forcedeth.c 168 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,5,6 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Changelog:
  33. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  34. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  35. * Check all PCI BARs for the register window.
  36. * udelay added to mii_rw.
  37. * 0.03: 06 Oct 2003: Initialize dev->irq.
  38. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  39. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  40. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  41. * irq mask updated
  42. * 0.07: 14 Oct 2003: Further irq mask updates.
  43. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  44. * added into irq handler, NULL check for drain_ring.
  45. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  46. * requested interrupt sources.
  47. * 0.10: 20 Oct 2003: First cleanup for release.
  48. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  49. * MAC Address init fix, set_multicast cleanup.
  50. * 0.12: 23 Oct 2003: Cleanups for release.
  51. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  52. * Set link speed correctly. start rx before starting
  53. * tx (nv_start_rx sets the link speed).
  54. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  55. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  56. * open.
  57. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  58. * increased to 1628 bytes.
  59. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  60. * the tx length.
  61. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  62. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  63. * addresses, really stop rx if already running
  64. * in nv_start_rx, clean up a bit.
  65. * 0.20: 07 Dec 2003: alloc fixes
  66. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  67. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  68. * on close.
  69. * 0.23: 26 Jan 2004: various small cleanups
  70. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  71. * 0.25: 09 Mar 2004: wol support
  72. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  73. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  74. * added CK804/MCP04 device IDs, code fixes
  75. * for registers, link status and other minor fixes.
  76. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  77. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  78. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  79. * into nv_close, otherwise reenabling for wol can
  80. * cause DMA to kfree'd memory.
  81. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  82. * capabilities.
  83. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  84. * 0.33: 16 May 2005: Support for MCP51 added.
  85. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  86. * 0.35: 26 Jun 2005: Support for MCP55 added.
  87. * 0.36: 28 Jun 2005: Add jumbo frame support.
  88. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  89. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  90. * per-packet flags.
  91. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  92. * 0.40: 19 Jul 2005: Add support for mac address change.
  93. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  94. * of nv_remove
  95. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  96. * in the second (and later) nv_open call
  97. * 0.43: 10 Aug 2005: Add support for tx checksum.
  98. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  99. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  100. * 0.46: 20 Oct 2005: Add irq optimization modes.
  101. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  102. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  103. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  104. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  105. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  106. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  107. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  108. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  109. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  110. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  111. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  112. * 0.58: 30 Oct 2006: Added support for sideband management unit.
  113. * 0.59: 30 Oct 2006: Added support for recoverable error.
  114. * 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
  115. *
  116. * Known bugs:
  117. * We suspect that on some hardware no TX done interrupts are generated.
  118. * This means recovery from netif_stop_queue only happens if the hw timer
  119. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  120. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  121. * If your hardware reliably generates tx done interrupts, then you can remove
  122. * DEV_NEED_TIMERIRQ from the driver_data flags.
  123. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  124. * superfluous timer interrupts from the nic.
  125. */
  126. #ifdef CONFIG_FORCEDETH_NAPI
  127. #define DRIVERNAPI "-NAPI"
  128. #else
  129. #define DRIVERNAPI
  130. #endif
  131. #define FORCEDETH_VERSION "0.61"
  132. #define DRV_NAME "forcedeth"
  133. #include <linux/module.h>
  134. #include <linux/types.h>
  135. #include <linux/pci.h>
  136. #include <linux/interrupt.h>
  137. #include <linux/netdevice.h>
  138. #include <linux/etherdevice.h>
  139. #include <linux/delay.h>
  140. #include <linux/spinlock.h>
  141. #include <linux/ethtool.h>
  142. #include <linux/timer.h>
  143. #include <linux/skbuff.h>
  144. #include <linux/mii.h>
  145. #include <linux/random.h>
  146. #include <linux/init.h>
  147. #include <linux/if_vlan.h>
  148. #include <linux/dma-mapping.h>
  149. #include <asm/irq.h>
  150. #include <asm/io.h>
  151. #include <asm/uaccess.h>
  152. #include <asm/system.h>
  153. #if 0
  154. #define dprintk printk
  155. #else
  156. #define dprintk(x...) do { } while (0)
  157. #endif
  158. #define TX_WORK_PER_LOOP 64
  159. #define RX_WORK_PER_LOOP 64
  160. /*
  161. * Hardware access:
  162. */
  163. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  164. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  165. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  166. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  167. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  168. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  169. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  170. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  171. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  172. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  173. #define DEV_HAS_STATISTICS_V1 0x0400 /* device supports hw statistics version 1 */
  174. #define DEV_HAS_STATISTICS_V2 0x0800 /* device supports hw statistics version 2 */
  175. #define DEV_HAS_TEST_EXTENDED 0x1000 /* device supports extended diagnostic test */
  176. #define DEV_HAS_MGMT_UNIT 0x2000 /* device supports management unit */
  177. #define DEV_HAS_CORRECT_MACADDR 0x4000 /* device supports correct mac address order */
  178. enum {
  179. NvRegIrqStatus = 0x000,
  180. #define NVREG_IRQSTAT_MIIEVENT 0x040
  181. #define NVREG_IRQSTAT_MASK 0x81ff
  182. NvRegIrqMask = 0x004,
  183. #define NVREG_IRQ_RX_ERROR 0x0001
  184. #define NVREG_IRQ_RX 0x0002
  185. #define NVREG_IRQ_RX_NOBUF 0x0004
  186. #define NVREG_IRQ_TX_ERR 0x0008
  187. #define NVREG_IRQ_TX_OK 0x0010
  188. #define NVREG_IRQ_TIMER 0x0020
  189. #define NVREG_IRQ_LINK 0x0040
  190. #define NVREG_IRQ_RX_FORCED 0x0080
  191. #define NVREG_IRQ_TX_FORCED 0x0100
  192. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  193. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  194. #define NVREG_IRQMASK_CPU 0x0060
  195. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  196. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  197. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  198. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  199. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  200. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  201. NvRegUnknownSetupReg6 = 0x008,
  202. #define NVREG_UNKSETUP6_VAL 3
  203. /*
  204. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  205. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  206. */
  207. NvRegPollingInterval = 0x00c,
  208. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  209. #define NVREG_POLL_DEFAULT_CPU 13
  210. NvRegMSIMap0 = 0x020,
  211. NvRegMSIMap1 = 0x024,
  212. NvRegMSIIrqMask = 0x030,
  213. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  214. NvRegMisc1 = 0x080,
  215. #define NVREG_MISC1_PAUSE_TX 0x01
  216. #define NVREG_MISC1_HD 0x02
  217. #define NVREG_MISC1_FORCE 0x3b0f3c
  218. NvRegMacReset = 0x3c,
  219. #define NVREG_MAC_RESET_ASSERT 0x0F3
  220. NvRegTransmitterControl = 0x084,
  221. #define NVREG_XMITCTL_START 0x01
  222. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  223. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  224. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  225. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  226. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  227. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  228. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  229. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  230. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  231. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  232. NvRegTransmitterStatus = 0x088,
  233. #define NVREG_XMITSTAT_BUSY 0x01
  234. NvRegPacketFilterFlags = 0x8c,
  235. #define NVREG_PFF_PAUSE_RX 0x08
  236. #define NVREG_PFF_ALWAYS 0x7F0000
  237. #define NVREG_PFF_PROMISC 0x80
  238. #define NVREG_PFF_MYADDR 0x20
  239. #define NVREG_PFF_LOOPBACK 0x10
  240. NvRegOffloadConfig = 0x90,
  241. #define NVREG_OFFLOAD_HOMEPHY 0x601
  242. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  243. NvRegReceiverControl = 0x094,
  244. #define NVREG_RCVCTL_START 0x01
  245. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  246. NvRegReceiverStatus = 0x98,
  247. #define NVREG_RCVSTAT_BUSY 0x01
  248. NvRegRandomSeed = 0x9c,
  249. #define NVREG_RNDSEED_MASK 0x00ff
  250. #define NVREG_RNDSEED_FORCE 0x7f00
  251. #define NVREG_RNDSEED_FORCE2 0x2d00
  252. #define NVREG_RNDSEED_FORCE3 0x7400
  253. NvRegTxDeferral = 0xA0,
  254. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  255. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  256. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  257. NvRegRxDeferral = 0xA4,
  258. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  259. NvRegMacAddrA = 0xA8,
  260. NvRegMacAddrB = 0xAC,
  261. NvRegMulticastAddrA = 0xB0,
  262. #define NVREG_MCASTADDRA_FORCE 0x01
  263. NvRegMulticastAddrB = 0xB4,
  264. NvRegMulticastMaskA = 0xB8,
  265. NvRegMulticastMaskB = 0xBC,
  266. NvRegPhyInterface = 0xC0,
  267. #define PHY_RGMII 0x10000000
  268. NvRegTxRingPhysAddr = 0x100,
  269. NvRegRxRingPhysAddr = 0x104,
  270. NvRegRingSizes = 0x108,
  271. #define NVREG_RINGSZ_TXSHIFT 0
  272. #define NVREG_RINGSZ_RXSHIFT 16
  273. NvRegTransmitPoll = 0x10c,
  274. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  275. NvRegLinkSpeed = 0x110,
  276. #define NVREG_LINKSPEED_FORCE 0x10000
  277. #define NVREG_LINKSPEED_10 1000
  278. #define NVREG_LINKSPEED_100 100
  279. #define NVREG_LINKSPEED_1000 50
  280. #define NVREG_LINKSPEED_MASK (0xFFF)
  281. NvRegUnknownSetupReg5 = 0x130,
  282. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  283. NvRegTxWatermark = 0x13c,
  284. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  285. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  286. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  287. NvRegTxRxControl = 0x144,
  288. #define NVREG_TXRXCTL_KICK 0x0001
  289. #define NVREG_TXRXCTL_BIT1 0x0002
  290. #define NVREG_TXRXCTL_BIT2 0x0004
  291. #define NVREG_TXRXCTL_IDLE 0x0008
  292. #define NVREG_TXRXCTL_RESET 0x0010
  293. #define NVREG_TXRXCTL_RXCHECK 0x0400
  294. #define NVREG_TXRXCTL_DESC_1 0
  295. #define NVREG_TXRXCTL_DESC_2 0x002100
  296. #define NVREG_TXRXCTL_DESC_3 0xc02200
  297. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  298. #define NVREG_TXRXCTL_VLANINS 0x00080
  299. NvRegTxRingPhysAddrHigh = 0x148,
  300. NvRegRxRingPhysAddrHigh = 0x14C,
  301. NvRegTxPauseFrame = 0x170,
  302. #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
  303. #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
  304. NvRegMIIStatus = 0x180,
  305. #define NVREG_MIISTAT_ERROR 0x0001
  306. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  307. #define NVREG_MIISTAT_MASK 0x000f
  308. #define NVREG_MIISTAT_MASK2 0x000f
  309. NvRegMIIMask = 0x184,
  310. #define NVREG_MII_LINKCHANGE 0x0008
  311. NvRegAdapterControl = 0x188,
  312. #define NVREG_ADAPTCTL_START 0x02
  313. #define NVREG_ADAPTCTL_LINKUP 0x04
  314. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  315. #define NVREG_ADAPTCTL_RUNNING 0x100000
  316. #define NVREG_ADAPTCTL_PHYSHIFT 24
  317. NvRegMIISpeed = 0x18c,
  318. #define NVREG_MIISPEED_BIT8 (1<<8)
  319. #define NVREG_MIIDELAY 5
  320. NvRegMIIControl = 0x190,
  321. #define NVREG_MIICTL_INUSE 0x08000
  322. #define NVREG_MIICTL_WRITE 0x00400
  323. #define NVREG_MIICTL_ADDRSHIFT 5
  324. NvRegMIIData = 0x194,
  325. NvRegWakeUpFlags = 0x200,
  326. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  327. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  328. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  329. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  330. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  331. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  332. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  333. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  334. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  335. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  336. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  337. NvRegPatternCRC = 0x204,
  338. NvRegPatternMask = 0x208,
  339. NvRegPowerCap = 0x268,
  340. #define NVREG_POWERCAP_D3SUPP (1<<30)
  341. #define NVREG_POWERCAP_D2SUPP (1<<26)
  342. #define NVREG_POWERCAP_D1SUPP (1<<25)
  343. NvRegPowerState = 0x26c,
  344. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  345. #define NVREG_POWERSTATE_VALID 0x0100
  346. #define NVREG_POWERSTATE_MASK 0x0003
  347. #define NVREG_POWERSTATE_D0 0x0000
  348. #define NVREG_POWERSTATE_D1 0x0001
  349. #define NVREG_POWERSTATE_D2 0x0002
  350. #define NVREG_POWERSTATE_D3 0x0003
  351. NvRegTxCnt = 0x280,
  352. NvRegTxZeroReXmt = 0x284,
  353. NvRegTxOneReXmt = 0x288,
  354. NvRegTxManyReXmt = 0x28c,
  355. NvRegTxLateCol = 0x290,
  356. NvRegTxUnderflow = 0x294,
  357. NvRegTxLossCarrier = 0x298,
  358. NvRegTxExcessDef = 0x29c,
  359. NvRegTxRetryErr = 0x2a0,
  360. NvRegRxFrameErr = 0x2a4,
  361. NvRegRxExtraByte = 0x2a8,
  362. NvRegRxLateCol = 0x2ac,
  363. NvRegRxRunt = 0x2b0,
  364. NvRegRxFrameTooLong = 0x2b4,
  365. NvRegRxOverflow = 0x2b8,
  366. NvRegRxFCSErr = 0x2bc,
  367. NvRegRxFrameAlignErr = 0x2c0,
  368. NvRegRxLenErr = 0x2c4,
  369. NvRegRxUnicast = 0x2c8,
  370. NvRegRxMulticast = 0x2cc,
  371. NvRegRxBroadcast = 0x2d0,
  372. NvRegTxDef = 0x2d4,
  373. NvRegTxFrame = 0x2d8,
  374. NvRegRxCnt = 0x2dc,
  375. NvRegTxPause = 0x2e0,
  376. NvRegRxPause = 0x2e4,
  377. NvRegRxDropFrame = 0x2e8,
  378. NvRegVlanControl = 0x300,
  379. #define NVREG_VLANCONTROL_ENABLE 0x2000
  380. NvRegMSIXMap0 = 0x3e0,
  381. NvRegMSIXMap1 = 0x3e4,
  382. NvRegMSIXIrqStatus = 0x3f0,
  383. NvRegPowerState2 = 0x600,
  384. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  385. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  386. };
  387. /* Big endian: should work, but is untested */
  388. struct ring_desc {
  389. __le32 buf;
  390. __le32 flaglen;
  391. };
  392. struct ring_desc_ex {
  393. __le32 bufhigh;
  394. __le32 buflow;
  395. __le32 txvlan;
  396. __le32 flaglen;
  397. };
  398. union ring_type {
  399. struct ring_desc* orig;
  400. struct ring_desc_ex* ex;
  401. };
  402. #define FLAG_MASK_V1 0xffff0000
  403. #define FLAG_MASK_V2 0xffffc000
  404. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  405. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  406. #define NV_TX_LASTPACKET (1<<16)
  407. #define NV_TX_RETRYERROR (1<<19)
  408. #define NV_TX_FORCED_INTERRUPT (1<<24)
  409. #define NV_TX_DEFERRED (1<<26)
  410. #define NV_TX_CARRIERLOST (1<<27)
  411. #define NV_TX_LATECOLLISION (1<<28)
  412. #define NV_TX_UNDERFLOW (1<<29)
  413. #define NV_TX_ERROR (1<<30)
  414. #define NV_TX_VALID (1<<31)
  415. #define NV_TX2_LASTPACKET (1<<29)
  416. #define NV_TX2_RETRYERROR (1<<18)
  417. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  418. #define NV_TX2_DEFERRED (1<<25)
  419. #define NV_TX2_CARRIERLOST (1<<26)
  420. #define NV_TX2_LATECOLLISION (1<<27)
  421. #define NV_TX2_UNDERFLOW (1<<28)
  422. /* error and valid are the same for both */
  423. #define NV_TX2_ERROR (1<<30)
  424. #define NV_TX2_VALID (1<<31)
  425. #define NV_TX2_TSO (1<<28)
  426. #define NV_TX2_TSO_SHIFT 14
  427. #define NV_TX2_TSO_MAX_SHIFT 14
  428. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  429. #define NV_TX2_CHECKSUM_L3 (1<<27)
  430. #define NV_TX2_CHECKSUM_L4 (1<<26)
  431. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  432. #define NV_RX_DESCRIPTORVALID (1<<16)
  433. #define NV_RX_MISSEDFRAME (1<<17)
  434. #define NV_RX_SUBSTRACT1 (1<<18)
  435. #define NV_RX_ERROR1 (1<<23)
  436. #define NV_RX_ERROR2 (1<<24)
  437. #define NV_RX_ERROR3 (1<<25)
  438. #define NV_RX_ERROR4 (1<<26)
  439. #define NV_RX_CRCERR (1<<27)
  440. #define NV_RX_OVERFLOW (1<<28)
  441. #define NV_RX_FRAMINGERR (1<<29)
  442. #define NV_RX_ERROR (1<<30)
  443. #define NV_RX_AVAIL (1<<31)
  444. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  445. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  446. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  447. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  448. #define NV_RX2_DESCRIPTORVALID (1<<29)
  449. #define NV_RX2_SUBSTRACT1 (1<<25)
  450. #define NV_RX2_ERROR1 (1<<18)
  451. #define NV_RX2_ERROR2 (1<<19)
  452. #define NV_RX2_ERROR3 (1<<20)
  453. #define NV_RX2_ERROR4 (1<<21)
  454. #define NV_RX2_CRCERR (1<<22)
  455. #define NV_RX2_OVERFLOW (1<<23)
  456. #define NV_RX2_FRAMINGERR (1<<24)
  457. /* error and avail are the same for both */
  458. #define NV_RX2_ERROR (1<<30)
  459. #define NV_RX2_AVAIL (1<<31)
  460. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  461. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  462. /* Miscelaneous hardware related defines: */
  463. #define NV_PCI_REGSZ_VER1 0x270
  464. #define NV_PCI_REGSZ_VER2 0x2d4
  465. #define NV_PCI_REGSZ_VER3 0x604
  466. /* various timeout delays: all in usec */
  467. #define NV_TXRX_RESET_DELAY 4
  468. #define NV_TXSTOP_DELAY1 10
  469. #define NV_TXSTOP_DELAY1MAX 500000
  470. #define NV_TXSTOP_DELAY2 100
  471. #define NV_RXSTOP_DELAY1 10
  472. #define NV_RXSTOP_DELAY1MAX 500000
  473. #define NV_RXSTOP_DELAY2 100
  474. #define NV_SETUP5_DELAY 5
  475. #define NV_SETUP5_DELAYMAX 50000
  476. #define NV_POWERUP_DELAY 5
  477. #define NV_POWERUP_DELAYMAX 5000
  478. #define NV_MIIBUSY_DELAY 50
  479. #define NV_MIIPHY_DELAY 10
  480. #define NV_MIIPHY_DELAYMAX 10000
  481. #define NV_MAC_RESET_DELAY 64
  482. #define NV_WAKEUPPATTERNS 5
  483. #define NV_WAKEUPMASKENTRIES 4
  484. /* General driver defaults */
  485. #define NV_WATCHDOG_TIMEO (5*HZ)
  486. #define RX_RING_DEFAULT 128
  487. #define TX_RING_DEFAULT 256
  488. #define RX_RING_MIN 128
  489. #define TX_RING_MIN 64
  490. #define RING_MAX_DESC_VER_1 1024
  491. #define RING_MAX_DESC_VER_2_3 16384
  492. /* rx/tx mac addr + type + vlan + align + slack*/
  493. #define NV_RX_HEADERS (64)
  494. /* even more slack. */
  495. #define NV_RX_ALLOC_PAD (64)
  496. /* maximum mtu size */
  497. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  498. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  499. #define OOM_REFILL (1+HZ/20)
  500. #define POLL_WAIT (1+HZ/100)
  501. #define LINK_TIMEOUT (3*HZ)
  502. #define STATS_INTERVAL (10*HZ)
  503. /*
  504. * desc_ver values:
  505. * The nic supports three different descriptor types:
  506. * - DESC_VER_1: Original
  507. * - DESC_VER_2: support for jumbo frames.
