sched_fair.c 112 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. /*
  26. * Targeted preemption latency for CPU-bound tasks:
  27. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  28. *
  29. * NOTE: this latency value is not the same as the concept of
  30. * 'timeslice length' - timeslices in CFS are of variable length
  31. * and have no persistent notion like in traditional, time-slice
  32. * based scheduling concepts.
  33. *
  34. * (to see the precise effective timeslice length of your workload,
  35. * run vmstat and monitor the context-switches (cs) field)
  36. */
  37. unsigned int sysctl_sched_latency = 6000000ULL;
  38. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  39. /*
  40. * The initial- and re-scaling of tunables is configurable
  41. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  42. *
  43. * Options are:
  44. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  45. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  46. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  47. */
  48. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  49. = SCHED_TUNABLESCALING_LOG;
  50. /*
  51. * Minimal preemption granularity for CPU-bound tasks:
  52. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  53. */
  54. unsigned int sysctl_sched_min_granularity = 750000ULL;
  55. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  56. /*
  57. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  58. */
  59. static unsigned int sched_nr_latency = 8;
  60. /*
  61. * After fork, child runs first. If set to 0 (default) then
  62. * parent will (try to) run first.
  63. */
  64. unsigned int sysctl_sched_child_runs_first __read_mostly;
  65. /*
  66. * SCHED_OTHER wake-up granularity.
  67. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  68. *
  69. * This option delays the preemption effects of decoupled workloads
  70. * and reduces their over-scheduling. Synchronous workloads will still
  71. * have immediate wakeup/sleep latencies.
  72. */
  73. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  74. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  75. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  76. /*
  77. * The exponential sliding window over which load is averaged for shares
  78. * distribution.
  79. * (default: 10msec)
  80. */
  81. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  82. #ifdef CONFIG_CFS_BANDWIDTH
  83. /*
  84. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  85. * each time a cfs_rq requests quota.
  86. *
  87. * Note: in the case that the slice exceeds the runtime remaining (either due
  88. * to consumption or the quota being specified to be smaller than the slice)
  89. * we will always only issue the remaining available time.
  90. *
  91. * default: 5 msec, units: microseconds
  92. */
  93. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  94. #endif
  95. static const struct sched_class fair_sched_class;
  96. /**************************************************************
  97. * CFS operations on generic schedulable entities:
  98. */
  99. #ifdef CONFIG_FAIR_GROUP_SCHED
  100. /* cpu runqueue to which this cfs_rq is attached */
  101. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  102. {
  103. return cfs_rq->rq;
  104. }
  105. /* An entity is a task if it doesn't "own" a runqueue */
  106. #define entity_is_task(se) (!se->my_q)
  107. static inline struct task_struct *task_of(struct sched_entity *se)
  108. {
  109. #ifdef CONFIG_SCHED_DEBUG
  110. WARN_ON_ONCE(!entity_is_task(se));
  111. #endif
  112. return container_of(se, struct task_struct, se);
  113. }
  114. /* Walk up scheduling entities hierarchy */
  115. #define for_each_sched_entity(se) \
  116. for (; se; se = se->parent)
  117. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  118. {
  119. return p->se.cfs_rq;
  120. }
  121. /* runqueue on which this entity is (to be) queued */
  122. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  123. {
  124. return se->cfs_rq;
  125. }
  126. /* runqueue "owned" by this group */
  127. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  128. {
  129. return grp->my_q;
  130. }
  131. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  132. {
  133. if (!cfs_rq->on_list) {
  134. /*
  135. * Ensure we either appear before our parent (if already
  136. * enqueued) or force our parent to appear after us when it is
  137. * enqueued. The fact that we always enqueue bottom-up
  138. * reduces this to two cases.
  139. */
  140. if (cfs_rq->tg->parent &&
  141. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  142. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  143. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  144. } else {
  145. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  146. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  147. }
  148. cfs_rq->on_list = 1;
  149. }
  150. }
  151. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  152. {
  153. if (cfs_rq->on_list) {
  154. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  155. cfs_rq->on_list = 0;
  156. }
  157. }
  158. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  159. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  160. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  161. /* Do the two (enqueued) entities belong to the same group ? */
  162. static inline int
  163. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  164. {
  165. if (se->cfs_rq == pse->cfs_rq)
  166. return 1;
  167. return 0;
  168. }
  169. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  170. {
  171. return se->parent;
  172. }
  173. /* return depth at which a sched entity is present in the hierarchy */
  174. static inline int depth_se(struct sched_entity *se)
  175. {
  176. int depth = 0;
  177. for_each_sched_entity(se)
  178. depth++;
  179. return depth;
  180. }
  181. static void
  182. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  183. {
  184. int se_depth, pse_depth;
  185. /*
  186. * preemption test can be made between sibling entities who are in the
  187. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  188. * both tasks until we find their ancestors who are siblings of common
  189. * parent.
  190. */
  191. /* First walk up until both entities are at same depth */
  192. se_depth = depth_se(*se);
  193. pse_depth = depth_se(*pse);
  194. while (se_depth > pse_depth) {
  195. se_depth--;
  196. *se = parent_entity(*se);
  197. }
  198. while (pse_depth > se_depth) {
  199. pse_depth--;
  200. *pse = parent_entity(*pse);
  201. }
  202. while (!is_same_group(*se, *pse)) {
  203. *se = parent_entity(*se);
  204. *pse = parent_entity(*pse);
  205. }
  206. }
  207. #else /* !CONFIG_FAIR_GROUP_SCHED */
  208. static inline struct task_struct *task_of(struct sched_entity *se)
  209. {
  210. return container_of(se, struct task_struct, se);
  211. }
  212. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  213. {
  214. return container_of(cfs_rq, struct rq, cfs);
  215. }
  216. #define entity_is_task(se) 1
  217. #define for_each_sched_entity(se) \
  218. for (; se; se = NULL)
  219. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  220. {
  221. return &task_rq(p)->cfs;
  222. }
  223. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  224. {
  225. struct task_struct *p = task_of(se);
  226. struct rq *rq = task_rq(p);
  227. return &rq->cfs;
  228. }
  229. /* runqueue "owned" by this group */
  230. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  231. {
  232. return NULL;
  233. }
  234. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  235. {
  236. }
  237. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  238. {
  239. }
  240. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  241. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  242. static inline int
  243. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  244. {
  245. return 1;
  246. }
  247. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  248. {
  249. return NULL;
  250. }
  251. static inline void
  252. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  253. {
  254. }
  255. #endif /* CONFIG_FAIR_GROUP_SCHED */
  256. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  257. unsigned long delta_exec);
  258. /**************************************************************
  259. * Scheduling class tree data structure manipulation methods:
  260. */
  261. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  262. {
  263. s64 delta = (s64)(vruntime - min_vruntime);
  264. if (delta > 0)
  265. min_vruntime = vruntime;
  266. return min_vruntime;
  267. }
  268. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  269. {
  270. s64 delta = (s64)(vruntime - min_vruntime);
  271. if (delta < 0)
  272. min_vruntime = vruntime;
  273. return min_vruntime;
  274. }
  275. static inline int entity_before(struct sched_entity *a,
  276. struct sched_entity *b)
  277. {
  278. return (s64)(a->vruntime - b->vruntime) < 0;
  279. }
  280. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  281. {
  282. u64 vruntime = cfs_rq->min_vruntime;
  283. if (cfs_rq->curr)
  284. vruntime = cfs_rq->curr->vruntime;
  285. if (cfs_rq->rb_leftmost) {
  286. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  287. struct sched_entity,
  288. run_node);
  289. if (!cfs_rq->curr)
  290. vruntime = se->vruntime;
  291. else
  292. vruntime = min_vruntime(vruntime, se->vruntime);
  293. }
  294. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  295. #ifndef CONFIG_64BIT
  296. smp_wmb();
  297. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  298. #endif
  299. }
  300. /*
  301. * Enqueue an entity into the rb-tree:
  302. */
  303. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  304. {
  305. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  306. struct rb_node *parent = NULL;
  307. struct sched_entity *entry;
  308. int leftmost = 1;
  309. /*
  310. * Find the right place in the rbtree:
  311. */
  312. while (*link) {
  313. parent = *link;
  314. entry = rb_entry(parent, struct sched_entity, run_node);
  315. /*
  316. * We dont care about collisions. Nodes with
  317. * the same key stay together.
  318. */
  319. if (entity_before(se, entry)) {
  320. link = &parent->rb_left;
  321. } else {
  322. link = &parent->rb_right;
  323. leftmost = 0;
  324. }
  325. }
  326. /*
  327. * Maintain a cache of leftmost tree entries (it is frequently
  328. * used):
  329. */
  330. if (leftmost)
  331. cfs_rq->rb_leftmost = &se->run_node;
  332. rb_link_node(&se->run_node, parent, link);
  333. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  334. }
  335. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  336. {
  337. if (cfs_rq->rb_leftmost == &se->run_node) {
  338. struct rb_node *next_node;
  339. next_node = rb_next(&se->run_node);
  340. cfs_rq->rb_leftmost = next_node;
  341. }
  342. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  343. }
  344. static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  345. {
  346. struct rb_node *left = cfs_rq->rb_leftmost;
  347. if (!left)
  348. return NULL;
  349. return rb_entry(left, struct sched_entity, run_node);
  350. }
  351. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  352. {
  353. struct rb_node *next = rb_next(&se->run_node);
  354. if (!next)
  355. return NULL;
  356. return rb_entry(next, struct sched_entity, run_node);
  357. }
  358. #ifdef CONFIG_SCHED_DEBUG
  359. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  360. {
  361. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  362. if (!last)
  363. return NULL;
  364. return rb_entry(last, struct sched_entity, run_node);
  365. }
  366. /**************************************************************
  367. * Scheduling class statistics methods:
  368. */
  369. int sched_proc_update_handler(struct ctl_table *table, int write,
  370. void __user *buffer, size_t *lenp,
  371. loff_t *ppos)
  372. {
  373. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  374. int factor = get_update_sysctl_factor();
  375. if (ret || !write)
  376. return ret;
  377. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  378. sysctl_sched_min_granularity);
  379. #define WRT_SYSCTL(name) \
  380. (normalized_sysctl_##name = sysctl_##name / (factor))
  381. WRT_SYSCTL(sched_min_granularity);
  382. WRT_SYSCTL(sched_latency);
  383. WRT_SYSCTL(sched_wakeup_granularity);
  384. #undef WRT_SYSCTL
  385. return 0;
  386. }
  387. #endif
  388. /*
  389. * delta /= w
  390. */
  391. static inline unsigned long
  392. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  393. {
  394. if (unlikely(se->load.weight != NICE_0_LOAD))
  395. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  396. return delta;
  397. }
  398. /*
  399. * The idea is to set a period in which each task runs once.
  400. *
  401. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  402. * this period because otherwise the slices get too small.
  403. *
  404. * p = (nr <= nl) ? l : l*nr/nl
  405. */
  406. static u64 __sched_period(unsigned long nr_running)
  407. {
  408. u64 period = sysctl_sched_latency;
  409. unsigned long nr_latency = sched_nr_latency;
  410. if (unlikely(nr_running > nr_latency)) {
  411. period = sysctl_sched_min_granularity;
  412. period *= nr_running;
  413. }
  414. return period;
  415. }
  416. /*
  417. * We calculate the wall-time slice from the period by taking a part
  418. * proportional to the weight.
  419. *
  420. * s = p*P[w/rw]
  421. */
  422. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  423. {
  424. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  425. for_each_sched_entity(se) {
  426. struct load_weight *load;
  427. struct load_weight lw;
  428. cfs_rq = cfs_rq_of(se);
  429. load = &cfs_rq->load;
  430. if (unlikely(!se->on_rq)) {
  431. lw = cfs_rq->load;
  432. update_load_add(&lw, se->load.weight);
  433. load = &lw;
  434. }
  435. slice = calc_delta_mine(slice, se->load.weight, load);
  436. }
  437. return slice;
  438. }
  439. /*
  440. * We calculate the vruntime slice of a to be inserted task
  441. *
  442. * vs = s/w
  443. */
  444. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  445. {
  446. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  447. }
  448. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  449. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  450. /*
  451. * Update the current task's runtime statistics. Skip current tasks that
  452. * are not in our scheduling class.
  453. */
  454. static inline void
  455. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  456. unsigned long delta_exec)
  457. {
  458. unsigned long delta_exec_weighted;
  459. schedstat_set(curr->statistics.exec_max,
  460. max((u64)delta_exec, curr->statistics.exec_max));
  461. curr->sum_exec_runtime += delta_exec;
  462. schedstat_add(cfs_rq, exec_clock, delta_exec);
  463. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  464. curr->vruntime += delta_exec_weighted;
  465. update_min_vruntime(cfs_rq);
  466. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  467. cfs_rq->load_unacc_exec_time += delta_exec;
  468. #endif
  469. }
  470. static void update_curr(struct cfs_rq *cfs_rq)
  471. {
  472. struct sched_entity *curr = cfs_rq->curr;
  473. u64 now = rq_of(cfs_rq)->clock_task;
  474. unsigned long delta_exec;
  475. if (unlikely(!curr))
  476. return;
  477. /*
  478. * Get the amount of time the current task was running
  479. * since the last time we changed load (this cannot
  480. * overflow on 32 bits):
  481. */
  482. delta_exec = (unsigned long)(now - curr->exec_start);
  483. if (!delta_exec)
  484. return;
  485. __update_curr(cfs_rq, curr, delta_exec);
  486. curr->exec_start = now;
  487. if (entity_is_task(curr)) {
  488. struct task_struct *curtask = task_of(curr);
  489. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  490. cpuacct_charge(curtask, delta_exec);
  491. account_group_exec_runtime(curtask, delta_exec);
  492. }
  493. account_cfs_rq_runtime(cfs_rq, delta_exec);
  494. }
  495. static inline void
  496. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  497. {
  498. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  499. }
  500. /*
  501. * Task is being enqueued - update stats:
  502. */
  503. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  504. {
  505. /*
  506. * Are we enqueueing a waiting task? (for current tasks
  507. * a dequeue/enqueue event is a NOP)
  508. */
  509. if (se != cfs_rq->curr)
  510. update_stats_wait_start(cfs_rq, se);
  511. }
  512. static void
  513. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  514. {
  515. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  516. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  517. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  518. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  519. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  520. #ifdef CONFIG_SCHEDSTATS
  521. if (entity_is_task(se)) {
  522. trace_sched_stat_wait(task_of(se),
  523. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  524. }
  525. #endif
  526. schedstat_set(se->statistics.wait_start, 0);
  527. }
  528. static inline void
  529. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  530. {
  531. /*
  532. * Mark the end of the wait period if dequeueing a
  533. * waiting task:
  534. */
  535. if (se != cfs_rq->curr)
  536. update_stats_wait_end(cfs_rq, se);
  537. }
  538. /*
  539. * We are picking a new current task - update its stats:
  540. */
  541. static inline void
  542. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  543. {
  544. /*
  545. * We are starting a new run period:
  546. */
  547. se->exec_start = rq_of(cfs_rq)->clock_task;
  548. }
  549. /**************************************************
  550. * Scheduling class queueing methods:
  551. */
  552. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  553. static void
  554. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  555. {
  556. cfs_rq->task_weight += weight;
  557. }
  558. #else
  559. static inline void
  560. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  561. {
  562. }
  563. #endif
  564. static void
  565. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  566. {
  567. update_load_add(&cfs_rq->load, se->load.weight);
  568. if (!parent_entity(se))
  569. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  570. if (entity_is_task(se)) {
  571. add_cfs_task_weight(cfs_rq, se->load.weight);
  572. list_add(&se->group_node, &cfs_rq->tasks);
  573. }
  574. cfs_rq->nr_running++;
  575. }
  576. static void
  577. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  578. {
  579. update_load_sub(&cfs_rq->load, se->load.weight);
  580. if (!parent_entity(se))
  581. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  582. if (entity_is_task(se)) {
  583. add_cfs_task_weight(cfs_rq, -se->load.weight);
  584. list_del_init(&se->group_node);
  585. }
  586. cfs_rq->nr_running--;
  587. }
  588. #ifdef CONFIG_FAIR_GROUP_SCHED
  589. # ifdef CONFIG_SMP
  590. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  591. int global_update)
  592. {
  593. struct task_group *tg = cfs_rq->tg;
  594. long load_avg;
  595. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  596. load_avg -= cfs_rq->load_contribution;
  597. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  598. atomic_add(load_avg, &tg->load_weight);
  599. cfs_rq->load_contribution += load_avg;
  600. }
  601. }
  602. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  603. {
  604. u64 period = sysctl_sched_shares_window;
  605. u64 now, delta;
  606. unsigned long load = cfs_rq->load.weight;
  607. if (cfs_rq->tg == &root_task_group)
  608. return;
  609. now = rq_of(cfs_rq)->clock_task;
  610. delta = now - cfs_rq->load_stamp;
  611. /* truncate load history at 4 idle periods */
  612. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  613. now - cfs_rq->load_last > 4 * period) {
  614. cfs_rq->load_period = 0;
  615. cfs_rq->load_avg = 0;
  616. delta = period - 1;
  617. }
  618. cfs_rq->load_stamp = now;
  619. cfs_rq->load_unacc_exec_time = 0;
  620. cfs_rq->load_period += delta;
  621. if (load) {
  622. cfs_rq->load_last = now;
  623. cfs_rq->load_avg += delta * load;
  624. }
  625. /* consider updating load contribution on each fold or truncate */
  626. if (global_update || cfs_rq->load_period > period
  627. || !cfs_rq->load_period)
  628. update_cfs_rq_load_contribution(cfs_rq, global_update);
  629. while (cfs_rq->load_period > period) {
  630. /*
  631. * Inline assembly required to prevent the compiler
  632. * optimising this loop into a divmod call.
