rt2500pci.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972
  1. /*
  2. Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. /*
  23. * Set enviroment defines for rt2x00.h
  24. */
  25. #define DRV_NAME "rt2500pci"
  26. #include <linux/delay.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/init.h>
  29. #include <linux/kernel.h>
  30. #include <linux/module.h>
  31. #include <linux/pci.h>
  32. #include <linux/eeprom_93cx6.h>
  33. #include "rt2x00.h"
  34. #include "rt2x00pci.h"
  35. #include "rt2500pci.h"
  36. /*
  37. * Register access.
  38. * All access to the CSR registers will go through the methods
  39. * rt2x00pci_register_read and rt2x00pci_register_write.
  40. * BBP and RF register require indirect register access,
  41. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  42. * These indirect registers work with busy bits,
  43. * and we will try maximal REGISTER_BUSY_COUNT times to access
  44. * the register while taking a REGISTER_BUSY_DELAY us delay
  45. * between each attampt. When the busy bit is still set at that time,
  46. * the access attempt is considered to have failed,
  47. * and we will print an error.
  48. */
  49. static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
  50. {
  51. u32 reg;
  52. unsigned int i;
  53. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  54. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  55. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  56. break;
  57. udelay(REGISTER_BUSY_DELAY);
  58. }
  59. return reg;
  60. }
  61. static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
  62. const unsigned int word, const u8 value)
  63. {
  64. u32 reg;
  65. /*
  66. * Wait until the BBP becomes ready.
  67. */
  68. reg = rt2500pci_bbp_check(rt2x00dev);
  69. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  70. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  71. return;
  72. }
  73. /*
  74. * Write the data into the BBP.
  75. */
  76. reg = 0;
  77. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  78. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  79. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  80. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  81. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  82. }
  83. static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
  84. const unsigned int word, u8 *value)
  85. {
  86. u32 reg;
  87. /*
  88. * Wait until the BBP becomes ready.
  89. */
  90. reg = rt2500pci_bbp_check(rt2x00dev);
  91. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  92. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  93. return;
  94. }
  95. /*
  96. * Write the request into the BBP.
  97. */
  98. reg = 0;
  99. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  100. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  101. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  102. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  103. /*
  104. * Wait until the BBP becomes ready.
  105. */
  106. reg = rt2500pci_bbp_check(rt2x00dev);
  107. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  108. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  109. *value = 0xff;
  110. return;
  111. }
  112. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  113. }
  114. static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,
  115. const unsigned int word, const u32 value)
  116. {
  117. u32 reg;
  118. unsigned int i;
  119. if (!word)
  120. return;
  121. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  122. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  123. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  124. goto rf_write;
  125. udelay(REGISTER_BUSY_DELAY);
  126. }
  127. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  128. return;
  129. rf_write:
  130. reg = 0;
  131. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  132. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  133. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  134. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  135. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  136. rt2x00_rf_write(rt2x00dev, word, value);
  137. }
  138. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  139. {
  140. struct rt2x00_dev *rt2x00dev = eeprom->data;
  141. u32 reg;
  142. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  143. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  144. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  145. eeprom->reg_data_clock =
  146. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  147. eeprom->reg_chip_select =
  148. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  149. }
  150. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  151. {
  152. struct rt2x00_dev *rt2x00dev = eeprom->data;
  153. u32 reg = 0;
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  155. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  156. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  157. !!eeprom->reg_data_clock);
  158. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  159. !!eeprom->reg_chip_select);
  160. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  161. }
  162. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  163. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
  164. static void rt2500pci_read_csr(const struct rt2x00_dev *rt2x00dev,
  165. const unsigned int word, u32 *data)
  166. {
  167. rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
  168. }
  169. static void rt2500pci_write_csr(const struct rt2x00_dev *rt2x00dev,
  170. const unsigned int word, u32 data)
  171. {
  172. rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
  173. }
  174. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  175. .owner = THIS_MODULE,
  176. .csr = {
  177. .read = rt2500pci_read_csr,
  178. .write = rt2500pci_write_csr,
  179. .word_size = sizeof(u32),
  180. .word_count = CSR_REG_SIZE / sizeof(u32),
  181. },
  182. .eeprom = {
  183. .read = rt2x00_eeprom_read,
  184. .write = rt2x00_eeprom_write,
  185. .word_size = sizeof(u16),
  186. .word_count = EEPROM_SIZE / sizeof(u16),
  187. },
  188. .bbp = {
  189. .read = rt2500pci_bbp_read,
  190. .write = rt2500pci_bbp_write,
  191. .word_size = sizeof(u8),
  192. .word_count = BBP_SIZE / sizeof(u8),
  193. },
  194. .rf = {
  195. .read = rt2x00_rf_read,
  196. .write = rt2500pci_rf_write,
  197. .word_size = sizeof(u32),
  198. .word_count = RF_SIZE / sizeof(u32),
  199. },
  200. };
  201. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  202. #ifdef CONFIG_RT2500PCI_RFKILL
  203. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  204. {
  205. u32 reg;
  206. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  207. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  208. }
  209. #else
  210. #define rt2500pci_rfkill_poll NULL
  211. #endif /* CONFIG_RT2500PCI_RFKILL */
  212. /*
  213. * Configuration handlers.
