svm.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/module.h>
  17. #include <linux/vmalloc.h>
  18. #include <linux/highmem.h>
  19. #include <asm/desc.h>
  20. #include "kvm_svm.h"
  21. #include "x86_emulate.h"
  22. MODULE_AUTHOR("Qumranet");
  23. MODULE_LICENSE("GPL");
  24. #define IOPM_ALLOC_ORDER 2
  25. #define MSRPM_ALLOC_ORDER 1
  26. #define DB_VECTOR 1
  27. #define UD_VECTOR 6
  28. #define GP_VECTOR 13
  29. #define DR7_GD_MASK (1 << 13)
  30. #define DR6_BD_MASK (1 << 13)
  31. #define CR4_DE_MASK (1UL << 3)
  32. #define SEG_TYPE_LDT 2
  33. #define SEG_TYPE_BUSY_TSS16 3
  34. #define KVM_EFER_LMA (1 << 10)
  35. #define KVM_EFER_LME (1 << 8)
  36. unsigned long iopm_base;
  37. unsigned long msrpm_base;
  38. struct kvm_ldttss_desc {
  39. u16 limit0;
  40. u16 base0;
  41. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  42. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  43. u32 base3;
  44. u32 zero1;
  45. } __attribute__((packed));
  46. struct svm_cpu_data {
  47. int cpu;
  48. uint64_t asid_generation;
  49. uint32_t max_asid;
  50. uint32_t next_asid;
  51. struct kvm_ldttss_desc *tss_desc;
  52. struct page *save_area;
  53. };
  54. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  55. struct svm_init_data {
  56. int cpu;
  57. int r;
  58. };
  59. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  60. #define NUM_MSR_MAPS (sizeof(msrpm_ranges) / sizeof(*msrpm_ranges))
  61. #define MSRS_RANGE_SIZE 2048
  62. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  63. #define MAX_INST_SIZE 15
  64. static unsigned get_addr_size(struct kvm_vcpu *vcpu)
  65. {
  66. struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
  67. u16 cs_attrib;
  68. if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
  69. return 2;
  70. cs_attrib = sa->cs.attrib;
  71. return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
  72. (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
  73. }
  74. static inline u8 pop_irq(struct kvm_vcpu *vcpu)
  75. {
  76. int word_index = __ffs(vcpu->irq_summary);
  77. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  78. int irq = word_index * BITS_PER_LONG + bit_index;
  79. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  80. if (!vcpu->irq_pending[word_index])
  81. clear_bit(word_index, &vcpu->irq_summary);
  82. return irq;
  83. }
  84. static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
  85. {
  86. set_bit(irq, vcpu->irq_pending);
  87. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  88. }
  89. static inline void clgi(void)
  90. {
  91. asm volatile (SVM_CLGI);
  92. }
  93. static inline void stgi(void)
  94. {
  95. asm volatile (SVM_STGI);
  96. }
  97. static inline void invlpga(unsigned long addr, u32 asid)
  98. {
  99. asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
  100. }
  101. static inline unsigned long kvm_read_cr2(void)
  102. {
  103. unsigned long cr2;
  104. asm volatile ("mov %%cr2, %0" : "=r" (cr2));
  105. return cr2;
  106. }
  107. static inline void kvm_write_cr2(unsigned long val)
  108. {
  109. asm volatile ("mov %0, %%cr2" :: "r" (val));
  110. }
  111. static inline unsigned long read_dr6(void)
  112. {
  113. unsigned long dr6;
  114. asm volatile ("mov %%dr6, %0" : "=r" (dr6));
  115. return dr6;
  116. }
  117. static inline void write_dr6(unsigned long val)
  118. {
  119. asm volatile ("mov %0, %%dr6" :: "r" (val));
  120. }
  121. static inline unsigned long read_dr7(void)
  122. {
  123. unsigned long dr7;
  124. asm volatile ("mov %%dr7, %0" : "=r" (dr7));
  125. return dr7;
  126. }
  127. static inline void write_dr7(unsigned long val)
  128. {
  129. asm volatile ("mov %0, %%dr7" :: "r" (val));
  130. }
  131. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  132. {
  133. vcpu->svm->asid_generation--;
  134. }
  135. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  136. {
  137. force_new_asid(vcpu);
  138. }
  139. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  140. {
  141. if (!(efer & KVM_EFER_LMA))
  142. efer &= ~KVM_EFER_LME;
  143. vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
  144. vcpu->shadow_efer = efer;
  145. }
  146. static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  147. {
  148. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  149. SVM_EVTINJ_VALID_ERR |
  150. SVM_EVTINJ_TYPE_EXEPT |
  151. GP_VECTOR;
  152. vcpu->svm->vmcb->control.event_inj_err = error_code;
  153. }
  154. static void inject_ud(struct kvm_vcpu *vcpu)
  155. {
  156. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  157. SVM_EVTINJ_TYPE_EXEPT |
  158. UD_VECTOR;
  159. }
  160. static void inject_db(struct kvm_vcpu *vcpu)
  161. {
  162. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  163. SVM_EVTINJ_TYPE_EXEPT |
  164. DB_VECTOR;
  165. }
  166. static int is_page_fault(uint32_t info)
  167. {
  168. info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  169. return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
  170. }
  171. static int is_external_interrupt(u32 info)
  172. {
  173. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  174. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  175. }
  176. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  177. {
  178. if (!vcpu->svm->next_rip) {
  179. printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
  180. return;
  181. }
  182. if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
  183. printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
  184. __FUNCTION__,
  185. vcpu->svm->vmcb->save.rip,
  186. vcpu->svm->next_rip);
  187. }
  188. vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
  189. vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  190. vcpu->interrupt_window_open = 1;
  191. }
  192. static int has_svm(void)
  193. {
  194. uint32_t eax, ebx, ecx, edx;
  195. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
  196. printk(KERN_INFO "has_svm: not amd\n");
  197. return 0;
  198. }
  199. cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
  200. if (eax < SVM_CPUID_FUNC) {
  201. printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
  202. return 0;
  203. }
  204. cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
  205. if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
  206. printk(KERN_DEBUG "has_svm: svm not available\n");