  508. * - DESC_VER_3: 64-bit format.
  509. */
  510. #define DESC_VER_1 1
  511. #define DESC_VER_2 2
  512. #define DESC_VER_3 3
  513. /* PHY defines */
  514. #define PHY_OUI_MARVELL 0x5043
  515. #define PHY_OUI_CICADA 0x03f1
  516. #define PHY_OUI_VITESSE 0x01c1
  517. #define PHY_OUI_REALTEK 0x0732
  518. #define PHYID1_OUI_MASK 0x03ff
  519. #define PHYID1_OUI_SHFT 6
  520. #define PHYID2_OUI_MASK 0xfc00
  521. #define PHYID2_OUI_SHFT 10
  522. #define PHYID2_MODEL_MASK 0x03f0
  523. #define PHY_MODEL_MARVELL_E3016 0x220
  524. #define PHY_MARVELL_E3016_INITMASK 0x0300
  525. #define PHY_CICADA_INIT1 0x0f000
  526. #define PHY_CICADA_INIT2 0x0e00
  527. #define PHY_CICADA_INIT3 0x01000
  528. #define PHY_CICADA_INIT4 0x0200
  529. #define PHY_CICADA_INIT5 0x0004
  530. #define PHY_CICADA_INIT6 0x02000
  531. #define PHY_VITESSE_INIT_REG1 0x1f
  532. #define PHY_VITESSE_INIT_REG2 0x10
  533. #define PHY_VITESSE_INIT_REG3 0x11
  534. #define PHY_VITESSE_INIT_REG4 0x12
  535. #define PHY_VITESSE_INIT_MSK1 0xc
  536. #define PHY_VITESSE_INIT_MSK2 0x0180
  537. #define PHY_VITESSE_INIT1 0x52b5
  538. #define PHY_VITESSE_INIT2 0xaf8a
  539. #define PHY_VITESSE_INIT3 0x8
  540. #define PHY_VITESSE_INIT4 0x8f8a
  541. #define PHY_VITESSE_INIT5 0xaf86
  542. #define PHY_VITESSE_INIT6 0x8f86
  543. #define PHY_VITESSE_INIT7 0xaf82
  544. #define PHY_VITESSE_INIT8 0x0100
  545. #define PHY_VITESSE_INIT9 0x8f82
  546. #define PHY_VITESSE_INIT10 0x0
  547. #define PHY_REALTEK_INIT_REG1 0x1f
  548. #define PHY_REALTEK_INIT_REG2 0x19
  549. #define PHY_REALTEK_INIT_REG3 0x13
  550. #define PHY_REALTEK_INIT1 0x0000
  551. #define PHY_REALTEK_INIT2 0x8e00
  552. #define PHY_REALTEK_INIT3 0x0001
  553. #define PHY_REALTEK_INIT4 0xad17
  554. #define PHY_GIGABIT 0x0100
  555. #define PHY_TIMEOUT 0x1
  556. #define PHY_ERROR 0x2
  557. #define PHY_100 0x1
  558. #define PHY_1000 0x2
  559. #define PHY_HALF 0x100
  560. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  561. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  562. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  563. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  564. #define NV_PAUSEFRAME_RX_REQ 0x0010
  565. #define NV_PAUSEFRAME_TX_REQ 0x0020
  566. #define NV_PAUSEFRAME_AUTONEG 0x0040
  567. /* MSI/MSI-X defines */
  568. #define NV_MSI_X_MAX_VECTORS 8
  569. #define NV_MSI_X_VECTORS_MASK 0x000f
  570. #define NV_MSI_CAPABLE 0x0010
  571. #define NV_MSI_X_CAPABLE 0x0020
  572. #define NV_MSI_ENABLED 0x0040
  573. #define NV_MSI_X_ENABLED 0x0080
  574. #define NV_MSI_X_VECTOR_ALL 0x0
  575. #define NV_MSI_X_VECTOR_RX 0x0
  576. #define NV_MSI_X_VECTOR_TX 0x1
  577. #define NV_MSI_X_VECTOR_OTHER 0x2
  578. /* statistics */
  579. struct nv_ethtool_str {
  580. char name[ETH_GSTRING_LEN];
  581. };
  582. static const struct nv_ethtool_str nv_estats_str[] = {
  583. { "tx_bytes" },
  584. { "tx_zero_rexmt" },
  585. { "tx_one_rexmt" },
  586. { "tx_many_rexmt" },
  587. { "tx_late_collision" },
  588. { "tx_fifo_errors" },
  589. { "tx_carrier_errors" },
  590. { "tx_excess_deferral" },
  591. { "tx_retry_error" },
  592. { "rx_frame_error" },
  593. { "rx_extra_byte" },
  594. { "rx_late_collision" },
  595. { "rx_runt" },
  596. { "rx_frame_too_long" },
  597. { "rx_over_errors" },
  598. { "rx_crc_errors" },
  599. { "rx_frame_align_error" },
  600. { "rx_length_error" },
  601. { "rx_unicast" },
  602. { "rx_multicast" },
  603. { "rx_broadcast" },
  604. { "rx_packets" },
  605. { "rx_errors_total" },
  606. { "tx_errors_total" },
  607. /* version 2 stats */
  608. { "tx_deferral" },
  609. { "tx_packets" },
  610. { "rx_bytes" },
  611. { "tx_pause" },
  612. { "rx_pause" },
  613. { "rx_drop_frame" }
  614. };
  615. struct nv_ethtool_stats {
  616. u64 tx_bytes;
  617. u64 tx_zero_rexmt;
  618. u64 tx_one_rexmt;
  619. u64 tx_many_rexmt;
  620. u64 tx_late_collision;
  621. u64 tx_fifo_errors;
  622. u64 tx_carrier_errors;
  623. u64 tx_excess_deferral;
  624. u64 tx_retry_error;
  625. u64 rx_frame_error;
  626. u64 rx_extra_byte;
  627. u64 rx_late_collision;
  628. u64 rx_runt;
  629. u64 rx_frame_too_long;
  630. u64 rx_over_errors;
  631. u64 rx_crc_errors;
  632. u64 rx_frame_align_error;
  633. u64 rx_length_error;
  634. u64 rx_unicast;
  635. u64 rx_multicast;
  636. u64 rx_broadcast;
  637. u64 rx_packets;
  638. u64 rx_errors_total;
  639. u64 tx_errors_total;
  640. /* version 2 stats */
  641. u64 tx_deferral;
  642. u64 tx_packets;
  643. u64 rx_bytes;
  644. u64 tx_pause;
  645. u64 rx_pause;
  646. u64 rx_drop_frame;
  647. };
  648. #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  649. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  650. /* diagnostics */
  651. #define NV_TEST_COUNT_BASE 3
  652. #define NV_TEST_COUNT_EXTENDED 4
  653. static const struct nv_ethtool_str nv_etests_str[] = {
  654. { "link (online/offline)" },
  655. { "register (offline) " },
  656. { "interrupt (offline) " },
  657. { "loopback (offline) " }
  658. };
  659. struct register_test {
  660. __le32 reg;
  661. __le32 mask;
  662. };
  663. static const struct register_test nv_registers_test[] = {
  664. { NvRegUnknownSetupReg6, 0x01 },
  665. { NvRegMisc1, 0x03c },
  666. { NvRegOffloadConfig, 0x03ff },
  667. { NvRegMulticastAddrA, 0xffffffff },
  668. { NvRegTxWatermark, 0x0ff },
  669. { NvRegWakeUpFlags, 0x07777 },
  670. { 0,0 }
  671. };
  672. struct nv_skb_map {
  673. struct sk_buff *skb;
  674. dma_addr_t dma;
  675. unsigned int dma_len;
  676. };
  677. /*
  678. * SMP locking:
  679. * All hardware access under dev->priv->lock, except the performance
  680. * critical parts:
  681. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  682. * by the arch code for interrupts.
  683. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  684. * needs dev->priv->lock :-(
  685. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  686. */
  687. /* in dev: base, irq */
  688. struct fe_priv {
  689. spinlock_t lock;
  690. struct net_device *dev;
  691. struct napi_struct napi;
  692. /* General data:
  693. * Locking: spin_lock(&np->lock); */
  694. struct nv_ethtool_stats estats;
  695. int in_shutdown;
  696. u32 linkspeed;
  697. int duplex;
  698. int autoneg;
  699. int fixed_mode;
  700. int phyaddr;
  701. int wolenabled;
  702. unsigned int phy_oui;
  703. unsigned int phy_model;
  704. u16 gigabit;
  705. int intr_test;
  706. int recover_error;
  707. /* General data: RO fields */
  708. dma_addr_t ring_addr;
  709. struct pci_dev *pci_dev;
  710. u32 orig_mac[2];
  711. u32 irqmask;
  712. u32 desc_ver;
  713. u32 txrxctl_bits;
  714. u32 vlanctl_bits;
  715. u32 driver_data;
  716. u32 register_size;
  717. int rx_csum;
  718. u32 mac_in_use;
  719. void __iomem *base;
  720. /* rx specific fields.
  721. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  722. */
  723. union ring_type get_rx, put_rx, first_rx, last_rx;
  724. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  725. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  726. struct nv_skb_map *rx_skb;
  727. union ring_type rx_ring;
  728. unsigned int rx_buf_sz;
  729. unsigned int pkt_limit;
  730. struct timer_list oom_kick;
  731. struct timer_list nic_poll;
  732. struct timer_list stats_poll;
  733. u32 nic_poll_irq;
  734. int rx_ring_size;
  735. /* media detection workaround.
  736. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  737. */
  738. int need_linktimer;
  739. unsigned long link_timeout;
  740. /*
  741. * tx specific fields.
  742. */
  743. union ring_type get_tx, put_tx, first_tx, last_tx;
  744. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  745. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  746. struct nv_skb_map *tx_skb;
  747. union ring_type tx_ring;
  748. u32 tx_flags;
  749. int tx_ring_size;
  750. int tx_stop;
  751. /* vlan fields */
  752. struct vlan_group *vlangrp;
  753. /* msi/msi-x fields */
  754. u32 msi_flags;
  755. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  756. /* flow control */
  757. u32 pause_flags;
  758. };
  759. /*
  760. * Maximum number of loops until we assume that a bit in the irq mask
  761. * is stuck. Overridable with module param.
  762. */
  763. static int max_interrupt_work = 5;
  764. /*
  765. * Optimization can be either throuput mode or cpu mode
  766. *
  767. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  768. * CPU Mode: Interrupts are controlled by a timer.
  769. */
  770. enum {
  771. NV_OPTIMIZATION_MODE_THROUGHPUT,
  772. NV_OPTIMIZATION_MODE_CPU
  773. };
  774. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  775. /*
  776. * Poll interval for timer irq
  777. *
  778. * This interval determines how frequent an interrupt is generated.