  214. */
  215. static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
  216. __le32 *mac)
  217. {
  218. rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
  219. (2 * sizeof(__le32)));
  220. }
  221. static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
  222. __le32 *bssid)
  223. {
  224. rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
  225. (2 * sizeof(__le32)));
  226. }
  227. static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
  228. const int tsf_sync)
  229. {
  230. u32 reg;
  231. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  232. /*
  233. * Enable beacon config
  234. */
  235. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  236. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
  237. PREAMBLE + get_duration(IEEE80211_HEADER, 20));
  238. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
  239. rt2x00lib_get_ring(rt2x00dev,
  240. IEEE80211_TX_QUEUE_BEACON)
  241. ->tx_params.cw_min);
  242. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  243. /*
  244. * Enable synchronisation.
  245. */
  246. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  247. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  248. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  249. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  250. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
  251. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  252. }
  253. static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
  254. const int short_preamble,
  255. const int ack_timeout,
  256. const int ack_consume_time)
  257. {
  258. int preamble_mask;
  259. u32 reg;
  260. /*
  261. * When short preamble is enabled, we should set bit 0x08
  262. */
  263. preamble_mask = short_preamble << 3;
  264. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  265. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
  266. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
  267. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  268. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  269. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
  270. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  271. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  272. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  273. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  274. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  275. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  276. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  277. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  278. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  279. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  280. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  281. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  282. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  283. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  284. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  285. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  286. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  287. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  288. }
  289. static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
  290. const int basic_rate_mask)
  291. {
  292. rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
  293. }
  294. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  295. struct rf_channel *rf, const int txpower)
  296. {
  297. u8 r70;
  298. /*
  299. * Set TXpower.
  300. */
  301. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  302. /*
  303. * Switch on tuning bits.
  304. * For RT2523 devices we do not need to update the R1 register.
  305. */
  306. if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
  307. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  308. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  309. /*
  310. * For RT2525 we should first set the channel to half band higher.
  311. */
  312. if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  313. static const u32 vals[] = {
  314. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  315. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  316. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  317. 0x00080d2e, 0x00080d3a
  318. };
  319. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  320. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  321. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  322. if (rf->rf4)
  323. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  324. }
  325. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  326. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  327. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  328. if (rf->rf4)
  329. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  330. /*
  331. * Channel 14 requires the Japan filter bit to be set.
  332. */
  333. r70 = 0x46;
  334. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  335. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  336. msleep(1);
  337. /*
  338. * Switch off tuning bits.
  339. * For RT2523 devices we do not need to update the R1 register.
  340. */
  341. if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  342. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  343. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  344. }
  345. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  346. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  347. /*
  348. * Clear false CRC during channel switch.
  349. */
  350. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  351. }
  352. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  353. const int txpower)
  354. {
  355. u32 rf3;
  356. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  357. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  358. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  359. }
  360. static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
  361. const int antenna_tx, const int antenna_rx)
  362. {
  363. u32 reg;
  364. u8 r14;
  365. u8 r2;
  366. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  367. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  368. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  369. /*
  370. * Configure the TX antenna.
  371. */
  372. switch (antenna_tx) {
  373. case ANTENNA_SW_DIVERSITY:
  374. case ANTENNA_HW_DIVERSITY:
  375. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  376. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  377. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  378. break;
  379. case ANTENNA_A:
  380. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  381. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  382. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  383. break;
  384. case ANTENNA_B:
  385. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  386. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  387. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  388. break;
  389. }
  390. /*
  391. * Configure the RX antenna.
  392. */
  393. switch (antenna_rx) {
  394. case ANTENNA_SW_DIVERSITY:
  395. case ANTENNA_HW_DIVERSITY:
  396. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  397. break;
  398. case ANTENNA_A:
  399. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  400. break;
  401. case ANTENNA_B:
  402. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  403. break;
  404. }
  405. /*
  406. * RT2525E and RT5222 need to flip TX I/Q
  407. */
  408. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  409. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  410. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  411. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  412. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  413. /*
  414. * RT2525E does not need RX I/Q Flip.
  415. */
  416. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  417. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  418. } else {
  419. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  420. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  421. }
  422. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  423. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  424. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  425. }
  426. static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
  427. struct rt2x00lib_conf *libconf)
  428. {
  429. u32 reg;
  430. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  431. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
  432. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  433. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  434. rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
  435. rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
  436. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  437. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  438. rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
  439. rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
  440. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  441. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  442. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  443. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  444. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  445. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  446. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  447. libconf->conf->beacon_int * 16);
  448. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  449. libconf->conf->beacon_int * 16);
  450. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  451. }
  452. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  453. const unsigned int flags,
  454. struct rt2x00lib_conf *libconf)
  455. {
  456. if (flags & CONFIG_UPDATE_PHYMODE)
  457. rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
  458. if (flags & CONFIG_UPDATE_CHANNEL)
  459. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  460. libconf->conf->power_level);
  461. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  462. rt2500pci_config_txpower(rt2x00dev,
  463. libconf->conf->power_level);
  464. if (flags & CONFIG_UPDATE_ANTENNA)
  465. rt2500pci_config_antenna(rt2x00dev,
  466. libconf->conf->antenna_sel_tx,
  467. libconf->conf->antenna_sel_rx);
  468. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  469. rt2500pci_config_duration(rt2x00dev, libconf);
  470. }
  471. /*
  472. * LED functions.