  207. return 0;
  208. }
  209. return 1;
  210. }
  211. static void svm_hardware_disable(void *garbage)
  212. {
  213. struct svm_cpu_data *svm_data
  214. = per_cpu(svm_data, raw_smp_processor_id());
  215. if (svm_data) {
  216. uint64_t efer;
  217. wrmsrl(MSR_VM_HSAVE_PA, 0);
  218. rdmsrl(MSR_EFER, efer);
  219. wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
  220. per_cpu(svm_data, raw_smp_processor_id()) = 0;
  221. __free_page(svm_data->save_area);
  222. kfree(svm_data);
  223. }
  224. }
  225. static void svm_hardware_enable(void *garbage)
  226. {
  227. struct svm_cpu_data *svm_data;
  228. uint64_t efer;
  229. #ifdef CONFIG_X86_64
  230. struct desc_ptr gdt_descr;
  231. #else
  232. struct Xgt_desc_struct gdt_descr;
  233. #endif
  234. struct desc_struct *gdt;
  235. int me = raw_smp_processor_id();
  236. if (!has_svm()) {
  237. printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
  238. return;
  239. }
  240. svm_data = per_cpu(svm_data, me);
  241. if (!svm_data) {
  242. printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
  243. me);
  244. return;
  245. }
  246. svm_data->asid_generation = 1;
  247. svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  248. svm_data->next_asid = svm_data->max_asid + 1;
  249. asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
  250. gdt = (struct desc_struct *)gdt_descr.address;
  251. svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  252. rdmsrl(MSR_EFER, efer);
  253. wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
  254. wrmsrl(MSR_VM_HSAVE_PA,
  255. page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
  256. }
  257. static int svm_cpu_init(int cpu)
  258. {
  259. struct svm_cpu_data *svm_data;
  260. int r;
  261. svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  262. if (!svm_data)
  263. return -ENOMEM;
  264. svm_data->cpu = cpu;
  265. svm_data->save_area = alloc_page(GFP_KERNEL);
  266. r = -ENOMEM;
  267. if (!svm_data->save_area)
  268. goto err_1;
  269. per_cpu(svm_data, cpu) = svm_data;
  270. return 0;
  271. err_1:
  272. kfree(svm_data);
  273. return r;
  274. }
  275. static int set_msr_interception(u32 *msrpm, unsigned msr,
  276. int read, int write)
  277. {
  278. int i;
  279. for (i = 0; i < NUM_MSR_MAPS; i++) {
  280. if (msr >= msrpm_ranges[i] &&
  281. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  282. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  283. msrpm_ranges[i]) * 2;
  284. u32 *base = msrpm + (msr_offset / 32);
  285. u32 msr_shift = msr_offset % 32;
  286. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  287. *base = (*base & ~(0x3 << msr_shift)) |
  288. (mask << msr_shift);
  289. return 1;
  290. }
  291. }
  292. printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
  293. return 0;
  294. }
  295. static __init int svm_hardware_setup(void)
  296. {
  297. int cpu;
  298. struct page *iopm_pages;
  299. struct page *msrpm_pages;
  300. void *msrpm_va;
  301. int r;
  302. kvm_emulator_want_group7_invlpg();
  303. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  304. if (!iopm_pages)
  305. return -ENOMEM;
  306. memset(page_address(iopm_pages), 0xff,
  307. PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  308. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  309. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  310. r = -ENOMEM;
  311. if (!msrpm_pages)
  312. goto err_1;
  313. msrpm_va = page_address(msrpm_pages);
  314. memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  315. msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
  316. #ifdef CONFIG_X86_64
  317. set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
  318. set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
  319. set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
  320. set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
  321. set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
  322. set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
  323. #endif
  324. set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
  325. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
  326. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
  327. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
  328. for_each_online_cpu(cpu) {
  329. r = svm_cpu_init(cpu);
  330. if (r)
  331. goto err_2;
  332. }
  333. return 0;
  334. err_2:
  335. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  336. msrpm_base = 0;
  337. err_1:
  338. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  339. iopm_base = 0;
  340. return r;
  341. }
  342. static __exit void svm_hardware_unsetup(void)
  343. {
  344. __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
  345. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  346. iopm_base = msrpm_base = 0;
  347. }
  348. static void init_seg(struct vmcb_seg *seg)
  349. {
  350. seg->selector = 0;
  351. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  352. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  353. seg->limit = 0xffff;
  354. seg->base = 0;
  355. }
  356. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  357. {
  358. seg->selector = 0;
  359. seg->attrib = SVM_SELECTOR_P_MASK | type;
  360. seg->limit = 0xffff;
  361. seg->base = 0;
  362. }
  363. static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
  364. {
  365. return 0;
  366. }
  367. static void init_vmcb(struct vmcb *vmcb)
  368. {
  369. struct vmcb_control_area *control = &vmcb->control;
  370. struct vmcb_save_area *save = &vmcb->save;
  371. u64 tsc;
  372. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  373. INTERCEPT_CR3_MASK |
  374. INTERCEPT_CR4_MASK;
  375. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  376. INTERCEPT_CR3_MASK |
  377. INTERCEPT_CR4_MASK;
  378. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  379. INTERCEPT_DR1_MASK |
  380. INTERCEPT_DR2_MASK |
  381. INTERCEPT_DR3_MASK;
  382. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  383. INTERCEPT_DR1_MASK |
  384. INTERCEPT_DR2_MASK |
  385. INTERCEPT_DR3_MASK |
  386. INTERCEPT_DR5_MASK |
  387. INTERCEPT_DR7_MASK;
  388. control->intercept_exceptions = 1 << PF_VECTOR;
  389. control->intercept = (1ULL << INTERCEPT_INTR) |
  390. (1ULL << INTERCEPT_NMI) |
  391. /*
  392. * selective cr0 intercept bug?