  779. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  780. * Min = 0, and Max = 65535
  781. */
  782. static int poll_interval = -1;
  783. /*
  784. * MSI interrupts
  785. */
  786. enum {
  787. NV_MSI_INT_DISABLED,
  788. NV_MSI_INT_ENABLED
  789. };
  790. static int msi = NV_MSI_INT_ENABLED;
  791. /*
  792. * MSIX interrupts
  793. */
  794. enum {
  795. NV_MSIX_INT_DISABLED,
  796. NV_MSIX_INT_ENABLED
  797. };
  798. static int msix = NV_MSIX_INT_DISABLED;
  799. /*
  800. * DMA 64bit
  801. */
  802. enum {
  803. NV_DMA_64BIT_DISABLED,
  804. NV_DMA_64BIT_ENABLED
  805. };
  806. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  807. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  808. {
  809. return netdev_priv(dev);
  810. }
  811. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  812. {
  813. return ((struct fe_priv *)netdev_priv(dev))->base;
  814. }
  815. static inline void pci_push(u8 __iomem *base)
  816. {
  817. /* force out pending posted writes */
  818. readl(base);
  819. }
  820. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  821. {
  822. return le32_to_cpu(prd->flaglen)
  823. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  824. }
  825. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  826. {
  827. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  828. }
  829. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  830. int delay, int delaymax, const char *msg)
  831. {
  832. u8 __iomem *base = get_hwbase(dev);
  833. pci_push(base);
  834. do {
  835. udelay(delay);
  836. delaymax -= delay;
  837. if (delaymax < 0) {
  838. if (msg)
  839. printk(msg);
  840. return 1;
  841. }
  842. } while ((readl(base + offset) & mask) != target);
  843. return 0;
  844. }
  845. #define NV_SETUP_RX_RING 0x01
  846. #define NV_SETUP_TX_RING 0x02
  847. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  848. {
  849. struct fe_priv *np = get_nvpriv(dev);
  850. u8 __iomem *base = get_hwbase(dev);
  851. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  852. if (rxtx_flags & NV_SETUP_RX_RING) {
  853. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  854. }
  855. if (rxtx_flags & NV_SETUP_TX_RING) {
  856. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  857. }
  858. } else {
  859. if (rxtx_flags & NV_SETUP_RX_RING) {
  860. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  861. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  862. }
  863. if (rxtx_flags & NV_SETUP_TX_RING) {
  864. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  865. writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  866. }
  867. }
  868. }
  869. static void free_rings(struct net_device *dev)
  870. {
  871. struct fe_priv *np = get_nvpriv(dev);
  872. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  873. if (np->rx_ring.orig)
  874. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  875. np->rx_ring.orig, np->ring_addr);
  876. } else {
  877. if (np->rx_ring.ex)
  878. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  879. np->rx_ring.ex, np->ring_addr);
  880. }
  881. if (np->rx_skb)
  882. kfree(np->rx_skb);
  883. if (np->tx_skb)
  884. kfree(np->tx_skb);
  885. }
  886. static int using_multi_irqs(struct net_device *dev)
  887. {
  888. struct fe_priv *np = get_nvpriv(dev);
  889. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  890. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  891. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  892. return 0;
  893. else
  894. return 1;
  895. }
  896. static void nv_enable_irq(struct net_device *dev)
  897. {
  898. struct fe_priv *np = get_nvpriv(dev);
  899. if (!using_multi_irqs(dev)) {
  900. if (np->msi_flags & NV_MSI_X_ENABLED)
  901. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  902. else
  903. enable_irq(dev->irq);
  904. } else {
  905. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  906. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  907. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  908. }
  909. }
  910. static void nv_disable_irq(struct net_device *dev)
  911. {
  912. struct fe_priv *np = get_nvpriv(dev);
  913. if (!using_multi_irqs(dev)) {
  914. if (np->msi_flags & NV_MSI_X_ENABLED)
  915. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  916. else
  917. disable_irq(dev->irq);
  918. } else {
  919. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  920. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  921. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  922. }
  923. }
  924. /* In MSIX mode, a write to irqmask behaves as XOR */
  925. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  926. {
  927. u8 __iomem *base = get_hwbase(dev);
  928. writel(mask, base + NvRegIrqMask);
  929. }
  930. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  931. {
  932. struct fe_priv *np = get_nvpriv(dev);
  933. u8 __iomem *base = get_hwbase(dev);
  934. if (np->msi_flags & NV_MSI_X_ENABLED) {
  935. writel(mask, base + NvRegIrqMask);
  936. } else {
  937. if (np->msi_flags & NV_MSI_ENABLED)
  938. writel(0, base + NvRegMSIIrqMask);
  939. writel(0, base + NvRegIrqMask);
  940. }
  941. }
  942. #define MII_READ (-1)
  943. /* mii_rw: read/write a register on the PHY.
  944. *
  945. * Caller must guarantee serialization
  946. */
  947. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  948. {
  949. u8 __iomem *base = get_hwbase(dev);
  950. u32 reg;
  951. int retval;
  952. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  953. reg = readl(base + NvRegMIIControl);
  954. if (reg & NVREG_MIICTL_INUSE) {
  955. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  956. udelay(NV_MIIBUSY_DELAY);
  957. }
  958. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  959. if (value != MII_READ) {
  960. writel(value, base + NvRegMIIData);
  961. reg |= NVREG_MIICTL_WRITE;
  962. }
  963. writel(reg, base + NvRegMIIControl);
  964. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  965. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  966. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  967. dev->name, miireg, addr);
  968. retval = -1;
  969. } else if (value != MII_READ) {
  970. /* it was a write operation - fewer failures are detectable */
  971. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  972. dev->name, value, miireg, addr);
  973. retval = 0;
  974. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  975. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  976. dev->name, miireg, addr);
  977. retval = -1;
  978. } else {
  979. retval = readl(base + NvRegMIIData);
  980. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  981. dev->name, miireg, addr, retval);
  982. }
  983. return retval;
  984. }
  985. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  986. {
  987. struct fe_priv *np = netdev_priv(dev);
  988. u32 miicontrol;
  989. unsigned int tries = 0;
  990. miicontrol = BMCR_RESET | bmcr_setup;
  991. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  992. return -1;
  993. }
  994. /* wait for 500ms */
  995. msleep(500);
  996. /* must wait till reset is deasserted */
  997. while (miicontrol & BMCR_RESET) {
  998. msleep(10);
  999. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1000. /* FIXME: 100 tries seem excessive */
  1001. if (tries++ > 100)
  1002. return -1;
  1003. }
  1004. return 0;
  1005. }
  1006. static int phy_init(struct net_device *dev)
  1007. {
  1008. struct fe_priv *np = get_nvpriv(dev);
  1009. u8 __iomem *base = get_hwbase(dev);
  1010. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1011. /* phy errata for E3016 phy */
  1012. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1013. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1014. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1015. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1016. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1017. return PHY_ERROR;
  1018. }
  1019. }
  1020. if (np->phy_oui == PHY_OUI_REALTEK) {
  1021. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1022. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1023. return PHY_ERROR;
  1024. }
  1025. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1026. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1027. return PHY_ERROR;
  1028. }
  1029. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1030. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1031. return PHY_ERROR;
  1032. }
  1033. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1034. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1035. return PHY_ERROR;
  1036. }
  1037. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1038. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1039. return PHY_ERROR;
  1040. }
  1041. }
  1042. /* set advertise register */
  1043. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1044. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1045. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1046. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1047. return PHY_ERROR;
  1048. }
  1049. /* get phy interface type */
  1050. phyinterface = readl(base + NvRegPhyInterface);
  1051. /* see if gigabit phy */
  1052. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1053. if (mii_status & PHY_GIGABIT) {
  1054. np->gigabit = PHY_GIGABIT;
  1055. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1056. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1057. if (phyinterface & PHY_RGMII)
  1058. mii_control_1000 |= ADVERTISE_1000FULL;
  1059. else
  1060. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1061. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1062. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1063. return PHY_ERROR;
  1064. }
  1065. }
  1066. else
  1067. np->gigabit = 0;
  1068. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1069. mii_control |= BMCR_ANENABLE;
  1070. /* reset the phy
  1071. * (certain phys need bmcr to be setup with reset)
  1072. */
  1073. if (phy_reset(dev, mii_control)) {
  1074. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1075. return PHY_ERROR;
  1076. }
  1077. /* phy vendor specific configuration */
  1078. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1079. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1080. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1081. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1082. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1083. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1084. return PHY_ERROR;
  1085. }
  1086. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1087. phy_reserved |= PHY_CICADA_INIT5;
  1088. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1089. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1090. return PHY_ERROR;
  1091. }
  1092. }
  1093. if (np->phy_oui == PHY_OUI_CICADA) {
  1094. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1095. phy_reserved |= PHY_CICADA_INIT6;
  1096. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1097. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1098. return PHY_ERROR;
  1099. }
  1100. }
  1101. if (np->phy_oui == PHY_OUI_VITESSE) {
  1102. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1103. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1104. return PHY_ERROR;
  1105. }
  1106. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1107. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1108. return PHY_ERROR;
  1109. }
  1110. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1111. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1112. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1113. return PHY_ERROR;
  1114. }
  1115. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1116. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1117. phy_reserved |= PHY_VITESSE_INIT3;
  1118. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1119. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1120. return PHY_ERROR;
  1121. }
  1122. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1123. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1124. return PHY_ERROR;
  1125. }
  1126. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1127. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1128. return PHY_ERROR;
  1129. }
  1130. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1131. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1132. phy_reserved |= PHY_VITESSE_INIT3;
  1133. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1134. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1135. return PHY_ERROR;
  1136. }
  1137. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1138. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1139. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1140. return PHY_ERROR;
  1141. }
  1142. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1143. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1144. return PHY_ERROR;
  1145. }
  1146. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1147. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1148. return PHY_ERROR;
  1149. }
  1150. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1151. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1152. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1153. return PHY_ERROR;
  1154. }
  1155. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1156. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1157. phy_reserved |= PHY_VITESSE_INIT8;
  1158. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1159. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1160. return PHY_ERROR;
  1161. }
  1162. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1163. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1164. return PHY_ERROR;
  1165. }
  1166. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1167. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1168. return PHY_ERROR;
  1169. }
  1170. }
  1171. if (np->phy_oui == PHY_OUI_REALTEK) {
  1172. /* reset could have cleared these out, set them back */
  1173. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1174. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1175. return PHY_ERROR;
  1176. }
  1177. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1178. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1179. return PHY_ERROR;
  1180. }
  1181. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1182. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1183. return PHY_ERROR;
  1184. }
  1185. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1186. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1187. return PHY_ERROR;
  1188. }
  1189. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1190. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1191. return PHY_ERROR;
  1192. }
  1193. }
  1194. /* some phys clear out pause advertisment on reset, set it back */
  1195. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1196. /* restart auto negotiation */
  1197. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1198. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1199. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1200. return PHY_ERROR;
  1201. }
  1202. return 0;
  1203. }
  1204. static void nv_start_rx(struct net_device *dev)
  1205. {
  1206. struct fe_priv *np = netdev_priv(dev);
  1207. u8 __iomem *base = get_hwbase(dev);
  1208. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1209. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1210. /* Already running? Stop it. */
  1211. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1212. rx_ctrl &= ~NVREG_RCVCTL_START;
  1213. writel(rx_ctrl, base + NvRegReceiverControl);
  1214. pci_push(base);
  1215. }
  1216. writel(np->linkspeed, base + NvRegLinkSpeed);
  1217. pci_push(base);
  1218. rx_ctrl |= NVREG_RCVCTL_START;
  1219. if (np->mac_in_use)
  1220. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1221. writel(rx_ctrl, base + NvRegReceiverControl);
  1222. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1223. dev->name, np->duplex, np->linkspeed);
  1224. pci_push(base);
  1225. }
  1226. static void nv_stop_rx(struct net_device *dev)
  1227. {
  1228. struct fe_priv *np = netdev_priv(dev);
  1229. u8 __iomem *base = get_hwbase(dev);
  1230. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1231. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1232. if (!np->mac_in_use)
  1233. rx_ctrl &= ~NVREG_RCVCTL_START;
  1234. else
  1235. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1236. writel(rx_ctrl, base + NvRegReceiverControl);
  1237. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1238. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1239. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1240. udelay(NV_RXSTOP_DELAY2);
  1241. if (!np->mac_in_use)
  1242. writel(0, base + NvRegLinkSpeed);
  1243. }
  1244. static void nv_start_tx(struct net_device *dev)
  1245. {
  1246. struct fe_priv *np = netdev_priv(dev);
  1247. u8 __iomem *base = get_hwbase(dev);
  1248. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1249. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1250. tx_ctrl |= NVREG_XMITCTL_START;
  1251. if (np->mac_in_use)
  1252. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1253. writel(tx_ctrl, base + NvRegTransmitterControl);
  1254. pci_push(base);
  1255. }
  1256. static void nv_stop_tx(struct net_device *dev)
  1257. {
  1258. struct fe_priv *np = netdev_priv(dev);
  1259. u8 __iomem *base = get_hwbase(dev);
  1260. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1261. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1262. if (!np->mac_in_use)
  1263. tx_ctrl &= ~NVREG_XMITCTL_START;
  1264. else
  1265. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1266. writel(tx_ctrl, base + NvRegTransmitterControl);
  1267. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1268. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1269. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1270. udelay(NV_TXSTOP_DELAY2);
  1271. if (!np->mac_in_use)
  1272. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1273. base + NvRegTransmitPoll);
  1274. }
  1275. static void nv_txrx_reset(struct net_device *dev)
  1276. {
  1277. struct fe_priv *np = netdev_priv(dev);
  1278. u8 __iomem *base = get_hwbase(dev);
  1279. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1280. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1281. pci_push(base);
  1282. udelay(NV_TXRX_RESET_DELAY);
  1283. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1284. pci_push(base);
  1285. }
  1286. static void nv_mac_reset(struct net_device *dev)
  1287. {
  1288. struct fe_priv *np = netdev_priv(dev);
  1289. u8 __iomem *base = get_hwbase(dev);
  1290. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1291. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1292. pci_push(base);
  1293. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1294. pci_push(base);
  1295. udelay(NV_MAC_RESET_DELAY);
  1296. writel(0, base + NvRegMacReset);
  1297. pci_push(base);
  1298. udelay(NV_MAC_RESET_DELAY);
  1299. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1300. pci_push(base);
  1301. }
  1302. static void nv_get_hw_stats(struct net_device *dev)
  1303. {
  1304. struct fe_priv *np = netdev_priv(dev);
  1305. u8 __iomem *base = get_hwbase(dev);
  1306. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1307. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1308. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1309. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1310. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1311. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1312. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1313. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1314. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1315. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1316. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1317. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1318. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1319. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1320. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1321. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1322. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1323. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1324. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1325. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1326. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1327. np->estats.rx_packets =
  1328. np->estats.rx_unicast +
  1329. np->estats.rx_multicast +
  1330. np->estats.rx_broadcast;
  1331. np->estats.rx_errors_total =
  1332. np->estats.rx_crc_errors +
  1333. np->estats.rx_over_errors +
  1334. np->estats.rx_frame_error +
  1335. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1336. np->estats.rx_late_collision +
  1337. np->estats.rx_runt +
  1338. np->estats.rx_frame_too_long;
  1339. np->estats.tx_errors_total =
  1340. np->estats.tx_late_collision +
  1341. np->estats.tx_fifo_errors +
  1342. np->estats.tx_carrier_errors +
  1343. np->estats.tx_excess_deferral +
  1344. np->estats.tx_retry_error;
  1345. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1346. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1347. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1348. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1349. np->estats.tx_pause += readl(base + NvRegTxPause);
  1350. np->estats.rx_pause += readl(base + NvRegRxPause);
  1351. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1352. }
  1353. }
  1354. /*
  1355. * nv_get_stats: dev->get_stats function
  1356. * Get latest stats value from the nic.
  1357. * Called with read_lock(&dev_base_lock) held for read -
  1358. * only synchronized against unregister_netdevice.
  1359. */
  1360. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1361. {
  1362. struct fe_priv *np = netdev_priv(dev);
  1363. /* If the nic supports hw counters then retrieve latest values */
  1364. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
  1365. nv_get_hw_stats(dev);
  1366. /* copy to net_device stats */
  1367. dev->stats.tx_bytes = np->estats.tx_bytes;
  1368. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1369. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1370. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1371. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1372. dev->stats.rx_errors = np->estats.rx_errors_total;
  1373. dev->stats.tx_errors = np->estats.tx_errors_total;
  1374. }
  1375. return &dev->stats;
  1376. }
  1377. /*
  1378. * nv_alloc_rx: fill rx ring entries.