  633. * See __iter_div_u64_rem() for another example of this.
  634. */
  635. asm("" : "+rm" (cfs_rq->load_period));
  636. cfs_rq->load_period /= 2;
  637. cfs_rq->load_avg /= 2;
  638. }
  639. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  640. list_del_leaf_cfs_rq(cfs_rq);
  641. }
  642. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  643. {
  644. long load_weight, load, shares;
  645. load = cfs_rq->load.weight;
  646. load_weight = atomic_read(&tg->load_weight);
  647. load_weight += load;
  648. load_weight -= cfs_rq->load_contribution;
  649. shares = (tg->shares * load);
  650. if (load_weight)
  651. shares /= load_weight;
  652. if (shares < MIN_SHARES)
  653. shares = MIN_SHARES;
  654. if (shares > tg->shares)
  655. shares = tg->shares;
  656. return shares;
  657. }
  658. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  659. {
  660. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  661. update_cfs_load(cfs_rq, 0);
  662. update_cfs_shares(cfs_rq);
  663. }
  664. }
  665. # else /* CONFIG_SMP */
  666. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  667. {
  668. }
  669. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  670. {
  671. return tg->shares;
  672. }
  673. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  674. {
  675. }
  676. # endif /* CONFIG_SMP */
  677. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  678. unsigned long weight)
  679. {
  680. if (se->on_rq) {
  681. /* commit outstanding execution time */
  682. if (cfs_rq->curr == se)
  683. update_curr(cfs_rq);
  684. account_entity_dequeue(cfs_rq, se);
  685. }
  686. update_load_set(&se->load, weight);
  687. if (se->on_rq)
  688. account_entity_enqueue(cfs_rq, se);
  689. }
  690. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  691. {
  692. struct task_group *tg;
  693. struct sched_entity *se;
  694. long shares;
  695. tg = cfs_rq->tg;
  696. se = tg->se[cpu_of(rq_of(cfs_rq))];
  697. if (!se)
  698. return;
  699. #ifndef CONFIG_SMP
  700. if (likely(se->load.weight == tg->shares))
  701. return;
  702. #endif
  703. shares = calc_cfs_shares(cfs_rq, tg);
  704. reweight_entity(cfs_rq_of(se), se, shares);
  705. }
  706. #else /* CONFIG_FAIR_GROUP_SCHED */
  707. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  708. {
  709. }
  710. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  711. {
  712. }
  713. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  714. {
  715. }
  716. #endif /* CONFIG_FAIR_GROUP_SCHED */
  717. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  718. {
  719. #ifdef CONFIG_SCHEDSTATS
  720. struct task_struct *tsk = NULL;
  721. if (entity_is_task(se))
  722. tsk = task_of(se);
  723. if (se->statistics.sleep_start) {
  724. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  725. if ((s64)delta < 0)
  726. delta = 0;
  727. if (unlikely(delta > se->statistics.sleep_max))
  728. se->statistics.sleep_max = delta;
  729. se->statistics.sleep_start = 0;
  730. se->statistics.sum_sleep_runtime += delta;
  731. if (tsk) {
  732. account_scheduler_latency(tsk, delta >> 10, 1);
  733. trace_sched_stat_sleep(tsk, delta);
  734. }
  735. }
  736. if (se->statistics.block_start) {
  737. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  738. if ((s64)delta < 0)
  739. delta = 0;
  740. if (unlikely(delta > se->statistics.block_max))
  741. se->statistics.block_max = delta;
  742. se->statistics.block_start = 0;
  743. se->statistics.sum_sleep_runtime += delta;
  744. if (tsk) {
  745. if (tsk->in_iowait) {
  746. se->statistics.iowait_sum += delta;
  747. se->statistics.iowait_count++;
  748. trace_sched_stat_iowait(tsk, delta);
  749. }
  750. /*
  751. * Blocking time is in units of nanosecs, so shift by
  752. * 20 to get a milliseconds-range estimation of the
  753. * amount of time that the task spent sleeping:
  754. */
  755. if (unlikely(prof_on == SLEEP_PROFILING)) {
  756. profile_hits(SLEEP_PROFILING,
  757. (void *)get_wchan(tsk),
  758. delta >> 20);
  759. }
  760. account_scheduler_latency(tsk, delta >> 10, 0);
  761. }
  762. }
  763. #endif
  764. }
  765. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  766. {
  767. #ifdef CONFIG_SCHED_DEBUG
  768. s64 d = se->vruntime - cfs_rq->min_vruntime;
  769. if (d < 0)
  770. d = -d;
  771. if (d > 3*sysctl_sched_latency)
  772. schedstat_inc(cfs_rq, nr_spread_over);
  773. #endif
  774. }
  775. static void
  776. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  777. {
  778. u64 vruntime = cfs_rq->min_vruntime;
  779. /*
  780. * The 'current' period is already promised to the current tasks,
  781. * however the extra weight of the new task will slow them down a
  782. * little, place the new task so that it fits in the slot that
  783. * stays open at the end.
  784. */
  785. if (initial && sched_feat(START_DEBIT))
  786. vruntime += sched_vslice(cfs_rq, se);
  787. /* sleeps up to a single latency don't count. */
  788. if (!initial) {
  789. unsigned long thresh = sysctl_sched_latency;
  790. /*
  791. * Halve their sleep time's effect, to allow
  792. * for a gentler effect of sleepers:
  793. */
  794. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  795. thresh >>= 1;
  796. vruntime -= thresh;
  797. }
  798. /* ensure we never gain time by being placed backwards. */
  799. vruntime = max_vruntime(se->vruntime, vruntime);
  800. se->vruntime = vruntime;
  801. }
  802. static void
  803. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  804. {
  805. /*
  806. * Update the normalized vruntime before updating min_vruntime
  807. * through callig update_curr().
  808. */
  809. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  810. se->vruntime += cfs_rq->min_vruntime;
  811. /*
  812. * Update run-time statistics of the 'current'.
  813. */
  814. update_curr(cfs_rq);
  815. update_cfs_load(cfs_rq, 0);
  816. account_entity_enqueue(cfs_rq, se);
  817. update_cfs_shares(cfs_rq);
  818. if (flags & ENQUEUE_WAKEUP) {
  819. place_entity(cfs_rq, se, 0);
  820. enqueue_sleeper(cfs_rq, se);
  821. }
  822. update_stats_enqueue(cfs_rq, se);
  823. check_spread(cfs_rq, se);
  824. if (se != cfs_rq->curr)
  825. __enqueue_entity(cfs_rq, se);
  826. se->on_rq = 1;
  827. if (cfs_rq->nr_running == 1)
  828. list_add_leaf_cfs_rq(cfs_rq);
  829. }
  830. static void __clear_buddies_last(struct sched_entity *se)
  831. {
  832. for_each_sched_entity(se) {
  833. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  834. if (cfs_rq->last == se)
  835. cfs_rq->last = NULL;
  836. else
  837. break;
  838. }
  839. }
  840. static void __clear_buddies_next(struct sched_entity *se)
  841. {
  842. for_each_sched_entity(se) {
  843. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  844. if (cfs_rq->next == se)
  845. cfs_rq->next = NULL;
  846. else
  847. break;
  848. }
  849. }
  850. static void __clear_buddies_skip(struct sched_entity *se)
  851. {
  852. for_each_sched_entity(se) {
  853. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  854. if (cfs_rq->skip == se)
  855. cfs_rq->skip = NULL;
  856. else
  857. break;
  858. }
  859. }
  860. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  861. {
  862. if (cfs_rq->last == se)
  863. __clear_buddies_last(se);
  864. if (cfs_rq->next == se)
  865. __clear_buddies_next(se);
  866. if (cfs_rq->skip == se)
  867. __clear_buddies_skip(se);
  868. }
  869. static void
  870. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  871. {
  872. /*
  873. * Update run-time statistics of the 'current'.
  874. */
  875. update_curr(cfs_rq);
  876. update_stats_dequeue(cfs_rq, se);
  877. if (flags & DEQUEUE_SLEEP) {
  878. #ifdef CONFIG_SCHEDSTATS
  879. if (entity_is_task(se)) {
  880. struct task_struct *tsk = task_of(se);
  881. if (tsk->state & TASK_INTERRUPTIBLE)
  882. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  883. if (tsk->state & TASK_UNINTERRUPTIBLE)
  884. se->statistics.block_start = rq_of(cfs_rq)->clock;
  885. }
  886. #endif
  887. }
  888. clear_buddies(cfs_rq, se);
  889. if (se != cfs_rq->curr)
  890. __dequeue_entity(cfs_rq, se);
  891. se->on_rq = 0;
  892. update_cfs_load(cfs_rq, 0);
  893. account_entity_dequeue(cfs_rq, se);
  894. /*
  895. * Normalize the entity after updating the min_vruntime because the
  896. * update can refer to the ->curr item and we need to reflect this
  897. * movement in our normalized position.
  898. */
  899. if (!(flags & DEQUEUE_SLEEP))
  900. se->vruntime -= cfs_rq->min_vruntime;
  901. update_min_vruntime(cfs_rq);
  902. update_cfs_shares(cfs_rq);
  903. }
  904. /*
  905. * Preempt the current task with a newly woken task if needed:
  906. */
  907. static void
  908. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  909. {
  910. unsigned long ideal_runtime, delta_exec;
  911. ideal_runtime = sched_slice(cfs_rq, curr);
  912. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  913. if (delta_exec > ideal_runtime) {
  914. resched_task(rq_of(cfs_rq)->curr);
  915. /*
  916. * The current task ran long enough, ensure it doesn't get
  917. * re-elected due to buddy favours.
  918. */
  919. clear_buddies(cfs_rq, curr);
  920. return;
  921. }
  922. /*
  923. * Ensure that a task that missed wakeup preemption by a
  924. * narrow margin doesn't have to wait for a full slice.
  925. * This also mitigates buddy induced latencies under load.
  926. */
  927. if (delta_exec < sysctl_sched_min_granularity)
  928. return;
  929. if (cfs_rq->nr_running > 1) {
  930. struct sched_entity *se = __pick_first_entity(cfs_rq);
  931. s64 delta = curr->vruntime - se->vruntime;
  932. if (delta < 0)
  933. return;
  934. if (delta > ideal_runtime)
  935. resched_task(rq_of(cfs_rq)->curr);
  936. }
  937. }
  938. static void
  939. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  940. {
  941. /* 'current' is not kept within the tree. */
  942. if (se->on_rq) {
  943. /*
  944. * Any task has to be enqueued before it get to execute on
  945. * a CPU. So account for the time it spent waiting on the
  946. * runqueue.
  947. */
  948. update_stats_wait_end(cfs_rq, se);
  949. __dequeue_entity(cfs_rq, se);
  950. }
  951. update_stats_curr_start(cfs_rq, se);
  952. cfs_rq->curr = se;
  953. #ifdef CONFIG_SCHEDSTATS
  954. /*
  955. * Track our maximum slice length, if the CPU's load is at
  956. * least twice that of our own weight (i.e. dont track it
  957. * when there are only lesser-weight tasks around):
  958. */
  959. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  960. se->statistics.slice_max = max(se->statistics.slice_max,
  961. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  962. }
  963. #endif
  964. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  965. }
  966. static int
  967. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  968. /*
  969. * Pick the next process, keeping these things in mind, in this order:
  970. * 1) keep things fair between processes/task groups
  971. * 2) pick the "next" process, since someone really wants that to run
  972. * 3) pick the "last" process, for cache locality
  973. * 4) do not run the "skip" process, if something else is available
  974. */
  975. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  976. {
  977. struct sched_entity *se = __pick_first_entity(cfs_rq);
  978. struct sched_entity *left = se;
  979. /*
  980. * Avoid running the skip buddy, if running something else can
  981. * be done without getting too unfair.
  982. */
  983. if (cfs_rq->skip == se) {
  984. struct sched_entity *second = __pick_next_entity(se);
  985. if (second && wakeup_preempt_entity(second, left) < 1)
  986. se = second;
  987. }
  988. /*
  989. * Prefer last buddy, try to return the CPU to a preempted task.
  990. */
  991. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  992. se = cfs_rq->last;
  993. /*
  994. * Someone really wants this to run. If it's not unfair, run it.
  995. */
  996. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  997. se = cfs_rq->next;
  998. clear_buddies(cfs_rq, se);
  999. return se;
  1000. }
  1001. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1002. {
  1003. /*
  1004. * If still on the runqueue then deactivate_task()
  1005. * was not called and update_curr() has to be done:
  1006. */
  1007. if (prev->on_rq)
  1008. update_curr(cfs_rq);
  1009. check_spread(cfs_rq, prev);
  1010. if (prev->on_rq) {
  1011. update_stats_wait_start(cfs_rq, prev);
  1012. /* Put 'current' back into the tree. */
  1013. __enqueue_entity(cfs_rq, prev);
  1014. }
  1015. cfs_rq->curr = NULL;
  1016. }
  1017. static void
  1018. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1019. {
  1020. /*
  1021. * Update run-time statistics of the 'current'.
  1022. */
  1023. update_curr(cfs_rq);
  1024. /*
  1025. * Update share accounting for long-running entities.
  1026. */
  1027. update_entity_shares_tick(cfs_rq);
  1028. #ifdef CONFIG_SCHED_HRTICK
  1029. /*
  1030. * queued ticks are scheduled to match the slice, so don't bother
  1031. * validating it and just reschedule.
  1032. */
  1033. if (queued) {
  1034. resched_task(rq_of(cfs_rq)->curr);
  1035. return;
  1036. }
  1037. /*
  1038. * don't let the period tick interfere with the hrtick preemption
  1039. */
  1040. if (!sched_feat(DOUBLE_TICK) &&
  1041. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1042. return;
  1043. #endif
  1044. if (cfs_rq->nr_running > 1)
  1045. check_preempt_tick(cfs_rq, curr);
  1046. }
  1047. /**************************************************
  1048. * CFS bandwidth control machinery
  1049. */
  1050. #ifdef CONFIG_CFS_BANDWIDTH
  1051. /*
  1052. * default period for cfs group bandwidth.