  393. * 0: 0f 22 d8 mov %eax,%cr3
  394. * 3: 0f 20 c0 mov %cr0,%eax
  395. * 6: 0d 00 00 00 80 or $0x80000000,%eax
  396. * b: 0f 22 c0 mov %eax,%cr0
  397. * set cr3 ->interception
  398. * get cr0 ->interception
  399. * set cr0 -> no interception
  400. */
  401. /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
  402. (1ULL << INTERCEPT_CPUID) |
  403. (1ULL << INTERCEPT_HLT) |
  404. (1ULL << INTERCEPT_INVLPG) |
  405. (1ULL << INTERCEPT_INVLPGA) |
  406. (1ULL << INTERCEPT_IOIO_PROT) |
  407. (1ULL << INTERCEPT_MSR_PROT) |
  408. (1ULL << INTERCEPT_TASK_SWITCH) |
  409. (1ULL << INTERCEPT_VMRUN) |
  410. (1ULL << INTERCEPT_VMMCALL) |
  411. (1ULL << INTERCEPT_VMLOAD) |
  412. (1ULL << INTERCEPT_VMSAVE) |
  413. (1ULL << INTERCEPT_STGI) |
  414. (1ULL << INTERCEPT_CLGI) |
  415. (1ULL << INTERCEPT_SKINIT);
  416. control->iopm_base_pa = iopm_base;
  417. control->msrpm_base_pa = msrpm_base;
  418. rdtscll(tsc);
  419. control->tsc_offset = -tsc;
  420. control->int_ctl = V_INTR_MASKING_MASK;
  421. init_seg(&save->es);
  422. init_seg(&save->ss);
  423. init_seg(&save->ds);
  424. init_seg(&save->fs);
  425. init_seg(&save->gs);
  426. save->cs.selector = 0xf000;
  427. /* Executable/Readable Code Segment */
  428. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  429. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  430. save->cs.limit = 0xffff;
  431. save->cs.base = 0xffff0000;
  432. save->gdtr.limit = 0xffff;
  433. save->idtr.limit = 0xffff;
  434. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  435. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  436. save->efer = MSR_EFER_SVME_MASK;
  437. save->dr6 = 0xffff0ff0;
  438. save->dr7 = 0x400;
  439. save->rflags = 2;
  440. save->rip = 0x0000fff0;
  441. /*
  442. * cr0 val on cpu init should be 0x60000010, we enable cpu
  443. * cache by default. the orderly way is to enable cache in bios.
  444. */
  445. save->cr0 = 0x00000010 | CR0_PG_MASK;
  446. save->cr4 = CR4_PAE_MASK;
  447. /* rdx = ?? */
  448. }
  449. static int svm_create_vcpu(struct kvm_vcpu *vcpu)
  450. {
  451. struct page *page;
  452. int r;
  453. r = -ENOMEM;
  454. vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
  455. if (!vcpu->svm)
  456. goto out1;
  457. page = alloc_page(GFP_KERNEL);
  458. if (!page)
  459. goto out2;
  460. vcpu->svm->vmcb = page_address(page);
  461. memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
  462. vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  463. vcpu->svm->cr0 = 0x00000010;
  464. vcpu->svm->asid_generation = 0;
  465. memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
  466. init_vmcb(vcpu->svm->vmcb);
  467. fx_init(vcpu);
  468. return 0;
  469. out2:
  470. kfree(vcpu->svm);
  471. out1:
  472. return r;
  473. }
  474. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  475. {
  476. if (!vcpu->svm)
  477. return;
  478. if (vcpu->svm->vmcb)
  479. __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
  480. kfree(vcpu->svm);
  481. }
  482. static struct kvm_vcpu *svm_vcpu_load(struct kvm_vcpu *vcpu)
  483. {
  484. get_cpu();
  485. return vcpu;
  486. }
  487. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  488. {
  489. put_cpu();
  490. }
  491. static void svm_cache_regs(struct kvm_vcpu *vcpu)
  492. {
  493. vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
  494. vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
  495. vcpu->rip = vcpu->svm->vmcb->save.rip;
  496. }
  497. static void svm_decache_regs(struct kvm_vcpu *vcpu)
  498. {
  499. vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
  500. vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
  501. vcpu->svm->vmcb->save.rip = vcpu->rip;
  502. }
  503. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  504. {
  505. return vcpu->svm->vmcb->save.rflags;
  506. }
  507. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  508. {
  509. vcpu->svm->vmcb->save.rflags = rflags;
  510. }
  511. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  512. {
  513. struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
  514. switch (seg) {
  515. case VCPU_SREG_CS: return &save->cs;
  516. case VCPU_SREG_DS: return &save->ds;
  517. case VCPU_SREG_ES: return &save->es;
  518. case VCPU_SREG_FS: return &save->fs;
  519. case VCPU_SREG_GS: return &save->gs;
  520. case VCPU_SREG_SS: return &save->ss;
  521. case VCPU_SREG_TR: return &save->tr;
  522. case VCPU_SREG_LDTR: return &save->ldtr;
  523. }
  524. BUG();
  525. return 0;
  526. }
  527. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  528. {
  529. struct vmcb_seg *s = svm_seg(vcpu, seg);
  530. return s->base;
  531. }
  532. static void svm_get_segment(struct kvm_vcpu *vcpu,
  533. struct kvm_segment *var, int seg)
  534. {
  535. struct vmcb_seg *s = svm_seg(vcpu, seg);
  536. var->base = s->base;
  537. var->limit = s->limit;
  538. var->selector = s->selector;
  539. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  540. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  541. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  542. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  543. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  544. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  545. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  546. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  547. var->unusable = !var->present;
  548. }
  549. static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  550. {
  551. struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
  552. *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  553. *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  554. }
  555. static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  556. {
  557. dt->limit = vcpu->svm->vmcb->save.ldtr.limit;
  558. dt->base = vcpu->svm->vmcb->save.ldtr.base;
  559. }
  560. static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  561. {
  562. vcpu->svm->vmcb->save.ldtr.limit = dt->limit;
  563. vcpu->svm->vmcb->save.ldtr.base = dt->base ;
  564. }
  565. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  566. {
  567. dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
  568. dt->base = vcpu->svm->vmcb->save.gdtr.base;
  569. }
  570. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  571. {
  572. vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
  573. vcpu->svm->vmcb->save.gdtr.base = dt->base ;
  574. }
