struct(tsk);
  151. return NULL;
  152. }
  153. *tsk = *orig;
  154. tsk->stack = ti;
  155. err = prop_local_init_single(&tsk->dirties);
  156. if (err) {
  157. free_thread_info(ti);
  158. free_task_struct(tsk);
  159. return NULL;
  160. }
  161. setup_thread_stack(tsk, orig);
  162. #ifdef CONFIG_CC_STACKPROTECTOR
  163. tsk->stack_canary = get_random_int();
  164. #endif
  165. /* One for us, one for whoever does the "release_task()" (usually parent) */
  166. atomic_set(&tsk->usage,2);
  167. atomic_set(&tsk->fs_excl, 0);
  168. #ifdef CONFIG_BLK_DEV_IO_TRACE
  169. tsk->btrace_seq = 0;
  170. #endif
  171. tsk->splice_pipe = NULL;
  172. return tsk;
  173. }
  174. #ifdef CONFIG_MMU
  175. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  176. {
  177. struct vm_area_struct *mpnt, *tmp, **pprev;
  178. struct rb_node **rb_link, *rb_parent;
  179. int retval;
  180. unsigned long charge;
  181. struct mempolicy *pol;
  182. down_write(&oldmm->mmap_sem);
  183. flush_cache_dup_mm(oldmm);
  184. /*
  185. * Not linked in yet - no deadlock potential:
  186. */
  187. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  188. mm->locked_vm = 0;
  189. mm->mmap = NULL;
  190. mm->mmap_cache = NULL;
  191. mm->free_area_cache = oldmm->mmap_base;
  192. mm->cached_hole_size = ~0UL;
  193. mm->map_count = 0;
  194. cpus_clear(mm->cpu_vm_mask);
  195. mm->mm_rb = RB_ROOT;
  196. rb_link = &mm->mm_rb.rb_node;
  197. rb_parent = NULL;
  198. pprev = &mm->mmap;
  199. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  200. struct file *file;
  201. if (mpnt->vm_flags & VM_DONTCOPY) {
  202. long pages = vma_pages(mpnt);
  203. mm->total_vm -= pages;
  204. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  205. -pages);
  206. continue;
  207. }
  208. charge = 0;
  209. if (mpnt->vm_flags & VM_ACCOUNT) {
  210. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  211. if (security_vm_enough_memory(len))
  212. goto fail_nomem;
  213. charge = len;
  214. }
  215. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  216. if (!tmp)
  217. goto fail_nomem;
  218. *tmp = *mpnt;
  219. pol = mpol_copy(vma_policy(mpnt));
  220. retval = PTR_ERR(pol);
  221. if (IS_ERR(pol))
  222. goto fail_nomem_policy;
  223. vma_set_policy(tmp, pol);
  224. tmp->vm_flags &= ~VM_LOCKED;
  225. tmp->vm_mm = mm;
  226. tmp->vm_next = NULL;
  227. anon_vma_link(tmp);
  228. file = tmp->vm_file;
  229. if (file) {
  230. struct inode *inode = file->f_path.dentry->d_inode;
  231. get_file(file);
  232. if (tmp->vm_flags & VM_DENYWRITE)
  233. atomic_dec(&inode->i_writecount);
  234. /* insert tmp into the share list, just after mpnt */
  235. spin_lock(&file->f_mapping->i_mmap_lock);
  236. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  237. flush_dcache_mmap_lock(file->f_mapping);
  238. vma_prio_tree_add(tmp, mpnt);
  239. flush_dcache_mmap_unlock(file->f_mapping);
  240. spin_unlock(&file->f_mapping->i_mmap_lock);
  241. }
  242. /*
  243. * Link in the new vma and copy the page table entries.
  244. */
  245. *pprev = tmp;
  246. pprev = &tmp->vm_next;
  247. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  248. rb_link = &tmp->vm_rb.rb_right;
  249. rb_parent = &tmp->vm_rb;
  250. mm->map_count++;
  251. retval = copy_page_range(mm, oldmm, mpnt);
  252. if (tmp->vm_ops && tmp->vm_ops->open)
  253. tmp->vm_ops->open(tmp);
  254. if (retval)
  255. goto out;
  256. }
  257. /* a new mm has just been created */
  258. arch_dup_mmap(oldmm, mm);
  259. retval = 0;
  260. out:
  261. up_write(&mm->mmap_sem);
  262. flush_tlb_mm(oldmm);
  263. up_write(&oldmm->mmap_sem);
  264. return retval;
  265. fail_nomem_policy:
  266. kmem_cache_free(vm_area_cachep, tmp);
  267. fail_nomem:
  268. retval = -ENOMEM;
  269. vm_unacct_memory(charge);
  270. goto out;
  271. }
  272. static inline int mm_alloc_pgd(struct mm_struct * mm)
  273. {
  274. mm->pgd = pgd_alloc(mm);
  275. if (unlikely(!mm->pgd))
  276. return -ENOMEM;
  277. return 0;
  278. }
  279. static inline void mm_free_pgd(struct mm_struct * mm)
  280. {
  281. pgd_free(mm->pgd);
  282. }
  283. #else
  284. #define dup_mmap(mm, oldmm) (0)
  285. #define mm_alloc_pgd(mm) (0)
  286. #define mm_free_pgd(mm)
  287. #endif /* CONFIG_MMU */
  288. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  289. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  290. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  291. #include <linux/init_task.h>
  292. static struct mm_struct * mm_init(struct mm_struct * mm)
  293. {
  294. atomic_set(&mm->mm_users, 1);
  295. atomic_set(&mm->mm_count, 1);
  296. init_rwsem(&mm->mmap_sem);
  297. INIT_LIST_HEAD(&mm->mmlist);
  298. mm->flags = (current->mm) ? current->mm->flags
  299. : MMF_DUMP_FILTER_DEFAULT;
  300. mm->core_waiters = 0;
  301. mm->nr_ptes = 0;
  302. set_mm_counter(mm, file_rss, 0);
  303. set_mm_counter(mm, anon_rss, 0);
  304. spin_lock_init(&mm->page_table_lock);
  305. rwlock_init(&mm->ioctx_list_lock);
  306. mm->ioctx_list = NULL;
  307. mm->free_area_cache = TASK_UNMAPPED_BASE;
  308. mm->cached_hole_size = ~0UL;
  309. if (likely(!mm_alloc_pgd(mm))) {
  310. mm->def_flags = 0;
  311. return mm;
  312. }
  313. free_mm(mm);
  314. return NULL;
  315. }
  316. /*
  317. * Allocate and initialize an mm_struct.