  1053. * default: 0.1s, units: nanoseconds
  1054. */
  1055. static inline u64 default_cfs_period(void)
  1056. {
  1057. return 100000000ULL;
  1058. }
  1059. static inline u64 sched_cfs_bandwidth_slice(void)
  1060. {
  1061. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1062. }
  1063. static void assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1064. {
  1065. struct task_group *tg = cfs_rq->tg;
  1066. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1067. u64 amount = 0, min_amount;
  1068. /* note: this is a positive sum as runtime_remaining <= 0 */
  1069. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1070. raw_spin_lock(&cfs_b->lock);
  1071. if (cfs_b->quota == RUNTIME_INF)
  1072. amount = min_amount;
  1073. else if (cfs_b->runtime > 0) {
  1074. amount = min(cfs_b->runtime, min_amount);
  1075. cfs_b->runtime -= amount;
  1076. }
  1077. raw_spin_unlock(&cfs_b->lock);
  1078. cfs_rq->runtime_remaining += amount;
  1079. }
  1080. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1081. unsigned long delta_exec)
  1082. {
  1083. if (!cfs_rq->runtime_enabled)
  1084. return;
  1085. cfs_rq->runtime_remaining -= delta_exec;
  1086. if (cfs_rq->runtime_remaining > 0)
  1087. return;
  1088. assign_cfs_rq_runtime(cfs_rq);
  1089. }
  1090. static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1091. unsigned long delta_exec)
  1092. {
  1093. if (!cfs_rq->runtime_enabled)
  1094. return;
  1095. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1096. }
  1097. #else
  1098. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1099. unsigned long delta_exec) {}
  1100. #endif
  1101. /**************************************************
  1102. * CFS operations on tasks:
  1103. */
  1104. #ifdef CONFIG_SCHED_HRTICK
  1105. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1106. {
  1107. struct sched_entity *se = &p->se;
  1108. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1109. WARN_ON(task_rq(p) != rq);
  1110. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  1111. u64 slice = sched_slice(cfs_rq, se);
  1112. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1113. s64 delta = slice - ran;
  1114. if (delta < 0) {
  1115. if (rq->curr == p)
  1116. resched_task(p);
  1117. return;
  1118. }
  1119. /*
  1120. * Don't schedule slices shorter than 10000ns, that just
  1121. * doesn't make sense. Rely on vruntime for fairness.
  1122. */
  1123. if (rq->curr != p)
  1124. delta = max_t(s64, 10000LL, delta);
  1125. hrtick_start(rq, delta);
  1126. }
  1127. }
  1128. /*
  1129. * called from enqueue/dequeue and updates the hrtick when the
  1130. * current task is from our class and nr_running is low enough
  1131. * to matter.
  1132. */
  1133. static void hrtick_update(struct rq *rq)
  1134. {
  1135. struct task_struct *curr = rq->curr;
  1136. if (curr->sched_class != &fair_sched_class)
  1137. return;
  1138. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1139. hrtick_start_fair(rq, curr);
  1140. }
  1141. #else /* !CONFIG_SCHED_HRTICK */
  1142. static inline void
  1143. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1144. {
  1145. }
  1146. static inline void hrtick_update(struct rq *rq)
  1147. {
  1148. }
  1149. #endif
  1150. /*
  1151. * The enqueue_task method is called before nr_running is
  1152. * increased. Here we update the fair scheduling stats and
  1153. * then put the task into the rbtree:
  1154. */
  1155. static void
  1156. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1157. {
  1158. struct cfs_rq *cfs_rq;
  1159. struct sched_entity *se = &p->se;
  1160. for_each_sched_entity(se) {
  1161. if (se->on_rq)
  1162. break;
  1163. cfs_rq = cfs_rq_of(se);
  1164. enqueue_entity(cfs_rq, se, flags);
  1165. cfs_rq->h_nr_running++;
  1166. flags = ENQUEUE_WAKEUP;
  1167. }
  1168. for_each_sched_entity(se) {
  1169. cfs_rq = cfs_rq_of(se);
  1170. cfs_rq->h_nr_running++;
  1171. update_cfs_load(cfs_rq, 0);
  1172. update_cfs_shares(cfs_rq);
  1173. }
  1174. inc_nr_running(rq);
  1175. hrtick_update(rq);
  1176. }
  1177. static void set_next_buddy(struct sched_entity *se);
  1178. /*
  1179. * The dequeue_task method is called before nr_running is
  1180. * decreased. We remove the task from the rbtree and
  1181. * update the fair scheduling stats:
  1182. */
  1183. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1184. {
  1185. struct cfs_rq *cfs_rq;
  1186. struct sched_entity *se = &p->se;
  1187. int task_sleep = flags & DEQUEUE_SLEEP;
  1188. for_each_sched_entity(se) {
  1189. cfs_rq = cfs_rq_of(se);
  1190. dequeue_entity(cfs_rq, se, flags);
  1191. cfs_rq->h_nr_running--;
  1192. /* Don't dequeue parent if it has other entities besides us */
  1193. if (cfs_rq->load.weight) {
  1194. /*
  1195. * Bias pick_next to pick a task from this cfs_rq, as
  1196. * p is sleeping when it is within its sched_slice.
  1197. */
  1198. if (task_sleep && parent_entity(se))
  1199. set_next_buddy(parent_entity(se));
  1200. /* avoid re-evaluating load for this entity */
  1201. se = parent_entity(se);
  1202. break;
  1203. }
  1204. flags |= DEQUEUE_SLEEP;
  1205. }
  1206. for_each_sched_entity(se) {
  1207. cfs_rq = cfs_rq_of(se);
  1208. cfs_rq->h_nr_running--;
  1209. update_cfs_load(cfs_rq, 0);
  1210. update_cfs_shares(cfs_rq);
  1211. }
  1212. dec_nr_running(rq);
  1213. hrtick_update(rq);
  1214. }
  1215. #ifdef CONFIG_SMP
  1216. static void task_waking_fair(struct task_struct *p)
  1217. {
  1218. struct sched_entity *se = &p->se;
  1219. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1220. u64 min_vruntime;
  1221. #ifndef CONFIG_64BIT
  1222. u64 min_vruntime_copy;
  1223. do {
  1224. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1225. smp_rmb();
  1226. min_vruntime = cfs_rq->min_vruntime;
  1227. } while (min_vruntime != min_vruntime_copy);
  1228. #else
  1229. min_vruntime = cfs_rq->min_vruntime;
  1230. #endif
  1231. se->vruntime -= min_vruntime;
  1232. }
  1233. #ifdef CONFIG_FAIR_GROUP_SCHED
  1234. /*
  1235. * effective_load() calculates the load change as seen from the root_task_group
  1236. *
  1237. * Adding load to a group doesn't make a group heavier, but can cause movement
  1238. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1239. * can calculate the shift in shares.
  1240. */
  1241. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1242. {
  1243. struct sched_entity *se = tg->se[cpu];
  1244. if (!tg->parent)
  1245. return wl;
  1246. for_each_sched_entity(se) {
  1247. long lw, w;
  1248. tg = se->my_q->tg;
  1249. w = se->my_q->load.weight;
  1250. /* use this cpu's instantaneous contribution */
  1251. lw = atomic_read(&tg->load_weight);
  1252. lw -= se->my_q->load_contribution;
  1253. lw += w + wg;
  1254. wl += w;
  1255. if (lw > 0 && wl < lw)
  1256. wl = (wl * tg->shares) / lw;
  1257. else
  1258. wl = tg->shares;
  1259. /* zero point is MIN_SHARES */
  1260. if (wl < MIN_SHARES)
  1261. wl = MIN_SHARES;
  1262. wl -= se->load.weight;
  1263. wg = 0;
  1264. }
  1265. return wl;
  1266. }
  1267. #else
  1268. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1269. unsigned long wl, unsigned long wg)
  1270. {
  1271. return wl;
  1272. }
  1273. #endif
  1274. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1275. {
  1276. s64 this_load, load;
  1277. int idx, this_cpu, prev_cpu;
  1278. unsigned long tl_per_task;
  1279. struct task_group *tg;
  1280. unsigned long weight;
  1281. int balanced;
  1282. idx = sd->wake_idx;
  1283. this_cpu = smp_processor_id();
  1284. prev_cpu = task_cpu(p);
  1285. load = source_load(prev_cpu, idx);
  1286. this_load = target_load(this_cpu, idx);
  1287. /*
  1288. * If sync wakeup then subtract the (maximum possible)
  1289. * effect of the currently running task from the load
  1290. * of the current CPU:
  1291. */
  1292. if (sync) {
  1293. tg = task_group(current);
  1294. weight = current->se.load.weight;
  1295. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1296. load += effective_load(tg, prev_cpu, 0, -weight);
  1297. }
  1298. tg = task_group(p);
  1299. weight = p->se.load.weight;
  1300. /*
  1301. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1302. * due to the sync cause above having dropped this_load to 0, we'll
  1303. * always have an imbalance, but there's really nothing you can do
  1304. * about that, so that's good too.
  1305. *
  1306. * Otherwise check if either cpus are near enough in load to allow this
  1307. * task to be woken on this_cpu.
  1308. */
  1309. if (this_load > 0) {
  1310. s64 this_eff_load, prev_eff_load;
  1311. this_eff_load = 100;
  1312. this_eff_load *= power_of(prev_cpu);
  1313. this_eff_load *= this_load +
  1314. effective_load(tg, this_cpu, weight, weight);
  1315. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1316. prev_eff_load *= power_of(this_cpu);
  1317. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1318. balanced = this_eff_load <= prev_eff_load;
  1319. } else
  1320. balanced = true;
  1321. /*
  1322. * If the currently running task will sleep within
  1323. * a reasonable amount of time then attract this newly
  1324. * woken task:
  1325. */
  1326. if (sync && balanced)
  1327. return 1;
  1328. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1329. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1330. if (balanced ||
  1331. (this_load <= load &&
  1332. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1333. /*
  1334. * This domain has SD_WAKE_AFFINE and
  1335. * p is cache cold in this domain, and
  1336. * there is no bad imbalance.
  1337. */
  1338. schedstat_inc(sd, ttwu_move_affine);
  1339. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1340. return 1;
  1341. }
  1342. return 0;
  1343. }
  1344. /*
  1345. * find_idlest_group finds and returns the least busy CPU group within the
  1346. * domain.
  1347. */
  1348. static struct sched_group *
  1349. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1350. int this_cpu, int load_idx)
  1351. {
  1352. struct sched_group *idlest = NULL, *group = sd->groups;
  1353. unsigned long min_load = ULONG_MAX, this_load = 0;
  1354. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1355. do {
  1356. unsigned long load, avg_load;
  1357. int local_group;
  1358. int i;
  1359. /* Skip over this group if it has no CPUs allowed */
  1360. if (!cpumask_intersects(sched_group_cpus(group),
  1361. &p->cpus_allowed))
  1362. continue;
  1363. local_group = cpumask_test_cpu(this_cpu,
  1364. sched_group_cpus(group));
  1365. /* Tally up the load of all CPUs in the group */
  1366. avg_load = 0;
  1367. for_each_cpu(i, sched_group_cpus(group)) {
  1368. /* Bias balancing toward cpus of our domain */
  1369. if (local_group)
  1370. load = source_load(i, load_idx);
  1371. else
  1372. load = target_load(i, load_idx);
  1373. avg_load += load;
  1374. }
  1375. /* Adjust by relative CPU power of the group */
  1376. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  1377. if (local_group) {
  1378. this_load = avg_load;
  1379. } else if (avg_load < min_load) {
  1380. min_load = avg_load;
  1381. idlest = group;
  1382. }
  1383. } while (group = group->next, group != sd->groups);
  1384. if (!idlest || 100*this_load < imbalance*min_load)
  1385. return NULL;
  1386. return idlest;
  1387. }
  1388. /*
  1389. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1390. */
  1391. static int
  1392. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1393. {
  1394. unsigned long load, min_load = ULONG_MAX;
  1395. int idlest = -1;
  1396. int i;
  1397. /* Traverse only the allowed CPUs */
  1398. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1399. load = weighted_cpuload(i);
  1400. if (load < min_load || (load == min_load && i == this_cpu)) {
  1401. min_load = load;
  1402. idlest = i;
  1403. }
  1404. }
  1405. return idlest;
  1406. }
  1407. /*
  1408. * Try and locate an idle CPU in the sched_domain.
  1409. */
  1410. static int select_idle_sibling(struct task_struct *p, int target)
  1411. {
  1412. int cpu = smp_processor_id();
  1413. int prev_cpu = task_cpu(p);
  1414. struct sched_domain *sd;
  1415. int i;
  1416. /*
  1417. * If the task is going to be woken-up on this cpu and if it is
  1418. * already idle, then it is the right target.
  1419. */
  1420. if (target == cpu && idle_cpu(cpu))
  1421. return cpu;
  1422. /*
  1423. * If the task is going to be woken-up on the cpu where it previously
  1424. * ran and if it is currently idle, then it the right target.
  1425. */
  1426. if (target == prev_cpu && idle_cpu(prev_cpu))
  1427. return prev_cpu;
  1428. /*
  1429. * Otherwise, iterate the domains and find an elegible idle cpu.
  1430. */
  1431. rcu_read_lock();
  1432. for_each_domain(target, sd) {
  1433. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1434. break;
  1435. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1436. if (idle_cpu(i)) {
  1437. target = i;
  1438. break;
  1439. }
  1440. }
  1441. /*
  1442. * Lets stop looking for an idle sibling when we reached
  1443. * the domain that spans the current cpu and prev_cpu.
  1444. */
  1445. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1446. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1447. break;
  1448. }
  1449. rcu_read_unlock();
  1450. return target;
  1451. }
  1452. /*
  1453. * sched_balance_self: balance the current task (running on cpu) in domains
  1454. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1455. * SD_BALANCE_EXEC.
  1456. *
  1457. * Balance, ie. select the least loaded group.
  1458. *
  1459. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1460. *
  1461. * preempt must be disabled.
  1462. */
  1463. static int
  1464. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  1465. {
  1466. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1467. int cpu = smp_processor_id();
  1468. int prev_cpu = task_cpu(p);
  1469. int new_cpu = cpu;
  1470. int want_affine = 0;
  1471. int want_sd = 1;
  1472. int sync = wake_flags & WF_SYNC;
  1473. if (sd_flag & SD_BALANCE_WAKE) {
  1474. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1475. want_affine = 1;
  1476. new_cpu = prev_cpu;
  1477. }
  1478. rcu_read_lock();
  1479. for_each_domain(cpu, tmp) {
  1480. if (!(tmp->flags & SD_LOAD_BALANCE))
  1481. continue;
  1482. /*
  1483. * If power savings logic is enabled for a domain, see if we
  1484. * are not overloaded, if so, don't balance wider.
  1485. */
  1486. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1487. unsigned long power = 0;
  1488. unsigned long nr_running = 0;
  1489. unsigned long capacity;
  1490. int i;
  1491. for_each_cpu(i, sched_domain_span(tmp)) {
  1492. power += power_of(i);
  1493. nr_running += cpu_rq(i)->cfs.nr_running;
  1494. }
  1495. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  1496. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1497. nr_running /= 2;
  1498. if (nr_running < capacity)
  1499. want_sd = 0;
  1500. }
  1501. /*
  1502. * If both cpu and prev_cpu are part of this domain,
  1503. * cpu is a valid SD_WAKE_AFFINE target.