  575. static void svm_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
  576. {
  577. }
  578. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  579. {
  580. #ifdef CONFIG_X86_64
  581. if (vcpu->shadow_efer & KVM_EFER_LME) {
  582. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  583. vcpu->shadow_efer |= KVM_EFER_LMA;
  584. vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
  585. }
  586. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
  587. vcpu->shadow_efer &= ~KVM_EFER_LMA;
  588. vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
  589. }
  590. }
  591. #endif
  592. vcpu->svm->cr0 = cr0;
  593. vcpu->svm->vmcb->save.cr0 = cr0 | CR0_PG_MASK;
  594. vcpu->cr0 = cr0;
  595. }
  596. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  597. {
  598. vcpu->cr4 = cr4;
  599. vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
  600. }
  601. static void svm_set_segment(struct kvm_vcpu *vcpu,
  602. struct kvm_segment *var, int seg)
  603. {
  604. struct vmcb_seg *s = svm_seg(vcpu, seg);
  605. s->base = var->base;
  606. s->limit = var->limit;
  607. s->selector = var->selector;
  608. if (var->unusable)
  609. s->attrib = 0;
  610. else {
  611. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  612. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  613. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  614. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  615. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  616. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  617. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  618. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  619. }
  620. if (seg == VCPU_SREG_CS)
  621. vcpu->svm->vmcb->save.cpl
  622. = (vcpu->svm->vmcb->save.cs.attrib
  623. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  624. }
  625. /* FIXME:
  626. vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  627. vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
  628. */
  629. static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  630. {
  631. return -EOPNOTSUPP;
  632. }
  633. static void load_host_msrs(struct kvm_vcpu *vcpu)
  634. {
  635. int i;
  636. for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
  637. wrmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
  638. }
  639. static void save_host_msrs(struct kvm_vcpu *vcpu)
  640. {
  641. int i;
  642. for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
  643. rdmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
  644. }
  645. static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
  646. {
  647. if (svm_data->next_asid > svm_data->max_asid) {
  648. ++svm_data->asid_generation;
  649. svm_data->next_asid = 1;
  650. vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  651. }
  652. vcpu->cpu = svm_data->cpu;
  653. vcpu->svm->asid_generation = svm_data->asid_generation;
  654. vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
  655. }
  656. static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  657. {
  658. invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
  659. }
  660. static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
  661. {
  662. return vcpu->svm->db_regs[dr];
  663. }
  664. static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
  665. int *exception)
  666. {
  667. *exception = 0;
  668. if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
  669. vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
  670. vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
  671. *exception = DB_VECTOR;
  672. return;
  673. }
  674. switch (dr) {
  675. case 0 ... 3:
  676. vcpu->svm->db_regs[dr] = value;
  677. return;
  678. case 4 ... 5:
  679. if (vcpu->cr4 & CR4_DE_MASK) {
  680. *exception = UD_VECTOR;
  681. return;
  682. }
  683. case 7: {
  684. if (value & ~((1ULL << 32) - 1)) {
  685. *exception = GP_VECTOR;
  686. return;
  687. }
  688. vcpu->svm->vmcb->save.dr7 = value;
  689. return;
  690. }
  691. default:
  692. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  693. __FUNCTION__, dr);
  694. *exception = UD_VECTOR;
  695. return;
  696. }
  697. }
  698. static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  699. {
  700. u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
  701. u64 fault_address;
  702. u32 error_code;
  703. enum emulation_result er;
  704. if (is_external_interrupt(exit_int_info))
  705. push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
  706. spin_lock(&vcpu->kvm->lock);
  707. fault_address = vcpu->svm->vmcb->control.exit_info_2;
  708. error_code = vcpu->svm->vmcb->control.exit_info_1;
  709. if (!kvm_mmu_page_fault(vcpu, fault_address, error_code)) {
  710. spin_unlock(&vcpu->kvm->lock);
  711. return 1;
  712. }
  713. er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
  714. spin_unlock(&vcpu->kvm->lock);
  715. switch (er) {
  716. case EMULATE_DONE:
  717. return 1;
  718. case EMULATE_DO_MMIO:
  719. ++kvm_stat.mmio_exits;
  720. kvm_run->exit_reason = KVM_EXIT_MMIO;
  721. return 0;
  722. case EMULATE_FAIL:
  723. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  724. break;
  725. default:
  726. BUG();
  727. }
  728. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  729. return 0;
  730. }
  731. static int io_get_override(struct kvm_vcpu *vcpu,
  732. struct vmcb_seg **seg,
  733. int *addr_override)
  734. {
  735. u8 inst[MAX_INST_SIZE];
  736. unsigned ins_length;
  737. gva_t rip;
  738. int i;
  739. rip = vcpu->svm->vmcb->save.rip;
  740. ins_length = vcpu->svm->next_rip - rip;
  741. rip += vcpu->svm->vmcb->save.cs.base;
  742. if (ins_length > MAX_INST_SIZE)
  743. printk(KERN_DEBUG
  744. "%s: inst length err, cs base 0x%llx rip 0x%llx "
  745. "next rip 0x%llx ins_length %u\n",
  746. __FUNCTION__,
  747. vcpu->svm->vmcb->save.cs.base,
  748. vcpu->svm->vmcb->save.rip,
  749. vcpu->svm->vmcb->control.exit_info_2,
  750. ins_length);
  751. if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
  752. /* #PF */
  753. return 0;
  754. *addr_override = 0;
  755. *seg = 0;
  756. for (i = 0; i < ins_length; i++)
  757. switch (inst[i]) {
  758. case 0xf0:
  759. case 0xf2:
  760. case 0xf3:
  761. case 0x66:
  762. continue;
  763. case 0x67:
  764. *addr_override = 1;
  765. continue;
  766. case 0x2e:
  767. *seg = &vcpu->svm->vmcb->save.cs;
  768. continue;
  769. case 0x36:
  770. *seg = &vcpu->svm->vmcb->save.ss;
  771. continue;
  772. case 0x3e:
  773. *seg = &vcpu->svm->vmcb->save.ds;