  1379. * Return 1 if the allocations for the skbs failed and the
  1380. * rx engine is without Available descriptors
  1381. */
  1382. static int nv_alloc_rx(struct net_device *dev)
  1383. {
  1384. struct fe_priv *np = netdev_priv(dev);
  1385. struct ring_desc* less_rx;
  1386. less_rx = np->get_rx.orig;
  1387. if (less_rx-- == np->first_rx.orig)
  1388. less_rx = np->last_rx.orig;
  1389. while (np->put_rx.orig != less_rx) {
  1390. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1391. if (skb) {
  1392. np->put_rx_ctx->skb = skb;
  1393. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1394. skb->data,
  1395. skb_tailroom(skb),
  1396. PCI_DMA_FROMDEVICE);
  1397. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1398. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1399. wmb();
  1400. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1401. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1402. np->put_rx.orig = np->first_rx.orig;
  1403. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1404. np->put_rx_ctx = np->first_rx_ctx;
  1405. } else {
  1406. return 1;
  1407. }
  1408. }
  1409. return 0;
  1410. }
  1411. static int nv_alloc_rx_optimized(struct net_device *dev)
  1412. {
  1413. struct fe_priv *np = netdev_priv(dev);
  1414. struct ring_desc_ex* less_rx;
  1415. less_rx = np->get_rx.ex;
  1416. if (less_rx-- == np->first_rx.ex)
  1417. less_rx = np->last_rx.ex;
  1418. while (np->put_rx.ex != less_rx) {
  1419. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1420. if (skb) {
  1421. np->put_rx_ctx->skb = skb;
  1422. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1423. skb->data,
  1424. skb_tailroom(skb),
  1425. PCI_DMA_FROMDEVICE);
  1426. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1427. np->put_rx.ex->bufhigh = cpu_to_le64(np->put_rx_ctx->dma) >> 32;
  1428. np->put_rx.ex->buflow = cpu_to_le64(np->put_rx_ctx->dma) & 0x0FFFFFFFF;
  1429. wmb();
  1430. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1431. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1432. np->put_rx.ex = np->first_rx.ex;
  1433. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1434. np->put_rx_ctx = np->first_rx_ctx;
  1435. } else {
  1436. return 1;
  1437. }
  1438. }
  1439. return 0;
  1440. }
  1441. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1442. #ifdef CONFIG_FORCEDETH_NAPI
  1443. static void nv_do_rx_refill(unsigned long data)
  1444. {
  1445. struct net_device *dev = (struct net_device *) data;
  1446. struct fe_priv *np = netdev_priv(dev);
  1447. /* Just reschedule NAPI rx processing */
  1448. netif_rx_schedule(dev, &np->napi);
  1449. }
  1450. #else
  1451. static void nv_do_rx_refill(unsigned long data)
  1452. {
  1453. struct net_device *dev = (struct net_device *) data;
  1454. struct fe_priv *np = netdev_priv(dev);
  1455. int retcode;
  1456. if (!using_multi_irqs(dev)) {
  1457. if (np->msi_flags & NV_MSI_X_ENABLED)
  1458. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1459. else
  1460. disable_irq(dev->irq);
  1461. } else {
  1462. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1463. }
  1464. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1465. retcode = nv_alloc_rx(dev);
  1466. else
  1467. retcode = nv_alloc_rx_optimized(dev);
  1468. if (retcode) {
  1469. spin_lock_irq(&np->lock);
  1470. if (!np->in_shutdown)
  1471. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1472. spin_unlock_irq(&np->lock);
  1473. }
  1474. if (!using_multi_irqs(dev)) {
  1475. if (np->msi_flags & NV_MSI_X_ENABLED)
  1476. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1477. else
  1478. enable_irq(dev->irq);
  1479. } else {
  1480. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1481. }
  1482. }
  1483. #endif
  1484. static void nv_init_rx(struct net_device *dev)
  1485. {
  1486. struct fe_priv *np = netdev_priv(dev);
  1487. int i;
  1488. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1489. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1490. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1491. else
  1492. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1493. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1494. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1495. for (i = 0; i < np->rx_ring_size; i++) {
  1496. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1497. np->rx_ring.orig[i].flaglen = 0;
  1498. np->rx_ring.orig[i].buf = 0;
  1499. } else {
  1500. np->rx_ring.ex[i].flaglen = 0;
  1501. np->rx_ring.ex[i].txvlan = 0;
  1502. np->rx_ring.ex[i].bufhigh = 0;
  1503. np->rx_ring.ex[i].buflow = 0;
  1504. }
  1505. np->rx_skb[i].skb = NULL;
  1506. np->rx_skb[i].dma = 0;
  1507. }
  1508. }
  1509. static void nv_init_tx(struct net_device *dev)
  1510. {
  1511. struct fe_priv *np = netdev_priv(dev);
  1512. int i;
  1513. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1514. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1515. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1516. else
  1517. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1518. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1519. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1520. for (i = 0; i < np->tx_ring_size; i++) {
  1521. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1522. np->tx_ring.orig[i].flaglen = 0;
  1523. np->tx_ring.orig[i].buf = 0;
  1524. } else {
  1525. np->tx_ring.ex[i].flaglen = 0;
  1526. np->tx_ring.ex[i].txvlan = 0;
  1527. np->tx_ring.ex[i].bufhigh = 0;
  1528. np->tx_ring.ex[i].buflow = 0;
  1529. }
  1530. np->tx_skb[i].skb = NULL;
  1531. np->tx_skb[i].dma = 0;
  1532. }
  1533. }
  1534. static int nv_init_ring(struct net_device *dev)
  1535. {
  1536. struct fe_priv *np = netdev_priv(dev);
  1537. nv_init_tx(dev);
  1538. nv_init_rx(dev);
  1539. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1540. return nv_alloc_rx(dev);
  1541. else
  1542. return nv_alloc_rx_optimized(dev);
  1543. }
  1544. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1545. {
  1546. struct fe_priv *np = netdev_priv(dev);
  1547. if (tx_skb->dma) {
  1548. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1549. tx_skb->dma_len,
  1550. PCI_DMA_TODEVICE);
  1551. tx_skb->dma = 0;
  1552. }
  1553. if (tx_skb->skb) {
  1554. dev_kfree_skb_any(tx_skb->skb);
  1555. tx_skb->skb = NULL;
  1556. return 1;
  1557. } else {
  1558. return 0;
  1559. }
  1560. }
  1561. static void nv_drain_tx(struct net_device *dev)
  1562. {
  1563. struct fe_priv *np = netdev_priv(dev);
  1564. unsigned int i;
  1565. for (i = 0; i < np->tx_ring_size; i++) {
  1566. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1567. np->tx_ring.orig[i].flaglen = 0;
  1568. np->tx_ring.orig[i].buf = 0;
  1569. } else {
  1570. np->tx_ring.ex[i].flaglen = 0;
  1571. np->tx_ring.ex[i].txvlan = 0;
  1572. np->tx_ring.ex[i].bufhigh = 0;
  1573. np->tx_ring.ex[i].buflow = 0;
  1574. }
  1575. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1576. dev->stats.tx_dropped++;
  1577. }
  1578. }
  1579. static void nv_drain_rx(struct net_device *dev)
  1580. {
  1581. struct fe_priv *np = netdev_priv(dev);
  1582. int i;
  1583. for (i = 0; i < np->rx_ring_size; i++) {
  1584. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1585. np->rx_ring.orig[i].flaglen = 0;
  1586. np->rx_ring.orig[i].buf = 0;
  1587. } else {
  1588. np->rx_ring.ex[i].flaglen = 0;
  1589. np->rx_ring.ex[i].txvlan = 0;
  1590. np->rx_ring.ex[i].bufhigh = 0;
  1591. np->rx_ring.ex[i].buflow = 0;
  1592. }
  1593. wmb();
  1594. if (np->rx_skb[i].skb) {
  1595. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1596. (skb_end_pointer(np->rx_skb[i].skb) -
  1597. np->rx_skb[i].skb->data),
  1598. PCI_DMA_FROMDEVICE);
  1599. dev_kfree_skb(np->rx_skb[i].skb);
  1600. np->rx_skb[i].skb = NULL;
  1601. }
  1602. }
  1603. }
  1604. static void drain_ring(struct net_device *dev)
  1605. {
  1606. nv_drain_tx(dev);
  1607. nv_drain_rx(dev);
  1608. }
  1609. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1610. {
  1611. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1612. }
  1613. /*
  1614. * nv_start_xmit: dev->hard_start_xmit function
  1615. * Called with netif_tx_lock held.
  1616. */
  1617. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1618. {
  1619. struct fe_priv *np = netdev_priv(dev);
  1620. u32 tx_flags = 0;
  1621. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1622. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1623. unsigned int i;
  1624. u32 offset = 0;
  1625. u32 bcnt;
  1626. u32 size = skb->len-skb->data_len;
  1627. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1628. u32 empty_slots;
  1629. struct ring_desc* put_tx;
  1630. struct ring_desc* start_tx;
  1631. struct ring_desc* prev_tx;
  1632. struct nv_skb_map* prev_tx_ctx;
  1633. /* add fragments to entries count */
  1634. for (i = 0; i < fragments; i++) {
  1635. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1636. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1637. }
  1638. empty_slots = nv_get_empty_tx_slots(np);
  1639. if (unlikely(empty_slots <= entries)) {
  1640. spin_lock_irq(&np->lock);
  1641. netif_stop_queue(dev);
  1642. np->tx_stop = 1;
  1643. spin_unlock_irq(&np->lock);
  1644. return NETDEV_TX_BUSY;
  1645. }
  1646. start_tx = put_tx = np->put_tx.orig;
  1647. /* setup the header buffer */
  1648. do {
  1649. prev_tx = put_tx;
  1650. prev_tx_ctx = np->put_tx_ctx;
  1651. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1652. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1653. PCI_DMA_TODEVICE);
  1654. np->put_tx_ctx->dma_len = bcnt;
  1655. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1656. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1657. tx_flags = np->tx_flags;
  1658. offset += bcnt;
  1659. size -= bcnt;
  1660. if (unlikely(put_tx++ == np->last_tx.orig))
  1661. put_tx = np->first_tx.orig;
  1662. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1663. np->put_tx_ctx = np->first_tx_ctx;
  1664. } while (size);
  1665. /* setup the fragments */
  1666. for (i = 0; i < fragments; i++) {
  1667. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1668. u32 size = frag->size;
  1669. offset = 0;
  1670. do {
  1671. prev_tx = put_tx;
  1672. prev_tx_ctx = np->put_tx_ctx;
  1673. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1674. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1675. PCI_DMA_TODEVICE);
  1676. np->put_tx_ctx->dma_len = bcnt;
  1677. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1678. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1679. offset += bcnt;
  1680. size -= bcnt;
  1681. if (unlikely(put_tx++ == np->last_tx.orig))
  1682. put_tx = np->first_tx.orig;
  1683. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1684. np->put_tx_ctx = np->first_tx_ctx;
  1685. } while (size);
  1686. }
  1687. /* set last fragment flag */
  1688. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1689. /* save skb in this slot's context area */
  1690. prev_tx_ctx->skb = skb;
  1691. if (skb_is_gso(skb))
  1692. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1693. else
  1694. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1695. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1696. spin_lock_irq(&np->lock);
  1697. /* set tx flags */
  1698. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1699. np->put_tx.orig = put_tx;
  1700. spin_unlock_irq(&np->lock);
  1701. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1702. dev->name, entries, tx_flags_extra);
  1703. {
  1704. int j;
  1705. for (j=0; j<64; j++) {
  1706. if ((j%16) == 0)
  1707. dprintk("\n%03x:", j);
  1708. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1709. }
  1710. dprintk("\n");
  1711. }
  1712. dev->trans_start = jiffies;
  1713. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1714. return NETDEV_TX_OK;
  1715. }
  1716. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1717. {
  1718. struct fe_priv *np = netdev_priv(dev);
  1719. u32 tx_flags = 0;
  1720. u32 tx_flags_extra;
  1721. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1722. unsigned int i;
  1723. u32 offset = 0;
  1724. u32 bcnt;
  1725. u32 size = skb->len-skb->data_len;
  1726. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1727. u32 empty_slots;
  1728. struct ring_desc_ex* put_tx;
  1729. struct ring_desc_ex* start_tx;
  1730. struct ring_desc_ex* prev_tx;
  1731. struct nv_skb_map* prev_tx_ctx;
  1732. /* add fragments to entries count */
  1733. for (i = 0; i < fragments; i++) {
  1734. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1735. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1736. }
  1737. empty_slots = nv_get_empty_tx_slots(np);
  1738. if (unlikely(empty_slots <= entries)) {
  1739. spin_lock_irq(&np->lock);
  1740. netif_stop_queue(dev);
  1741. np->tx_stop = 1;
  1742. spin_unlock_irq(&np->lock);
  1743. return NETDEV_TX_BUSY;
  1744. }
  1745. start_tx = put_tx = np->put_tx.ex;
  1746. /* setup the header buffer */
  1747. do {
  1748. prev_tx = put_tx;
  1749. prev_tx_ctx = np->put_tx_ctx;
  1750. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1751. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1752. PCI_DMA_TODEVICE);
  1753. np->put_tx_ctx->dma_len = bcnt;
  1754. put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
  1755. put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
  1756. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1757. tx_flags = NV_TX2_VALID;
  1758. offset += bcnt;
  1759. size -= bcnt;
  1760. if (unlikely(put_tx++ == np->last_tx.ex))
  1761. put_tx = np->first_tx.ex;
  1762. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1763. np->put_tx_ctx = np->first_tx_ctx;
  1764. } while (size);
  1765. /* setup the fragments */
  1766. for (i = 0; i < fragments; i++) {
  1767. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1768. u32 size = frag->size;
  1769. offset = 0;
  1770. do {
  1771. prev_tx = put_tx;
  1772. prev_tx_ctx = np->put_tx_ctx;
  1773. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1774. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1775. PCI_DMA_TODEVICE);
  1776. np->put_tx_ctx->dma_len = bcnt;
  1777. put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
  1778. put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
  1779. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1780. offset += bcnt;
  1781. size -= bcnt;
  1782. if (unlikely(put_tx++ == np->last_tx.ex))
  1783. put_tx = np->first_tx.ex;
  1784. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1785. np->put_tx_ctx = np->first_tx_ctx;
  1786. } while (size);
  1787. }
  1788. /* set last fragment flag */
  1789. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  1790. /* save skb in this slot's context area */
  1791. prev_tx_ctx->skb = skb;
  1792. if (skb_is_gso(skb))
  1793. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1794. else
  1795. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1796. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1797. /* vlan tag */
  1798. if (likely(!np->vlangrp)) {
  1799. start_tx->txvlan = 0;
  1800. } else {
  1801. if (vlan_tx_tag_present(skb))
  1802. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  1803. else
  1804. start_tx->txvlan = 0;
  1805. }
  1806. spin_lock_irq(&np->lock);
  1807. /* set tx flags */
  1808. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1809. np->put_tx.ex = put_tx;
  1810. spin_unlock_irq(&np->lock);
  1811. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  1812. dev->name, entries, tx_flags_extra);
  1813. {
  1814. int j;
  1815. for (j=0; j<64; j++) {
  1816. if ((j%16) == 0)
  1817. dprintk("\n%03x:", j);
  1818. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1819. }
  1820. dprintk("\n");
  1821. }
  1822. dev->trans_start = jiffies;
  1823. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1824. return NETDEV_TX_OK;
  1825. }
  1826. /*
  1827. * nv_tx_done: check for completed packets, release the skbs.
  1828. *
  1829. * Caller must own np->lock.