  1504. */
  1505. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1506. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1507. affine_sd = tmp;
  1508. want_affine = 0;
  1509. }
  1510. if (!want_sd && !want_affine)
  1511. break;
  1512. if (!(tmp->flags & sd_flag))
  1513. continue;
  1514. if (want_sd)
  1515. sd = tmp;
  1516. }
  1517. if (affine_sd) {
  1518. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1519. prev_cpu = cpu;
  1520. new_cpu = select_idle_sibling(p, prev_cpu);
  1521. goto unlock;
  1522. }
  1523. while (sd) {
  1524. int load_idx = sd->forkexec_idx;
  1525. struct sched_group *group;
  1526. int weight;
  1527. if (!(sd->flags & sd_flag)) {
  1528. sd = sd->child;
  1529. continue;
  1530. }
  1531. if (sd_flag & SD_BALANCE_WAKE)
  1532. load_idx = sd->wake_idx;
  1533. group = find_idlest_group(sd, p, cpu, load_idx);
  1534. if (!group) {
  1535. sd = sd->child;
  1536. continue;
  1537. }
  1538. new_cpu = find_idlest_cpu(group, p, cpu);
  1539. if (new_cpu == -1 || new_cpu == cpu) {
  1540. /* Now try balancing at a lower domain level of cpu */
  1541. sd = sd->child;
  1542. continue;
  1543. }
  1544. /* Now try balancing at a lower domain level of new_cpu */
  1545. cpu = new_cpu;
  1546. weight = sd->span_weight;
  1547. sd = NULL;
  1548. for_each_domain(cpu, tmp) {
  1549. if (weight <= tmp->span_weight)
  1550. break;
  1551. if (tmp->flags & sd_flag)
  1552. sd = tmp;
  1553. }
  1554. /* while loop will break here if sd == NULL */
  1555. }
  1556. unlock:
  1557. rcu_read_unlock();
  1558. return new_cpu;
  1559. }
  1560. #endif /* CONFIG_SMP */
  1561. static unsigned long
  1562. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1563. {
  1564. unsigned long gran = sysctl_sched_wakeup_granularity;
  1565. /*
  1566. * Since its curr running now, convert the gran from real-time
  1567. * to virtual-time in his units.
  1568. *
  1569. * By using 'se' instead of 'curr' we penalize light tasks, so
  1570. * they get preempted easier. That is, if 'se' < 'curr' then
  1571. * the resulting gran will be larger, therefore penalizing the
  1572. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1573. * be smaller, again penalizing the lighter task.
  1574. *
  1575. * This is especially important for buddies when the leftmost
  1576. * task is higher priority than the buddy.
  1577. */
  1578. return calc_delta_fair(gran, se);
  1579. }
  1580. /*
  1581. * Should 'se' preempt 'curr'.
  1582. *
  1583. * |s1
  1584. * |s2
  1585. * |s3
  1586. * g
  1587. * |<--->|c
  1588. *
  1589. * w(c, s1) = -1
  1590. * w(c, s2) = 0
  1591. * w(c, s3) = 1
  1592. *
  1593. */
  1594. static int
  1595. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1596. {
  1597. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1598. if (vdiff <= 0)
  1599. return -1;
  1600. gran = wakeup_gran(curr, se);
  1601. if (vdiff > gran)
  1602. return 1;
  1603. return 0;
  1604. }
  1605. static void set_last_buddy(struct sched_entity *se)
  1606. {
  1607. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  1608. return;
  1609. for_each_sched_entity(se)
  1610. cfs_rq_of(se)->last = se;
  1611. }
  1612. static void set_next_buddy(struct sched_entity *se)
  1613. {
  1614. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  1615. return;
  1616. for_each_sched_entity(se)
  1617. cfs_rq_of(se)->next = se;
  1618. }
  1619. static void set_skip_buddy(struct sched_entity *se)
  1620. {
  1621. for_each_sched_entity(se)
  1622. cfs_rq_of(se)->skip = se;
  1623. }
  1624. /*
  1625. * Preempt the current task with a newly woken task if needed:
  1626. */
  1627. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1628. {
  1629. struct task_struct *curr = rq->curr;
  1630. struct sched_entity *se = &curr->se, *pse = &p->se;
  1631. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1632. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1633. int next_buddy_marked = 0;
  1634. if (unlikely(se == pse))
  1635. return;
  1636. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  1637. set_next_buddy(pse);
  1638. next_buddy_marked = 1;
  1639. }
  1640. /*
  1641. * We can come here with TIF_NEED_RESCHED already set from new task
  1642. * wake up path.
  1643. */
  1644. if (test_tsk_need_resched(curr))
  1645. return;
  1646. /* Idle tasks are by definition preempted by non-idle tasks. */
  1647. if (unlikely(curr->policy == SCHED_IDLE) &&
  1648. likely(p->policy != SCHED_IDLE))
  1649. goto preempt;
  1650. /*
  1651. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  1652. * is driven by the tick):
  1653. */
  1654. if (unlikely(p->policy != SCHED_NORMAL))
  1655. return;
  1656. find_matching_se(&se, &pse);
  1657. update_curr(cfs_rq_of(se));
  1658. BUG_ON(!pse);
  1659. if (wakeup_preempt_entity(se, pse) == 1) {
  1660. /*
  1661. * Bias pick_next to pick the sched entity that is
  1662. * triggering this preemption.
  1663. */
  1664. if (!next_buddy_marked)
  1665. set_next_buddy(pse);
  1666. goto preempt;
  1667. }
  1668. return;
  1669. preempt:
  1670. resched_task(curr);
  1671. /*
  1672. * Only set the backward buddy when the current task is still
  1673. * on the rq. This can happen when a wakeup gets interleaved
  1674. * with schedule on the ->pre_schedule() or idle_balance()
  1675. * point, either of which can * drop the rq lock.
  1676. *
  1677. * Also, during early boot the idle thread is in the fair class,
  1678. * for obvious reasons its a bad idea to schedule back to it.
  1679. */
  1680. if (unlikely(!se->on_rq || curr == rq->idle))
  1681. return;
  1682. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1683. set_last_buddy(se);
  1684. }
  1685. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1686. {
  1687. struct task_struct *p;
  1688. struct cfs_rq *cfs_rq = &rq->cfs;
  1689. struct sched_entity *se;
  1690. if (!cfs_rq->nr_running)
  1691. return NULL;
  1692. do {
  1693. se = pick_next_entity(cfs_rq);
  1694. set_next_entity(cfs_rq, se);
  1695. cfs_rq = group_cfs_rq(se);
  1696. } while (cfs_rq);
  1697. p = task_of(se);
  1698. hrtick_start_fair(rq, p);
  1699. return p;
  1700. }
  1701. /*
  1702. * Account for a descheduled task:
  1703. */
  1704. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1705. {
  1706. struct sched_entity *se = &prev->se;
  1707. struct cfs_rq *cfs_rq;
  1708. for_each_sched_entity(se) {
  1709. cfs_rq = cfs_rq_of(se);
  1710. put_prev_entity(cfs_rq, se);
  1711. }
  1712. }
  1713. /*
  1714. * sched_yield() is very simple
  1715. *
  1716. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  1717. */
  1718. static void yield_task_fair(struct rq *rq)
  1719. {
  1720. struct task_struct *curr = rq->curr;
  1721. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1722. struct sched_entity *se = &curr->se;
  1723. /*
  1724. * Are we the only task in the tree?
  1725. */
  1726. if (unlikely(rq->nr_running == 1))
  1727. return;
  1728. clear_buddies(cfs_rq, se);
  1729. if (curr->policy != SCHED_BATCH) {
  1730. update_rq_clock(rq);
  1731. /*
  1732. * Update run-time statistics of the 'current'.
  1733. */
  1734. update_curr(cfs_rq);
  1735. }
  1736. set_skip_buddy(se);
  1737. }
  1738. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  1739. {
  1740. struct sched_entity *se = &p->se;
  1741. if (!se->on_rq)
  1742. return false;
  1743. /* Tell the scheduler that we'd really like pse to run next. */
  1744. set_next_buddy(se);
  1745. yield_task_fair(rq);
  1746. return true;
  1747. }
  1748. #ifdef CONFIG_SMP
  1749. /**************************************************
  1750. * Fair scheduling class load-balancing methods:
  1751. */
  1752. /*
  1753. * pull_task - move a task from a remote runqueue to the local runqueue.
  1754. * Both runqueues must be locked.
  1755. */
  1756. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1757. struct rq *this_rq, int this_cpu)
  1758. {
  1759. deactivate_task(src_rq, p, 0);
  1760. set_task_cpu(p, this_cpu);
  1761. activate_task(this_rq, p, 0);
  1762. check_preempt_curr(this_rq, p, 0);
  1763. }
  1764. /*
  1765. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1766. */
  1767. static
  1768. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1769. struct sched_domain *sd, enum cpu_idle_type idle,
  1770. int *all_pinned)
  1771. {
  1772. int tsk_cache_hot = 0;
  1773. /*
  1774. * We do not migrate tasks that are:
  1775. * 1) running (obviously), or
  1776. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1777. * 3) are cache-hot on their current CPU.
  1778. */
  1779. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1780. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1781. return 0;
  1782. }
  1783. *all_pinned = 0;
  1784. if (task_running(rq, p)) {
  1785. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1786. return 0;
  1787. }
  1788. /*
  1789. * Aggressive migration if:
  1790. * 1) task is cache cold, or
  1791. * 2) too many balance attempts have failed.
  1792. */
  1793. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1794. if (!tsk_cache_hot ||
  1795. sd->nr_balance_failed > sd->cache_nice_tries) {
  1796. #ifdef CONFIG_SCHEDSTATS
  1797. if (tsk_cache_hot) {
  1798. schedstat_inc(sd, lb_hot_gained[idle]);
  1799. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1800. }
  1801. #endif
  1802. return 1;
  1803. }
  1804. if (tsk_cache_hot) {
  1805. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1806. return 0;
  1807. }
  1808. return 1;
  1809. }
  1810. /*
  1811. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1812. * part of active balancing operations within "domain".
  1813. * Returns 1 if successful and 0 otherwise.
  1814. *
  1815. * Called with both runqueues locked.
  1816. */
  1817. static int
  1818. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1819. struct sched_domain *sd, enum cpu_idle_type idle)
  1820. {
  1821. struct task_struct *p, *n;
  1822. struct cfs_rq *cfs_rq;
  1823. int pinned = 0;
  1824. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1825. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1826. if (!can_migrate_task(p, busiest, this_cpu,
  1827. sd, idle, &pinned))
  1828. continue;
  1829. pull_task(busiest, p, this_rq, this_cpu);
  1830. /*
  1831. * Right now, this is only the second place pull_task()
  1832. * is called, so we can safely collect pull_task()
  1833. * stats here rather than inside pull_task().
  1834. */
  1835. schedstat_inc(sd, lb_gained[idle]);
  1836. return 1;
  1837. }
  1838. }
  1839. return 0;
  1840. }
  1841. static unsigned long
  1842. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1843. unsigned long max_load_move, struct sched_domain *sd,
  1844. enum cpu_idle_type idle, int *all_pinned,
  1845. struct cfs_rq *busiest_cfs_rq)
  1846. {
  1847. int loops = 0, pulled = 0;
  1848. long rem_load_move = max_load_move;
  1849. struct task_struct *p, *n;
  1850. if (max_load_move == 0)
  1851. goto out;
  1852. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1853. if (loops++ > sysctl_sched_nr_migrate)
  1854. break;
  1855. if ((p->se.load.weight >> 1) > rem_load_move ||
  1856. !can_migrate_task(p, busiest, this_cpu, sd, idle,
  1857. all_pinned))
  1858. continue;
  1859. pull_task(busiest, p, this_rq, this_cpu);
  1860. pulled++;
  1861. rem_load_move -= p->se.load.weight;
  1862. #ifdef CONFIG_PREEMPT
  1863. /*
  1864. * NEWIDLE balancing is a source of latency, so preemptible
  1865. * kernels will stop after the first task is pulled to minimize
  1866. * the critical section.
  1867. */
  1868. if (idle == CPU_NEWLY_IDLE)
  1869. break;
  1870. #endif
  1871. /*
  1872. * We only want to steal up to the prescribed amount of
  1873. * weighted load.
  1874. */
  1875. if (rem_load_move <= 0)
  1876. break;
  1877. }
  1878. out:
  1879. /*
  1880. * Right now, this is one of only two places pull_task() is called,
  1881. * so we can safely collect pull_task() stats here rather than
  1882. * inside pull_task().
  1883. */
  1884. schedstat_add(sd, lb_gained[idle], pulled);
  1885. return max_load_move - rem_load_move;
  1886. }
  1887. #ifdef CONFIG_FAIR_GROUP_SCHED
  1888. /*
  1889. * update tg->load_weight by folding this cpu's load_avg
  1890. */
  1891. static int update_shares_cpu(struct task_group *tg, int cpu)
  1892. {
  1893. struct cfs_rq *cfs_rq;
  1894. unsigned long flags;
  1895. struct rq *rq;
  1896. if (!tg->se[cpu])
  1897. return 0;
  1898. rq = cpu_rq(cpu);
  1899. cfs_rq = tg->cfs_rq[cpu];
  1900. raw_spin_lock_irqsave(&rq->lock, flags);
  1901. update_rq_clock(rq);
  1902. update_cfs_load(cfs_rq, 1);
  1903. /*
  1904. * We need to update shares after updating tg->load_weight in
  1905. * order to adjust the weight of groups with long running tasks.
  1906. */
  1907. update_cfs_shares(cfs_rq);
  1908. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1909. return 0;
  1910. }
  1911. static void update_shares(int cpu)
  1912. {
  1913. struct cfs_rq *cfs_rq;
  1914. struct rq *rq = cpu_rq(cpu);
  1915. rcu_read_lock();
  1916. /*
  1917. * Iterates the task_group tree in a bottom up fashion, see
  1918. * list_add_leaf_cfs_rq() for details.
  1919. */
  1920. for_each_leaf_cfs_rq(rq, cfs_rq)
  1921. update_shares_cpu(cfs_rq->tg, cpu);
  1922. rcu_read_unlock();
  1923. }
  1924. /*
  1925. * Compute the cpu's hierarchical load factor for each task group.
  1926. * This needs to be done in a top-down fashion because the load of a child
  1927. * group is a fraction of its parents load.
  1928. */
  1929. static int tg_load_down(struct task_group *tg, void *data)
  1930. {
  1931. unsigned long load;
  1932. long cpu = (long)data;
  1933. if (!tg->parent) {
  1934. load = cpu_rq(cpu)->load.weight;
  1935. } else {
  1936. load = tg->parent->cfs_rq[cpu]->h_load;
  1937. load *= tg->se[cpu]->load.weight;
  1938. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1939. }
  1940. tg->cfs_rq[cpu]->h_load = load;
  1941. return 0;
  1942. }
  1943. static void update_h_load(long cpu)
  1944. {
  1945. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1946. }
  1947. static unsigned long
  1948. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1949. unsigned long max_load_move,
  1950. struct sched_domain *sd, enum cpu_idle_type idle,
  1951. int *all_pinned)
  1952. {
  1953. long rem_load_move = max_load_move;
  1954. struct cfs_rq *busiest_cfs_rq;
  1955. rcu_read_lock();
  1956. update_h_load(cpu_of(busiest));
  1957. for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
  1958. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1959. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1960. u64 rem_load, moved_load;
  1961. /*
  1962. * empty group
  1963. */
  1964. if (!busiest_cfs_rq->task_weight)
  1965. continue;
  1966. rem_load = (u64)rem_load_move * busiest_weight;
  1967. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1968. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1969. rem_load, sd, idle, all_pinned,
  1970. busiest_cfs_rq);
  1971. if (!moved_load)
  1972. continue;
  1973. moved_load *= busiest_h_load;
  1974. moved_load = div_u64(moved_load, busiest_weight + 1);
  1975. rem_load_move -= moved_load;
  1976. if (rem_load_move < 0)
  1977. break;
  1978. }
  1979. rcu_read_unlock();
  1980. return max_load_move - rem_load_move;
  1981. }
  1982. #else
  1983. static inline void update_shares(int cpu)
  1984. {
  1985. }
  1986. static unsigned long
  1987. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1988. unsigned long max_load_move,
  1989. struct sched_domain *sd, enum cpu_idle_type idle,
  1990. int *all_pinned)
  1991. {
  1992. return balance_tasks(this_rq, this_cpu, busiest,
  1993. max_load_move, sd, idle, all_pinned,
  1994. &busiest->cfs);
  1995. }
  1996. #endif
  1997. /*
  1998. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1999. * this_rq, as part of a balancing operation within domain "sd".