  774. continue;
  775. case 0x26:
  776. *seg = &vcpu->svm->vmcb->save.es;
  777. continue;
  778. case 0x64:
  779. *seg = &vcpu->svm->vmcb->save.fs;
  780. continue;
  781. case 0x65:
  782. *seg = &vcpu->svm->vmcb->save.gs;
  783. continue;
  784. default:
  785. return 1;
  786. }
  787. printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
  788. return 0;
  789. }
  790. static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, u64 *address)
  791. {
  792. unsigned long addr_mask;
  793. unsigned long *reg;
  794. struct vmcb_seg *seg;
  795. int addr_override;
  796. struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
  797. u16 cs_attrib = save_area->cs.attrib;
  798. unsigned addr_size = get_addr_size(vcpu);
  799. if (!io_get_override(vcpu, &seg, &addr_override))
  800. return 0;
  801. if (addr_override)
  802. addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
  803. if (ins) {
  804. reg = &vcpu->regs[VCPU_REGS_RDI];
  805. seg = &vcpu->svm->vmcb->save.es;
  806. } else {
  807. reg = &vcpu->regs[VCPU_REGS_RSI];
  808. seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
  809. }
  810. addr_mask = ~0ULL >> (64 - (addr_size * 8));
  811. if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
  812. !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
  813. *address = (*reg & addr_mask);
  814. return addr_mask;
  815. }
  816. if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
  817. svm_inject_gp(vcpu, 0);
  818. return 0;
  819. }
  820. *address = (*reg & addr_mask) + seg->base;
  821. return addr_mask;
  822. }
  823. static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  824. {
  825. u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
  826. int _in = io_info & SVM_IOIO_TYPE_MASK;
  827. ++kvm_stat.io_exits;
  828. vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
  829. kvm_run->exit_reason = KVM_EXIT_IO;
  830. kvm_run->io.port = io_info >> 16;
  831. kvm_run->io.direction = (_in) ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  832. kvm_run->io.size = ((io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT);
  833. kvm_run->io.string = (io_info & SVM_IOIO_STR_MASK) != 0;
  834. kvm_run->io.rep = (io_info & SVM_IOIO_REP_MASK) != 0;
  835. if (kvm_run->io.string) {
  836. unsigned addr_mask;
  837. addr_mask = io_adress(vcpu, _in, &kvm_run->io.address);
  838. if (!addr_mask) {
  839. printk(KERN_DEBUG "%s: get io address failed\n", __FUNCTION__);
  840. return 1;
  841. }
  842. if (kvm_run->io.rep) {
  843. kvm_run->io.count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
  844. kvm_run->io.string_down = (vcpu->svm->vmcb->save.rflags
  845. & X86_EFLAGS_DF) != 0;
  846. }
  847. } else {
  848. kvm_run->io.value = vcpu->svm->vmcb->save.rax;
  849. }
  850. return 0;
  851. }
  852. static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  853. {
  854. return 1;
  855. }
  856. static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  857. {
  858. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
  859. skip_emulated_instruction(vcpu);
  860. if (vcpu->irq_summary)
  861. return 1;
  862. kvm_run->exit_reason = KVM_EXIT_HLT;
  863. ++kvm_stat.halt_exits;
  864. return 0;
  865. }
  866. static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  867. {
  868. inject_ud(vcpu);
  869. return 1;
  870. }
  871. static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  872. {
  873. printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
  874. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  875. return 0;
  876. }
  877. static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  878. {
  879. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  880. kvm_run->exit_reason = KVM_EXIT_CPUID;
  881. return 0;
  882. }
  883. static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  884. {
  885. if (emulate_instruction(vcpu, 0, 0, 0) != EMULATE_DONE)
  886. printk(KERN_ERR "%s: failed\n", __FUNCTION__);
  887. return 1;
  888. }
  889. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  890. {
  891. switch (ecx) {
  892. case MSR_IA32_TIME_STAMP_COUNTER: {
  893. u64 tsc;
  894. rdtscll(tsc);
  895. *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
  896. break;
  897. }
  898. case MSR_K6_STAR:
  899. *data = vcpu->svm->vmcb->save.star;
  900. break;
  901. #ifdef CONFIG_X86_64
  902. case MSR_LSTAR:
  903. *data = vcpu->svm->vmcb->save.lstar;
  904. break;
  905. case MSR_CSTAR:
  906. *data = vcpu->svm->vmcb->save.cstar;
  907. break;
  908. case MSR_KERNEL_GS_BASE:
  909. *data = vcpu->svm->vmcb->save.kernel_gs_base;
  910. break;
  911. case MSR_SYSCALL_MASK:
  912. *data = vcpu->svm->vmcb->save.sfmask;
  913. break;
  914. #endif
  915. case MSR_IA32_SYSENTER_CS:
  916. *data = vcpu->svm->vmcb->save.sysenter_cs;
  917. break;
  918. case MSR_IA32_SYSENTER_EIP:
  919. *data = vcpu->svm->vmcb->save.sysenter_eip;
  920. break;
  921. case MSR_IA32_SYSENTER_ESP:
  922. *data = vcpu->svm->vmcb->save.sysenter_esp;
  923. break;
  924. default:
  925. return kvm_get_msr_common(vcpu, ecx, data);
  926. }
  927. return 0;
  928. }
  929. static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  930. {
  931. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  932. u64 data;
  933. if (svm_get_msr(vcpu, ecx, &data))
  934. svm_inject_gp(vcpu, 0);
  935. else {
  936. vcpu->svm->vmcb->save.rax = data & 0xffffffff;
  937. vcpu->regs[VCPU_REGS_RDX] = data >> 32;
  938. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  939. skip_emulated_instruction(vcpu);
  940. }
  941. return 1;
  942. }
  943. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  944. {
  945. switch (ecx) {
  946. case MSR_IA32_TIME_STAMP_COUNTER: {
  947. u64 tsc;
  948. rdtscll(tsc);
  949. vcpu->svm->vmcb->control.tsc_offset = data - tsc;
  950. break;
  951. }
  952. case MSR_K6_STAR:
  953. vcpu->svm->vmcb->save.star = data;
  954. break;
  955. #ifdef CONFIG_X86_64_
  956. case MSR_LSTAR:
  957. vcpu->svm->vmcb->save.lstar = data;
  958. break;
  959. case MSR_CSTAR:
  960. vcpu->svm->vmcb->save.cstar = data;
  961. break;
  962. case MSR_KERNEL_GS_BASE:
  963. vcpu->svm->vmcb->save.kernel_gs_base = data;
  964. break;
  965. case MSR_SYSCALL_MASK:
  966. vcpu->svm->vmcb->save.sfmask = data;
  967. break;
  968. #endif
  969. case MSR_IA32_SYSENTER_CS:
  970. vcpu->svm->vmcb->save.sysenter_cs = data;
  971. break;
  972. case MSR_IA32_SYSENTER_EIP:
  973. vcpu->svm->vmcb->save.sysenter_eip = data;