  473. */
  474. static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
  475. {
  476. u32 reg;
  477. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  478. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
  479. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
  480. if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
  481. rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
  482. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
  483. } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
  484. rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
  485. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
  486. } else {
  487. rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
  488. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
  489. }
  490. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  491. }
  492. static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
  493. {
  494. u32 reg;
  495. rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
  496. rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
  497. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
  498. rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
  499. }
  500. /*
  501. * Link tuning
  502. */
  503. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  504. struct link_qual *qual)
  505. {
  506. u32 reg;
  507. /*
  508. * Update FCS error count from register.
  509. */
  510. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  511. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  512. /*
  513. * Update False CCA count from register.
  514. */
  515. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  516. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  517. }
  518. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  519. {
  520. rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
  521. rt2x00dev->link.vgc_level = 0x48;
  522. }
  523. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  524. {
  525. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  526. u8 r17;
  527. /*
  528. * To prevent collisions with MAC ASIC on chipsets
  529. * up to version C the link tuning should halt after 20
  530. * seconds.
  531. */
  532. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
  533. rt2x00dev->link.count > 20)
  534. return;
  535. rt2500pci_bbp_read(rt2x00dev, 17, &r17);
  536. /*
  537. * Chipset versions C and lower should directly continue
  538. * to the dynamic CCA tuning.
  539. */
  540. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
  541. goto dynamic_cca_tune;
  542. /*
  543. * A too low RSSI will cause too much false CCA which will
  544. * then corrupt the R17 tuning. To remidy this the tuning should
  545. * be stopped (While making sure the R17 value will not exceed limits)
  546. */
  547. if (rssi < -80 && rt2x00dev->link.count > 20) {
  548. if (r17 >= 0x41) {
  549. r17 = rt2x00dev->link.vgc_level;
  550. rt2500pci_bbp_write(rt2x00dev, 17, r17);
  551. }
  552. return;
  553. }
  554. /*
  555. * Special big-R17 for short distance
  556. */
  557. if (rssi >= -58) {
  558. if (r17 != 0x50)
  559. rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
  560. return;
  561. }
  562. /*
  563. * Special mid-R17 for middle distance
  564. */
  565. if (rssi >= -74) {
  566. if (r17 != 0x41)
  567. rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
  568. return;
  569. }
  570. /*
  571. * Leave short or middle distance condition, restore r17
  572. * to the dynamic tuning range.
  573. */
  574. if (r17 >= 0x41) {
  575. rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
  576. return;
  577. }
  578. dynamic_cca_tune:
  579. /*
  580. * R17 is inside the dynamic tuning range,
  581. * start tuning the link based on the false cca counter.
  582. */
  583. if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
  584. rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
  585. rt2x00dev->link.vgc_level = r17;
  586. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
  587. rt2500pci_bbp_write(rt2x00dev, 17, --r17);
  588. rt2x00dev->link.vgc_level = r17;
  589. }
  590. }
  591. /*
  592. * Initialization functions.
  593. */
  594. static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
  595. {
  596. struct data_ring *ring = rt2x00dev->rx;
  597. struct data_desc *rxd;
  598. unsigned int i;
  599. u32 word;
  600. memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
  601. for (i = 0; i < ring->stats.limit; i++) {
  602. rxd = ring->entry[i].priv;
  603. rt2x00_desc_read(rxd, 1, &word);
  604. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
  605. ring->entry[i].data_dma);
  606. rt2x00_desc_write(rxd, 1, word);
  607. rt2x00_desc_read(rxd, 0, &word);
  608. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  609. rt2x00_desc_write(rxd, 0, word);
  610. }
  611. rt2x00_ring_index_clear(rt2x00dev->rx);
  612. }
  613. static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
  614. {
  615. struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
  616. struct data_desc *txd;
  617. unsigned int i;
  618. u32 word;
  619. memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
  620. for (i = 0; i < ring->stats.limit; i++) {
  621. txd = ring->entry[i].priv;
  622. rt2x00_desc_read(txd, 1, &word);
  623. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
  624. ring->entry[i].data_dma);
  625. rt2x00_desc_write(txd, 1, word);
  626. rt2x00_desc_read(txd, 0, &word);
  627. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  628. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  629. rt2x00_desc_write(txd, 0, word);
  630. }
  631. rt2x00_ring_index_clear(ring);
  632. }
  633. static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
  634. {
  635. u32 reg;
  636. /*
  637. * Initialize rings.
  638. */
  639. rt2500pci_init_rxring(rt2x00dev);
  640. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  641. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  642. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
  643. rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
  644. /*
  645. * Initialize registers.
  646. */
  647. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  648. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
  649. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
  650. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
  651. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
  652. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
  653. rt2x00dev->bcn[1].stats.limit);
  654. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
  655. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
  656. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  657. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  658. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  659. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
  660. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  661. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  662. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  663. rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
  664. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  665. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  666. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  667. rt2x00dev->bcn[1].data_dma);
  668. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  669. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  670. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  671. rt2x00dev->bcn[0].data_dma);
  672. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  673. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  674. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  675. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
  676. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  677. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  678. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  679. rt2x00dev->rx->data_dma);
  680. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  681. return 0;
  682. }
  683. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  684. {
  685. u32 reg;
  686. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  687. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  688. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  689. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  690. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  691. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  692. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  693. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  694. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  695. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  696. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  697. rt2x00dev->rx->data_size / 128);
  698. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  699. /*
  700. * Always use CWmin and CWmax set in descriptor.