  1830. */
  1831. static void nv_tx_done(struct net_device *dev)
  1832. {
  1833. struct fe_priv *np = netdev_priv(dev);
  1834. u32 flags;
  1835. struct ring_desc* orig_get_tx = np->get_tx.orig;
  1836. while ((np->get_tx.orig != np->put_tx.orig) &&
  1837. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  1838. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  1839. dev->name, flags);
  1840. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1841. np->get_tx_ctx->dma_len,
  1842. PCI_DMA_TODEVICE);
  1843. np->get_tx_ctx->dma = 0;
  1844. if (np->desc_ver == DESC_VER_1) {
  1845. if (flags & NV_TX_LASTPACKET) {
  1846. if (flags & NV_TX_ERROR) {
  1847. if (flags & NV_TX_UNDERFLOW)
  1848. dev->stats.tx_fifo_errors++;
  1849. if (flags & NV_TX_CARRIERLOST)
  1850. dev->stats.tx_carrier_errors++;
  1851. dev->stats.tx_errors++;
  1852. } else {
  1853. dev->stats.tx_packets++;
  1854. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1855. }
  1856. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1857. np->get_tx_ctx->skb = NULL;
  1858. }
  1859. } else {
  1860. if (flags & NV_TX2_LASTPACKET) {
  1861. if (flags & NV_TX2_ERROR) {
  1862. if (flags & NV_TX2_UNDERFLOW)
  1863. dev->stats.tx_fifo_errors++;
  1864. if (flags & NV_TX2_CARRIERLOST)
  1865. dev->stats.tx_carrier_errors++;
  1866. dev->stats.tx_errors++;
  1867. } else {
  1868. dev->stats.tx_packets++;
  1869. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1870. }
  1871. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1872. np->get_tx_ctx->skb = NULL;
  1873. }
  1874. }
  1875. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  1876. np->get_tx.orig = np->first_tx.orig;
  1877. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1878. np->get_tx_ctx = np->first_tx_ctx;
  1879. }
  1880. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  1881. np->tx_stop = 0;
  1882. netif_wake_queue(dev);
  1883. }
  1884. }
  1885. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  1886. {
  1887. struct fe_priv *np = netdev_priv(dev);
  1888. u32 flags;
  1889. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  1890. while ((np->get_tx.ex != np->put_tx.ex) &&
  1891. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  1892. (limit-- > 0)) {
  1893. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  1894. dev->name, flags);
  1895. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1896. np->get_tx_ctx->dma_len,
  1897. PCI_DMA_TODEVICE);
  1898. np->get_tx_ctx->dma = 0;
  1899. if (flags & NV_TX2_LASTPACKET) {
  1900. if (!(flags & NV_TX2_ERROR))
  1901. dev->stats.tx_packets++;
  1902. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1903. np->get_tx_ctx->skb = NULL;
  1904. }
  1905. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  1906. np->get_tx.ex = np->first_tx.ex;
  1907. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1908. np->get_tx_ctx = np->first_tx_ctx;
  1909. }
  1910. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  1911. np->tx_stop = 0;
  1912. netif_wake_queue(dev);
  1913. }
  1914. }
  1915. /*
  1916. * nv_tx_timeout: dev->tx_timeout function
  1917. * Called with netif_tx_lock held.
  1918. */
  1919. static void nv_tx_timeout(struct net_device *dev)
  1920. {
  1921. struct fe_priv *np = netdev_priv(dev);
  1922. u8 __iomem *base = get_hwbase(dev);
  1923. u32 status;
  1924. if (np->msi_flags & NV_MSI_X_ENABLED)
  1925. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1926. else
  1927. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1928. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1929. {
  1930. int i;
  1931. printk(KERN_INFO "%s: Ring at %lx\n",
  1932. dev->name, (unsigned long)np->ring_addr);
  1933. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1934. for (i=0;i<=np->register_size;i+= 32) {
  1935. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1936. i,
  1937. readl(base + i + 0), readl(base + i + 4),
  1938. readl(base + i + 8), readl(base + i + 12),
  1939. readl(base + i + 16), readl(base + i + 20),
  1940. readl(base + i + 24), readl(base + i + 28));
  1941. }
  1942. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1943. for (i=0;i<np->tx_ring_size;i+= 4) {
  1944. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1945. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1946. i,
  1947. le32_to_cpu(np->tx_ring.orig[i].buf),
  1948. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  1949. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  1950. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  1951. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  1952. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  1953. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  1954. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  1955. } else {
  1956. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1957. i,
  1958. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  1959. le32_to_cpu(np->tx_ring.ex[i].buflow),
  1960. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  1961. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  1962. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  1963. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  1964. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  1965. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  1966. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  1967. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  1968. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  1969. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  1970. }
  1971. }
  1972. }
  1973. spin_lock_irq(&np->lock);
  1974. /* 1) stop tx engine */
  1975. nv_stop_tx(dev);
  1976. /* 2) check that the packets were not sent already: */
  1977. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1978. nv_tx_done(dev);
  1979. else
  1980. nv_tx_done_optimized(dev, np->tx_ring_size);
  1981. /* 3) if there are dead entries: clear everything */
  1982. if (np->get_tx_ctx != np->put_tx_ctx) {
  1983. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1984. nv_drain_tx(dev);
  1985. nv_init_tx(dev);
  1986. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1987. }
  1988. netif_wake_queue(dev);
  1989. /* 4) restart tx engine */
  1990. nv_start_tx(dev);
  1991. spin_unlock_irq(&np->lock);
  1992. }
  1993. /*
  1994. * Called when the nic notices a mismatch between the actual data len on the
  1995. * wire and the len indicated in the 802 header
  1996. */
  1997. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1998. {
  1999. int hdrlen; /* length of the 802 header */
  2000. int protolen; /* length as stored in the proto field */
  2001. /* 1) calculate len according to header */
  2002. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2003. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2004. hdrlen = VLAN_HLEN;
  2005. } else {
  2006. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2007. hdrlen = ETH_HLEN;
  2008. }
  2009. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2010. dev->name, datalen, protolen, hdrlen);
  2011. if (protolen > ETH_DATA_LEN)
  2012. return datalen; /* Value in proto field not a len, no checks possible */
  2013. protolen += hdrlen;
  2014. /* consistency checks: */
  2015. if (datalen > ETH_ZLEN) {
  2016. if (datalen >= protolen) {
  2017. /* more data on wire than in 802 header, trim of
  2018. * additional data.
  2019. */
  2020. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2021. dev->name, protolen);
  2022. return protolen;
  2023. } else {
  2024. /* less data on wire than mentioned in header.
  2025. * Discard the packet.
  2026. */
  2027. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2028. dev->name);
  2029. return -1;
  2030. }
  2031. } else {
  2032. /* short packet. Accept only if 802 values are also short */
  2033. if (protolen > ETH_ZLEN) {
  2034. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2035. dev->name);
  2036. return -1;
  2037. }
  2038. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2039. dev->name, datalen);
  2040. return datalen;
  2041. }
  2042. }
  2043. static int nv_rx_process(struct net_device *dev, int limit)
  2044. {
  2045. struct fe_priv *np = netdev_priv(dev);
  2046. u32 flags;
  2047. int rx_work = 0;
  2048. struct sk_buff *skb;
  2049. int len;
  2050. while((np->get_rx.orig != np->put_rx.orig) &&
  2051. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2052. (rx_work < limit)) {
  2053. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2054. dev->name, flags);
  2055. /*
  2056. * the packet is for us - immediately tear down the pci mapping.
  2057. * TODO: check if a prefetch of the first cacheline improves
  2058. * the performance.
  2059. */
  2060. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2061. np->get_rx_ctx->dma_len,
  2062. PCI_DMA_FROMDEVICE);
  2063. skb = np->get_rx_ctx->skb;
  2064. np->get_rx_ctx->skb = NULL;
  2065. {
  2066. int j;
  2067. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2068. for (j=0; j<64; j++) {
  2069. if ((j%16) == 0)
  2070. dprintk("\n%03x:", j);
  2071. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2072. }
  2073. dprintk("\n");
  2074. }
  2075. /* look at what we actually got: */
  2076. if (np->desc_ver == DESC_VER_1) {
  2077. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2078. len = flags & LEN_MASK_V1;
  2079. if (unlikely(flags & NV_RX_ERROR)) {
  2080. if (flags & NV_RX_ERROR4) {
  2081. len = nv_getlen(dev, skb->data, len);
  2082. if (len < 0) {
  2083. dev->stats.rx_errors++;
  2084. dev_kfree_skb(skb);
  2085. goto next_pkt;
  2086. }
  2087. }
  2088. /* framing errors are soft errors */
  2089. else if (flags & NV_RX_FRAMINGERR) {
  2090. if (flags & NV_RX_SUBSTRACT1) {
  2091. len--;
  2092. }
  2093. }
  2094. /* the rest are hard errors */
  2095. else {
  2096. if (flags & NV_RX_MISSEDFRAME)
  2097. dev->stats.rx_missed_errors++;
  2098. if (flags & NV_RX_CRCERR)
  2099. dev->stats.rx_crc_errors++;
  2100. if (flags & NV_RX_OVERFLOW)
  2101. dev->stats.rx_over_errors++;
  2102. dev->stats.rx_errors++;
  2103. dev_kfree_skb(skb);
  2104. goto next_pkt;
  2105. }
  2106. }
  2107. } else {
  2108. dev_kfree_skb(skb);
  2109. goto next_pkt;
  2110. }
  2111. } else {
  2112. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2113. len = flags & LEN_MASK_V2;
  2114. if (unlikely(flags & NV_RX2_ERROR)) {
  2115. if (flags & NV_RX2_ERROR4) {
  2116. len = nv_getlen(dev, skb->data, len);
  2117. if (len < 0) {
  2118. dev->stats.rx_errors++;
  2119. dev_kfree_skb(skb);
  2120. goto next_pkt;
  2121. }
  2122. }
  2123. /* framing errors are soft errors */
  2124. else if (flags & NV_RX2_FRAMINGERR) {
  2125. if (flags & NV_RX2_SUBSTRACT1) {
  2126. len--;
  2127. }
  2128. }
  2129. /* the rest are hard errors */
  2130. else {
  2131. if (flags & NV_RX2_CRCERR)
  2132. dev->stats.rx_crc_errors++;
  2133. if (flags & NV_RX2_OVERFLOW)
  2134. dev->stats.rx_over_errors++;
  2135. dev->stats.rx_errors++;
  2136. dev_kfree_skb(skb);
  2137. goto next_pkt;
  2138. }
  2139. }
  2140. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
  2141. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2142. } else {
  2143. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
  2144. (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
  2145. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2146. }
  2147. }
  2148. } else {
  2149. dev_kfree_skb(skb);
  2150. goto next_pkt;
  2151. }
  2152. }
  2153. /* got a valid packet - forward it to the network core */
  2154. skb_put(skb, len);
  2155. skb->protocol = eth_type_trans(skb, dev);
  2156. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2157. dev->name, len, skb->protocol);
  2158. #ifdef CONFIG_FORCEDETH_NAPI
  2159. netif_receive_skb(skb);
  2160. #else
  2161. netif_rx(skb);
  2162. #endif
  2163. dev->last_rx = jiffies;
  2164. dev->stats.rx_packets++;
  2165. dev->stats.rx_bytes += len;
  2166. next_pkt:
  2167. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2168. np->get_rx.orig = np->first_rx.orig;
  2169. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2170. np->get_rx_ctx = np->first_rx_ctx;
  2171. rx_work++;
  2172. }
  2173. return rx_work;
  2174. }
  2175. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2176. {
  2177. struct fe_priv *np = netdev_priv(dev);
  2178. u32 flags;
  2179. u32 vlanflags = 0;
  2180. u32 rx_processed_cnt = 0;
  2181. struct sk_buff *skb;
  2182. int len;
  2183. while((np->get_rx.ex != np->put_rx.ex) &&
  2184. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2185. (rx_processed_cnt++ < limit)) {
  2186. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2187. dev->name, flags);
  2188. /*
  2189. * the packet is for us - immediately tear down the pci mapping.
  2190. * TODO: check if a prefetch of the first cacheline improves
  2191. * the performance.
  2192. */
  2193. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2194. np->get_rx_ctx->dma_len,
  2195. PCI_DMA_FROMDEVICE);
  2196. skb = np->get_rx_ctx->skb;
  2197. np->get_rx_ctx->skb = NULL;
  2198. {
  2199. int j;
  2200. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2201. for (j=0; j<64; j++) {
  2202. if ((j%16) == 0)
  2203. dprintk("\n%03x:", j);
  2204. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2205. }
  2206. dprintk("\n");
  2207. }
  2208. /* look at what we actually got: */
  2209. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2210. len = flags & LEN_MASK_V2;
  2211. if (unlikely(flags & NV_RX2_ERROR)) {
  2212. if (flags & NV_RX2_ERROR4) {
  2213. len = nv_getlen(dev, skb->data, len);
  2214. if (len < 0) {
  2215. dev_kfree_skb(skb);
  2216. goto next_pkt;
  2217. }
  2218. }
  2219. /* framing errors are soft errors */
  2220. else if (flags & NV_RX2_FRAMINGERR) {
  2221. if (flags & NV_RX2_SUBSTRACT1) {
  2222. len--;
  2223. }
  2224. }
  2225. /* the rest are hard errors */
  2226. else {
  2227. dev_kfree_skb(skb);
  2228. goto next_pkt;
  2229. }
  2230. }
  2231. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
  2232. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2233. } else {
  2234. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
  2235. (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
  2236. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2237. }
  2238. }
  2239. /* got a valid packet - forward it to the network core */
  2240. skb_put(skb, len);
  2241. skb->protocol = eth_type_trans(skb, dev);
  2242. prefetch(skb->data);
  2243. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2244. dev->name, len, skb->protocol);
  2245. if (likely(!np->vlangrp)) {
  2246. #ifdef CONFIG_FORCEDETH_NAPI
  2247. netif_receive_skb(skb);
  2248. #else
  2249. netif_rx(skb);
  2250. #endif
  2251. } else {
  2252. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2253. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2254. #ifdef CONFIG_FORCEDETH_NAPI
  2255. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2256. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2257. #else
  2258. vlan_hwaccel_rx(skb, np->vlangrp,
  2259. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2260. #endif
  2261. } else {
  2262. #ifdef CONFIG_FORCEDETH_NAPI
  2263. netif_receive_skb(skb);
  2264. #else
  2265. netif_rx(skb);
  2266. #endif
  2267. }
  2268. }
  2269. dev->last_rx = jiffies;
  2270. dev->stats.rx_packets++;
  2271. dev->stats.rx_bytes += len;
  2272. } else {
  2273. dev_kfree_skb(skb);
  2274. }
  2275. next_pkt:
  2276. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2277. np->get_rx.ex = np->first_rx.ex;
  2278. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2279. np->get_rx_ctx = np->first_rx_ctx;
  2280. }
  2281. return rx_processed_cnt;
  2282. }
  2283. static void set_bufsize(struct net_device *dev)
  2284. {
  2285. struct fe_priv *np = netdev_priv(dev);
  2286. if (dev->mtu <= ETH_DATA_LEN)
  2287. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2288. else
  2289. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2290. }
  2291. /*
  2292. * nv_change_mtu: dev->change_mtu function
  2293. * Called with dev_base_lock held for read.
  2294. */
  2295. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2296. {
  2297. struct fe_priv *np = netdev_priv(dev);
  2298. int old_mtu;
  2299. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2300. return -EINVAL;
  2301. old_mtu = dev->mtu;
  2302. dev->mtu = new_mtu;
  2303. /* return early if the buffer sizes will not change */
  2304. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2305. return 0;
  2306. if (old_mtu == new_mtu)
  2307. return 0;
  2308. /* synchronized against open : rtnl_lock() held by caller */
  2309. if (netif_running(dev)) {
  2310. u8 __iomem *base = get_hwbase(dev);
  2311. /*
  2312. * It seems that the nic preloads valid ring entries into an
  2313. * internal buffer. The procedure for flushing everything is
  2314. * guessed, there is probably a simpler approach.
  2315. * Changing the MTU is a rare event, it shouldn't matter.