  318. */
  319. struct mm_struct * mm_alloc(void)
  320. {
  321. struct mm_struct * mm;
  322. mm = allocate_mm();
  323. if (mm) {
  324. memset(mm, 0, sizeof(*mm));
  325. mm = mm_init(mm);
  326. }
  327. return mm;
  328. }
  329. /*
  330. * Called when the last reference to the mm
  331. * is dropped: either by a lazy thread or by
  332. * mmput. Free the page directory and the mm.
  333. */
  334. void fastcall __mmdrop(struct mm_struct *mm)
  335. {
  336. BUG_ON(mm == &init_mm);
  337. mm_free_pgd(mm);
  338. destroy_context(mm);
  339. free_mm(mm);
  340. }
  341. /*
  342. * Decrement the use count and release all resources for an mm.
  343. */
  344. void mmput(struct mm_struct *mm)
  345. {
  346. might_sleep();
  347. if (atomic_dec_and_test(&mm->mm_users)) {
  348. exit_aio(mm);
  349. exit_mmap(mm);
  350. if (!list_empty(&mm->mmlist)) {
  351. spin_lock(&mmlist_lock);
  352. list_del(&mm->mmlist);
  353. spin_unlock(&mmlist_lock);
  354. }
  355. put_swap_token(mm);
  356. mmdrop(mm);
  357. }
  358. }
  359. EXPORT_SYMBOL_GPL(mmput);
  360. /**
  361. * get_task_mm - acquire a reference to the task's mm
  362. *
  363. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  364. * this kernel workthread has transiently adopted a user mm with use_mm,
  365. * to do its AIO) is not set and if so returns a reference to it, after
  366. * bumping up the use count. User must release the mm via mmput()
  367. * after use. Typically used by /proc and ptrace.
  368. */
  369. struct mm_struct *get_task_mm(struct task_struct *task)
  370. {
  371. struct mm_struct *mm;
  372. task_lock(task);
  373. mm = task->mm;
  374. if (mm) {
  375. if (task->flags & PF_BORROWED_MM)
  376. mm = NULL;
  377. else
  378. atomic_inc(&mm->mm_users);
  379. }
  380. task_unlock(task);
  381. return mm;
  382. }
  383. EXPORT_SYMBOL_GPL(get_task_mm);
  384. /* Please note the differences between mmput and mm_release.
  385. * mmput is called whenever we stop holding onto a mm_struct,
  386. * error success whatever.
  387. *
  388. * mm_release is called after a mm_struct has been removed
  389. * from the current process.
  390. *
  391. * This difference is important for error handling, when we
  392. * only half set up a mm_struct for a new process and need to restore
  393. * the old one. Because we mmput the new mm_struct before
  394. * restoring the old one. . .
  395. * Eric Biederman 10 January 1998
  396. */
  397. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  398. {
  399. struct completion *vfork_done = tsk->vfork_done;
  400. /* Get rid of any cached register state */
  401. deactivate_mm(tsk, mm);
  402. /* notify parent sleeping on vfork() */
  403. if (vfork_done) {
  404. tsk->vfork_done = NULL;
  405. complete(vfork_done);
  406. }
  407. /*
  408. * If we're exiting normally, clear a user-space tid field if
  409. * requested. We leave this alone when dying by signal, to leave
  410. * the value intact in a core dump, and to save the unnecessary
  411. * trouble otherwise. Userland only wants this done for a sys_exit.
  412. */
  413. if (tsk->clear_child_tid
  414. && !(tsk->flags & PF_SIGNALED)
  415. && atomic_read(&mm->mm_users) > 1) {
  416. u32 __user * tidptr = tsk->clear_child_tid;
  417. tsk->clear_child_tid = NULL;
  418. /*
  419. * We don't check the error code - if userspace has
  420. * not set up a proper pointer then tough luck.
  421. */
  422. put_user(0, tidptr);
  423. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  424. }
  425. }
  426. /*
  427. * Allocate a new mm structure and copy contents from the
  428. * mm structure of the passed in task structure.
  429. */
  430. static struct mm_struct *dup_mm(struct task_struct *tsk)
  431. {
  432. struct mm_struct *mm, *oldmm = current->mm;
  433. int err;
  434. if (!oldmm)
  435. return NULL;
  436. mm = allocate_mm();
  437. if (!mm)
  438. goto fail_nomem;
  439. memcpy(mm, oldmm, sizeof(*mm));
  440. /* Initializing for Swap token stuff */
  441. mm->token_priority = 0;
  442. mm->last_interval = 0;
  443. if (!mm_init(mm))
  444. goto fail_nomem;
  445. if (init_new_context(tsk, mm))
  446. goto fail_nocontext;
  447. err = dup_mmap(mm, oldmm);
  448. if (err)
  449. goto free_pt;
  450. mm->hiwater_rss = get_mm_rss(mm);
  451. mm->hiwater_vm = mm->total_vm;
  452. return mm;
  453. free_pt:
  454. mmput(mm);
  455. fail_nomem:
  456. return NULL;
  457. fail_nocontext:
  458. /*
  459. * If init_new_context() failed, we cannot use mmput() to free the mm
  460. * because it calls destroy_context()
  461. */
  462. mm_free_pgd(mm);
  463. free_mm(mm);
  464. return NULL;
  465. }
  466. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  467. {
  468. struct mm_struct * mm, *oldmm;
  469. int retval;
  470. tsk->min_flt = tsk->maj_flt = 0;
  471. tsk->nvcsw = tsk->nivcsw = 0;
  472. tsk->mm = NULL;
  473. tsk->active_mm = NULL;
  474. /*
  475. * Are we cloning a kernel thread?
  476. *
  477. * We need to steal a active VM for that..