  701. */
  702. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  703. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  704. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  705. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  706. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  707. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  708. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  709. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  710. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  711. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  712. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  713. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  714. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  715. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  716. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  717. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  718. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  719. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  720. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  721. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  722. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  723. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  724. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  725. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  726. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  727. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  728. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  729. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  730. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  731. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  732. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  733. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  734. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  735. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  736. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  737. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  738. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  739. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  740. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  741. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  742. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  743. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  744. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  745. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  746. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  747. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  748. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  749. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  750. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  751. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  752. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  753. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  754. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  755. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  756. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  757. return -EBUSY;
  758. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  759. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  760. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  761. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  762. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  763. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  764. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  765. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  766. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  767. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  768. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  769. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  770. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  771. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  772. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  773. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  774. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  775. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  776. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  777. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  778. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  779. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  780. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  781. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  782. /*
  783. * We must clear the FCS and FIFO error count.
  784. * These registers are cleared on read,
  785. * so we may pass a useless variable to store the value.
  786. */
  787. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  788. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  789. return 0;
  790. }
  791. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  792. {
  793. unsigned int i;
  794. u16 eeprom;
  795. u8 reg_id;
  796. u8 value;
  797. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  798. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  799. if ((value != 0xff) && (value != 0x00))
  800. goto continue_csr_init;
  801. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  802. udelay(REGISTER_BUSY_DELAY);
  803. }
  804. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  805. return -EACCES;
  806. continue_csr_init:
  807. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  808. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  809. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  810. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  811. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  812. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  813. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  814. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  815. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  816. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  817. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  818. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  819. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  820. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  821. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  822. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  823. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  824. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  825. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  826. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  827. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  828. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  829. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  830. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  831. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  832. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  833. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  834. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  835. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  836. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  837. DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
  838. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  839. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  840. if (eeprom != 0xffff && eeprom != 0x0000) {
  841. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  842. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  843. DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
  844. reg_id, value);
  845. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  846. }
  847. }
  848. DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
  849. return 0;
  850. }
  851. /*
  852. * Device state switch handlers.
  853. */
  854. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  855. enum dev_state state)
  856. {
  857. u32 reg;
  858. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  859. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  860. state == STATE_RADIO_RX_OFF);
  861. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  862. }
  863. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  864. enum dev_state state)
  865. {
  866. int mask = (state == STATE_RADIO_IRQ_OFF);
  867. u32 reg;
  868. /*
  869. * When interrupts are being enabled, the interrupt registers
  870. * should clear the register to assure a clean state.
  871. */
  872. if (state == STATE_RADIO_IRQ_ON) {
  873. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  874. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  875. }
  876. /*
  877. * Only toggle the interrupts bits we are going to use.
  878. * Non-checked interrupt bits are disabled by default.
  879. */
  880. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  881. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  882. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  883. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  884. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  885. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  886. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  887. }
  888. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  889. {
  890. /*
  891. * Initialize all registers.
  892. */
  893. if (rt2500pci_init_rings(rt2x00dev) ||
  894. rt2500pci_init_registers(rt2x00dev) ||
  895. rt2500pci_init_bbp(rt2x00dev)) {
  896. ERROR(rt2x00dev, "Register initialization failed.\n");
  897. return -EIO;
  898. }
  899. /*
  900. * Enable interrupts.
  901. */
  902. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
  903. /*
  904. * Enable LED
  905. */
  906. rt2500pci_enable_led(rt2x00dev);
  907. return 0;
  908. }
  909. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  910. {
  911. u32 reg;
  912. /*
  913. * Disable LED
  914. */
  915. rt2500pci_disable_led(rt2x00dev);
  916. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  917. /*
  918. * Disable synchronisation.
  919. */
  920. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  921. /*
  922. * Cancel RX and TX.
  923. */
  924. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  925. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  926. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  927. /*
  928. * Disable interrupts.
  929. */
  930. rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
  931. }
  932. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  933. enum dev_state state)
  934. {
  935. u32 reg;
  936. unsigned int i;
  937. char put_to_sleep;
  938. char bbp_state;
  939. char rf_state;
  940. put_to_sleep = (state != STATE_AWAKE);
  941. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  942. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  943. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  944. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  945. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  946. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  947. /*
  948. * Device is not guaranteed to be in the requested state yet.
  949. * We must wait until the register indicates that the
  950. * device has entered the correct state.