  974. break;
  975. case MSR_IA32_SYSENTER_ESP:
  976. vcpu->svm->vmcb->save.sysenter_esp = data;
  977. break;
  978. default:
  979. return kvm_set_msr_common(vcpu, ecx, data);
  980. }
  981. return 0;
  982. }
  983. static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  984. {
  985. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  986. u64 data = (vcpu->svm->vmcb->save.rax & -1u)
  987. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  988. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  989. if (svm_set_msr(vcpu, ecx, data))
  990. svm_inject_gp(vcpu, 0);
  991. else
  992. skip_emulated_instruction(vcpu);
  993. return 1;
  994. }
  995. static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  996. {
  997. if (vcpu->svm->vmcb->control.exit_info_1)
  998. return wrmsr_interception(vcpu, kvm_run);
  999. else
  1000. return rdmsr_interception(vcpu, kvm_run);
  1001. }
  1002. static int interrupt_window_interception(struct kvm_vcpu *vcpu,
  1003. struct kvm_run *kvm_run)
  1004. {
  1005. /*
  1006. * If the user space waits to inject interrupts, exit as soon as
  1007. * possible
  1008. */
  1009. if (kvm_run->request_interrupt_window &&
  1010. !vcpu->irq_summary &&
  1011. (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF)) {
  1012. ++kvm_stat.irq_window_exits;
  1013. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1014. return 0;
  1015. }
  1016. return 1;
  1017. }
  1018. static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
  1019. struct kvm_run *kvm_run) = {
  1020. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1021. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1022. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1023. /* for now: */
  1024. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1025. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1026. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1027. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1028. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1029. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1030. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1031. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1032. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1033. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1034. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1035. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1036. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1037. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1038. [SVM_EXIT_INTR] = nop_on_interception,
  1039. [SVM_EXIT_NMI] = nop_on_interception,
  1040. [SVM_EXIT_SMI] = nop_on_interception,
  1041. [SVM_EXIT_INIT] = nop_on_interception,
  1042. [SVM_EXIT_VINTR] = interrupt_window_interception,
  1043. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1044. [SVM_EXIT_CPUID] = cpuid_interception,
  1045. [SVM_EXIT_HLT] = halt_interception,
  1046. [SVM_EXIT_INVLPG] = emulate_on_interception,
  1047. [SVM_EXIT_INVLPGA] = invalid_op_interception,
  1048. [SVM_EXIT_IOIO] = io_interception,
  1049. [SVM_EXIT_MSR] = msr_interception,
  1050. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1051. [SVM_EXIT_VMRUN] = invalid_op_interception,
  1052. [SVM_EXIT_VMMCALL] = invalid_op_interception,
  1053. [SVM_EXIT_VMLOAD] = invalid_op_interception,
  1054. [SVM_EXIT_VMSAVE] = invalid_op_interception,
  1055. [SVM_EXIT_STGI] = invalid_op_interception,
  1056. [SVM_EXIT_CLGI] = invalid_op_interception,
  1057. [SVM_EXIT_SKINIT] = invalid_op_interception,
  1058. };
  1059. static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1060. {
  1061. u32 exit_code = vcpu->svm->vmcb->control.exit_code;
  1062. kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
  1063. if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
  1064. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
  1065. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  1066. "exit_code 0x%x\n",
  1067. __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
  1068. exit_code);
  1069. if (exit_code >= sizeof(svm_exit_handlers) / sizeof(*svm_exit_handlers)
  1070. || svm_exit_handlers[exit_code] == 0) {
  1071. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1072. printk(KERN_ERR "%s: 0x%x @ 0x%llx cr0 0x%lx rflags 0x%llx\n",
  1073. __FUNCTION__,
  1074. exit_code,
  1075. vcpu->svm->vmcb->save.rip,
  1076. vcpu->cr0,
  1077. vcpu->svm->vmcb->save.rflags);
  1078. return 0;
  1079. }
  1080. return svm_exit_handlers[exit_code](vcpu, kvm_run);
  1081. }
  1082. static void reload_tss(struct kvm_vcpu *vcpu)
  1083. {
  1084. int cpu = raw_smp_processor_id();
  1085. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1086. svm_data->tss_desc->type = 9; //available 32/64-bit TSS
  1087. load_TR_desc();
  1088. }
  1089. static void pre_svm_run(struct kvm_vcpu *vcpu)
  1090. {
  1091. int cpu = raw_smp_processor_id();
  1092. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1093. vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  1094. if (vcpu->cpu != cpu ||
  1095. vcpu->svm->asid_generation != svm_data->asid_generation)
  1096. new_asid(vcpu, svm_data);
  1097. }
  1098. static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1099. {
  1100. struct vmcb_control_area *control;
  1101. control = &vcpu->svm->vmcb->control;
  1102. control->int_vector = pop_irq(vcpu);
  1103. control->int_ctl &= ~V_INTR_PRIO_MASK;
  1104. control->int_ctl |= V_IRQ_MASK |
  1105. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  1106. }
  1107. static void kvm_reput_irq(struct kvm_vcpu *vcpu)
  1108. {
  1109. struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
  1110. if (control->int_ctl & V_IRQ_MASK) {
  1111. control->int_ctl &= ~V_IRQ_MASK;
  1112. push_irq(vcpu, control->int_vector);
  1113. }
  1114. vcpu->interrupt_window_open =
  1115. !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
  1116. }
  1117. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1118. struct kvm_run *kvm_run)
  1119. {
  1120. struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
  1121. vcpu->interrupt_window_open =
  1122. (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1123. (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1124. if (vcpu->interrupt_window_open && vcpu->irq_summary)
  1125. /*
  1126. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1127. */
  1128. kvm_do_inject_irq(vcpu);
  1129. /*
  1130. * Interrupts blocked. Wait for unblock.