  478. */
  479. oldmm = current->mm;
  480. if (!oldmm)
  481. return 0;
  482. if (clone_flags & CLONE_VM) {
  483. atomic_inc(&oldmm->mm_users);
  484. mm = oldmm;
  485. goto good_mm;
  486. }
  487. retval = -ENOMEM;
  488. mm = dup_mm(tsk);
  489. if (!mm)
  490. goto fail_nomem;
  491. good_mm:
  492. /* Initializing for Swap token stuff */
  493. mm->token_priority = 0;
  494. mm->last_interval = 0;
  495. tsk->mm = mm;
  496. tsk->active_mm = mm;
  497. return 0;
  498. fail_nomem:
  499. return retval;
  500. }
  501. static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  502. {
  503. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  504. /* We don't need to lock fs - think why ;-) */
  505. if (fs) {
  506. atomic_set(&fs->count, 1);
  507. rwlock_init(&fs->lock);
  508. fs->umask = old->umask;
  509. read_lock(&old->lock);
  510. fs->rootmnt = mntget(old->rootmnt);
  511. fs->root = dget(old->root);
  512. fs->pwdmnt = mntget(old->pwdmnt);
  513. fs->pwd = dget(old->pwd);
  514. if (old->altroot) {
  515. fs->altrootmnt = mntget(old->altrootmnt);
  516. fs->altroot = dget(old->altroot);
  517. } else {
  518. fs->altrootmnt = NULL;
  519. fs->altroot = NULL;
  520. }
  521. read_unlock(&old->lock);
  522. }
  523. return fs;
  524. }
  525. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  526. {
  527. return __copy_fs_struct(old);
  528. }
  529. EXPORT_SYMBOL_GPL(copy_fs_struct);
  530. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  531. {
  532. if (clone_flags & CLONE_FS) {
  533. atomic_inc(&current->fs->count);
  534. return 0;
  535. }
  536. tsk->fs = __copy_fs_struct(current->fs);
  537. if (!tsk->fs)
  538. return -ENOMEM;
  539. return 0;
  540. }
  541. static int count_open_files(struct fdtable *fdt)
  542. {
  543. int size = fdt->max_fds;
  544. int i;
  545. /* Find the last open fd */
  546. for (i = size/(8*sizeof(long)); i > 0; ) {
  547. if (fdt->open_fds->fds_bits[--i])
  548. break;
  549. }
  550. i = (i+1) * 8 * sizeof(long);
  551. return i;
  552. }
  553. static struct files_struct *alloc_files(void)
  554. {
  555. struct files_struct *newf;
  556. struct fdtable *fdt;
  557. newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
  558. if (!newf)
  559. goto out;
  560. atomic_set(&newf->count, 1);
  561. spin_lock_init(&newf->file_lock);
  562. newf->next_fd = 0;
  563. fdt = &newf->fdtab;
  564. fdt->max_fds = NR_OPEN_DEFAULT;
  565. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  566. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  567. fdt->fd = &newf->fd_array[0];
  568. INIT_RCU_HEAD(&fdt->rcu);
  569. fdt->next = NULL;
  570. rcu_assign_pointer(newf->fdt, fdt);
  571. out:
  572. return newf;
  573. }
  574. /*
  575. * Allocate a new files structure and copy contents from the
  576. * passed in files structure.
  577. * errorp will be valid only when the returned files_struct is NULL.
  578. */
  579. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  580. {
  581. struct files_struct *newf;
  582. struct file **old_fds, **new_fds;
  583. int open_files, size, i;
  584. struct fdtable *old_fdt, *new_fdt;
  585. *errorp = -ENOMEM;
  586. newf = alloc_files();
  587. if (!newf)
  588. goto out;
  589. spin_lock(&oldf->file_lock);
  590. old_fdt = files_fdtable(oldf);
  591. new_fdt = files_fdtable(newf);
  592. open_files = count_open_files(old_fdt);
  593. /*
  594. * Check whether we need to allocate a larger fd array and fd set.
  595. * Note: we're not a clone task, so the open count won't change.
  596. */
  597. if (open_files > new_fdt->max_fds) {
  598. new_fdt->max_fds = 0;
  599. spin_unlock(&oldf->file_lock);
  600. spin_lock(&newf->file_lock);
  601. *errorp = expand_files(newf, open_files-1);
  602. spin_unlock(&newf->file_lock);
  603. if (*errorp < 0)
  604. goto out_release;
  605. new_fdt = files_fdtable(newf);
  606. /*
  607. * Reacquire the oldf lock and a pointer to its fd table
  608. * who knows it may have a new bigger fd table. We need
  609. * the latest pointer.
  610. */
  611. spin_lock(&oldf->file_lock);
  612. old_fdt = files_fdtable(oldf);
  613. }
  614. old_fds = old_fdt->fd;
  615. new_fds = new_fdt->fd;
  616. memcpy(new_fdt->open_fds->fds_bits,
  617. old_fdt->open_fds->fds_bits, open_files/8);
  618. memcpy(new_fdt->close_on_exec->fds_bits,
  619. old_fdt->close_on_exec->fds_bits, open_files/8);
  620. for (i = open_files; i != 0; i--) {
  621. struct file *f = *old_fds++;
  622. if (f) {
  623. get_file(f);
  624. } else {
  625. /*
  626. * The fd may be claimed in the fd bitmap but not yet
  627. * instantiated in the files array if a sibling thread
  628. * is partway through open(). So make sure that this
  629. * fd is available to the new process.
  630. */
  631. FD_CLR(open_files - i, new_fdt->open_fds);
  632. }
  633. rcu_assign_pointer(*new_fds++, f);
  634. }
  635. spin_unlock(&oldf->file_lock);
  636. /* compute the remainder to be cleared */
  637. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  638. /* This is long word aligned thus could use a optimized version */
  639. memset(new_fds, 0, size);
  640. if (new_fdt->max_fds > open_files) {
  641. int left = (new_fdt->max_fds-open_files)/8;
  642. int start = open_files / (8 * sizeof(unsigned long));
  643. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  644. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  645. }
  646. return newf;
  647. out_release:
  648. kmem_cache_free(files_cachep, newf);
  649. out:
  650. return NULL;
  651. }
  652. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  653. {
  654. struct files_struct *oldf, *newf;
  655. int error = 0;
  656. /*
  657. * A background process may not have any files ...
  658. */
  659. oldf = current->files;
  660. if (!oldf)
  661. goto out;
  662. if (clone_flags & CLONE_FILES) {
  663. atomic_inc(&oldf->count);
  664. goto out;
  665. }
  666. /*
  667. * Note: we may be using current for both targets (See exec.c)
  668. * This works because we cache current->files (old) as oldf. Don't
  669. * break this.