  2000. * Returns 1 if successful and 0 otherwise.
  2001. *
  2002. * Called with both runqueues locked.
  2003. */
  2004. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2005. unsigned long max_load_move,
  2006. struct sched_domain *sd, enum cpu_idle_type idle,
  2007. int *all_pinned)
  2008. {
  2009. unsigned long total_load_moved = 0, load_moved;
  2010. do {
  2011. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  2012. max_load_move - total_load_moved,
  2013. sd, idle, all_pinned);
  2014. total_load_moved += load_moved;
  2015. #ifdef CONFIG_PREEMPT
  2016. /*
  2017. * NEWIDLE balancing is a source of latency, so preemptible
  2018. * kernels will stop after the first task is pulled to minimize
  2019. * the critical section.
  2020. */
  2021. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2022. break;
  2023. if (raw_spin_is_contended(&this_rq->lock) ||
  2024. raw_spin_is_contended(&busiest->lock))
  2025. break;
  2026. #endif
  2027. } while (load_moved && max_load_move > total_load_moved);
  2028. return total_load_moved > 0;
  2029. }
  2030. /********** Helpers for find_busiest_group ************************/
  2031. /*
  2032. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2033. * during load balancing.
  2034. */
  2035. struct sd_lb_stats {
  2036. struct sched_group *busiest; /* Busiest group in this sd */
  2037. struct sched_group *this; /* Local group in this sd */
  2038. unsigned long total_load; /* Total load of all groups in sd */
  2039. unsigned long total_pwr; /* Total power of all groups in sd */
  2040. unsigned long avg_load; /* Average load across all groups in sd */
  2041. /** Statistics of this group */
  2042. unsigned long this_load;
  2043. unsigned long this_load_per_task;
  2044. unsigned long this_nr_running;
  2045. unsigned long this_has_capacity;
  2046. unsigned int this_idle_cpus;
  2047. /* Statistics of the busiest group */
  2048. unsigned int busiest_idle_cpus;
  2049. unsigned long max_load;
  2050. unsigned long busiest_load_per_task;
  2051. unsigned long busiest_nr_running;
  2052. unsigned long busiest_group_capacity;
  2053. unsigned long busiest_has_capacity;
  2054. unsigned int busiest_group_weight;
  2055. int group_imb; /* Is there imbalance in this sd */
  2056. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2057. int power_savings_balance; /* Is powersave balance needed for this sd */
  2058. struct sched_group *group_min; /* Least loaded group in sd */
  2059. struct sched_group *group_leader; /* Group which relieves group_min */
  2060. unsigned long min_load_per_task; /* load_per_task in group_min */
  2061. unsigned long leader_nr_running; /* Nr running of group_leader */
  2062. unsigned long min_nr_running; /* Nr running of group_min */
  2063. #endif
  2064. };
  2065. /*
  2066. * sg_lb_stats - stats of a sched_group required for load_balancing
  2067. */
  2068. struct sg_lb_stats {
  2069. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2070. unsigned long group_load; /* Total load over the CPUs of the group */
  2071. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2072. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2073. unsigned long group_capacity;
  2074. unsigned long idle_cpus;
  2075. unsigned long group_weight;
  2076. int group_imb; /* Is there an imbalance in the group ? */
  2077. int group_has_capacity; /* Is there extra capacity in the group? */
  2078. };
  2079. /**
  2080. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2081. * @group: The group whose first cpu is to be returned.
  2082. */
  2083. static inline unsigned int group_first_cpu(struct sched_group *group)
  2084. {
  2085. return cpumask_first(sched_group_cpus(group));
  2086. }
  2087. /**
  2088. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2089. * @sd: The sched_domain whose load_idx is to be obtained.
  2090. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2091. */
  2092. static inline int get_sd_load_idx(struct sched_domain *sd,
  2093. enum cpu_idle_type idle)
  2094. {
  2095. int load_idx;
  2096. switch (idle) {
  2097. case CPU_NOT_IDLE:
  2098. load_idx = sd->busy_idx;
  2099. break;
  2100. case CPU_NEWLY_IDLE:
  2101. load_idx = sd->newidle_idx;
  2102. break;
  2103. default:
  2104. load_idx = sd->idle_idx;
  2105. break;
  2106. }
  2107. return load_idx;
  2108. }
  2109. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2110. /**
  2111. * init_sd_power_savings_stats - Initialize power savings statistics for
  2112. * the given sched_domain, during load balancing.
  2113. *
  2114. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2115. * @sds: Variable containing the statistics for sd.
  2116. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2117. */
  2118. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2119. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2120. {
  2121. /*
  2122. * Busy processors will not participate in power savings
  2123. * balance.
  2124. */
  2125. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2126. sds->power_savings_balance = 0;
  2127. else {
  2128. sds->power_savings_balance = 1;
  2129. sds->min_nr_running = ULONG_MAX;
  2130. sds->leader_nr_running = 0;
  2131. }
  2132. }
  2133. /**
  2134. * update_sd_power_savings_stats - Update the power saving stats for a
  2135. * sched_domain while performing load balancing.
  2136. *
  2137. * @group: sched_group belonging to the sched_domain under consideration.
  2138. * @sds: Variable containing the statistics of the sched_domain
  2139. * @local_group: Does group contain the CPU for which we're performing
  2140. * load balancing ?
  2141. * @sgs: Variable containing the statistics of the group.
  2142. */
  2143. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2144. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2145. {
  2146. if (!sds->power_savings_balance)
  2147. return;
  2148. /*
  2149. * If the local group is idle or completely loaded
  2150. * no need to do power savings balance at this domain
  2151. */
  2152. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2153. !sds->this_nr_running))
  2154. sds->power_savings_balance = 0;
  2155. /*
  2156. * If a group is already running at full capacity or idle,
  2157. * don't include that group in power savings calculations
  2158. */
  2159. if (!sds->power_savings_balance ||
  2160. sgs->sum_nr_running >= sgs->group_capacity ||
  2161. !sgs->sum_nr_running)
  2162. return;
  2163. /*
  2164. * Calculate the group which has the least non-idle load.
  2165. * This is the group from where we need to pick up the load
  2166. * for saving power
  2167. */
  2168. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2169. (sgs->sum_nr_running == sds->min_nr_running &&
  2170. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2171. sds->group_min = group;
  2172. sds->min_nr_running = sgs->sum_nr_running;
  2173. sds->min_load_per_task = sgs->sum_weighted_load /
  2174. sgs->sum_nr_running;
  2175. }
  2176. /*
  2177. * Calculate the group which is almost near its
  2178. * capacity but still has some space to pick up some load
  2179. * from other group and save more power
  2180. */
  2181. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2182. return;
  2183. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2184. (sgs->sum_nr_running == sds->leader_nr_running &&
  2185. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2186. sds->group_leader = group;
  2187. sds->leader_nr_running = sgs->sum_nr_running;
  2188. }
  2189. }
  2190. /**
  2191. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2192. * @sds: Variable containing the statistics of the sched_domain
  2193. * under consideration.
  2194. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2195. * @imbalance: Variable to store the imbalance.
  2196. *
  2197. * Description:
  2198. * Check if we have potential to perform some power-savings balance.
  2199. * If yes, set the busiest group to be the least loaded group in the
  2200. * sched_domain, so that it's CPUs can be put to idle.
  2201. *
  2202. * Returns 1 if there is potential to perform power-savings balance.
  2203. * Else returns 0.
  2204. */
  2205. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2206. int this_cpu, unsigned long *imbalance)
  2207. {
  2208. if (!sds->power_savings_balance)
  2209. return 0;
  2210. if (sds->this != sds->group_leader ||
  2211. sds->group_leader == sds->group_min)
  2212. return 0;
  2213. *imbalance = sds->min_load_per_task;
  2214. sds->busiest = sds->group_min;
  2215. return 1;
  2216. }
  2217. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2218. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2219. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2220. {
  2221. return;
  2222. }
  2223. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2224. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2225. {
  2226. return;
  2227. }
  2228. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2229. int this_cpu, unsigned long *imbalance)
  2230. {
  2231. return 0;
  2232. }
  2233. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2234. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2235. {
  2236. return SCHED_POWER_SCALE;
  2237. }
  2238. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2239. {
  2240. return default_scale_freq_power(sd, cpu);
  2241. }
  2242. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2243. {
  2244. unsigned long weight = sd->span_weight;
  2245. unsigned long smt_gain = sd->smt_gain;
  2246. smt_gain /= weight;
  2247. return smt_gain;
  2248. }
  2249. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2250. {
  2251. return default_scale_smt_power(sd, cpu);
  2252. }
  2253. unsigned long scale_rt_power(int cpu)
  2254. {
  2255. struct rq *rq = cpu_rq(cpu);
  2256. u64 total, available;
  2257. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2258. if (unlikely(total < rq->rt_avg)) {
  2259. /* Ensures that power won't end up being negative */
  2260. available = 0;
  2261. } else {
  2262. available = total - rq->rt_avg;
  2263. }
  2264. if (unlikely((s64)total < SCHED_POWER_SCALE))
  2265. total = SCHED_POWER_SCALE;
  2266. total >>= SCHED_POWER_SHIFT;
  2267. return div_u64(available, total);
  2268. }
  2269. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2270. {
  2271. unsigned long weight = sd->span_weight;
  2272. unsigned long power = SCHED_POWER_SCALE;
  2273. struct sched_group *sdg = sd->groups;
  2274. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2275. if (sched_feat(ARCH_POWER))
  2276. power *= arch_scale_smt_power(sd, cpu);
  2277. else
  2278. power *= default_scale_smt_power(sd, cpu);
  2279. power >>= SCHED_POWER_SHIFT;
  2280. }
  2281. sdg->sgp->power_orig = power;
  2282. if (sched_feat(ARCH_POWER))
  2283. power *= arch_scale_freq_power(sd, cpu);
  2284. else
  2285. power *= default_scale_freq_power(sd, cpu);
  2286. power >>= SCHED_POWER_SHIFT;
  2287. power *= scale_rt_power(cpu);
  2288. power >>= SCHED_POWER_SHIFT;
  2289. if (!power)
  2290. power = 1;
  2291. cpu_rq(cpu)->cpu_power = power;
  2292. sdg->sgp->power = power;
  2293. }
  2294. static void update_group_power(struct sched_domain *sd, int cpu)
  2295. {
  2296. struct sched_domain *child = sd->child;
  2297. struct sched_group *group, *sdg = sd->groups;
  2298. unsigned long power;
  2299. if (!child) {
  2300. update_cpu_power(sd, cpu);
  2301. return;
  2302. }
  2303. power = 0;
  2304. group = child->groups;
  2305. do {
  2306. power += group->sgp->power;
  2307. group = group->next;
  2308. } while (group != child->groups);
  2309. sdg->sgp->power = power;
  2310. }
  2311. /*
  2312. * Try and fix up capacity for tiny siblings, this is needed when
  2313. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2314. * which on its own isn't powerful enough.
  2315. *
  2316. * See update_sd_pick_busiest() and check_asym_packing().
  2317. */
  2318. static inline int
  2319. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2320. {
  2321. /*
  2322. * Only siblings can have significantly less than SCHED_POWER_SCALE
  2323. */
  2324. if (!(sd->flags & SD_SHARE_CPUPOWER))
  2325. return 0;
  2326. /*
  2327. * If ~90% of the cpu_power is still there, we're good.
  2328. */
  2329. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  2330. return 1;
  2331. return 0;
  2332. }
  2333. /**
  2334. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2335. * @sd: The sched_domain whose statistics are to be updated.
  2336. * @group: sched_group whose statistics are to be updated.
  2337. * @this_cpu: Cpu for which load balance is currently performed.
  2338. * @idle: Idle status of this_cpu
  2339. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2340. * @local_group: Does group contain this_cpu.
  2341. * @cpus: Set of cpus considered for load balancing.
  2342. * @balance: Should we balance.
  2343. * @sgs: variable to hold the statistics for this group.
  2344. */
  2345. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2346. struct sched_group *group, int this_cpu,
  2347. enum cpu_idle_type idle, int load_idx,
  2348. int local_group, const struct cpumask *cpus,
  2349. int *balance, struct sg_lb_stats *sgs)
  2350. {
  2351. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2352. int i;
  2353. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2354. unsigned long avg_load_per_task = 0;
  2355. if (local_group)
  2356. balance_cpu = group_first_cpu(group);
  2357. /* Tally up the load of all CPUs in the group */
  2358. max_cpu_load = 0;
  2359. min_cpu_load = ~0UL;
  2360. max_nr_running = 0;
  2361. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2362. struct rq *rq = cpu_rq(i);
  2363. /* Bias balancing toward cpus of our domain */
  2364. if (local_group) {
  2365. if (idle_cpu(i) && !first_idle_cpu) {
  2366. first_idle_cpu = 1;
  2367. balance_cpu = i;
  2368. }
  2369. load = target_load(i, load_idx);
  2370. } else {
  2371. load = source_load(i, load_idx);
  2372. if (load > max_cpu_load) {
  2373. max_cpu_load = load;
  2374. max_nr_running = rq->nr_running;
  2375. }
  2376. if (min_cpu_load > load)
  2377. min_cpu_load = load;
  2378. }
  2379. sgs->group_load += load;
  2380. sgs->sum_nr_running += rq->nr_running;
  2381. sgs->sum_weighted_load += weighted_cpuload(i);
  2382. if (idle_cpu(i))
  2383. sgs->idle_cpus++;
  2384. }
  2385. /*
  2386. * First idle cpu or the first cpu(busiest) in this sched group
  2387. * is eligible for doing load balancing at this and above
  2388. * domains. In the newly idle case, we will allow all the cpu's
  2389. * to do the newly idle load balance.
  2390. */
  2391. if (idle != CPU_NEWLY_IDLE && local_group) {
  2392. if (balance_cpu != this_cpu) {
  2393. *balance = 0;
  2394. return;
  2395. }
  2396. update_group_power(sd, this_cpu);
  2397. }
  2398. /* Adjust by relative CPU power of the group */
  2399. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  2400. /*
  2401. * Consider the group unbalanced when the imbalance is larger
  2402. * than the average weight of a task.
  2403. *
  2404. * APZ: with cgroup the avg task weight can vary wildly and
  2405. * might not be a suitable number - should we keep a
  2406. * normalized nr_running number somewhere that negates
  2407. * the hierarchy?
  2408. */
  2409. if (sgs->sum_nr_running)
  2410. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2411. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  2412. sgs->group_imb = 1;
  2413. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  2414. SCHED_POWER_SCALE);
  2415. if (!sgs->group_capacity)
  2416. sgs->group_capacity = fix_small_capacity(sd, group);
  2417. sgs->group_weight = group->group_weight;
  2418. if (sgs->group_capacity > sgs->sum_nr_running)
  2419. sgs->group_has_capacity = 1;
  2420. }
  2421. /**
  2422. * update_sd_pick_busiest - return 1 on busiest group
  2423. * @sd: sched_domain whose statistics are to be checked
  2424. * @sds: sched_domain statistics
  2425. * @sg: sched_group candidate to be checked for being the busiest
  2426. * @sgs: sched_group statistics
  2427. * @this_cpu: the current cpu
  2428. *
  2429. * Determine if @sg is a busier group than the previously selected
  2430. * busiest group.