  951. */
  952. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  953. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  954. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  955. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  956. if (bbp_state == state && rf_state == state)
  957. return 0;
  958. msleep(10);
  959. }
  960. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  961. "current device state: bbp %d and rf %d.\n",
  962. state, bbp_state, rf_state);
  963. return -EBUSY;
  964. }
  965. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  966. enum dev_state state)
  967. {
  968. int retval = 0;
  969. switch (state) {
  970. case STATE_RADIO_ON:
  971. retval = rt2500pci_enable_radio(rt2x00dev);
  972. break;
  973. case STATE_RADIO_OFF:
  974. rt2500pci_disable_radio(rt2x00dev);
  975. break;
  976. case STATE_RADIO_RX_ON:
  977. case STATE_RADIO_RX_OFF:
  978. rt2500pci_toggle_rx(rt2x00dev, state);
  979. break;
  980. case STATE_DEEP_SLEEP:
  981. case STATE_SLEEP:
  982. case STATE_STANDBY:
  983. case STATE_AWAKE:
  984. retval = rt2500pci_set_state(rt2x00dev, state);
  985. break;
  986. default:
  987. retval = -ENOTSUPP;
  988. break;
  989. }
  990. return retval;
  991. }
  992. /*
  993. * TX descriptor initialization
  994. */
  995. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  996. struct data_desc *txd,
  997. struct txdata_entry_desc *desc,
  998. struct ieee80211_hdr *ieee80211hdr,
  999. unsigned int length,
  1000. struct ieee80211_tx_control *control)
  1001. {
  1002. u32 word;
  1003. /*
  1004. * Start writing the descriptor words.
  1005. */
  1006. rt2x00_desc_read(txd, 2, &word);
  1007. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1008. rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
  1009. rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
  1010. rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
  1011. rt2x00_desc_write(txd, 2, word);
  1012. rt2x00_desc_read(txd, 3, &word);
  1013. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
  1014. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
  1015. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
  1016. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
  1017. rt2x00_desc_write(txd, 3, word);
  1018. rt2x00_desc_read(txd, 10, &word);
  1019. rt2x00_set_field32(&word, TXD_W10_RTS,
  1020. test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
  1021. rt2x00_desc_write(txd, 10, word);
  1022. rt2x00_desc_read(txd, 0, &word);
  1023. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1024. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1025. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1026. test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
  1027. rt2x00_set_field32(&word, TXD_W0_ACK,
  1028. !(control->flags & IEEE80211_TXCTL_NO_ACK));
  1029. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1030. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
  1031. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1032. test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
  1033. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1034. rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
  1035. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1036. !!(control->flags &
  1037. IEEE80211_TXCTL_LONG_RETRY_LIMIT));
  1038. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
  1039. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1040. rt2x00_desc_write(txd, 0, word);
  1041. }
  1042. /*
  1043. * TX data initialization
  1044. */
  1045. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1046. unsigned int queue)
  1047. {
  1048. u32 reg;
  1049. if (queue == IEEE80211_TX_QUEUE_BEACON) {
  1050. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1051. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1052. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1053. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1054. }
  1055. return;
  1056. }
  1057. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1058. if (queue == IEEE80211_TX_QUEUE_DATA0)
  1059. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
  1060. else if (queue == IEEE80211_TX_QUEUE_DATA1)
  1061. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
  1062. else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
  1063. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
  1064. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1065. }
  1066. /*
  1067. * RX control handlers
  1068. */
  1069. static void rt2500pci_fill_rxdone(struct data_entry *entry,
  1070. struct rxdata_entry_desc *desc)
  1071. {
  1072. struct data_desc *rxd = entry->priv;
  1073. u32 word0;
  1074. u32 word2;
  1075. rt2x00_desc_read(rxd, 0, &word0);
  1076. rt2x00_desc_read(rxd, 2, &word2);
  1077. desc->flags = 0;
  1078. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1079. desc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1080. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1081. desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1082. desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1083. desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1084. entry->ring->rt2x00dev->rssi_offset;
  1085. desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
  1086. desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1087. }
  1088. /*
  1089. * Interrupt functions.
  1090. */
  1091. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
  1092. {
  1093. struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
  1094. struct data_entry *entry;
  1095. struct data_desc *txd;
  1096. u32 word;
  1097. int tx_status;
  1098. int retry;
  1099. while (!rt2x00_ring_empty(ring)) {
  1100. entry = rt2x00_get_data_entry_done(ring);
  1101. txd = entry->priv;
  1102. rt2x00_desc_read(txd, 0, &word);
  1103. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1104. !rt2x00_get_field32(word, TXD_W0_VALID))
  1105. break;
  1106. /*
  1107. * Obtain the status about this packet.
  1108. */
  1109. tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
  1110. retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1111. rt2x00lib_txdone(entry, tx_status, retry);
  1112. /*
  1113. * Make this entry available for reuse.
  1114. */
  1115. entry->flags = 0;
  1116. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  1117. rt2x00_desc_write(txd, 0, word);
  1118. rt2x00_ring_index_done_inc(ring);
  1119. }
  1120. /*
  1121. * If the data ring was full before the txdone handler
  1122. * we must make sure the packet queue in the mac80211 stack
  1123. * is reenabled when the txdone handler has finished.
  1124. */
  1125. entry = ring->entry;
  1126. if (!rt2x00_ring_full(ring))
  1127. ieee80211_wake_queue(rt2x00dev->hw,
  1128. entry->tx_status.control.queue);
  1129. }
  1130. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1131. {
  1132. struct rt2x00_dev *rt2x00dev = dev_instance;
  1133. u32 reg;
  1134. /*
  1135. * Get the interrupt sources & saved to local variable.
  1136. * Write register value back to clear pending interrupts.