  670. */
  671. tsk->files = NULL;
  672. newf = dup_fd(oldf, &error);
  673. if (!newf)
  674. goto out;
  675. tsk->files = newf;
  676. error = 0;
  677. out:
  678. return error;
  679. }
  680. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  681. {
  682. #ifdef CONFIG_BLOCK
  683. struct io_context *ioc = current->io_context;
  684. if (!ioc)
  685. return 0;
  686. /*
  687. * Share io context with parent, if CLONE_IO is set
  688. */
  689. if (clone_flags & CLONE_IO) {
  690. tsk->io_context = ioc_task_link(ioc);
  691. if (unlikely(!tsk->io_context))
  692. return -ENOMEM;
  693. } else if (ioprio_valid(ioc->ioprio)) {
  694. tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
  695. if (unlikely(!tsk->io_context))
  696. return -ENOMEM;
  697. tsk->io_context->ioprio = ioc->ioprio;
  698. }
  699. #endif
  700. return 0;
  701. }
  702. /*
  703. * Helper to unshare the files of the current task.
  704. * We don't want to expose copy_files internals to
  705. * the exec layer of the kernel.
  706. */
  707. int unshare_files(void)
  708. {
  709. struct files_struct *files = current->files;
  710. int rc;
  711. BUG_ON(!files);
  712. /* This can race but the race causes us to copy when we don't
  713. need to and drop the copy */
  714. if(atomic_read(&files->count) == 1)
  715. {
  716. atomic_inc(&files->count);
  717. return 0;
  718. }
  719. rc = copy_files(0, current);
  720. if(rc)
  721. current->files = files;
  722. return rc;
  723. }
  724. EXPORT_SYMBOL(unshare_files);
  725. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  726. {
  727. struct sighand_struct *sig;
  728. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  729. atomic_inc(&current->sighand->count);
  730. return 0;
  731. }
  732. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  733. rcu_assign_pointer(tsk->sighand, sig);
  734. if (!sig)
  735. return -ENOMEM;
  736. atomic_set(&sig->count, 1);
  737. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  738. return 0;
  739. }
  740. void __cleanup_sighand(struct sighand_struct *sighand)
  741. {
  742. if (atomic_dec_and_test(&sighand->count))
  743. kmem_cache_free(sighand_cachep, sighand);
  744. }
  745. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  746. {
  747. struct signal_struct *sig;
  748. int ret;
  749. if (clone_flags & CLONE_THREAD) {
  750. atomic_inc(&current->signal->count);
  751. atomic_inc(&current->signal->live);
  752. return 0;
  753. }
  754. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  755. tsk->signal = sig;
  756. if (!sig)
  757. return -ENOMEM;
  758. ret = copy_thread_group_keys(tsk);
  759. if (ret < 0) {
  760. kmem_cache_free(signal_cachep, sig);
  761. return ret;
  762. }
  763. atomic_set(&sig->count, 1);
  764. atomic_set(&sig->live, 1);
  765. init_waitqueue_head(&sig->wait_chldexit);
  766. sig->flags = 0;
  767. sig->group_exit_code = 0;
  768. sig->group_exit_task = NULL;
  769. sig->group_stop_count = 0;
  770. sig->curr_target = NULL;
  771. init_sigpending(&sig->shared_pending);
  772. INIT_LIST_HEAD(&sig->posix_timers);
  773. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  774. sig->it_real_incr.tv64 = 0;
  775. sig->real_timer.function = it_real_fn;
  776. sig->tsk = tsk;
  777. sig->it_virt_expires = cputime_zero;
  778. sig->it_virt_incr = cputime_zero;
  779. sig->it_prof_expires = cputime_zero;
  780. sig->it_prof_incr = cputime_zero;
  781. sig->leader = 0; /* session leadership doesn't inherit */
  782. sig->tty_old_pgrp = NULL;
  783. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  784. sig->gtime = cputime_zero;
  785. sig->cgtime = cputime_zero;
  786. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  787. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  788. sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
  789. sig->sum_sched_runtime = 0;
  790. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  791. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  792. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  793. taskstats_tgid_init(sig);
  794. task_lock(current->group_leader);
  795. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  796. task_unlock(current->group_leader);
  797. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  798. /*
  799. * New sole thread in the process gets an expiry time
  800. * of the whole CPU time limit.
  801. */
  802. tsk->it_prof_expires =
  803. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  804. }
  805. acct_init_pacct(&sig->pacct);
  806. tty_audit_fork(sig);
  807. return 0;
  808. }
  809. void __cleanup_signal(struct signal_struct *sig)
  810. {
  811. exit_thread_group_keys(sig);
  812. kmem_cache_free(signal_cachep, sig);
  813. }
  814. static void cleanup_signal(struct task_struct *tsk)
  815. {
  816. struct signal_struct *sig = tsk->signal;
  817. atomic_dec(&sig->live);
  818. if (atomic_dec_and_test(&sig->count))
  819. __cleanup_signal(sig);
  820. }
  821. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  822. {
  823. unsigned long new_flags = p->flags;
  824. new_flags &= ~PF_SUPERPRIV;
  825. new_flags |= PF_FORKNOEXEC;
  826. if (!(clone_flags & CLONE_PTRACE))
  827. p->ptrace = 0;
  828. p->flags = new_flags;
  829. clear_freeze_flag(p);
  830. }
  831. asmlinkage long sys_set_tid_address(int __user *tidptr)
  832. {
  833. current->clear_child_tid = tidptr;
  834. return task_pid_vnr(current);
  835. }
  836. static void rt_mutex_init_task(struct task_struct *p)
  837. {
  838. spin_lock_init(&p->pi_lock);
  839. #ifdef CONFIG_RT_MUTEXES
  840. plist_head_init(&p->pi_waiters, &p->pi_lock);
  841. p->pi_blocked_on = NULL;
  842. #endif
  843. }
  844. /*
  845. * This creates a new process as a copy of the old one,
  846. * but does not actually start it yet.
  847. *
  848. * It copies the registers, and all the appropriate
  849. * parts of the process environment (as per the clone
  850. * flags). The actual kick-off is left to the caller.
  851. */
  852. static struct task_struct *copy_process(unsigned long clone_flags,
  853. unsigned long stack_start,
  854. struct pt_regs *regs,
  855. unsigned long stack_size,
  856. int __user *child_tidptr,
  857. struct pid *pid)
  858. {
  859. int retval;
  860. struct task_struct *p;
  861. int cgroup_callbacks_done = 0;
  862. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  863. return ERR_PTR(-EINVAL);
  864. /*
  865. * Thread groups must share signals as well, and detached threads
  866. * can only be started up within the thread group.
  867. */
  868. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  869. return ERR_PTR(-EINVAL);
  870. /*
  871. * Shared signal handlers imply shared VM. By way of the above,
  872. * thread groups also imply shared VM. Blocking this case allows
  873. * for various simplifications in other code.