  2431. */
  2432. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2433. struct sd_lb_stats *sds,
  2434. struct sched_group *sg,
  2435. struct sg_lb_stats *sgs,
  2436. int this_cpu)
  2437. {
  2438. if (sgs->avg_load <= sds->max_load)
  2439. return false;
  2440. if (sgs->sum_nr_running > sgs->group_capacity)
  2441. return true;
  2442. if (sgs->group_imb)
  2443. return true;
  2444. /*
  2445. * ASYM_PACKING needs to move all the work to the lowest
  2446. * numbered CPUs in the group, therefore mark all groups
  2447. * higher than ourself as busy.
  2448. */
  2449. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2450. this_cpu < group_first_cpu(sg)) {
  2451. if (!sds->busiest)
  2452. return true;
  2453. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2454. return true;
  2455. }
  2456. return false;
  2457. }
  2458. /**
  2459. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2460. * @sd: sched_domain whose statistics are to be updated.
  2461. * @this_cpu: Cpu for which load balance is currently performed.
  2462. * @idle: Idle status of this_cpu
  2463. * @cpus: Set of cpus considered for load balancing.
  2464. * @balance: Should we balance.
  2465. * @sds: variable to hold the statistics for this sched_domain.
  2466. */
  2467. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2468. enum cpu_idle_type idle, const struct cpumask *cpus,
  2469. int *balance, struct sd_lb_stats *sds)
  2470. {
  2471. struct sched_domain *child = sd->child;
  2472. struct sched_group *sg = sd->groups;
  2473. struct sg_lb_stats sgs;
  2474. int load_idx, prefer_sibling = 0;
  2475. if (child && child->flags & SD_PREFER_SIBLING)
  2476. prefer_sibling = 1;
  2477. init_sd_power_savings_stats(sd, sds, idle);
  2478. load_idx = get_sd_load_idx(sd, idle);
  2479. do {
  2480. int local_group;
  2481. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2482. memset(&sgs, 0, sizeof(sgs));
  2483. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  2484. local_group, cpus, balance, &sgs);
  2485. if (local_group && !(*balance))
  2486. return;
  2487. sds->total_load += sgs.group_load;
  2488. sds->total_pwr += sg->sgp->power;
  2489. /*
  2490. * In case the child domain prefers tasks go to siblings
  2491. * first, lower the sg capacity to one so that we'll try
  2492. * and move all the excess tasks away. We lower the capacity
  2493. * of a group only if the local group has the capacity to fit
  2494. * these excess tasks, i.e. nr_running < group_capacity. The
  2495. * extra check prevents the case where you always pull from the
  2496. * heaviest group when it is already under-utilized (possible
  2497. * with a large weight task outweighs the tasks on the system).
  2498. */
  2499. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2500. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2501. if (local_group) {
  2502. sds->this_load = sgs.avg_load;
  2503. sds->this = sg;
  2504. sds->this_nr_running = sgs.sum_nr_running;
  2505. sds->this_load_per_task = sgs.sum_weighted_load;
  2506. sds->this_has_capacity = sgs.group_has_capacity;
  2507. sds->this_idle_cpus = sgs.idle_cpus;
  2508. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2509. sds->max_load = sgs.avg_load;
  2510. sds->busiest = sg;
  2511. sds->busiest_nr_running = sgs.sum_nr_running;
  2512. sds->busiest_idle_cpus = sgs.idle_cpus;
  2513. sds->busiest_group_capacity = sgs.group_capacity;
  2514. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2515. sds->busiest_has_capacity = sgs.group_has_capacity;
  2516. sds->busiest_group_weight = sgs.group_weight;
  2517. sds->group_imb = sgs.group_imb;
  2518. }
  2519. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2520. sg = sg->next;
  2521. } while (sg != sd->groups);
  2522. }
  2523. int __weak arch_sd_sibling_asym_packing(void)
  2524. {
  2525. return 0*SD_ASYM_PACKING;
  2526. }
  2527. /**
  2528. * check_asym_packing - Check to see if the group is packed into the
  2529. * sched doman.
  2530. *
  2531. * This is primarily intended to used at the sibling level. Some
  2532. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2533. * case of POWER7, it can move to lower SMT modes only when higher
  2534. * threads are idle. When in lower SMT modes, the threads will
  2535. * perform better since they share less core resources. Hence when we
  2536. * have idle threads, we want them to be the higher ones.
  2537. *
  2538. * This packing function is run on idle threads. It checks to see if
  2539. * the busiest CPU in this domain (core in the P7 case) has a higher
  2540. * CPU number than the packing function is being run on. Here we are
  2541. * assuming lower CPU number will be equivalent to lower a SMT thread
  2542. * number.
  2543. *
  2544. * Returns 1 when packing is required and a task should be moved to
  2545. * this CPU. The amount of the imbalance is returned in *imbalance.
  2546. *
  2547. * @sd: The sched_domain whose packing is to be checked.
  2548. * @sds: Statistics of the sched_domain which is to be packed
  2549. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2550. * @imbalance: returns amount of imbalanced due to packing.
  2551. */
  2552. static int check_asym_packing(struct sched_domain *sd,
  2553. struct sd_lb_stats *sds,
  2554. int this_cpu, unsigned long *imbalance)
  2555. {
  2556. int busiest_cpu;
  2557. if (!(sd->flags & SD_ASYM_PACKING))
  2558. return 0;
  2559. if (!sds->busiest)
  2560. return 0;
  2561. busiest_cpu = group_first_cpu(sds->busiest);
  2562. if (this_cpu > busiest_cpu)
  2563. return 0;
  2564. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
  2565. SCHED_POWER_SCALE);
  2566. return 1;
  2567. }
  2568. /**
  2569. * fix_small_imbalance - Calculate the minor imbalance that exists
  2570. * amongst the groups of a sched_domain, during
  2571. * load balancing.
  2572. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2573. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2574. * @imbalance: Variable to store the imbalance.
  2575. */
  2576. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2577. int this_cpu, unsigned long *imbalance)
  2578. {
  2579. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2580. unsigned int imbn = 2;
  2581. unsigned long scaled_busy_load_per_task;
  2582. if (sds->this_nr_running) {
  2583. sds->this_load_per_task /= sds->this_nr_running;
  2584. if (sds->busiest_load_per_task >
  2585. sds->this_load_per_task)
  2586. imbn = 1;
  2587. } else
  2588. sds->this_load_per_task =
  2589. cpu_avg_load_per_task(this_cpu);
  2590. scaled_busy_load_per_task = sds->busiest_load_per_task
  2591. * SCHED_POWER_SCALE;
  2592. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  2593. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2594. (scaled_busy_load_per_task * imbn)) {
  2595. *imbalance = sds->busiest_load_per_task;
  2596. return;
  2597. }
  2598. /*
  2599. * OK, we don't have enough imbalance to justify moving tasks,
  2600. * however we may be able to increase total CPU power used by
  2601. * moving them.
  2602. */
  2603. pwr_now += sds->busiest->sgp->power *
  2604. min(sds->busiest_load_per_task, sds->max_load);
  2605. pwr_now += sds->this->sgp->power *
  2606. min(sds->this_load_per_task, sds->this_load);
  2607. pwr_now /= SCHED_POWER_SCALE;
  2608. /* Amount of load we'd subtract */
  2609. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  2610. sds->busiest->sgp->power;
  2611. if (sds->max_load > tmp)
  2612. pwr_move += sds->busiest->sgp->power *
  2613. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2614. /* Amount of load we'd add */
  2615. if (sds->max_load * sds->busiest->sgp->power <
  2616. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  2617. tmp = (sds->max_load * sds->busiest->sgp->power) /
  2618. sds->this->sgp->power;
  2619. else
  2620. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  2621. sds->this->sgp->power;
  2622. pwr_move += sds->this->sgp->power *
  2623. min(sds->this_load_per_task, sds->this_load + tmp);
  2624. pwr_move /= SCHED_POWER_SCALE;
  2625. /* Move if we gain throughput */
  2626. if (pwr_move > pwr_now)
  2627. *imbalance = sds->busiest_load_per_task;
  2628. }
  2629. /**
  2630. * calculate_imbalance - Calculate the amount of imbalance present within the
  2631. * groups of a given sched_domain during load balance.
  2632. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2633. * @this_cpu: Cpu for which currently load balance is being performed.
  2634. * @imbalance: The variable to store the imbalance.
  2635. */
  2636. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2637. unsigned long *imbalance)
  2638. {
  2639. unsigned long max_pull, load_above_capacity = ~0UL;
  2640. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2641. if (sds->group_imb) {
  2642. sds->busiest_load_per_task =
  2643. min(sds->busiest_load_per_task, sds->avg_load);
  2644. }
  2645. /*
  2646. * In the presence of smp nice balancing, certain scenarios can have
  2647. * max load less than avg load(as we skip the groups at or below
  2648. * its cpu_power, while calculating max_load..)
  2649. */
  2650. if (sds->max_load < sds->avg_load) {
  2651. *imbalance = 0;
  2652. return fix_small_imbalance(sds, this_cpu, imbalance);
  2653. }
  2654. if (!sds->group_imb) {
  2655. /*
  2656. * Don't want to pull so many tasks that a group would go idle.
  2657. */
  2658. load_above_capacity = (sds->busiest_nr_running -
  2659. sds->busiest_group_capacity);
  2660. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  2661. load_above_capacity /= sds->busiest->sgp->power;
  2662. }
  2663. /*
  2664. * We're trying to get all the cpus to the average_load, so we don't
  2665. * want to push ourselves above the average load, nor do we wish to
  2666. * reduce the max loaded cpu below the average load. At the same time,
  2667. * we also don't want to reduce the group load below the group capacity
  2668. * (so that we can implement power-savings policies etc). Thus we look
  2669. * for the minimum possible imbalance.
  2670. * Be careful of negative numbers as they'll appear as very large values
  2671. * with unsigned longs.
  2672. */
  2673. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2674. /* How much load to actually move to equalise the imbalance */
  2675. *imbalance = min(max_pull * sds->busiest->sgp->power,
  2676. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  2677. / SCHED_POWER_SCALE;
  2678. /*
  2679. * if *imbalance is less than the average load per runnable task
  2680. * there is no guarantee that any tasks will be moved so we'll have
  2681. * a think about bumping its value to force at least one task to be
  2682. * moved
  2683. */
  2684. if (*imbalance < sds->busiest_load_per_task)
  2685. return fix_small_imbalance(sds, this_cpu, imbalance);
  2686. }
  2687. /******* find_busiest_group() helpers end here *********************/
  2688. /**
  2689. * find_busiest_group - Returns the busiest group within the sched_domain
  2690. * if there is an imbalance. If there isn't an imbalance, and
  2691. * the user has opted for power-savings, it returns a group whose
  2692. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2693. * such a group exists.
  2694. *
  2695. * Also calculates the amount of weighted load which should be moved
  2696. * to restore balance.
  2697. *
  2698. * @sd: The sched_domain whose busiest group is to be returned.
  2699. * @this_cpu: The cpu for which load balancing is currently being performed.
  2700. * @imbalance: Variable which stores amount of weighted load which should
  2701. * be moved to restore balance/put a group to idle.
  2702. * @idle: The idle status of this_cpu.
  2703. * @cpus: The set of CPUs under consideration for load-balancing.
  2704. * @balance: Pointer to a variable indicating if this_cpu
  2705. * is the appropriate cpu to perform load balancing at this_level.
  2706. *
  2707. * Returns: - the busiest group if imbalance exists.
  2708. * - If no imbalance and user has opted for power-savings balance,
  2709. * return the least loaded group whose CPUs can be
  2710. * put to idle by rebalancing its tasks onto our group.
  2711. */
  2712. static struct sched_group *
  2713. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2714. unsigned long *imbalance, enum cpu_idle_type idle,
  2715. const struct cpumask *cpus, int *balance)
  2716. {
  2717. struct sd_lb_stats sds;
  2718. memset(&sds, 0, sizeof(sds));
  2719. /*
  2720. * Compute the various statistics relavent for load balancing at
  2721. * this level.
  2722. */
  2723. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  2724. /*
  2725. * this_cpu is not the appropriate cpu to perform load balancing at
  2726. * this level.
  2727. */
  2728. if (!(*balance))
  2729. goto ret;
  2730. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2731. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2732. return sds.busiest;
  2733. /* There is no busy sibling group to pull tasks from */
  2734. if (!sds.busiest || sds.busiest_nr_running == 0)
  2735. goto out_balanced;
  2736. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  2737. /*
  2738. * If the busiest group is imbalanced the below checks don't
  2739. * work because they assumes all things are equal, which typically
  2740. * isn't true due to cpus_allowed constraints and the like.
  2741. */
  2742. if (sds.group_imb)
  2743. goto force_balance;
  2744. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2745. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2746. !sds.busiest_has_capacity)
  2747. goto force_balance;
  2748. /*
  2749. * If the local group is more busy than the selected busiest group
  2750. * don't try and pull any tasks.
  2751. */
  2752. if (sds.this_load >= sds.max_load)
  2753. goto out_balanced;
  2754. /*
  2755. * Don't pull any tasks if this group is already above the domain
  2756. * average load.
  2757. */
  2758. if (sds.this_load >= sds.avg_load)
  2759. goto out_balanced;
  2760. if (idle == CPU_IDLE) {
  2761. /*
  2762. * This cpu is idle. If the busiest group load doesn't
  2763. * have more tasks than the number of available cpu's and
  2764. * there is no imbalance between this and busiest group
  2765. * wrt to idle cpu's, it is balanced.
  2766. */
  2767. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2768. sds.busiest_nr_running <= sds.busiest_group_weight)
  2769. goto out_balanced;
  2770. } else {
  2771. /*
  2772. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  2773. * imbalance_pct to be conservative.
  2774. */
  2775. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2776. goto out_balanced;
  2777. }
  2778. force_balance:
  2779. /* Looks like there is an imbalance. Compute it */
  2780. calculate_imbalance(&sds, this_cpu, imbalance);
  2781. return sds.busiest;
  2782. out_balanced:
  2783. /*
  2784. * There is no obvious imbalance. But check if we can do some balancing
  2785. * to save power.
  2786. */
  2787. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2788. return sds.busiest;
  2789. ret:
  2790. *imbalance = 0;
  2791. return NULL;
  2792. }
  2793. /*
  2794. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2795. */
  2796. static struct rq *
  2797. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2798. enum cpu_idle_type idle, unsigned long imbalance,
  2799. const struct cpumask *cpus)
  2800. {
  2801. struct rq *busiest = NULL, *rq;
  2802. unsigned long max_load = 0;
  2803. int i;
  2804. for_each_cpu(i, sched_group_cpus(group)) {
  2805. unsigned long power = power_of(i);
  2806. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  2807. SCHED_POWER_SCALE);
  2808. unsigned long wl;
  2809. if (!capacity)
  2810. capacity = fix_small_capacity(sd, group);
  2811. if (!cpumask_test_cpu(i, cpus))
  2812. continue;
  2813. rq = cpu_rq(i);
  2814. wl = weighted_cpuload(i);
  2815. /*
  2816. * When comparing with imbalance, use weighted_cpuload()
  2817. * which is not scaled with the cpu power.
  2818. */
  2819. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2820. continue;
  2821. /*
  2822. * For the load comparisons with the other cpu's, consider
  2823. * the weighted_cpuload() scaled with the cpu power, so that
  2824. * the load can be moved away from the cpu that is potentially
  2825. * running at a lower capacity.