  2316. */
  2317. nv_disable_irq(dev);
  2318. netif_tx_lock_bh(dev);
  2319. spin_lock(&np->lock);
  2320. /* stop engines */
  2321. nv_stop_rx(dev);
  2322. nv_stop_tx(dev);
  2323. nv_txrx_reset(dev);
  2324. /* drain rx queue */
  2325. nv_drain_rx(dev);
  2326. nv_drain_tx(dev);
  2327. /* reinit driver view of the rx queue */
  2328. set_bufsize(dev);
  2329. if (nv_init_ring(dev)) {
  2330. if (!np->in_shutdown)
  2331. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2332. }
  2333. /* reinit nic view of the rx queue */
  2334. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2335. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2336. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2337. base + NvRegRingSizes);
  2338. pci_push(base);
  2339. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2340. pci_push(base);
  2341. /* restart rx engine */
  2342. nv_start_rx(dev);
  2343. nv_start_tx(dev);
  2344. spin_unlock(&np->lock);
  2345. netif_tx_unlock_bh(dev);
  2346. nv_enable_irq(dev);
  2347. }
  2348. return 0;
  2349. }
  2350. static void nv_copy_mac_to_hw(struct net_device *dev)
  2351. {
  2352. u8 __iomem *base = get_hwbase(dev);
  2353. u32 mac[2];
  2354. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2355. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2356. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2357. writel(mac[0], base + NvRegMacAddrA);
  2358. writel(mac[1], base + NvRegMacAddrB);
  2359. }
  2360. /*
  2361. * nv_set_mac_address: dev->set_mac_address function
  2362. * Called with rtnl_lock() held.
  2363. */
  2364. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2365. {
  2366. struct fe_priv *np = netdev_priv(dev);
  2367. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2368. if (!is_valid_ether_addr(macaddr->sa_data))
  2369. return -EADDRNOTAVAIL;
  2370. /* synchronized against open : rtnl_lock() held by caller */
  2371. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2372. if (netif_running(dev)) {
  2373. netif_tx_lock_bh(dev);
  2374. spin_lock_irq(&np->lock);
  2375. /* stop rx engine */
  2376. nv_stop_rx(dev);
  2377. /* set mac address */
  2378. nv_copy_mac_to_hw(dev);
  2379. /* restart rx engine */
  2380. nv_start_rx(dev);
  2381. spin_unlock_irq(&np->lock);
  2382. netif_tx_unlock_bh(dev);
  2383. } else {
  2384. nv_copy_mac_to_hw(dev);
  2385. }
  2386. return 0;
  2387. }
  2388. /*
  2389. * nv_set_multicast: dev->set_multicast function
  2390. * Called with netif_tx_lock held.
  2391. */
  2392. static void nv_set_multicast(struct net_device *dev)
  2393. {
  2394. struct fe_priv *np = netdev_priv(dev);
  2395. u8 __iomem *base = get_hwbase(dev);
  2396. u32 addr[2];
  2397. u32 mask[2];
  2398. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2399. memset(addr, 0, sizeof(addr));
  2400. memset(mask, 0, sizeof(mask));
  2401. if (dev->flags & IFF_PROMISC) {
  2402. pff |= NVREG_PFF_PROMISC;
  2403. } else {
  2404. pff |= NVREG_PFF_MYADDR;
  2405. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2406. u32 alwaysOff[2];
  2407. u32 alwaysOn[2];
  2408. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2409. if (dev->flags & IFF_ALLMULTI) {
  2410. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2411. } else {
  2412. struct dev_mc_list *walk;
  2413. walk = dev->mc_list;
  2414. while (walk != NULL) {
  2415. u32 a, b;
  2416. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  2417. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  2418. alwaysOn[0] &= a;
  2419. alwaysOff[0] &= ~a;
  2420. alwaysOn[1] &= b;
  2421. alwaysOff[1] &= ~b;
  2422. walk = walk->next;
  2423. }
  2424. }
  2425. addr[0] = alwaysOn[0];
  2426. addr[1] = alwaysOn[1];
  2427. mask[0] = alwaysOn[0] | alwaysOff[0];
  2428. mask[1] = alwaysOn[1] | alwaysOff[1];
  2429. }
  2430. }
  2431. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2432. pff |= NVREG_PFF_ALWAYS;
  2433. spin_lock_irq(&np->lock);
  2434. nv_stop_rx(dev);
  2435. writel(addr[0], base + NvRegMulticastAddrA);
  2436. writel(addr[1], base + NvRegMulticastAddrB);
  2437. writel(mask[0], base + NvRegMulticastMaskA);
  2438. writel(mask[1], base + NvRegMulticastMaskB);
  2439. writel(pff, base + NvRegPacketFilterFlags);
  2440. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2441. dev->name);
  2442. nv_start_rx(dev);
  2443. spin_unlock_irq(&np->lock);
  2444. }
  2445. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2446. {
  2447. struct fe_priv *np = netdev_priv(dev);
  2448. u8 __iomem *base = get_hwbase(dev);
  2449. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2450. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2451. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2452. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2453. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2454. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2455. } else {
  2456. writel(pff, base + NvRegPacketFilterFlags);
  2457. }
  2458. }
  2459. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2460. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2461. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2462. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  2463. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2464. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2465. } else {
  2466. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2467. writel(regmisc, base + NvRegMisc1);
  2468. }
  2469. }
  2470. }
  2471. /**
  2472. * nv_update_linkspeed: Setup the MAC according to the link partner
  2473. * @dev: Network device to be configured
  2474. *
  2475. * The function queries the PHY and checks if there is a link partner.
  2476. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2477. * set to 10 MBit HD.
  2478. *
  2479. * The function returns 0 if there is no link partner and 1 if there is
  2480. * a good link partner.
  2481. */
  2482. static int nv_update_linkspeed(struct net_device *dev)
  2483. {
  2484. struct fe_priv *np = netdev_priv(dev);
  2485. u8 __iomem *base = get_hwbase(dev);
  2486. int adv = 0;
  2487. int lpa = 0;
  2488. int adv_lpa, adv_pause, lpa_pause;
  2489. int newls = np->linkspeed;
  2490. int newdup = np->duplex;
  2491. int mii_status;
  2492. int retval = 0;
  2493. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2494. /* BMSR_LSTATUS is latched, read it twice:
  2495. * we want the current value.
  2496. */
  2497. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2498. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2499. if (!(mii_status & BMSR_LSTATUS)) {
  2500. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2501. dev->name);
  2502. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2503. newdup = 0;
  2504. retval = 0;
  2505. goto set_speed;
  2506. }
  2507. if (np->autoneg == 0) {
  2508. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2509. dev->name, np->fixed_mode);
  2510. if (np->fixed_mode & LPA_100FULL) {
  2511. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2512. newdup = 1;
  2513. } else if (np->fixed_mode & LPA_100HALF) {
  2514. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2515. newdup = 0;
  2516. } else if (np->fixed_mode & LPA_10FULL) {
  2517. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2518. newdup = 1;
  2519. } else {
  2520. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2521. newdup = 0;
  2522. }
  2523. retval = 1;
  2524. goto set_speed;
  2525. }
  2526. /* check auto negotiation is complete */
  2527. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2528. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2529. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2530. newdup = 0;
  2531. retval = 0;
  2532. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2533. goto set_speed;
  2534. }
  2535. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2536. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2537. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2538. dev->name, adv, lpa);
  2539. retval = 1;
  2540. if (np->gigabit == PHY_GIGABIT) {
  2541. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2542. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2543. if ((control_1000 & ADVERTISE_1000FULL) &&
  2544. (status_1000 & LPA_1000FULL)) {
  2545. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2546. dev->name);
  2547. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2548. newdup = 1;
  2549. goto set_speed;
  2550. }
  2551. }
  2552. /* FIXME: handle parallel detection properly */
  2553. adv_lpa = lpa & adv;
  2554. if (adv_lpa & LPA_100FULL) {
  2555. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2556. newdup = 1;
  2557. } else if (adv_lpa & LPA_100HALF) {
  2558. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2559. newdup = 0;
  2560. } else if (adv_lpa & LPA_10FULL) {
  2561. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2562. newdup = 1;
  2563. } else if (adv_lpa & LPA_10HALF) {
  2564. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2565. newdup = 0;
  2566. } else {
  2567. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2568. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2569. newdup = 0;
  2570. }
  2571. set_speed:
  2572. if (np->duplex == newdup && np->linkspeed == newls)
  2573. return retval;
  2574. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2575. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2576. np->duplex = newdup;
  2577. np->linkspeed = newls;
  2578. if (np->gigabit == PHY_GIGABIT) {
  2579. phyreg = readl(base + NvRegRandomSeed);
  2580. phyreg &= ~(0x3FF00);
  2581. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2582. phyreg |= NVREG_RNDSEED_FORCE3;
  2583. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2584. phyreg |= NVREG_RNDSEED_FORCE2;
  2585. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2586. phyreg |= NVREG_RNDSEED_FORCE;
  2587. writel(phyreg, base + NvRegRandomSeed);
  2588. }
  2589. phyreg = readl(base + NvRegPhyInterface);
  2590. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2591. if (np->duplex == 0)
  2592. phyreg |= PHY_HALF;
  2593. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2594. phyreg |= PHY_100;
  2595. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2596. phyreg |= PHY_1000;
  2597. writel(phyreg, base + NvRegPhyInterface);
  2598. if (phyreg & PHY_RGMII) {
  2599. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2600. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2601. else
  2602. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2603. } else {
  2604. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2605. }
  2606. writel(txreg, base + NvRegTxDeferral);
  2607. if (np->desc_ver == DESC_VER_1) {
  2608. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2609. } else {
  2610. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2611. txreg = NVREG_TX_WM_DESC2_3_1000;
  2612. else
  2613. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2614. }
  2615. writel(txreg, base + NvRegTxWatermark);
  2616. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2617. base + NvRegMisc1);
  2618. pci_push(base);
  2619. writel(np->linkspeed, base + NvRegLinkSpeed);
  2620. pci_push(base);
  2621. pause_flags = 0;
  2622. /* setup pause frame */
  2623. if (np->duplex != 0) {
  2624. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2625. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2626. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2627. switch (adv_pause) {
  2628. case ADVERTISE_PAUSE_CAP:
  2629. if (lpa_pause & LPA_PAUSE_CAP) {
  2630. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2631. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2632. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2633. }
  2634. break;
  2635. case ADVERTISE_PAUSE_ASYM:
  2636. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2637. {
  2638. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2639. }
  2640. break;
  2641. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2642. if (lpa_pause & LPA_PAUSE_CAP)
  2643. {
  2644. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2645. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2646. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2647. }
  2648. if (lpa_pause == LPA_PAUSE_ASYM)
  2649. {
  2650. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2651. }
  2652. break;
  2653. }
  2654. } else {
  2655. pause_flags = np->pause_flags;
  2656. }
  2657. }
  2658. nv_update_pause(dev, pause_flags);
  2659. return retval;
  2660. }
  2661. static void nv_linkchange(struct net_device *dev)
  2662. {
  2663. if (nv_update_linkspeed(dev)) {
  2664. if (!netif_carrier_ok(dev)) {
  2665. netif_carrier_on(dev);
  2666. printk(KERN_INFO "%s: link up.\n", dev->name);
  2667. nv_start_rx(dev);
  2668. }
  2669. } else {
  2670. if (netif_carrier_ok(dev)) {
  2671. netif_carrier_off(dev);
  2672. printk(KERN_INFO "%s: link down.\n", dev->name);
  2673. nv_stop_rx(dev);
  2674. }
  2675. }
  2676. }
  2677. static void nv_link_irq(struct net_device *dev)
  2678. {
  2679. u8 __iomem *base = get_hwbase(dev);
  2680. u32 miistat;
  2681. miistat = readl(base + NvRegMIIStatus);
  2682. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2683. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2684. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2685. nv_linkchange(dev);
  2686. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2687. }
  2688. static irqreturn_t nv_nic_irq(int foo, void *data)
  2689. {
  2690. struct net_device *dev = (struct net_device *) data;
  2691. struct fe_priv *np = netdev_priv(dev);
  2692. u8 __iomem *base = get_hwbase(dev);
  2693. u32 events;
  2694. int i;
  2695. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2696. for (i=0; ; i++) {
  2697. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2698. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2699. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2700. } else {
  2701. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2702. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2703. }
  2704. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2705. if (!(events & np->irqmask))
  2706. break;
  2707. spin_lock(&np->lock);
  2708. nv_tx_done(dev);
  2709. spin_unlock(&np->lock);
  2710. #ifdef CONFIG_FORCEDETH_NAPI
  2711. if (events & NVREG_IRQ_RX_ALL) {
  2712. netif_rx_schedule(dev, &np->napi);
  2713. /* Disable furthur receive irq's */
  2714. spin_lock(&np->lock);
  2715. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2716. if (np->msi_flags & NV_MSI_X_ENABLED)
  2717. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2718. else
  2719. writel(np->irqmask, base + NvRegIrqMask);
  2720. spin_unlock(&np->lock);
  2721. }
  2722. #else
  2723. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  2724. if (unlikely(nv_alloc_rx(dev))) {
  2725. spin_lock(&np->lock);
  2726. if (!np->in_shutdown)
  2727. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2728. spin_unlock(&np->lock);
  2729. }
  2730. }
  2731. #endif
  2732. if (unlikely(events & NVREG_IRQ_LINK)) {
  2733. spin_lock(&np->lock);
  2734. nv_link_irq(dev);
  2735. spin_unlock(&np->lock);
  2736. }
  2737. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2738. spin_lock(&np->lock);
  2739. nv_linkchange(dev);
  2740. spin_unlock(&np->lock);
  2741. np->link_timeout = jiffies + LINK_TIMEOUT;
  2742. }
  2743. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2744. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2745. dev->name, events);
  2746. }
  2747. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2748. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2749. dev->name, events);
  2750. }
  2751. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2752. spin_lock(&np->lock);
  2753. /* disable interrupts on the nic */
  2754. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2755. writel(0, base + NvRegIrqMask);
  2756. else
  2757. writel(np->irqmask, base + NvRegIrqMask);
  2758. pci_push(base);
  2759. if (!np->in_shutdown) {
  2760. np->nic_poll_irq = np->irqmask;
  2761. np->recover_error = 1;
  2762. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2763. }
  2764. spin_unlock(&np->lock);
  2765. break;
  2766. }
  2767. if (unlikely(i > max_interrupt_work)) {
  2768. spin_lock(&np->lock);
  2769. /* disable interrupts on the nic */
  2770. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2771. writel(0, base + NvRegIrqMask);
  2772. else
  2773. writel(np->irqmask, base + NvRegIrqMask);
  2774. pci_push(base);
  2775. if (!np->in_shutdown) {
  2776. np->nic_poll_irq = np->irqmask;
  2777. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2778. }
  2779. spin_unlock(&np->lock);
  2780. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2781. break;
  2782. }
  2783. }
  2784. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2785. return IRQ_RETVAL(i);
  2786. }
  2787. /**
  2788. * All _optimized functions are used to help increase performance
  2789. * (reduce CPU and increase throughput). They use descripter version 3,
  2790. * compiler directives, and reduce memory accesses.