  874. */
  875. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  876. return ERR_PTR(-EINVAL);
  877. retval = security_task_create(clone_flags);
  878. if (retval)
  879. goto fork_out;
  880. retval = -ENOMEM;
  881. p = dup_task_struct(current);
  882. if (!p)
  883. goto fork_out;
  884. rt_mutex_init_task(p);
  885. #ifdef CONFIG_TRACE_IRQFLAGS
  886. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  887. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  888. #endif
  889. retval = -EAGAIN;
  890. if (atomic_read(&p->user->processes) >=
  891. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  892. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  893. p->user != current->nsproxy->user_ns->root_user)
  894. goto bad_fork_free;
  895. }
  896. atomic_inc(&p->user->__count);
  897. atomic_inc(&p->user->processes);
  898. get_group_info(p->group_info);
  899. /*
  900. * If multiple threads are within copy_process(), then this check
  901. * triggers too late. This doesn't hurt, the check is only there
  902. * to stop root fork bombs.
  903. */
  904. if (nr_threads >= max_threads)
  905. goto bad_fork_cleanup_count;
  906. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  907. goto bad_fork_cleanup_count;
  908. if (p->binfmt && !try_module_get(p->binfmt->module))
  909. goto bad_fork_cleanup_put_domain;
  910. p->did_exec = 0;
  911. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  912. copy_flags(clone_flags, p);
  913. INIT_LIST_HEAD(&p->children);
  914. INIT_LIST_HEAD(&p->sibling);
  915. #ifdef CONFIG_PREEMPT_RCU
  916. p->rcu_read_lock_nesting = 0;
  917. p->rcu_flipctr_idx = 0;
  918. #endif /* #ifdef CONFIG_PREEMPT_RCU */
  919. p->vfork_done = NULL;
  920. spin_lock_init(&p->alloc_lock);
  921. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  922. init_sigpending(&p->pending);
  923. p->utime = cputime_zero;
  924. p->stime = cputime_zero;
  925. p->gtime = cputime_zero;
  926. p->utimescaled = cputime_zero;
  927. p->stimescaled = cputime_zero;
  928. p->prev_utime = cputime_zero;
  929. p->prev_stime = cputime_zero;
  930. #ifdef CONFIG_DETECT_SOFTLOCKUP
  931. p->last_switch_count = 0;
  932. p->last_switch_timestamp = 0;
  933. #endif
  934. #ifdef CONFIG_TASK_XACCT
  935. p->rchar = 0; /* I/O counter: bytes read */
  936. p->wchar = 0; /* I/O counter: bytes written */
  937. p->syscr = 0; /* I/O counter: read syscalls */
  938. p->syscw = 0; /* I/O counter: write syscalls */
  939. #endif
  940. task_io_accounting_init(p);
  941. acct_clear_integrals(p);
  942. p->it_virt_expires = cputime_zero;
  943. p->it_prof_expires = cputime_zero;
  944. p->it_sched_expires = 0;
  945. INIT_LIST_HEAD(&p->cpu_timers[0]);
  946. INIT_LIST_HEAD(&p->cpu_timers[1]);
  947. INIT_LIST_HEAD(&p->cpu_timers[2]);
  948. p->lock_depth = -1; /* -1 = no lock */
  949. do_posix_clock_monotonic_gettime(&p->start_time);
  950. p->real_start_time = p->start_time;
  951. monotonic_to_bootbased(&p->real_start_time);
  952. #ifdef CONFIG_SECURITY
  953. p->security = NULL;
  954. #endif
  955. p->io_context = NULL;
  956. p->audit_context = NULL;
  957. cgroup_fork(p);
  958. #ifdef CONFIG_NUMA
  959. p->mempolicy = mpol_copy(p->mempolicy);
  960. if (IS_ERR(p->mempolicy)) {
  961. retval = PTR_ERR(p->mempolicy);
  962. p->mempolicy = NULL;
  963. goto bad_fork_cleanup_cgroup;
  964. }
  965. mpol_fix_fork_child_flag(p);
  966. #endif
  967. #ifdef CONFIG_TRACE_IRQFLAGS
  968. p->irq_events = 0;
  969. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  970. p->hardirqs_enabled = 1;
  971. #else
  972. p->hardirqs_enabled = 0;
  973. #endif
  974. p->hardirq_enable_ip = 0;
  975. p->hardirq_enable_event = 0;
  976. p->hardirq_disable_ip = _THIS_IP_;
  977. p->hardirq_disable_event = 0;
  978. p->softirqs_enabled = 1;
  979. p->softirq_enable_ip = _THIS_IP_;
  980. p->softirq_enable_event = 0;
  981. p->softirq_disable_ip = 0;
  982. p->softirq_disable_event = 0;
  983. p->hardirq_context = 0;
  984. p->softirq_context = 0;
  985. #endif
  986. #ifdef CONFIG_LOCKDEP
  987. p->lockdep_depth = 0; /* no locks held yet */
  988. p->curr_chain_key = 0;
  989. p->lockdep_recursion = 0;
  990. #endif
  991. #ifdef CONFIG_DEBUG_MUTEXES
  992. p->blocked_on = NULL; /* not blocked yet */
  993. #endif
  994. /* Perform scheduler related setup. Assign this task to a CPU. */
  995. sched_fork(p, clone_flags);
  996. if ((retval = security_task_alloc(p)))
  997. goto bad_fork_cleanup_policy;
  998. if ((retval = audit_alloc(p)))
  999. goto bad_fork_cleanup_security;
  1000. /* copy all the process information */
  1001. if ((retval = copy_semundo(clone_flags, p)))
  1002. goto bad_fork_cleanup_audit;
  1003. if ((retval = copy_files(clone_flags, p)))
  1004. goto bad_fork_cleanup_semundo;
  1005. if ((retval = copy_fs(clone_flags, p)))
  1006. goto bad_fork_cleanup_files;
  1007. if ((retval = copy_sighand(clone_flags, p)))
  1008. goto bad_fork_cleanup_fs;
  1009. if ((retval = copy_signal(clone_flags, p)))
  1010. goto bad_fork_cleanup_sighand;
  1011. if ((retval = copy_mm(clone_flags, p)))
  1012. goto bad_fork_cleanup_signal;
  1013. if ((retval = copy_keys(clone_flags, p)))
  1014. goto bad_fork_cleanup_mm;
  1015. if ((retval = copy_namespaces(clone_flags, p)))
  1016. goto bad_fork_cleanup_keys;
  1017. if ((retval = copy_io(clone_flags, p)))
  1018. goto bad_fork_cleanup_namespaces;
  1019. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  1020. if (retval)
  1021. goto bad_fork_cleanup_io;
  1022. if (pid != &init_struct_pid) {
  1023. retval = -ENOMEM;
  1024. pid = alloc_pid(task_active_pid_ns(p));
  1025. if (!pid)
  1026. goto bad_fork_cleanup_io;
  1027. if (clone_flags & CLONE_NEWPID) {
  1028. retval = pid_ns_prepare_proc(task_active_pid_ns(p));
  1029. if (retval < 0)
  1030. goto bad_fork_free_pid;
  1031. }
  1032. }
  1033. p->pid = pid_nr(pid);
  1034. p->tgid = p->pid;
  1035. if (clone_flags & CLONE_THREAD)
  1036. p->tgid = current->tgid;
  1037. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1038. /*
  1039. * Clear TID on mm_release()?