  1137. */
  1138. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1139. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1140. if (!reg)
  1141. return IRQ_NONE;
  1142. if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
  1143. return IRQ_HANDLED;
  1144. /*
  1145. * Handle interrupts, walk through all bits
  1146. * and run the tasks, the bits are checked in order of
  1147. * priority.
  1148. */
  1149. /*
  1150. * 1 - Beacon timer expired interrupt.
  1151. */
  1152. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1153. rt2x00lib_beacondone(rt2x00dev);
  1154. /*
  1155. * 2 - Rx ring done interrupt.
  1156. */
  1157. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1158. rt2x00pci_rxdone(rt2x00dev);
  1159. /*
  1160. * 3 - Atim ring transmit done interrupt.
  1161. */
  1162. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1163. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
  1164. /*
  1165. * 4 - Priority ring transmit done interrupt.
  1166. */
  1167. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1168. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
  1169. /*
  1170. * 5 - Tx ring transmit done interrupt.
  1171. */
  1172. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1173. rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
  1174. return IRQ_HANDLED;
  1175. }
  1176. /*
  1177. * Device probe functions.
  1178. */
  1179. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1180. {
  1181. struct eeprom_93cx6 eeprom;
  1182. u32 reg;
  1183. u16 word;
  1184. u8 *mac;
  1185. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1186. eeprom.data = rt2x00dev;
  1187. eeprom.register_read = rt2500pci_eepromregister_read;
  1188. eeprom.register_write = rt2500pci_eepromregister_write;
  1189. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1190. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1191. eeprom.reg_data_in = 0;
  1192. eeprom.reg_data_out = 0;
  1193. eeprom.reg_data_clock = 0;
  1194. eeprom.reg_chip_select = 0;
  1195. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1196. EEPROM_SIZE / sizeof(u16));
  1197. /*
  1198. * Start validation of the data that has been read.
  1199. */
  1200. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1201. if (!is_valid_ether_addr(mac)) {
  1202. DECLARE_MAC_BUF(macbuf);
  1203. random_ether_addr(mac);
  1204. EEPROM(rt2x00dev, "MAC: %s\n",
  1205. print_mac(macbuf, mac));
  1206. }
  1207. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1208. if (word == 0xffff) {
  1209. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1210. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 0);
  1211. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 0);
  1212. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 0);
  1213. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1214. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1215. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1216. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1217. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1218. }
  1219. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1220. if (word == 0xffff) {
  1221. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1222. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1223. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1224. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1225. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1226. }
  1227. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1228. if (word == 0xffff) {
  1229. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1230. DEFAULT_RSSI_OFFSET);
  1231. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1232. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1233. }
  1234. return 0;
  1235. }
  1236. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1237. {
  1238. u32 reg;
  1239. u16 value;
  1240. u16 eeprom;
  1241. /*
  1242. * Read EEPROM word for configuration.
  1243. */
  1244. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1245. /*
  1246. * Identify RF chipset.
  1247. */
  1248. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1249. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1250. rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
  1251. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1252. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1253. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1254. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1255. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1256. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1257. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1258. return -ENODEV;
  1259. }
  1260. /*
  1261. * Identify default antenna configuration.
  1262. */
  1263. rt2x00dev->hw->conf.antenna_sel_tx =
  1264. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1265. rt2x00dev->hw->conf.antenna_sel_rx =
  1266. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1267. /*
  1268. * Store led mode, for correct led behaviour.
  1269. */
  1270. rt2x00dev->led_mode =
  1271. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1272. /*
  1273. * Detect if this device has an hardware controlled radio.
  1274. */
  1275. #ifdef CONFIG_RT2500PCI_RFKILL
  1276. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1277. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1278. #endif /* CONFIG_RT2500PCI_RFKILL */
  1279. /*
  1280. * Check if the BBP tuning should be enabled.
  1281. */
  1282. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1283. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1284. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1285. /*
  1286. * Read the RSSI <-> dBm offset information.
  1287. */
  1288. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1289. rt2x00dev->rssi_offset =
  1290. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1291. return 0;
  1292. }
  1293. /*
  1294. * RF value list for RF2522
  1295. * Supports: 2.4 GHz
  1296. */
  1297. static const struct rf_channel rf_vals_bg_2522[] = {
  1298. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1299. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1300. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1301. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1302. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1303. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1304. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1305. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1306. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1307. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1308. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1309. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1310. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1311. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1312. };
  1313. /*
  1314. * RF value list for RF2523
  1315. * Supports: 2.4 GHz
  1316. */
  1317. static const struct rf_channel rf_vals_bg_2523[] = {
  1318. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1319. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1320. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1321. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1322. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1323. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1324. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1325. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1326. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1327. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1328. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1329. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1330. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1331. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1332. };
  1333. /*
  1334. * RF value list for RF2524
  1335. * Supports: 2.4 GHz
  1336. */
  1337. static const struct rf_channel rf_vals_bg_2524[] = {
  1338. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1339. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1340. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1341. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1342. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1343. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1344. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1345. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1346. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1347. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1348. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1349. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1350. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1351. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1352. };
  1353. /*
  1354. * RF value list for RF2525
  1355. * Supports: 2.4 GHz
  1356. */
  1357. static const struct rf_channel rf_vals_bg_2525[] = {
  1358. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1359. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1360. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1361. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1362. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1363. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1364. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1365. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1366. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1367. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1368. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1369. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1370. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1371. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1372. };
  1373. /*
  1374. * RF value list for RF2525e
  1375. * Supports: 2.4 GHz
  1376. */
  1377. static const struct rf_channel rf_vals_bg_2525e[] = {
  1378. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1379. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1380. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1381. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1382. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1383. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1384. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1385. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1386. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1387. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1388. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1389. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1390. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1391. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1392. };
  1393. /*
  1394. * RF value list for RF5222
  1395. * Supports: 2.4 GHz & 5.2 GHz
  1396. */
  1397. static const struct rf_channel rf_vals_5222[] = {
  1398. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1399. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1400. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1401. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1402. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1403. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1404. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1405. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1406. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1407. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1408. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1409. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1410. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1411. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1412. /* 802.11 UNI / HyperLan 2 */
  1413. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1414. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1415. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1416. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1417. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1418. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1419. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1420. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1421. /* 802.11 HyperLan 2 */
  1422. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1423. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1424. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1425. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1426. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1427. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1428. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1429. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1430. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1431. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1432. /* 802.11 UNII */
  1433. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1434. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1435. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1436. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1437. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1438. };
  1439. static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1440. {
  1441. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1442. u8 *txpower;
  1443. unsigned int i;
  1444. /*
  1445. * Initialize all hw fields.