  1131. */
  1132. if (!vcpu->interrupt_window_open &&
  1133. (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
  1134. control->intercept |= 1ULL << INTERCEPT_VINTR;
  1135. } else
  1136. control->intercept &= ~(1ULL << INTERCEPT_VINTR);
  1137. }
  1138. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1139. struct kvm_run *kvm_run)
  1140. {
  1141. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1142. vcpu->irq_summary == 0);
  1143. kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
  1144. kvm_run->cr8 = vcpu->cr8;
  1145. kvm_run->apic_base = vcpu->apic_base;
  1146. }
  1147. /*
  1148. * Check if userspace requested an interrupt window, and that the
  1149. * interrupt window is open.
  1150. *
  1151. * No need to exit to userspace if we already have an interrupt queued.
  1152. */
  1153. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1154. struct kvm_run *kvm_run)
  1155. {
  1156. return (!vcpu->irq_summary &&
  1157. kvm_run->request_interrupt_window &&
  1158. vcpu->interrupt_window_open &&
  1159. (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1160. }
  1161. static void save_db_regs(unsigned long *db_regs)
  1162. {
  1163. asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
  1164. asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
  1165. asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
  1166. asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
  1167. }
  1168. static void load_db_regs(unsigned long *db_regs)
  1169. {
  1170. asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
  1171. asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
  1172. asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
  1173. asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
  1174. }
  1175. static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1176. {
  1177. u16 fs_selector;
  1178. u16 gs_selector;
  1179. u16 ldt_selector;
  1180. again:
  1181. do_interrupt_requests(vcpu, kvm_run);
  1182. clgi();
  1183. pre_svm_run(vcpu);
  1184. save_host_msrs(vcpu);
  1185. fs_selector = read_fs();
  1186. gs_selector = read_gs();
  1187. ldt_selector = read_ldt();
  1188. vcpu->svm->host_cr2 = kvm_read_cr2();
  1189. vcpu->svm->host_dr6 = read_dr6();
  1190. vcpu->svm->host_dr7 = read_dr7();
  1191. vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
  1192. if (vcpu->svm->vmcb->save.dr7 & 0xff) {
  1193. write_dr7(0);
  1194. save_db_regs(vcpu->svm->host_db_regs);
  1195. load_db_regs(vcpu->svm->db_regs);
  1196. }
  1197. fx_save(vcpu->host_fx_image);
  1198. fx_restore(vcpu->guest_fx_image);
  1199. asm volatile (
  1200. #ifdef CONFIG_X86_64
  1201. "push %%rbx; push %%rcx; push %%rdx;"
  1202. "push %%rsi; push %%rdi; push %%rbp;"
  1203. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1204. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1205. #else
  1206. "push %%ebx; push %%ecx; push %%edx;"
  1207. "push %%esi; push %%edi; push %%ebp;"
  1208. #endif
  1209. #ifdef CONFIG_X86_64
  1210. "mov %c[rbx](%[vcpu]), %%rbx \n\t"
  1211. "mov %c[rcx](%[vcpu]), %%rcx \n\t"
  1212. "mov %c[rdx](%[vcpu]), %%rdx \n\t"
  1213. "mov %c[rsi](%[vcpu]), %%rsi \n\t"
  1214. "mov %c[rdi](%[vcpu]), %%rdi \n\t"
  1215. "mov %c[rbp](%[vcpu]), %%rbp \n\t"
  1216. "mov %c[r8](%[vcpu]), %%r8 \n\t"
  1217. "mov %c[r9](%[vcpu]), %%r9 \n\t"
  1218. "mov %c[r10](%[vcpu]), %%r10 \n\t"
  1219. "mov %c[r11](%[vcpu]), %%r11 \n\t"
  1220. "mov %c[r12](%[vcpu]), %%r12 \n\t"
  1221. "mov %c[r13](%[vcpu]), %%r13 \n\t"
  1222. "mov %c[r14](%[vcpu]), %%r14 \n\t"
  1223. "mov %c[r15](%[vcpu]), %%r15 \n\t"
  1224. #else
  1225. "mov %c[rbx](%[vcpu]), %%ebx \n\t"
  1226. "mov %c[rcx](%[vcpu]), %%ecx \n\t"
  1227. "mov %c[rdx](%[vcpu]), %%edx \n\t"
  1228. "mov %c[rsi](%[vcpu]), %%esi \n\t"
  1229. "mov %c[rdi](%[vcpu]), %%edi \n\t"
  1230. "mov %c[rbp](%[vcpu]), %%ebp \n\t"
  1231. #endif
  1232. #ifdef CONFIG_X86_64
  1233. /* Enter guest mode */
  1234. "push %%rax \n\t"
  1235. "mov %c[svm](%[vcpu]), %%rax \n\t"
  1236. "mov %c[vmcb](%%rax), %%rax \n\t"
  1237. SVM_VMLOAD "\n\t"
  1238. SVM_VMRUN "\n\t"
  1239. SVM_VMSAVE "\n\t"
  1240. "pop %%rax \n\t"
  1241. #else
  1242. /* Enter guest mode */
  1243. "push %%eax \n\t"
  1244. "mov %c[svm](%[vcpu]), %%eax \n\t"
  1245. "mov %c[vmcb](%%eax), %%eax \n\t"
  1246. SVM_VMLOAD "\n\t"
  1247. SVM_VMRUN "\n\t"
  1248. SVM_VMSAVE "\n\t"
  1249. "pop %%eax \n\t"
  1250. #endif
  1251. /* Save guest registers, load host registers */
  1252. #ifdef CONFIG_X86_64
  1253. "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
  1254. "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
  1255. "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
  1256. "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
  1257. "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
  1258. "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
  1259. "mov %%r8, %c[r8](%[vcpu]) \n\t"
  1260. "mov %%r9, %c[r9](%[vcpu]) \n\t"
  1261. "mov %%r10, %c[r10](%[vcpu]) \n\t"
  1262. "mov %%r11, %c[r11](%[vcpu]) \n\t"
  1263. "mov %%r12, %c[r12](%[vcpu]) \n\t"
  1264. "mov %%r13, %c[r13](%[vcpu]) \n\t"
  1265. "mov %%r14, %c[r14](%[vcpu]) \n\t"
  1266. "mov %%r15, %c[r15](%[vcpu]) \n\t"
  1267. "pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1268. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1269. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1270. "pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
  1271. #else
  1272. "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
  1273. "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
  1274. "mov %%edx, %c[rdx](%[vcpu]) \n\t"