  1040. */
  1041. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  1042. #ifdef CONFIG_FUTEX
  1043. p->robust_list = NULL;
  1044. #ifdef CONFIG_COMPAT
  1045. p->compat_robust_list = NULL;
  1046. #endif
  1047. INIT_LIST_HEAD(&p->pi_state_list);
  1048. p->pi_state_cache = NULL;
  1049. #endif
  1050. /*
  1051. * sigaltstack should be cleared when sharing the same VM
  1052. */
  1053. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1054. p->sas_ss_sp = p->sas_ss_size = 0;
  1055. /*
  1056. * Syscall tracing should be turned off in the child regardless
  1057. * of CLONE_PTRACE.
  1058. */
  1059. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1060. #ifdef TIF_SYSCALL_EMU
  1061. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1062. #endif
  1063. clear_all_latency_tracing(p);
  1064. /* Our parent execution domain becomes current domain
  1065. These must match for thread signalling to apply */
  1066. p->parent_exec_id = p->self_exec_id;
  1067. /* ok, now we should be set up.. */
  1068. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1069. p->pdeath_signal = 0;
  1070. p->exit_state = 0;
  1071. /*
  1072. * Ok, make it visible to the rest of the system.
  1073. * We dont wake it up yet.
  1074. */
  1075. p->group_leader = p;
  1076. INIT_LIST_HEAD(&p->thread_group);
  1077. INIT_LIST_HEAD(&p->ptrace_children);
  1078. INIT_LIST_HEAD(&p->ptrace_list);
  1079. /* Now that the task is set up, run cgroup callbacks if
  1080. * necessary. We need to run them before the task is visible
  1081. * on the tasklist. */
  1082. cgroup_fork_callbacks(p);
  1083. cgroup_callbacks_done = 1;
  1084. /* Need tasklist lock for parent etc handling! */
  1085. write_lock_irq(&tasklist_lock);
  1086. /*
  1087. * The task hasn't been attached yet, so its cpus_allowed mask will
  1088. * not be changed, nor will its assigned CPU.
  1089. *
  1090. * The cpus_allowed mask of the parent may have changed after it was
  1091. * copied first time - so re-copy it here, then check the child's CPU
  1092. * to ensure it is on a valid CPU (and if not, just force it back to
  1093. * parent's CPU). This avoids alot of nasty races.
  1094. */
  1095. p->cpus_allowed = current->cpus_allowed;
  1096. p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
  1097. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1098. !cpu_online(task_cpu(p))))
  1099. set_task_cpu(p, smp_processor_id());
  1100. /* CLONE_PARENT re-uses the old parent */
  1101. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1102. p->real_parent = current->real_parent;
  1103. else
  1104. p->real_parent = current;
  1105. p->parent = p->real_parent;
  1106. spin_lock(&current->sighand->siglock);
  1107. /*
  1108. * Process group and session signals need to be delivered to just the
  1109. * parent before the fork or both the parent and the child after the
  1110. * fork. Restart if a signal comes in before we add the new process to
  1111. * it's process group.
  1112. * A fatal signal pending means that current will exit, so the new
  1113. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1114. */
  1115. recalc_sigpending();
  1116. if (signal_pending(current)) {
  1117. spin_unlock(&current->sighand->siglock);
  1118. write_unlock_irq(&tasklist_lock);
  1119. retval = -ERESTARTNOINTR;
  1120. goto bad_fork_free_pid;
  1121. }
  1122. if (clone_flags & CLONE_THREAD) {
  1123. p->group_leader = current->group_leader;
  1124. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1125. if (!cputime_eq(current->signal->it_virt_expires,
  1126. cputime_zero) ||
  1127. !cputime_eq(current->signal->it_prof_expires,
  1128. cputime_zero) ||
  1129. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1130. !list_empty(&current->signal->cpu_timers[0]) ||
  1131. !list_empty(&current->signal->cpu_timers[1]) ||
  1132. !list_empty(&current->signal->cpu_timers[2])) {
  1133. /*
  1134. * Have child wake up on its first tick to check
  1135. * for process CPU timers.