  1446. */
  1447. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1448. rt2x00dev->hw->extra_tx_headroom = 0;
  1449. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1450. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1451. rt2x00dev->hw->queues = 2;
  1452. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
  1453. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1454. rt2x00_eeprom_addr(rt2x00dev,
  1455. EEPROM_MAC_ADDR_0));
  1456. /*
  1457. * Convert tx_power array in eeprom.
  1458. */
  1459. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1460. for (i = 0; i < 14; i++)
  1461. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1462. /*
  1463. * Initialize hw_mode information.
  1464. */
  1465. spec->num_modes = 2;
  1466. spec->num_rates = 12;
  1467. spec->tx_power_a = NULL;
  1468. spec->tx_power_bg = txpower;
  1469. spec->tx_power_default = DEFAULT_TXPOWER;
  1470. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1471. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1472. spec->channels = rf_vals_bg_2522;
  1473. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1474. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1475. spec->channels = rf_vals_bg_2523;
  1476. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1477. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1478. spec->channels = rf_vals_bg_2524;
  1479. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1480. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1481. spec->channels = rf_vals_bg_2525;
  1482. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1483. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1484. spec->channels = rf_vals_bg_2525e;
  1485. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1486. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1487. spec->channels = rf_vals_5222;
  1488. spec->num_modes = 3;
  1489. }
  1490. }
  1491. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1492. {
  1493. int retval;
  1494. /*
  1495. * Allocate eeprom data.
  1496. */
  1497. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1498. if (retval)
  1499. return retval;
  1500. retval = rt2500pci_init_eeprom(rt2x00dev);
  1501. if (retval)
  1502. return retval;
  1503. /*
  1504. * Initialize hw specifications.
  1505. */
  1506. rt2500pci_probe_hw_mode(rt2x00dev);
  1507. /*
  1508. * This device requires the beacon ring
  1509. */
  1510. __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
  1511. /*
  1512. * Set the rssi offset.
  1513. */
  1514. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1515. return 0;
  1516. }
  1517. /*
  1518. * IEEE80211 stack callback functions.
  1519. */
  1520. static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
  1521. unsigned int changed_flags,
  1522. unsigned int *total_flags,
  1523. int mc_count,
  1524. struct dev_addr_list *mc_list)
  1525. {
  1526. struct rt2x00_dev *rt2x00dev = hw->priv;
  1527. struct interface *intf = &rt2x00dev->interface;
  1528. u32 reg;
  1529. /*
  1530. * Mask off any flags we are going to ignore from
  1531. * the total_flags field.
  1532. */
  1533. *total_flags &=
  1534. FIF_ALLMULTI |
  1535. FIF_FCSFAIL |
  1536. FIF_PLCPFAIL |
  1537. FIF_CONTROL |
  1538. FIF_OTHER_BSS |
  1539. FIF_PROMISC_IN_BSS;
  1540. /*
  1541. * Apply some rules to the filters:
  1542. * - Some filters imply different filters to be set.
  1543. * - Some things we can't filter out at all.
  1544. * - Some filters are set based on interface type.
  1545. */
  1546. if (mc_count)
  1547. *total_flags |= FIF_ALLMULTI;
  1548. if (*total_flags & FIF_OTHER_BSS ||
  1549. *total_flags & FIF_PROMISC_IN_BSS)
  1550. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1551. if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
  1552. *total_flags |= FIF_PROMISC_IN_BSS;
  1553. /*
  1554. * Check if there is any work left for us.
  1555. */
  1556. if (intf->filter == *total_flags)
  1557. return;
  1558. intf->filter = *total_flags;
  1559. /*
  1560. * Start configuration steps.
  1561. * Note that the version error will always be dropped
  1562. * and broadcast frames will always be accepted since
  1563. * there is no filter for it at this time.