  2826. */
  2827. wl = (wl * SCHED_POWER_SCALE) / power;
  2828. if (wl > max_load) {
  2829. max_load = wl;
  2830. busiest = rq;
  2831. }
  2832. }
  2833. return busiest;
  2834. }
  2835. /*
  2836. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2837. * so long as it is large enough.
  2838. */
  2839. #define MAX_PINNED_INTERVAL 512
  2840. /* Working cpumask for load_balance and load_balance_newidle. */
  2841. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2842. static int need_active_balance(struct sched_domain *sd, int idle,
  2843. int busiest_cpu, int this_cpu)
  2844. {
  2845. if (idle == CPU_NEWLY_IDLE) {
  2846. /*
  2847. * ASYM_PACKING needs to force migrate tasks from busy but
  2848. * higher numbered CPUs in order to pack all tasks in the
  2849. * lowest numbered CPUs.
  2850. */
  2851. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2852. return 1;
  2853. /*
  2854. * The only task running in a non-idle cpu can be moved to this
  2855. * cpu in an attempt to completely freeup the other CPU
  2856. * package.
  2857. *
  2858. * The package power saving logic comes from
  2859. * find_busiest_group(). If there are no imbalance, then
  2860. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2861. * f_b_g() will select a group from which a running task may be
  2862. * pulled to this cpu in order to make the other package idle.
  2863. * If there is no opportunity to make a package idle and if
  2864. * there are no imbalance, then f_b_g() will return NULL and no
  2865. * action will be taken in load_balance_newidle().
  2866. *
  2867. * Under normal task pull operation due to imbalance, there
  2868. * will be more than one task in the source run queue and
  2869. * move_tasks() will succeed. ld_moved will be true and this
  2870. * active balance code will not be triggered.
  2871. */
  2872. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2873. return 0;
  2874. }
  2875. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2876. }
  2877. static int active_load_balance_cpu_stop(void *data);
  2878. /*
  2879. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2880. * tasks if there is an imbalance.
  2881. */
  2882. static int load_balance(int this_cpu, struct rq *this_rq,
  2883. struct sched_domain *sd, enum cpu_idle_type idle,
  2884. int *balance)
  2885. {
  2886. int ld_moved, all_pinned = 0, active_balance = 0;
  2887. struct sched_group *group;
  2888. unsigned long imbalance;
  2889. struct rq *busiest;
  2890. unsigned long flags;
  2891. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2892. cpumask_copy(cpus, cpu_active_mask);
  2893. schedstat_inc(sd, lb_count[idle]);
  2894. redo:
  2895. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  2896. cpus, balance);
  2897. if (*balance == 0)
  2898. goto out_balanced;
  2899. if (!group) {
  2900. schedstat_inc(sd, lb_nobusyg[idle]);
  2901. goto out_balanced;
  2902. }
  2903. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2904. if (!busiest) {
  2905. schedstat_inc(sd, lb_nobusyq[idle]);
  2906. goto out_balanced;
  2907. }
  2908. BUG_ON(busiest == this_rq);
  2909. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2910. ld_moved = 0;
  2911. if (busiest->nr_running > 1) {
  2912. /*
  2913. * Attempt to move tasks. If find_busiest_group has found
  2914. * an imbalance but busiest->nr_running <= 1, the group is
  2915. * still unbalanced. ld_moved simply stays zero, so it is
  2916. * correctly treated as an imbalance.
  2917. */
  2918. all_pinned = 1;
  2919. local_irq_save(flags);
  2920. double_rq_lock(this_rq, busiest);
  2921. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2922. imbalance, sd, idle, &all_pinned);
  2923. double_rq_unlock(this_rq, busiest);
  2924. local_irq_restore(flags);
  2925. /*
  2926. * some other cpu did the load balance for us.
  2927. */
  2928. if (ld_moved && this_cpu != smp_processor_id())
  2929. resched_cpu(this_cpu);
  2930. /* All tasks on this runqueue were pinned by CPU affinity */
  2931. if (unlikely(all_pinned)) {
  2932. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2933. if (!cpumask_empty(cpus))
  2934. goto redo;
  2935. goto out_balanced;
  2936. }
  2937. }
  2938. if (!ld_moved) {
  2939. schedstat_inc(sd, lb_failed[idle]);
  2940. /*
  2941. * Increment the failure counter only on periodic balance.
  2942. * We do not want newidle balance, which can be very
  2943. * frequent, pollute the failure counter causing
  2944. * excessive cache_hot migrations and active balances.
  2945. */
  2946. if (idle != CPU_NEWLY_IDLE)
  2947. sd->nr_balance_failed++;
  2948. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  2949. raw_spin_lock_irqsave(&busiest->lock, flags);
  2950. /* don't kick the active_load_balance_cpu_stop,
  2951. * if the curr task on busiest cpu can't be
  2952. * moved to this_cpu
  2953. */
  2954. if (!cpumask_test_cpu(this_cpu,
  2955. &busiest->curr->cpus_allowed)) {
  2956. raw_spin_unlock_irqrestore(&busiest->lock,
  2957. flags);
  2958. all_pinned = 1;
  2959. goto out_one_pinned;
  2960. }
  2961. /*
  2962. * ->active_balance synchronizes accesses to
  2963. * ->active_balance_work. Once set, it's cleared
  2964. * only after active load balance is finished.
  2965. */
  2966. if (!busiest->active_balance) {
  2967. busiest->active_balance = 1;
  2968. busiest->push_cpu = this_cpu;
  2969. active_balance = 1;
  2970. }
  2971. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2972. if (active_balance)
  2973. stop_one_cpu_nowait(cpu_of(busiest),
  2974. active_load_balance_cpu_stop, busiest,
  2975. &busiest->active_balance_work);
  2976. /*
  2977. * We've kicked active balancing, reset the failure
  2978. * counter.
  2979. */
  2980. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2981. }
  2982. } else
  2983. sd->nr_balance_failed = 0;
  2984. if (likely(!active_balance)) {
  2985. /* We were unbalanced, so reset the balancing interval */
  2986. sd->balance_interval = sd->min_interval;
  2987. } else {
  2988. /*
  2989. * If we've begun active balancing, start to back off. This
  2990. * case may not be covered by the all_pinned logic if there
  2991. * is only 1 task on the busy runqueue (because we don't call
  2992. * move_tasks).
  2993. */
  2994. if (sd->balance_interval < sd->max_interval)
  2995. sd->balance_interval *= 2;
  2996. }
  2997. goto out;
  2998. out_balanced:
  2999. schedstat_inc(sd, lb_balanced[idle]);
  3000. sd->nr_balance_failed = 0;
  3001. out_one_pinned:
  3002. /* tune up the balancing interval */
  3003. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3004. (sd->balance_interval < sd->max_interval))
  3005. sd->balance_interval *= 2;
  3006. ld_moved = 0;
  3007. out:
  3008. return ld_moved;
  3009. }
  3010. /*
  3011. * idle_balance is called by schedule() if this_cpu is about to become
  3012. * idle. Attempts to pull tasks from other CPUs.
  3013. */
  3014. static void idle_balance(int this_cpu, struct rq *this_rq)
  3015. {
  3016. struct sched_domain *sd;
  3017. int pulled_task = 0;
  3018. unsigned long next_balance = jiffies + HZ;
  3019. this_rq->idle_stamp = this_rq->clock;
  3020. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3021. return;
  3022. /*
  3023. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3024. */
  3025. raw_spin_unlock(&this_rq->lock);
  3026. update_shares(this_cpu);
  3027. rcu_read_lock();
  3028. for_each_domain(this_cpu, sd) {
  3029. unsigned long interval;
  3030. int balance = 1;
  3031. if (!(sd->flags & SD_LOAD_BALANCE))
  3032. continue;
  3033. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3034. /* If we've pulled tasks over stop searching: */
  3035. pulled_task = load_balance(this_cpu, this_rq,
  3036. sd, CPU_NEWLY_IDLE, &balance);
  3037. }
  3038. interval = msecs_to_jiffies(sd->balance_interval);
  3039. if (time_after(next_balance, sd->last_balance + interval))
  3040. next_balance = sd->last_balance + interval;
  3041. if (pulled_task) {
  3042. this_rq->idle_stamp = 0;
  3043. break;
  3044. }
  3045. }
  3046. rcu_read_unlock();
  3047. raw_spin_lock(&this_rq->lock);
  3048. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3049. /*
  3050. * We are going idle. next_balance may be set based on
  3051. * a busy processor. So reset next_balance.
  3052. */
  3053. this_rq->next_balance = next_balance;
  3054. }
  3055. }
  3056. /*
  3057. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3058. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3059. * least 1 task to be running on each physical CPU where possible, and
  3060. * avoids physical / logical imbalances.
  3061. */
  3062. static int active_load_balance_cpu_stop(void *data)
  3063. {
  3064. struct rq *busiest_rq = data;
  3065. int busiest_cpu = cpu_of(busiest_rq);
  3066. int target_cpu = busiest_rq->push_cpu;
  3067. struct rq *target_rq = cpu_rq(target_cpu);
  3068. struct sched_domain *sd;
  3069. raw_spin_lock_irq(&busiest_rq->lock);
  3070. /* make sure the requested cpu hasn't gone down in the meantime */
  3071. if (unlikely(busiest_cpu != smp_processor_id() ||
  3072. !busiest_rq->active_balance))
  3073. goto out_unlock;
  3074. /* Is there any task to move? */
  3075. if (busiest_rq->nr_running <= 1)
  3076. goto out_unlock;
  3077. /*
  3078. * This condition is "impossible", if it occurs
  3079. * we need to fix it. Originally reported by
  3080. * Bjorn Helgaas on a 128-cpu setup.
  3081. */
  3082. BUG_ON(busiest_rq == target_rq);
  3083. /* move a task from busiest_rq to target_rq */
  3084. double_lock_balance(busiest_rq, target_rq);
  3085. /* Search for an sd spanning us and the target CPU. */
  3086. rcu_read_lock();
  3087. for_each_domain(target_cpu, sd) {
  3088. if ((sd->flags & SD_LOAD_BALANCE) &&
  3089. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3090. break;
  3091. }
  3092. if (likely(sd)) {
  3093. schedstat_inc(sd, alb_count);
  3094. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3095. sd, CPU_IDLE))
  3096. schedstat_inc(sd, alb_pushed);
  3097. else
  3098. schedstat_inc(sd, alb_failed);
  3099. }
  3100. rcu_read_unlock();
  3101. double_unlock_balance(busiest_rq, target_rq);
  3102. out_unlock:
  3103. busiest_rq->active_balance = 0;
  3104. raw_spin_unlock_irq(&busiest_rq->lock);
  3105. return 0;
  3106. }
  3107. #ifdef CONFIG_NO_HZ
  3108. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  3109. static void trigger_sched_softirq(void *data)
  3110. {
  3111. raise_softirq_irqoff(SCHED_SOFTIRQ);
  3112. }
  3113. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  3114. {
  3115. csd->func = trigger_sched_softirq;
  3116. csd->info = NULL;
  3117. csd->flags = 0;
  3118. csd->priv = 0;
  3119. }
  3120. /*
  3121. * idle load balancing details
  3122. * - One of the idle CPUs nominates itself as idle load_balancer, while
  3123. * entering idle.
  3124. * - This idle load balancer CPU will also go into tickless mode when
  3125. * it is idle, just like all other idle CPUs
  3126. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3127. * needed, they will kick the idle load balancer, which then does idle
  3128. * load balancing for all the idle CPUs.
  3129. */
  3130. static struct {
  3131. atomic_t load_balancer;
  3132. atomic_t first_pick_cpu;
  3133. atomic_t second_pick_cpu;
  3134. cpumask_var_t idle_cpus_mask;
  3135. cpumask_var_t grp_idle_mask;
  3136. unsigned long next_balance; /* in jiffy units */
  3137. } nohz ____cacheline_aligned;
  3138. int get_nohz_load_balancer(void)
  3139. {
  3140. return atomic_read(&nohz.load_balancer);
  3141. }
  3142. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3143. /**
  3144. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3145. * @cpu: The cpu whose lowest level of sched domain is to
  3146. * be returned.
  3147. * @flag: The flag to check for the lowest sched_domain
  3148. * for the given cpu.
  3149. *
  3150. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3151. */
  3152. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3153. {
  3154. struct sched_domain *sd;
  3155. for_each_domain(cpu, sd)
  3156. if (sd->flags & flag)
  3157. break;
  3158. return sd;
  3159. }
  3160. /**
  3161. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3162. * @cpu: The cpu whose domains we're iterating over.
  3163. * @sd: variable holding the value of the power_savings_sd
  3164. * for cpu.
  3165. * @flag: The flag to filter the sched_domains to be iterated.
  3166. *
  3167. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3168. * set, starting from the lowest sched_domain to the highest.
  3169. */
  3170. #define for_each_flag_domain(cpu, sd, flag) \
  3171. for (sd = lowest_flag_domain(cpu, flag); \
  3172. (sd && (sd->flags & flag)); sd = sd->parent)
  3173. /**
  3174. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3175. * @ilb_group: group to be checked for semi-idleness
  3176. *
  3177. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3178. *
  3179. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3180. * and atleast one non-idle CPU. This helper function checks if the given
  3181. * sched_group is semi-idle or not.
  3182. */
  3183. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3184. {
  3185. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3186. sched_group_cpus(ilb_group));
  3187. /*
  3188. * A sched_group is semi-idle when it has atleast one busy cpu
  3189. * and atleast one idle cpu.
  3190. */
  3191. if (cpumask_empty(nohz.grp_idle_mask))
  3192. return 0;
  3193. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3194. return 0;
  3195. return 1;
  3196. }
  3197. /**
  3198. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3199. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3200. *
  3201. * Returns: Returns the id of the idle load balancer if it exists,
  3202. * Else, returns >= nr_cpu_ids.
  3203. *
  3204. * This algorithm picks the idle load balancer such that it belongs to a
  3205. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3206. * completely idle packages/cores just for the purpose of idle load balancing
  3207. * when there are other idle cpu's which are better suited for that job.
  3208. */
  3209. static int find_new_ilb(int cpu)
  3210. {
  3211. struct sched_domain *sd;
  3212. struct sched_group *ilb_group;
  3213. int ilb = nr_cpu_ids;
  3214. /*
  3215. * Have idle load balancer selection from semi-idle packages only
  3216. * when power-aware load balancing is enabled
  3217. */
  3218. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3219. goto out_done;
  3220. /*
  3221. * Optimize for the case when we have no idle CPUs or only one
  3222. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3223. */
  3224. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3225. goto out_done;
  3226. rcu_read_lock();
  3227. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3228. ilb_group = sd->groups;
  3229. do {
  3230. if (is_semi_idle_group(ilb_group)) {
  3231. ilb = cpumask_first(nohz.grp_idle_mask);
  3232. goto unlock;
  3233. }
  3234. ilb_group = ilb_group->next;
  3235. } while (ilb_group != sd->groups);
  3236. }
  3237. unlock:
  3238. rcu_read_unlock();
  3239. out_done:
  3240. return ilb;
  3241. }
  3242. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3243. static inline int find_new_ilb(int call_cpu)
  3244. {
  3245. return nr_cpu_ids;
  3246. }
  3247. #endif
  3248. /*
  3249. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3250. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3251. * CPU (if there is one).
  3252. */
  3253. static void nohz_balancer_kick(int cpu)
  3254. {
  3255. int ilb_cpu;
  3256. nohz.next_balance++;
  3257. ilb_cpu = get_nohz_load_balancer();
  3258. if (ilb_cpu >= nr_cpu_ids) {
  3259. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3260. if (ilb_cpu >= nr_cpu_ids)
  3261. return;
  3262. }
  3263. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3264. struct call_single_data *cp;
  3265. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3266. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3267. __smp_call_function_single(ilb_cpu, cp, 0);
  3268. }
  3269. return;
  3270. }
  3271. /*
  3272. * This routine will try to nominate the ilb (idle load balancing)
  3273. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3274. * load balancing on behalf of all those cpus.