  1136. */
  1137. p->it_prof_expires = jiffies_to_cputime(1);
  1138. }
  1139. }
  1140. if (likely(p->pid)) {
  1141. add_parent(p);
  1142. if (unlikely(p->ptrace & PT_PTRACED))
  1143. __ptrace_link(p, current->parent);
  1144. if (thread_group_leader(p)) {
  1145. if (clone_flags & CLONE_NEWPID)
  1146. p->nsproxy->pid_ns->child_reaper = p;
  1147. p->signal->tty = current->signal->tty;
  1148. set_task_pgrp(p, task_pgrp_nr(current));
  1149. set_task_session(p, task_session_nr(current));
  1150. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1151. attach_pid(p, PIDTYPE_SID, task_session(current));
  1152. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1153. __get_cpu_var(process_counts)++;
  1154. }
  1155. attach_pid(p, PIDTYPE_PID, pid);
  1156. nr_threads++;
  1157. }
  1158. total_forks++;
  1159. spin_unlock(&current->sighand->siglock);
  1160. write_unlock_irq(&tasklist_lock);
  1161. proc_fork_connector(p);
  1162. cgroup_post_fork(p);
  1163. return p;
  1164. bad_fork_free_pid:
  1165. if (pid != &init_struct_pid)
  1166. free_pid(pid);
  1167. bad_fork_cleanup_io:
  1168. put_io_context(p->io_context);
  1169. bad_fork_cleanup_namespaces:
  1170. exit_task_namespaces(p);
  1171. bad_fork_cleanup_keys:
  1172. exit_keys(p);
  1173. bad_fork_cleanup_mm:
  1174. if (p->mm)
  1175. mmput(p->mm);
  1176. bad_fork_cleanup_signal:
  1177. cleanup_signal(p);
  1178. bad_fork_cleanup_sighand:
  1179. __cleanup_sighand(p->sighand);
  1180. bad_fork_cleanup_fs:
  1181. exit_fs(p); /* blocking */
  1182. bad_fork_cleanup_files:
  1183. exit_files(p); /* blocking */
  1184. bad_fork_cleanup_semundo:
  1185. exit_sem(p);
  1186. bad_fork_cleanup_audit:
  1187. audit_free(p);
  1188. bad_fork_cleanup_security:
  1189. security_task_free(p);
  1190. bad_fork_cleanup_policy:
  1191. #ifdef CONFIG_NUMA
  1192. mpol_free(p->mempolicy);
  1193. bad_fork_cleanup_cgroup:
  1194. #endif
  1195. cgroup_exit(p, cgroup_callbacks_done);
  1196. delayacct_tsk_free(p);
  1197. if (p->binfmt)
  1198. module_put(p->binfmt->module);
  1199. bad_fork_cleanup_put_domain:
  1200. module_put(task_thread_info(p)->exec_domain->module);
  1201. bad_fork_cleanup_count:
  1202. put_group_info(p->group_info);
  1203. atomic_dec(&p->user->processes);
  1204. free_uid(p->user);
  1205. bad_fork_free:
  1206. free_task(p);
  1207. fork_out:
  1208. return ERR_PTR(retval);
  1209. }
  1210. noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1211. {
  1212. memset(regs, 0, sizeof(struct pt_regs));
  1213. return regs;
  1214. }
  1215. struct task_struct * __cpuinit fork_idle(int cpu)
  1216. {
  1217. struct task_struct *task;
  1218. struct pt_regs regs;
  1219. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1220. &init_struct_pid);
  1221. if (!IS_ERR(task))
  1222. init_idle(task, cpu);
  1223. return task;
  1224. }
  1225. static int fork_traceflag(unsigned clone_flags)
  1226. {
  1227. if (clone_flags & CLONE_UNTRACED)
  1228. return 0;
  1229. else if (clone_flags & CLONE_VFORK) {
  1230. if (current->ptrace & PT_TRACE_VFORK)
  1231. return PTRACE_EVENT_VFORK;
  1232. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1233. if (current->ptrace & PT_TRACE_CLONE)
  1234. return PTRACE_EVENT_CLONE;
  1235. } else if (current->ptrace & PT_TRACE_FORK)
  1236. return PTRACE_EVENT_FORK;
  1237. return 0;
  1238. }
  1239. /*
  1240. * Ok, this is the main fork-routine.
  1241. *
  1242. * It copies the process, and if successful kick-starts
  1243. * it and waits for it to finish using the VM if required.
  1244. */
  1245. long do_fork(unsigned long clone_flags,
  1246. unsigned long stack_start,
  1247. struct pt_regs *regs,
  1248. unsigned long stack_size,
  1249. int __user *parent_tidptr,
  1250. int __user *child_tidptr)
  1251. {
  1252. struct task_struct *p;
  1253. int trace = 0;
  1254. long nr;
  1255. if (unlikely(current->ptrace)) {
  1256. trace = fork_traceflag (clone_flags);
  1257. if (trace)
  1258. clone_flags |= CLONE_PTRACE;
  1259. }
  1260. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1261. child_tidptr, NULL);
  1262. /*
  1263. * Do this prior waking up the new thread - the thread pointer
  1264. * might get invalid after that point, if the thread exits quickly.
  1265. */
  1266. if (!IS_ERR(p)) {
  1267. struct completion vfork;
  1268. /*
  1269. * this is enough to call pid_nr_ns here, but this if
  1270. * improves optimisation of regular fork()
  1271. */
  1272. nr = (clone_flags & CLONE_NEWPID) ?
  1273. task_pid_nr_ns(p, current->nsproxy->pid_ns) :
  1274. task_pid_vnr(p);
  1275. if (clone_flags & CLONE_PARENT_SETTID)
  1276. put_user(nr, parent_tidptr);
  1277. if (clone_flags & CLONE_VFORK) {
  1278. p->vfork_done = &vfork;
  1279. init_completion(&vfork);
  1280. }
  1281. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1282. /*
  1283. * We'll start up with an immediate SIGSTOP.
  1284. */
  1285. sigaddset(&p->pending.signal, SIGSTOP);
  1286. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1287. }
  1288. if (!(clone_flags & CLONE_STOPPED))
  1289. wake_up_new_task(p, clone_flags);
  1290. else
  1291. p->state = TASK_STOPPED;
  1292. if (unlikely (trace)) {
  1293. current->ptrace_message = nr;
  1294. ptrace_notify ((trace << 8) | SIGTRAP);
  1295. }
  1296. if (clone_flags & CLONE_VFORK) {
  1297. freezer_do_not_count();
  1298. wait_for_completion(&vfork);
  1299. freezer_count();
  1300. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1301. current->ptrace_message = nr;
  1302. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1303. }
  1304. }
  1305. } else {
  1306. nr = PTR_ERR(p);
  1307. }
  1308. return nr;
  1309. }
  1310. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1311. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1312. #endif
  1313. static void sighand_ctor(struct kmem_cache *cachep, void *data)
  1314. {
  1315. struct sighand_struct *sighand = data;
  1316. spin_lock_init(&sighand->siglock);
  1317. init_waitqueue_head(&sighand->signalfd_wqh);
  1318. }
  1319. void __init proc_caches_init(void)
  1320. {
  1321. sighand_cachep = kmem_cache_create("sighand_cache",
  1322. sizeof(struct sighand_struct), 0,
  1323. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1324. sighand_ctor);
  1325. signal_cachep = kmem_cache_create("signal_cache",
  1326. sizeof(struct signal_struct), 0,
  1327. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1328. files_cachep = kmem_cache_create("files_cache",
  1329. sizeof(struct files_struct), 0,
  1330. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1331. fs_cachep = kmem_cache_create("fs_cache",
  1332. sizeof(struct fs_struct), 0,
  1333. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1334. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1335. sizeof(struct vm_area_struct), 0,
  1336. SLAB_PANIC, NULL);
  1337. mm_cachep = kmem_cache_create("mm_struct",
  1338. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1339. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1340. }
  1341. /*
  1342. * Check constraints on flags passed to the unshare system call and
  1343. * force unsharing of additional process context as appropriate.