  1564. */
  1565. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  1566. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  1567. !(*total_flags & FIF_FCSFAIL));
  1568. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  1569. !(*total_flags & FIF_PLCPFAIL));
  1570. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  1571. !(*total_flags & FIF_CONTROL));
  1572. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  1573. !(*total_flags & FIF_PROMISC_IN_BSS));
  1574. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  1575. !(*total_flags & FIF_PROMISC_IN_BSS));
  1576. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  1577. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  1578. !(*total_flags & FIF_ALLMULTI));
  1579. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  1580. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  1581. }
  1582. static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
  1583. u32 short_retry, u32 long_retry)
  1584. {
  1585. struct rt2x00_dev *rt2x00dev = hw->priv;
  1586. u32 reg;
  1587. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  1588. rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
  1589. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
  1590. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  1591. return 0;
  1592. }
  1593. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1594. {
  1595. struct rt2x00_dev *rt2x00dev = hw->priv;
  1596. u64 tsf;
  1597. u32 reg;
  1598. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1599. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1600. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1601. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1602. return tsf;
  1603. }
  1604. static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
  1605. {
  1606. struct rt2x00_dev *rt2x00dev = hw->priv;
  1607. rt2x00pci_register_write(rt2x00dev, CSR16, 0);
  1608. rt2x00pci_register_write(rt2x00dev, CSR17, 0);
  1609. }
  1610. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1611. {
  1612. struct rt2x00_dev *rt2x00dev = hw->priv;
  1613. u32 reg;
  1614. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1615. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1616. }
  1617. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1618. .tx = rt2x00mac_tx,
  1619. .start = rt2x00mac_start,
  1620. .stop = rt2x00mac_stop,
  1621. .add_interface = rt2x00mac_add_interface,
  1622. .remove_interface = rt2x00mac_remove_interface,
  1623. .config = rt2x00mac_config,
  1624. .config_interface = rt2x00mac_config_interface,
  1625. .configure_filter = rt2500pci_configure_filter,
  1626. .get_stats = rt2x00mac_get_stats,
  1627. .set_retry_limit = rt2500pci_set_retry_limit,
  1628. .erp_ie_changed = rt2x00mac_erp_ie_changed,
  1629. .conf_tx = rt2x00mac_conf_tx,
  1630. .get_tx_stats = rt2x00mac_get_tx_stats,
  1631. .get_tsf = rt2500pci_get_tsf,
  1632. .reset_tsf = rt2500pci_reset_tsf,
  1633. .beacon_update = rt2x00pci_beacon_update,
  1634. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1635. };
  1636. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1637. .irq_handler = rt2500pci_interrupt,
  1638. .probe_hw = rt2500pci_probe_hw,
  1639. .initialize = rt2x00pci_initialize,
  1640. .uninitialize = rt2x00pci_uninitialize,
  1641. .set_device_state = rt2500pci_set_device_state,
  1642. .rfkill_poll = rt2500pci_rfkill_poll,
  1643. .link_stats = rt2500pci_link_stats,
  1644. .reset_tuner = rt2500pci_reset_tuner,
  1645. .link_tuner = rt2500pci_link_tuner,
  1646. .write_tx_desc = rt2500pci_write_tx_desc,
  1647. .write_tx_data = rt2x00pci_write_tx_data,
  1648. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1649. .fill_rxdone = rt2500pci_fill_rxdone,
  1650. .config_mac_addr = rt2500pci_config_mac_addr,
  1651. .config_bssid = rt2500pci_config_bssid,
  1652. .config_type = rt2500pci_config_type,
  1653. .config_preamble = rt2500pci_config_preamble,
  1654. .config = rt2500pci_config,
  1655. };
  1656. static const struct rt2x00_ops rt2500pci_ops = {
  1657. .name = DRV_NAME,
  1658. .rxd_size = RXD_DESC_SIZE,
  1659. .txd_size = TXD_DESC_SIZE,
  1660. .eeprom_size = EEPROM_SIZE,
  1661. .rf_size = RF_SIZE,
  1662. .lib = &rt2500pci_rt2x00_ops,
  1663. .hw = &rt2500pci_mac80211_ops,
  1664. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1665. .debugfs = &rt2500pci_rt2x00debug,
  1666. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1667. };
  1668. /*
  1669. * RT2500pci module information.
  1670. */
  1671. static struct pci_device_id rt2500pci_device_table[] = {
  1672. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1673. { 0, }
  1674. };
  1675. MODULE_AUTHOR(DRV_PROJECT);
  1676. MODULE_VERSION(DRV_VERSION);
  1677. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1678. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1679. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1680. MODULE_LICENSE("GPL");
  1681. static struct pci_driver rt2500pci_driver = {
  1682. .name = DRV_NAME,
  1683. .id_table = rt2500pci_device_table,
  1684. .probe = rt2x00pci_probe,
  1685. .remove = __devexit_p(rt2x00pci_remove),
  1686. .suspend = rt2x00pci_suspend,
  1687. .resume = rt2x00pci_resume,
  1688. };
  1689. static int __init rt2500pci_init(void)
  1690. {
  1691. return pci_register_driver(&rt2500pci_driver);
  1692. }
  1693. static void __exit rt2500pci_exit(void)
  1694. {
  1695. pci_unregister_driver(&rt2500pci_driver);
  1696. }
  1697. module_init(rt2500pci_init);
  1698. module_exit(rt2500pci_exit);