  3275. *
  3276. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3277. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3278. * idle load balancing by kicking one of the idle CPUs.
  3279. *
  3280. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3281. * ilb owner CPU in future (when there is a need for idle load balancing on
  3282. * behalf of all idle CPUs).
  3283. */
  3284. void select_nohz_load_balancer(int stop_tick)
  3285. {
  3286. int cpu = smp_processor_id();
  3287. if (stop_tick) {
  3288. if (!cpu_active(cpu)) {
  3289. if (atomic_read(&nohz.load_balancer) != cpu)
  3290. return;
  3291. /*
  3292. * If we are going offline and still the leader,
  3293. * give up!
  3294. */
  3295. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3296. nr_cpu_ids) != cpu)
  3297. BUG();
  3298. return;
  3299. }
  3300. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3301. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3302. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3303. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3304. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3305. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3306. int new_ilb;
  3307. /* make me the ilb owner */
  3308. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3309. cpu) != nr_cpu_ids)
  3310. return;
  3311. /*
  3312. * Check to see if there is a more power-efficient
  3313. * ilb.
  3314. */
  3315. new_ilb = find_new_ilb(cpu);
  3316. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3317. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3318. resched_cpu(new_ilb);
  3319. return;
  3320. }
  3321. return;
  3322. }
  3323. } else {
  3324. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3325. return;
  3326. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3327. if (atomic_read(&nohz.load_balancer) == cpu)
  3328. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3329. nr_cpu_ids) != cpu)
  3330. BUG();
  3331. }
  3332. return;
  3333. }
  3334. #endif
  3335. static DEFINE_SPINLOCK(balancing);
  3336. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3337. /*
  3338. * Scale the max load_balance interval with the number of CPUs in the system.
  3339. * This trades load-balance latency on larger machines for less cross talk.
  3340. */
  3341. static void update_max_interval(void)
  3342. {
  3343. max_load_balance_interval = HZ*num_online_cpus()/10;
  3344. }
  3345. /*
  3346. * It checks each scheduling domain to see if it is due to be balanced,
  3347. * and initiates a balancing operation if so.
  3348. *
  3349. * Balancing parameters are set up in arch_init_sched_domains.
  3350. */
  3351. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3352. {
  3353. int balance = 1;
  3354. struct rq *rq = cpu_rq(cpu);
  3355. unsigned long interval;
  3356. struct sched_domain *sd;
  3357. /* Earliest time when we have to do rebalance again */
  3358. unsigned long next_balance = jiffies + 60*HZ;
  3359. int update_next_balance = 0;
  3360. int need_serialize;
  3361. update_shares(cpu);
  3362. rcu_read_lock();
  3363. for_each_domain(cpu, sd) {
  3364. if (!(sd->flags & SD_LOAD_BALANCE))
  3365. continue;
  3366. interval = sd->balance_interval;
  3367. if (idle != CPU_IDLE)
  3368. interval *= sd->busy_factor;
  3369. /* scale ms to jiffies */
  3370. interval = msecs_to_jiffies(interval);
  3371. interval = clamp(interval, 1UL, max_load_balance_interval);
  3372. need_serialize = sd->flags & SD_SERIALIZE;
  3373. if (need_serialize) {
  3374. if (!spin_trylock(&balancing))
  3375. goto out;
  3376. }
  3377. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3378. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3379. /*
  3380. * We've pulled tasks over so either we're no
  3381. * longer idle.
  3382. */
  3383. idle = CPU_NOT_IDLE;
  3384. }
  3385. sd->last_balance = jiffies;
  3386. }
  3387. if (need_serialize)
  3388. spin_unlock(&balancing);
  3389. out:
  3390. if (time_after(next_balance, sd->last_balance + interval)) {
  3391. next_balance = sd->last_balance + interval;
  3392. update_next_balance = 1;
  3393. }
  3394. /*
  3395. * Stop the load balance at this level. There is another
  3396. * CPU in our sched group which is doing load balancing more
  3397. * actively.
  3398. */
  3399. if (!balance)
  3400. break;
  3401. }
  3402. rcu_read_unlock();
  3403. /*
  3404. * next_balance will be updated only when there is a need.
  3405. * When the cpu is attached to null domain for ex, it will not be
  3406. * updated.
  3407. */
  3408. if (likely(update_next_balance))
  3409. rq->next_balance = next_balance;
  3410. }
  3411. #ifdef CONFIG_NO_HZ
  3412. /*
  3413. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3414. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3415. */
  3416. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3417. {
  3418. struct rq *this_rq = cpu_rq(this_cpu);
  3419. struct rq *rq;
  3420. int balance_cpu;
  3421. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3422. return;
  3423. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3424. if (balance_cpu == this_cpu)
  3425. continue;
  3426. /*
  3427. * If this cpu gets work to do, stop the load balancing
  3428. * work being done for other cpus. Next load
  3429. * balancing owner will pick it up.
  3430. */
  3431. if (need_resched()) {
  3432. this_rq->nohz_balance_kick = 0;
  3433. break;
  3434. }
  3435. raw_spin_lock_irq(&this_rq->lock);
  3436. update_rq_clock(this_rq);
  3437. update_cpu_load(this_rq);
  3438. raw_spin_unlock_irq(&this_rq->lock);
  3439. rebalance_domains(balance_cpu, CPU_IDLE);
  3440. rq = cpu_rq(balance_cpu);
  3441. if (time_after(this_rq->next_balance, rq->next_balance))
  3442. this_rq->next_balance = rq->next_balance;
  3443. }
  3444. nohz.next_balance = this_rq->next_balance;
  3445. this_rq->nohz_balance_kick = 0;
  3446. }
  3447. /*
  3448. * Current heuristic for kicking the idle load balancer
  3449. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3450. * idle load balancer when it has more than one process active. This
  3451. * eliminates the need for idle load balancing altogether when we have
  3452. * only one running process in the system (common case).
  3453. * - If there are more than one busy CPU, idle load balancer may have
  3454. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3455. * SMT or core siblings and can run better if they move to different
  3456. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3457. * which will kick idle load balancer as soon as it has any load.
  3458. */
  3459. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3460. {
  3461. unsigned long now = jiffies;
  3462. int ret;
  3463. int first_pick_cpu, second_pick_cpu;
  3464. if (time_before(now, nohz.next_balance))
  3465. return 0;
  3466. if (rq->idle_at_tick)
  3467. return 0;
  3468. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3469. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3470. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3471. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3472. return 0;
  3473. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3474. if (ret == nr_cpu_ids || ret == cpu) {
  3475. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3476. if (rq->nr_running > 1)
  3477. return 1;
  3478. } else {
  3479. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3480. if (ret == nr_cpu_ids || ret == cpu) {
  3481. if (rq->nr_running)
  3482. return 1;
  3483. }
  3484. }
  3485. return 0;
  3486. }
  3487. #else
  3488. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3489. #endif
  3490. /*
  3491. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3492. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3493. */
  3494. static void run_rebalance_domains(struct softirq_action *h)
  3495. {
  3496. int this_cpu = smp_processor_id();
  3497. struct rq *this_rq = cpu_rq(this_cpu);
  3498. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3499. CPU_IDLE : CPU_NOT_IDLE;
  3500. rebalance_domains(this_cpu, idle);
  3501. /*
  3502. * If this cpu has a pending nohz_balance_kick, then do the
  3503. * balancing on behalf of the other idle cpus whose ticks are
  3504. * stopped.
  3505. */
  3506. nohz_idle_balance(this_cpu, idle);
  3507. }
  3508. static inline int on_null_domain(int cpu)
  3509. {
  3510. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3511. }
  3512. /*
  3513. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3514. */
  3515. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3516. {
  3517. /* Don't need to rebalance while attached to NULL domain */
  3518. if (time_after_eq(jiffies, rq->next_balance) &&
  3519. likely(!on_null_domain(cpu)))
  3520. raise_softirq(SCHED_SOFTIRQ);
  3521. #ifdef CONFIG_NO_HZ
  3522. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3523. nohz_balancer_kick(cpu);
  3524. #endif
  3525. }
  3526. static void rq_online_fair(struct rq *rq)
  3527. {
  3528. update_sysctl();
  3529. }
  3530. static void rq_offline_fair(struct rq *rq)
  3531. {
  3532. update_sysctl();
  3533. }
  3534. #else /* CONFIG_SMP */
  3535. /*
  3536. * on UP we do not need to balance between CPUs:
  3537. */
  3538. static inline void idle_balance(int cpu, struct rq *rq)
  3539. {
  3540. }
  3541. #endif /* CONFIG_SMP */
  3542. /*
  3543. * scheduler tick hitting a task of our scheduling class:
  3544. */
  3545. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3546. {
  3547. struct cfs_rq *cfs_rq;
  3548. struct sched_entity *se = &curr->se;
  3549. for_each_sched_entity(se) {
  3550. cfs_rq = cfs_rq_of(se);
  3551. entity_tick(cfs_rq, se, queued);
  3552. }
  3553. }
  3554. /*
  3555. * called on fork with the child task as argument from the parent's context
  3556. * - child not yet on the tasklist
  3557. * - preemption disabled
  3558. */
  3559. static void task_fork_fair(struct task_struct *p)
  3560. {
  3561. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3562. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3563. int this_cpu = smp_processor_id();
  3564. struct rq *rq = this_rq();
  3565. unsigned long flags;
  3566. raw_spin_lock_irqsave(&rq->lock, flags);
  3567. update_rq_clock(rq);
  3568. if (unlikely(task_cpu(p) != this_cpu)) {
  3569. rcu_read_lock();
  3570. __set_task_cpu(p, this_cpu);
  3571. rcu_read_unlock();
  3572. }
  3573. update_curr(cfs_rq);
  3574. if (curr)
  3575. se->vruntime = curr->vruntime;
  3576. place_entity(cfs_rq, se, 1);
  3577. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3578. /*
  3579. * Upon rescheduling, sched_class::put_prev_task() will place
  3580. * 'current' within the tree based on its new key value.
  3581. */
  3582. swap(curr->vruntime, se->vruntime);
  3583. resched_task(rq->curr);
  3584. }
  3585. se->vruntime -= cfs_rq->min_vruntime;
  3586. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3587. }
  3588. /*
  3589. * Priority of the task has changed. Check to see if we preempt
  3590. * the current task.
  3591. */
  3592. static void
  3593. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  3594. {
  3595. if (!p->se.on_rq)
  3596. return;
  3597. /*
  3598. * Reschedule if we are currently running on this runqueue and
  3599. * our priority decreased, or if we are not currently running on
  3600. * this runqueue and our priority is higher than the current's
  3601. */
  3602. if (rq->curr == p) {
  3603. if (p->prio > oldprio)
  3604. resched_task(rq->curr);
  3605. } else
  3606. check_preempt_curr(rq, p, 0);
  3607. }
  3608. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  3609. {
  3610. struct sched_entity *se = &p->se;
  3611. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3612. /*
  3613. * Ensure the task's vruntime is normalized, so that when its
  3614. * switched back to the fair class the enqueue_entity(.flags=0) will
  3615. * do the right thing.
  3616. *
  3617. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  3618. * have normalized the vruntime, if it was !on_rq, then only when
  3619. * the task is sleeping will it still have non-normalized vruntime.
  3620. */
  3621. if (!se->on_rq && p->state != TASK_RUNNING) {
  3622. /*
  3623. * Fix up our vruntime so that the current sleep doesn't
  3624. * cause 'unlimited' sleep bonus.
  3625. */
  3626. place_entity(cfs_rq, se, 0);
  3627. se->vruntime -= cfs_rq->min_vruntime;
  3628. }
  3629. }
  3630. /*
  3631. * We switched to the sched_fair class.
  3632. */
  3633. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  3634. {
  3635. if (!p->se.on_rq)
  3636. return;
  3637. /*
  3638. * We were most likely switched from sched_rt, so
  3639. * kick off the schedule if running, otherwise just see
  3640. * if we can still preempt the current task.
  3641. */
  3642. if (rq->curr == p)
  3643. resched_task(rq->curr);
  3644. else
  3645. check_preempt_curr(rq, p, 0);
  3646. }
  3647. /* Account for a task changing its policy or group.
  3648. *
  3649. * This routine is mostly called to set cfs_rq->curr field when a task
  3650. * migrates between groups/classes.
  3651. */
  3652. static void set_curr_task_fair(struct rq *rq)
  3653. {
  3654. struct sched_entity *se = &rq->curr->se;
  3655. for_each_sched_entity(se) {
  3656. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3657. set_next_entity(cfs_rq, se);
  3658. /* ensure bandwidth has been allocated on our new cfs_rq */
  3659. account_cfs_rq_runtime(cfs_rq, 0);
  3660. }
  3661. }
  3662. #ifdef CONFIG_FAIR_GROUP_SCHED
  3663. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3664. {
  3665. /*
  3666. * If the task was not on the rq at the time of this cgroup movement
  3667. * it must have been asleep, sleeping tasks keep their ->vruntime
  3668. * absolute on their old rq until wakeup (needed for the fair sleeper
  3669. * bonus in place_entity()).
  3670. *
  3671. * If it was on the rq, we've just 'preempted' it, which does convert
  3672. * ->vruntime to a relative base.
  3673. *
  3674. * Make sure both cases convert their relative position when migrating
  3675. * to another cgroup's rq. This does somewhat interfere with the
  3676. * fair sleeper stuff for the first placement, but who cares.
  3677. */
  3678. if (!on_rq)
  3679. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3680. set_task_rq(p, task_cpu(p));
  3681. if (!on_rq)
  3682. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3683. }
  3684. #endif
  3685. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3686. {
  3687. struct sched_entity *se = &task->se;
  3688. unsigned int rr_interval = 0;
  3689. /*
  3690. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3691. * idle runqueue:
  3692. */
  3693. if (rq->cfs.load.weight)
  3694. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3695. return rr_interval;
  3696. }
  3697. /*
  3698. * All the scheduling class methods:
  3699. */
  3700. static const struct sched_class fair_sched_class = {
  3701. .next = &idle_sched_class,
  3702. .enqueue_task = enqueue_task_fair,
  3703. .dequeue_task = dequeue_task_fair,
  3704. .yield_task = yield_task_fair,
  3705. .yield_to_task = yield_to_task_fair,
  3706. .check_preempt_curr = check_preempt_wakeup,
  3707. .pick_next_task = pick_next_task_fair,
  3708. .put_prev_task = put_prev_task_fair,
  3709. #ifdef CONFIG_SMP
  3710. .select_task_rq = select_task_rq_fair,
  3711. .rq_online = rq_online_fair,
  3712. .rq_offline = rq_offline_fair,
  3713. .task_waking = task_waking_fair,
  3714. #endif
  3715. .set_curr_task = set_curr_task_fair,
  3716. .task_tick = task_tick_fair,
  3717. .task_fork = task_fork_fair,
  3718. .prio_changed = prio_changed_fair,
  3719. .switched_from = switched_from_fair,
  3720. .switched_to = switched_to_fair,
  3721. .get_rr_interval = get_rr_interval_fair,
  3722. #ifdef CONFIG_FAIR_GROUP_SCHED
  3723. .task_move_group = task_move_group_fair,
  3724. #endif
  3725. };
  3726. #ifdef CONFIG_SCHED_DEBUG
  3727. static void print_cfs_stats(struct seq_file *m, int cpu)
  3728. {
  3729. struct cfs_rq *cfs_rq;
  3730. rcu_read_lock();
  3731. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3732. print_cfs_rq(m, cpu, cfs_rq);
  3733. rcu_read_unlock();
  3734. }
  3735. #endif