  1344. */
  1345. static void check_unshare_flags(unsigned long *flags_ptr)
  1346. {
  1347. /*
  1348. * If unsharing a thread from a thread group, must also
  1349. * unshare vm.
  1350. */
  1351. if (*flags_ptr & CLONE_THREAD)
  1352. *flags_ptr |= CLONE_VM;
  1353. /*
  1354. * If unsharing vm, must also unshare signal handlers.
  1355. */
  1356. if (*flags_ptr & CLONE_VM)
  1357. *flags_ptr |= CLONE_SIGHAND;
  1358. /*
  1359. * If unsharing signal handlers and the task was created
  1360. * using CLONE_THREAD, then must unshare the thread
  1361. */
  1362. if ((*flags_ptr & CLONE_SIGHAND) &&
  1363. (atomic_read(&current->signal->count) > 1))
  1364. *flags_ptr |= CLONE_THREAD;
  1365. /*
  1366. * If unsharing namespace, must also unshare filesystem information.
  1367. */
  1368. if (*flags_ptr & CLONE_NEWNS)
  1369. *flags_ptr |= CLONE_FS;
  1370. }
  1371. /*
  1372. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1373. */
  1374. static int unshare_thread(unsigned long unshare_flags)
  1375. {
  1376. if (unshare_flags & CLONE_THREAD)
  1377. return -EINVAL;
  1378. return 0;
  1379. }
  1380. /*
  1381. * Unshare the filesystem structure if it is being shared
  1382. */
  1383. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1384. {
  1385. struct fs_struct *fs = current->fs;
  1386. if ((unshare_flags & CLONE_FS) &&
  1387. (fs && atomic_read(&fs->count) > 1)) {
  1388. *new_fsp = __copy_fs_struct(current->fs);
  1389. if (!*new_fsp)
  1390. return -ENOMEM;
  1391. }
  1392. return 0;
  1393. }
  1394. /*
  1395. * Unsharing of sighand is not supported yet
  1396. */
  1397. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1398. {
  1399. struct sighand_struct *sigh = current->sighand;
  1400. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1401. return -EINVAL;
  1402. else
  1403. return 0;
  1404. }
  1405. /*
  1406. * Unshare vm if it is being shared
  1407. */
  1408. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1409. {
  1410. struct mm_struct *mm = current->mm;
  1411. if ((unshare_flags & CLONE_VM) &&
  1412. (mm && atomic_read(&mm->mm_users) > 1)) {
  1413. return -EINVAL;
  1414. }
  1415. return 0;
  1416. }
  1417. /*
  1418. * Unshare file descriptor table if it is being shared
  1419. */
  1420. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1421. {
  1422. struct files_struct *fd = current->files;
  1423. int error = 0;
  1424. if ((unshare_flags & CLONE_FILES) &&
  1425. (fd && atomic_read(&fd->count) > 1)) {
  1426. *new_fdp = dup_fd(fd, &error);
  1427. if (!*new_fdp)
  1428. return error;
  1429. }
  1430. return 0;
  1431. }
  1432. /*
  1433. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1434. * supported yet
  1435. */
  1436. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1437. {
  1438. if (unshare_flags & CLONE_SYSVSEM)
  1439. return -EINVAL;
  1440. return 0;
  1441. }
  1442. /*
  1443. * unshare allows a process to 'unshare' part of the process
  1444. * context which was originally shared using clone. copy_*
  1445. * functions used by do_fork() cannot be used here directly
  1446. * because they modify an inactive task_struct that is being
  1447. * constructed. Here we are modifying the current, active,
  1448. * task_struct.
  1449. */
  1450. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1451. {
  1452. int err = 0;
  1453. struct fs_struct *fs, *new_fs = NULL;
  1454. struct sighand_struct *new_sigh = NULL;
  1455. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1456. struct files_struct *fd, *new_fd = NULL;
  1457. struct sem_undo_list *new_ulist = NULL;
  1458. struct nsproxy *new_nsproxy = NULL;
  1459. check_unshare_flags(&unshare_flags);
  1460. /* Return -EINVAL for all unsupported flags */
  1461. err = -EINVAL;
  1462. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1463. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1464. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
  1465. CLONE_NEWNET))
  1466. goto bad_unshare_out;
  1467. if ((err = unshare_thread(unshare_flags)))
  1468. goto bad_unshare_out;
  1469. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1470. goto bad_unshare_cleanup_thread;
  1471. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1472. goto bad_unshare_cleanup_fs;
  1473. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1474. goto bad_unshare_cleanup_sigh;
  1475. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1476. goto bad_unshare_cleanup_vm;
  1477. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1478. goto bad_unshare_cleanup_fd;
  1479. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1480. new_fs)))
  1481. goto bad_unshare_cleanup_semundo;
  1482. if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
  1483. if (new_nsproxy) {
  1484. switch_task_namespaces(current, new_nsproxy);
  1485. new_nsproxy = NULL;
  1486. }
  1487. task_lock(current);
  1488. if (new_fs) {
  1489. fs = current->fs;
  1490. current->fs = new_fs;
  1491. new_fs = fs;
  1492. }
  1493. if (new_mm) {
  1494. mm = current->mm;
  1495. active_mm = current->active_mm;
  1496. current->mm = new_mm;
  1497. current->active_mm = new_mm;
  1498. activate_mm(active_mm, new_mm);
  1499. new_mm = mm;
  1500. }
  1501. if (new_fd) {
  1502. fd = current->files;
  1503. current->files = new_fd;
  1504. new_fd = fd;
  1505. }
  1506. task_unlock(current);
  1507. }
  1508. if (new_nsproxy)
  1509. put_nsproxy(new_nsproxy);
  1510. bad_unshare_cleanup_semundo:
  1511. bad_unshare_cleanup_fd:
  1512. if (new_fd)
  1513. put_files_struct(new_fd);
  1514. bad_unshare_cleanup_vm:
  1515. if (new_mm)
  1516. mmput(new_mm);
  1517. bad_unshare_cleanup_sigh:
  1518. if (new_sigh)
  1519. if (atomic_dec_and_test(&new_sigh->count))
  1520. kmem_cache_free(sighand_cachep, new_sigh);
  1521. bad_unshare_cleanup_fs:
  1522. if (new_fs)
  1523. put_fs_struct(new_fs);
  1524. bad_unshare_cleanup_thread:
  1525. bad_unshare_out:
  1526. return err;
  1527. }