  2791. */
  2792. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  2793. {
  2794. struct net_device *dev = (struct net_device *) data;
  2795. struct fe_priv *np = netdev_priv(dev);
  2796. u8 __iomem *base = get_hwbase(dev);
  2797. u32 events;
  2798. int i;
  2799. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  2800. for (i=0; ; i++) {
  2801. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2802. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2803. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2804. } else {
  2805. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2806. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2807. }
  2808. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2809. if (!(events & np->irqmask))
  2810. break;
  2811. spin_lock(&np->lock);
  2812. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2813. spin_unlock(&np->lock);
  2814. #ifdef CONFIG_FORCEDETH_NAPI
  2815. if (events & NVREG_IRQ_RX_ALL) {
  2816. netif_rx_schedule(dev, &np->napi);
  2817. /* Disable furthur receive irq's */
  2818. spin_lock(&np->lock);
  2819. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2820. if (np->msi_flags & NV_MSI_X_ENABLED)
  2821. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2822. else
  2823. writel(np->irqmask, base + NvRegIrqMask);
  2824. spin_unlock(&np->lock);
  2825. }
  2826. #else
  2827. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  2828. if (unlikely(nv_alloc_rx_optimized(dev))) {
  2829. spin_lock(&np->lock);
  2830. if (!np->in_shutdown)
  2831. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2832. spin_unlock(&np->lock);
  2833. }
  2834. }
  2835. #endif
  2836. if (unlikely(events & NVREG_IRQ_LINK)) {
  2837. spin_lock(&np->lock);
  2838. nv_link_irq(dev);
  2839. spin_unlock(&np->lock);
  2840. }
  2841. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2842. spin_lock(&np->lock);
  2843. nv_linkchange(dev);
  2844. spin_unlock(&np->lock);
  2845. np->link_timeout = jiffies + LINK_TIMEOUT;
  2846. }
  2847. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2848. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2849. dev->name, events);
  2850. }
  2851. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2852. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2853. dev->name, events);
  2854. }
  2855. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2856. spin_lock(&np->lock);
  2857. /* disable interrupts on the nic */
  2858. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2859. writel(0, base + NvRegIrqMask);
  2860. else
  2861. writel(np->irqmask, base + NvRegIrqMask);
  2862. pci_push(base);
  2863. if (!np->in_shutdown) {
  2864. np->nic_poll_irq = np->irqmask;
  2865. np->recover_error = 1;
  2866. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2867. }
  2868. spin_unlock(&np->lock);
  2869. break;
  2870. }
  2871. if (unlikely(i > max_interrupt_work)) {
  2872. spin_lock(&np->lock);
  2873. /* disable interrupts on the nic */
  2874. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2875. writel(0, base + NvRegIrqMask);
  2876. else
  2877. writel(np->irqmask, base + NvRegIrqMask);
  2878. pci_push(base);
  2879. if (!np->in_shutdown) {
  2880. np->nic_poll_irq = np->irqmask;
  2881. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2882. }
  2883. spin_unlock(&np->lock);
  2884. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2885. break;
  2886. }
  2887. }
  2888. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  2889. return IRQ_RETVAL(i);
  2890. }
  2891. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  2892. {
  2893. struct net_device *dev = (struct net_device *) data;
  2894. struct fe_priv *np = netdev_priv(dev);
  2895. u8 __iomem *base = get_hwbase(dev);
  2896. u32 events;
  2897. int i;
  2898. unsigned long flags;
  2899. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2900. for (i=0; ; i++) {
  2901. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2902. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2903. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2904. if (!(events & np->irqmask))
  2905. break;
  2906. spin_lock_irqsave(&np->lock, flags);
  2907. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2908. spin_unlock_irqrestore(&np->lock, flags);
  2909. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2910. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2911. dev->name, events);
  2912. }
  2913. if (unlikely(i > max_interrupt_work)) {
  2914. spin_lock_irqsave(&np->lock, flags);
  2915. /* disable interrupts on the nic */
  2916. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2917. pci_push(base);
  2918. if (!np->in_shutdown) {
  2919. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2920. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2921. }
  2922. spin_unlock_irqrestore(&np->lock, flags);
  2923. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2924. break;
  2925. }
  2926. }
  2927. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2928. return IRQ_RETVAL(i);
  2929. }
  2930. #ifdef CONFIG_FORCEDETH_NAPI
  2931. static int nv_napi_poll(struct napi_struct *napi, int budget)
  2932. {
  2933. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  2934. struct net_device *dev = np->dev;
  2935. u8 __iomem *base = get_hwbase(dev);
  2936. unsigned long flags;
  2937. int pkts, retcode;
  2938. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2939. pkts = nv_rx_process(dev, budget);
  2940. retcode = nv_alloc_rx(dev);
  2941. } else {
  2942. pkts = nv_rx_process_optimized(dev, budget);
  2943. retcode = nv_alloc_rx_optimized(dev);
  2944. }
  2945. if (retcode) {
  2946. spin_lock_irqsave(&np->lock, flags);
  2947. if (!np->in_shutdown)
  2948. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2949. spin_unlock_irqrestore(&np->lock, flags);
  2950. }
  2951. if (pkts < budget) {
  2952. /* re-enable receive interrupts */
  2953. spin_lock_irqsave(&np->lock, flags);
  2954. __netif_rx_complete(dev, napi);
  2955. np->irqmask |= NVREG_IRQ_RX_ALL;
  2956. if (np->msi_flags & NV_MSI_X_ENABLED)
  2957. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2958. else
  2959. writel(np->irqmask, base + NvRegIrqMask);
  2960. spin_unlock_irqrestore(&np->lock, flags);
  2961. }
  2962. return pkts;
  2963. }
  2964. #endif
  2965. #ifdef CONFIG_FORCEDETH_NAPI
  2966. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2967. {
  2968. struct net_device *dev = (struct net_device *) data;
  2969. struct fe_priv *np = netdev_priv(dev);
  2970. u8 __iomem *base = get_hwbase(dev);
  2971. u32 events;
  2972. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2973. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2974. if (events) {
  2975. netif_rx_schedule(dev, &np->napi);
  2976. /* disable receive interrupts on the nic */
  2977. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2978. pci_push(base);
  2979. }
  2980. return IRQ_HANDLED;
  2981. }
  2982. #else
  2983. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2984. {
  2985. struct net_device *dev = (struct net_device *) data;
  2986. struct fe_priv *np = netdev_priv(dev);
  2987. u8 __iomem *base = get_hwbase(dev);
  2988. u32 events;
  2989. int i;
  2990. unsigned long flags;
  2991. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2992. for (i=0; ; i++) {
  2993. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2994. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2995. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  2996. if (!(events & np->irqmask))
  2997. break;
  2998. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  2999. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3000. spin_lock_irqsave(&np->lock, flags);
  3001. if (!np->in_shutdown)
  3002. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3003. spin_unlock_irqrestore(&np->lock, flags);
  3004. }
  3005. }
  3006. if (unlikely(i > max_interrupt_work)) {
  3007. spin_lock_irqsave(&np->lock, flags);
  3008. /* disable interrupts on the nic */
  3009. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3010. pci_push(base);
  3011. if (!np->in_shutdown) {
  3012. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3013. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3014. }
  3015. spin_unlock_irqrestore(&np->lock, flags);
  3016. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3017. break;
  3018. }
  3019. }
  3020. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3021. return IRQ_RETVAL(i);
  3022. }
  3023. #endif
  3024. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3025. {
  3026. struct net_device *dev = (struct net_device *) data;
  3027. struct fe_priv *np = netdev_priv(dev);
  3028. u8 __iomem *base = get_hwbase(dev);
  3029. u32 events;
  3030. int i;
  3031. unsigned long flags;
  3032. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3033. for (i=0; ; i++) {
  3034. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3035. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3036. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3037. if (!(events & np->irqmask))
  3038. break;
  3039. /* check tx in case we reached max loop limit in tx isr */
  3040. spin_lock_irqsave(&np->lock, flags);
  3041. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3042. spin_unlock_irqrestore(&np->lock, flags);
  3043. if (events & NVREG_IRQ_LINK) {
  3044. spin_lock_irqsave(&np->lock, flags);
  3045. nv_link_irq(dev);
  3046. spin_unlock_irqrestore(&np->lock, flags);
  3047. }
  3048. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3049. spin_lock_irqsave(&np->lock, flags);
  3050. nv_linkchange(dev);
  3051. spin_unlock_irqrestore(&np->lock, flags);
  3052. np->link_timeout = jiffies + LINK_TIMEOUT;
  3053. }
  3054. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3055. spin_lock_irq(&np->lock);
  3056. /* disable interrupts on the nic */
  3057. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3058. pci_push(base);
  3059. if (!np->in_shutdown) {
  3060. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3061. np->recover_error = 1;
  3062. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3063. }
  3064. spin_unlock_irq(&np->lock);
  3065. break;
  3066. }
  3067. if (events & (NVREG_IRQ_UNKNOWN)) {
  3068. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3069. dev->name, events);
  3070. }
  3071. if (unlikely(i > max_interrupt_work)) {
  3072. spin_lock_irqsave(&np->lock, flags);
  3073. /* disable interrupts on the nic */
  3074. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3075. pci_push(base);
  3076. if (!np->in_shutdown) {
  3077. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3078. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3079. }
  3080. spin_unlock_irqrestore(&np->lock, flags);
  3081. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3082. break;
  3083. }
  3084. }
  3085. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3086. return IRQ_RETVAL(i);
  3087. }
  3088. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3089. {
  3090. struct net_device *dev = (struct net_device *) data;
  3091. struct fe_priv *np = netdev_priv(dev);
  3092. u8 __iomem *base = get_hwbase(dev);
  3093. u32 events;
  3094. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3095. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3096. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3097. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3098. } else {
  3099. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3100. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3101. }
  3102. pci_push(base);
  3103. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3104. if (!(events & NVREG_IRQ_TIMER))
  3105. return IRQ_RETVAL(0);
  3106. spin_lock(&np->lock);
  3107. np->intr_test = 1;
  3108. spin_unlock(&np->lock);
  3109. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3110. return IRQ_RETVAL(1);
  3111. }
  3112. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3113. {
  3114. u8 __iomem *base = get_hwbase(dev);
  3115. int i;
  3116. u32 msixmap = 0;
  3117. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3118. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3119. * the remaining 8 interrupts.
  3120. */
  3121. for (i = 0; i < 8; i++) {
  3122. if ((irqmask >> i) & 0x1) {
  3123. msixmap |= vector << (i << 2);
  3124. }
  3125. }
  3126. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3127. msixmap = 0;
  3128. for (i = 0; i < 8; i++) {
  3129. if ((irqmask >> (i + 8)) & 0x1) {
  3130. msixmap |= vector << (i << 2);
  3131. }
  3132. }
  3133. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3134. }
  3135. static int nv_request_irq(struct net_device *dev, int intr_test)
  3136. {
  3137. struct fe_priv *np = get_nvpriv(dev);
  3138. u8 __iomem *base = get_hwbase(dev);
  3139. int ret = 1;
  3140. int i;
  3141. irqreturn_t (*handler)(int foo, void *data);
  3142. if (intr_test) {
  3143. handler = nv_nic_irq_test;
  3144. } else {
  3145. if (np->desc_ver == DESC_VER_3)
  3146. handler = nv_nic_irq_optimized;
  3147. else
  3148. handler = nv_nic_irq;
  3149. }
  3150. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3151. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3152. np->msi_x_entry[i].entry = i;
  3153. }
  3154. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3155. np->msi_flags |= NV_MSI_X_ENABLED;
  3156. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3157. /* Request irq for rx handling */
  3158. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  3159. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3160. pci_disable_msix(np->pci_dev);
  3161. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3162. goto out_err;
  3163. }
  3164. /* Request irq for tx handling */
  3165. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  3166. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3167. pci_disable_msix(np->pci_dev);
  3168. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3169. goto out_free_rx;
  3170. }
  3171. /* Request irq for link and timer handling */
  3172. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  3173. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3174. pci_disable_msix(np->pci_dev);
  3175. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3176. goto out_free_tx;
  3177. }
  3178. /* map interrupts to their respective vector */
  3179. writel(0, base + NvRegMSIXMap0);
  3180. writel(0, base + NvRegMSIXMap1);
  3181. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3182. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3183. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3184. } else {
  3185. /* Request irq for all interrupts */
  3186. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3187. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3188. pci_disable_msix(np->pci_dev);
  3189. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3190. goto out_err;
  3191. }
  3192. /* map interrupts to vector 0 */
  3193. writel(0, base + NvRegMSIXMap0);
  3194. writel(0, base + NvRegMSIXMap1);
  3195. }
  3196. }
  3197. }
  3198. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3199. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3200. np->msi_flags |= NV_MSI_ENABLED;
  3201. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3202. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3203. pci_disable_msi(np->pci_dev);
  3204. np->msi_flags &= ~NV_MSI_ENABLED;
  3205. goto out_err;
  3206. }
  3207. /* map interrupts to vector 0 */
  3208. writel(0, base + NvRegMSIMap0);
  3209. writel(0, base + NvRegMSIMap1);
  3210. /* enable msi vector 0 */
  3211. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3212. }
  3213. }
  3214. if (ret != 0) {
  3215. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3216. goto out_err;
  3217. }
  3218. return 0;
  3219. out_free_tx:
  3220. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3221. out_free_rx:
  3222. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3223. out_err:
  3224. return 1;
  3225. }
  3226. static void nv_free_irq(struct net_device *dev)
  3227. {
  3228. struct fe_priv *np = get_nvpriv(dev);
  3229. int i;
  3230. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3231. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3232. free_irq(np->msi_x_entry[i].vector, dev);
  3233. }
  3234. pci_disable_msix(np->pci_dev);
  3235. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3236. } else {
  3237. free_irq(np->pci_dev->irq, dev);
  3238. if (np->msi_flags & NV_MSI_ENABLED) {
  3239. pci_disable_msi(np->pci_dev);
  3240. np->msi_flags &= ~NV_MSI_ENABLED;
  3241. }
  3242. }
  3243. }
  3244. static void nv_do_nic_poll(unsigned long data)
  3245. {
  3246. struct net_device *dev = (struct net_device *) data;
  3247. struct fe_priv *np = netdev_priv(dev);
  3248. u8 __iomem *base = get_hwbase(dev);
  3249. u32 mask = 0;
  3250. /*
  3251. * First disable irq(s) and then
  3252. * reenable interrupts on the nic, we have to do this before calling
  3253. * nv_nic_irq because that may decide to do otherwise
  3254. */
  3255. if (!using_multi_irqs(dev)) {
  3256. if (np->msi_flags & NV_MSI_X_ENABLED)
  3257. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3258. else
  3259. disable_irq_lockdep(dev->irq);
  3260. mask = np->irqmask;
  3261. } else {
  3262. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3263. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3264. mask |= NVREG_IRQ_RX_ALL;
  3265. }
  3266. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3267. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3268. mask |= NVREG_IRQ_TX_ALL;
  3269. }
  3270. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3271. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3272. mask |= NVREG_IRQ_OTHER;
  3273. }
  3274. }
  3275. np->nic_poll_irq = 0;
  3276. if (np->recover_error) {
  3277. np->recover_error = 0;
  3278. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3279. if (netif_running(dev)) {
  3280. netif_tx_lock_bh(dev);
  3281. spin_lock(&np->lock);
  3282. /* stop engines */
  3283. nv_stop_rx(dev);
  3284. nv_stop_tx(dev);
  3285. nv_txrx_reset(dev);
  3286. /* drain rx queue */
  3287. nv_drain_rx(dev);
  3288. nv_drain_tx(dev);
  3289. /* reinit driver view of the rx queue */
  3290. set_bufsize(dev);
  3291. if (nv_init_ring(dev)) {
  3292. if (!np->in_shutdown)
  3293. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3294. }
  3295. /* reinit nic view of the rx queue */
  3296. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3297. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3298. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3299. base + NvRegRingSizes);
  3300. pci_push(base);
  3301. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3302. pci_push(base);
  3303. /* restart rx engine */
  3304. nv_start_rx(dev);
  3305. nv_start_tx(dev);
  3306. spin_unlock(&np->lock);
  3307. netif_tx_unlock_bh(dev);
  3308. }
  3309. }
  3310. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  3311. writel(mask, base + NvRegIrqMask);
  3312. pci_push(base);
  3313. if (!using_multi_irqs(dev)) {
  3314. if (np->desc_ver == DESC_VER_3)
  3315. nv_nic_irq_optimized(0, dev);
  3316. else
  3317. nv_nic_irq(0, dev);
  3318. if (np->msi_flags & NV_MSI_X_ENABLED)