  1275. "mov %%esi, %c[rsi](%[vcpu]) \n\t"
  1276. "mov %%edi, %c[rdi](%[vcpu]) \n\t"
  1277. "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
  1278. "pop %%ebp; pop %%edi; pop %%esi;"
  1279. "pop %%edx; pop %%ecx; pop %%ebx; \n\t"
  1280. #endif
  1281. :
  1282. : [vcpu]"a"(vcpu),
  1283. [svm]"i"(offsetof(struct kvm_vcpu, svm)),
  1284. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  1285. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1286. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1287. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1288. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1289. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1290. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
  1291. #ifdef CONFIG_X86_64
  1292. ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1293. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1294. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1295. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1296. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1297. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1298. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1299. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
  1300. #endif
  1301. : "cc", "memory" );
  1302. fx_save(vcpu->guest_fx_image);
  1303. fx_restore(vcpu->host_fx_image);
  1304. if ((vcpu->svm->vmcb->save.dr7 & 0xff))
  1305. load_db_regs(vcpu->svm->host_db_regs);
  1306. vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
  1307. write_dr6(vcpu->svm->host_dr6);
  1308. write_dr7(vcpu->svm->host_dr7);
  1309. kvm_write_cr2(vcpu->svm->host_cr2);
  1310. load_fs(fs_selector);
  1311. load_gs(gs_selector);
  1312. load_ldt(ldt_selector);
  1313. load_host_msrs(vcpu);
  1314. reload_tss(vcpu);
  1315. stgi();
  1316. kvm_reput_irq(vcpu);
  1317. vcpu->svm->next_rip = 0;
  1318. if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  1319. kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
  1320. kvm_run->exit_reason = vcpu->svm->vmcb->control.exit_code;
  1321. post_kvm_run_save(vcpu, kvm_run);
  1322. return 0;
  1323. }
  1324. if (handle_exit(vcpu, kvm_run)) {
  1325. if (signal_pending(current)) {
  1326. ++kvm_stat.signal_exits;
  1327. post_kvm_run_save(vcpu, kvm_run);
  1328. return -EINTR;
  1329. }
  1330. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1331. ++kvm_stat.request_irq_exits;
  1332. post_kvm_run_save(vcpu, kvm_run);
  1333. return -EINTR;
  1334. }
  1335. kvm_resched(vcpu);
  1336. goto again;
  1337. }
  1338. post_kvm_run_save(vcpu, kvm_run);
  1339. return 0;
  1340. }
  1341. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  1342. {
  1343. force_new_asid(vcpu);
  1344. }
  1345. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  1346. {
  1347. vcpu->svm->vmcb->save.cr3 = root;
  1348. force_new_asid(vcpu);
  1349. }
  1350. static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
  1351. unsigned long addr,
  1352. uint32_t err_code)
  1353. {
  1354. uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
  1355. ++kvm_stat.pf_guest;
  1356. if (is_page_fault(exit_int_info)) {
  1357. vcpu->svm->vmcb->control.event_inj_err = 0;
  1358. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1359. SVM_EVTINJ_VALID_ERR |
  1360. SVM_EVTINJ_TYPE_EXEPT |
  1361. DF_VECTOR;
  1362. return;
  1363. }
  1364. vcpu->cr2 = addr;
  1365. vcpu->svm->vmcb->save.cr2 = addr;
  1366. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1367. SVM_EVTINJ_VALID_ERR |
  1368. SVM_EVTINJ_TYPE_EXEPT |
  1369. PF_VECTOR;
  1370. vcpu->svm->vmcb->control.event_inj_err = err_code;
  1371. }
  1372. static int is_disabled(void)
  1373. {
  1374. return 0;
  1375. }
  1376. static struct kvm_arch_ops svm_arch_ops = {
  1377. .cpu_has_kvm_support = has_svm,
  1378. .disabled_by_bios = is_disabled,
  1379. .hardware_setup = svm_hardware_setup,
  1380. .hardware_unsetup = svm_hardware_unsetup,
  1381. .hardware_enable = svm_hardware_enable,
  1382. .hardware_disable = svm_hardware_disable,
  1383. .vcpu_create = svm_create_vcpu,
  1384. .vcpu_free = svm_free_vcpu,
  1385. .vcpu_load = svm_vcpu_load,
  1386. .vcpu_put = svm_vcpu_put,
  1387. .set_guest_debug = svm_guest_debug,
  1388. .get_msr = svm_get_msr,
  1389. .set_msr = svm_set_msr,
  1390. .get_segment_base = svm_get_segment_base,
  1391. .get_segment = svm_get_segment,
  1392. .set_segment = svm_set_segment,
  1393. .get_cs_db_l_bits = svm_get_cs_db_l_bits,
  1394. .decache_cr0_cr4_guest_bits = svm_decache_cr0_cr4_guest_bits,
  1395. .set_cr0 = svm_set_cr0,
  1396. .set_cr0_no_modeswitch = svm_set_cr0,
  1397. .set_cr3 = svm_set_cr3,
  1398. .set_cr4 = svm_set_cr4,
  1399. .set_efer = svm_set_efer,
  1400. .get_idt = svm_get_idt,
  1401. .set_idt = svm_set_idt,
  1402. .get_gdt = svm_get_gdt,
  1403. .set_gdt = svm_set_gdt,
  1404. .get_dr = svm_get_dr,
  1405. .set_dr = svm_set_dr,
  1406. .cache_regs = svm_cache_regs,
  1407. .decache_regs = svm_decache_regs,
  1408. .get_rflags = svm_get_rflags,
  1409. .set_rflags = svm_set_rflags,
  1410. .invlpg = svm_invlpg,
  1411. .tlb_flush = svm_flush_tlb,
  1412. .inject_page_fault = svm_inject_page_fault,
  1413. .inject_gp = svm_inject_gp,
  1414. .run = svm_vcpu_run,
  1415. .skip_emulated_instruction = skip_emulated_instruction,
  1416. .vcpu_setup = svm_vcpu_setup,
  1417. };
  1418. static int __init svm_init(void)
  1419. {
  1420. return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
  1421. }
  1422. static void __exit svm_exit(void)
  1423. {
  1424. kvm_exit_arch();
  1425. }
  1426. module_init(svm_init)
  1427. module_exit(svm_exit)