  3319. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3320. else
  3321. enable_irq_lockdep(dev->irq);
  3322. } else {
  3323. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3324. nv_nic_irq_rx(0, dev);
  3325. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3326. }
  3327. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3328. nv_nic_irq_tx(0, dev);
  3329. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3330. }
  3331. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3332. nv_nic_irq_other(0, dev);
  3333. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3334. }
  3335. }
  3336. }
  3337. #ifdef CONFIG_NET_POLL_CONTROLLER
  3338. static void nv_poll_controller(struct net_device *dev)
  3339. {
  3340. nv_do_nic_poll((unsigned long) dev);
  3341. }
  3342. #endif
  3343. static void nv_do_stats_poll(unsigned long data)
  3344. {
  3345. struct net_device *dev = (struct net_device *) data;
  3346. struct fe_priv *np = netdev_priv(dev);
  3347. nv_get_hw_stats(dev);
  3348. if (!np->in_shutdown)
  3349. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3350. }
  3351. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3352. {
  3353. struct fe_priv *np = netdev_priv(dev);
  3354. strcpy(info->driver, DRV_NAME);
  3355. strcpy(info->version, FORCEDETH_VERSION);
  3356. strcpy(info->bus_info, pci_name(np->pci_dev));
  3357. }
  3358. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3359. {
  3360. struct fe_priv *np = netdev_priv(dev);
  3361. wolinfo->supported = WAKE_MAGIC;
  3362. spin_lock_irq(&np->lock);
  3363. if (np->wolenabled)
  3364. wolinfo->wolopts = WAKE_MAGIC;
  3365. spin_unlock_irq(&np->lock);
  3366. }
  3367. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3368. {
  3369. struct fe_priv *np = netdev_priv(dev);
  3370. u8 __iomem *base = get_hwbase(dev);
  3371. u32 flags = 0;
  3372. if (wolinfo->wolopts == 0) {
  3373. np->wolenabled = 0;
  3374. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3375. np->wolenabled = 1;
  3376. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3377. }
  3378. if (netif_running(dev)) {
  3379. spin_lock_irq(&np->lock);
  3380. writel(flags, base + NvRegWakeUpFlags);
  3381. spin_unlock_irq(&np->lock);
  3382. }
  3383. return 0;
  3384. }
  3385. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3386. {
  3387. struct fe_priv *np = netdev_priv(dev);
  3388. int adv;
  3389. spin_lock_irq(&np->lock);
  3390. ecmd->port = PORT_MII;
  3391. if (!netif_running(dev)) {
  3392. /* We do not track link speed / duplex setting if the
  3393. * interface is disabled. Force a link check */
  3394. if (nv_update_linkspeed(dev)) {
  3395. if (!netif_carrier_ok(dev))
  3396. netif_carrier_on(dev);
  3397. } else {
  3398. if (netif_carrier_ok(dev))
  3399. netif_carrier_off(dev);
  3400. }
  3401. }
  3402. if (netif_carrier_ok(dev)) {
  3403. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3404. case NVREG_LINKSPEED_10:
  3405. ecmd->speed = SPEED_10;
  3406. break;
  3407. case NVREG_LINKSPEED_100:
  3408. ecmd->speed = SPEED_100;
  3409. break;
  3410. case NVREG_LINKSPEED_1000:
  3411. ecmd->speed = SPEED_1000;
  3412. break;
  3413. }
  3414. ecmd->duplex = DUPLEX_HALF;
  3415. if (np->duplex)
  3416. ecmd->duplex = DUPLEX_FULL;
  3417. } else {
  3418. ecmd->speed = -1;
  3419. ecmd->duplex = -1;
  3420. }
  3421. ecmd->autoneg = np->autoneg;
  3422. ecmd->advertising = ADVERTISED_MII;
  3423. if (np->autoneg) {
  3424. ecmd->advertising |= ADVERTISED_Autoneg;
  3425. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3426. if (adv & ADVERTISE_10HALF)
  3427. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3428. if (adv & ADVERTISE_10FULL)
  3429. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3430. if (adv & ADVERTISE_100HALF)
  3431. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3432. if (adv & ADVERTISE_100FULL)
  3433. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3434. if (np->gigabit == PHY_GIGABIT) {
  3435. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3436. if (adv & ADVERTISE_1000FULL)
  3437. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3438. }
  3439. }
  3440. ecmd->supported = (SUPPORTED_Autoneg |
  3441. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3442. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3443. SUPPORTED_MII);
  3444. if (np->gigabit == PHY_GIGABIT)
  3445. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3446. ecmd->phy_address = np->phyaddr;
  3447. ecmd->transceiver = XCVR_EXTERNAL;
  3448. /* ignore maxtxpkt, maxrxpkt for now */
  3449. spin_unlock_irq(&np->lock);
  3450. return 0;
  3451. }
  3452. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3453. {
  3454. struct fe_priv *np = netdev_priv(dev);
  3455. if (ecmd->port != PORT_MII)
  3456. return -EINVAL;
  3457. if (ecmd->transceiver != XCVR_EXTERNAL)
  3458. return -EINVAL;
  3459. if (ecmd->phy_address != np->phyaddr) {
  3460. /* TODO: support switching between multiple phys. Should be
  3461. * trivial, but not enabled due to lack of test hardware. */
  3462. return -EINVAL;
  3463. }
  3464. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3465. u32 mask;
  3466. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3467. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3468. if (np->gigabit == PHY_GIGABIT)
  3469. mask |= ADVERTISED_1000baseT_Full;
  3470. if ((ecmd->advertising & mask) == 0)
  3471. return -EINVAL;
  3472. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3473. /* Note: autonegotiation disable, speed 1000 intentionally
  3474. * forbidden - noone should need that. */
  3475. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3476. return -EINVAL;
  3477. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3478. return -EINVAL;
  3479. } else {
  3480. return -EINVAL;
  3481. }
  3482. netif_carrier_off(dev);
  3483. if (netif_running(dev)) {
  3484. nv_disable_irq(dev);
  3485. netif_tx_lock_bh(dev);
  3486. spin_lock(&np->lock);
  3487. /* stop engines */
  3488. nv_stop_rx(dev);
  3489. nv_stop_tx(dev);
  3490. spin_unlock(&np->lock);
  3491. netif_tx_unlock_bh(dev);
  3492. }
  3493. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3494. int adv, bmcr;
  3495. np->autoneg = 1;
  3496. /* advertise only what has been requested */
  3497. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3498. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3499. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3500. adv |= ADVERTISE_10HALF;
  3501. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3502. adv |= ADVERTISE_10FULL;
  3503. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3504. adv |= ADVERTISE_100HALF;
  3505. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3506. adv |= ADVERTISE_100FULL;
  3507. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3508. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3509. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3510. adv |= ADVERTISE_PAUSE_ASYM;
  3511. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3512. if (np->gigabit == PHY_GIGABIT) {
  3513. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3514. adv &= ~ADVERTISE_1000FULL;
  3515. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3516. adv |= ADVERTISE_1000FULL;
  3517. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3518. }
  3519. if (netif_running(dev))
  3520. printk(KERN_INFO "%s: link down.\n", dev->name);
  3521. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3522. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3523. bmcr |= BMCR_ANENABLE;
  3524. /* reset the phy in order for settings to stick,
  3525. * and cause autoneg to start */
  3526. if (phy_reset(dev, bmcr)) {
  3527. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3528. return -EINVAL;
  3529. }
  3530. } else {
  3531. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3532. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3533. }
  3534. } else {
  3535. int adv, bmcr;
  3536. np->autoneg = 0;
  3537. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3538. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3539. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3540. adv |= ADVERTISE_10HALF;
  3541. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3542. adv |= ADVERTISE_10FULL;
  3543. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3544. adv |= ADVERTISE_100HALF;
  3545. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3546. adv |= ADVERTISE_100FULL;
  3547. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3548. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3549. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3550. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3551. }
  3552. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3553. adv |= ADVERTISE_PAUSE_ASYM;
  3554. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3555. }
  3556. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3557. np->fixed_mode = adv;
  3558. if (np->gigabit == PHY_GIGABIT) {
  3559. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3560. adv &= ~ADVERTISE_1000FULL;
  3561. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3562. }
  3563. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3564. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3565. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3566. bmcr |= BMCR_FULLDPLX;
  3567. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3568. bmcr |= BMCR_SPEED100;
  3569. if (np->phy_oui == PHY_OUI_MARVELL) {
  3570. /* reset the phy in order for forced mode settings to stick */
  3571. if (phy_reset(dev, bmcr)) {
  3572. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3573. return -EINVAL;
  3574. }
  3575. } else {
  3576. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3577. if (netif_running(dev)) {
  3578. /* Wait a bit and then reconfigure the nic. */
  3579. udelay(10);
  3580. nv_linkchange(dev);
  3581. }
  3582. }
  3583. }
  3584. if (netif_running(dev)) {
  3585. nv_start_rx(dev);
  3586. nv_start_tx(dev);
  3587. nv_enable_irq(dev);
  3588. }
  3589. return 0;
  3590. }
  3591. #define FORCEDETH_REGS_VER 1
  3592. static int nv_get_regs_len(struct net_device *dev)
  3593. {
  3594. struct fe_priv *np = netdev_priv(dev);
  3595. return np->register_size;
  3596. }
  3597. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3598. {
  3599. struct fe_priv *np = netdev_priv(dev);
  3600. u8 __iomem *base = get_hwbase(dev);
  3601. u32 *rbuf = buf;
  3602. int i;
  3603. regs->version = FORCEDETH_REGS_VER;
  3604. spin_lock_irq(&np->lock);
  3605. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3606. rbuf[i] = readl(base + i*sizeof(u32));
  3607. spin_unlock_irq(&np->lock);
  3608. }
  3609. static int nv_nway_reset(struct net_device *dev)
  3610. {
  3611. struct fe_priv *np = netdev_priv(dev);
  3612. int ret;
  3613. if (np->autoneg) {
  3614. int bmcr;
  3615. netif_carrier_off(dev);
  3616. if (netif_running(dev)) {
  3617. nv_disable_irq(dev);
  3618. netif_tx_lock_bh(dev);
  3619. spin_lock(&np->lock);
  3620. /* stop engines */
  3621. nv_stop_rx(dev);
  3622. nv_stop_tx(dev);
  3623. spin_unlock(&np->lock);
  3624. netif_tx_unlock_bh(dev);
  3625. printk(KERN_INFO "%s: link down.\n", dev->name);
  3626. }
  3627. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3628. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3629. bmcr |= BMCR_ANENABLE;
  3630. /* reset the phy in order for settings to stick*/
  3631. if (phy_reset(dev, bmcr)) {
  3632. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3633. return -EINVAL;
  3634. }
  3635. } else {
  3636. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3637. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3638. }
  3639. if (netif_running(dev)) {
  3640. nv_start_rx(dev);
  3641. nv_start_tx(dev);
  3642. nv_enable_irq(dev);
  3643. }
  3644. ret = 0;
  3645. } else {
  3646. ret = -EINVAL;
  3647. }
  3648. return ret;
  3649. }
  3650. static int nv_set_tso(struct net_device *dev, u32 value)
  3651. {
  3652. struct fe_priv *np = netdev_priv(dev);
  3653. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3654. return ethtool_op_set_tso(dev, value);
  3655. else
  3656. return -EOPNOTSUPP;
  3657. }
  3658. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3659. {
  3660. struct fe_priv *np = netdev_priv(dev);
  3661. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3662. ring->rx_mini_max_pending = 0;
  3663. ring->rx_jumbo_max_pending = 0;
  3664. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3665. ring->rx_pending = np->rx_ring_size;
  3666. ring->rx_mini_pending = 0;
  3667. ring->rx_jumbo_pending = 0;
  3668. ring->tx_pending = np->tx_ring_size;
  3669. }
  3670. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3671. {
  3672. struct fe_priv *np = netdev_priv(dev);
  3673. u8 __iomem *base = get_hwbase(dev);
  3674. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3675. dma_addr_t ring_addr;
  3676. if (ring->rx_pending < RX_RING_MIN ||
  3677. ring->tx_pending < TX_RING_MIN ||
  3678. ring->rx_mini_pending != 0 ||
  3679. ring->rx_jumbo_pending != 0 ||
  3680. (np->desc_ver == DESC_VER_1 &&
  3681. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3682. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3683. (np->desc_ver != DESC_VER_1 &&
  3684. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3685. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3686. return -EINVAL;
  3687. }
  3688. /* allocate new rings */
  3689. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3690. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3691. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3692. &ring_addr);
  3693. } else {
  3694. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3695. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3696. &ring_addr);
  3697. }
  3698. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3699. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3700. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3701. /* fall back to old rings */
  3702. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3703. if (rxtx_ring)
  3704. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3705. rxtx_ring, ring_addr);
  3706. } else {
  3707. if (rxtx_ring)
  3708. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3709. rxtx_ring, ring_addr);
  3710. }
  3711. if (rx_skbuff)
  3712. kfree(rx_skbuff);
  3713. if (tx_skbuff)
  3714. kfree(tx_skbuff);
  3715. goto exit;
  3716. }
  3717. if (netif_running(dev)) {
  3718. nv_disable_irq(dev);
  3719. netif_tx_lock_bh(dev);
  3720. spin_lock(&np->lock);
  3721. /* stop engines */
  3722. nv_stop_rx(dev);
  3723. nv_stop_tx(dev);
  3724. nv_txrx_reset(dev);
  3725. /* drain queues */
  3726. nv_drain_rx(dev);
  3727. nv_drain_tx(dev);
  3728. /* delete queues */
  3729. free_rings(dev);
  3730. }
  3731. /* set new values */
  3732. np->rx_ring_size = ring->rx_pending;
  3733. np->tx_ring_size = ring->tx_pending;
  3734. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3735. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3736. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3737. } else {
  3738. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3739. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3740. }
  3741. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  3742. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  3743. np->ring_addr = ring_addr;
  3744. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3745. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3746. if (netif_running(dev)) {
  3747. /* reinit driver view of the queues */
  3748. set_bufsize(dev);
  3749. if (nv_init_ring(dev)) {
  3750. if (!np->in_shutdown)
  3751. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3752. }
  3753. /* reinit nic view of the queues */
  3754. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3755. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3756. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3757. base + NvRegRingSizes);
  3758. pci_push(base);
  3759. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3760. pci_push(base);
  3761. /* restart engines */
  3762. nv_start_rx(dev);
  3763. nv_start_tx(dev);
  3764. spin_unlock(&np->lock);
  3765. netif_tx_unlock_bh(dev);
  3766. nv_enable_irq(dev);
  3767. }
  3768. return 0;
  3769. exit:
  3770. return -ENOMEM;
  3771. }
  3772. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3773. {
  3774. struct fe_priv *np = netdev_priv(dev);
  3775. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3776. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3777. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3778. }
  3779. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3780. {
  3781. struct fe_priv *np = netdev_priv(dev);
  3782. int adv, bmcr;
  3783. if ((!np->autoneg && np->duplex == 0) ||
  3784. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3785. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3786. dev->name);
  3787. return -EINVAL;
  3788. }
  3789. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3790. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3791. return -EINVAL;
  3792. }
  3793. netif_carrier_off(dev);
  3794. if (netif_running(dev)) {
  3795. nv_disable_irq(dev);
  3796. netif_tx_lock_bh(dev);
  3797. spin_lock(&np->lock);
  3798. /* stop engines */
  3799. nv_stop_rx(dev);
  3800. nv_stop_tx(dev);
  3801. spin_unlock(&np->lock);
  3802. netif_tx_unlock_bh(dev);
  3803. }
  3804. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3805. if (pause->rx_pause)
  3806. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3807. if (pause->tx_pause)
  3808. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3809. if (np->autoneg && pause->autoneg) {
  3810. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3811. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3812. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3813. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3814. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3815. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3816. adv |= ADVERTISE_PAUSE_ASYM;
  3817. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3818. if (netif_running(dev))
  3819. printk(KERN_INFO "%s: link down.\n", dev->name);
  3820. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3821. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3822. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3823. } else {
  3824. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3825. if (pause->rx_pause)
  3826. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3827. if (pause->tx_pause)
  3828. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3829. if (!netif_running(dev))
  3830. nv_update_linkspeed(dev);
  3831. else
  3832. nv_update_pause(dev, np->pause_flags);
  3833. }
  3834. if (netif_running(dev)) {
  3835. nv_start_rx(dev);
  3836. nv_start_tx(dev);
  3837. nv_enable_irq(dev);
  3838. }
  3839. return 0;
  3840. }
  3841. static u32 nv_get_rx_csum(struct net_device *dev)
  3842. {
  3843. struct fe_priv *np = netdev_priv(dev);
  3844. return (np->rx_csum) != 0;
  3845. }
  3846. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3847. {
  3848. struct fe_priv *np = netdev_priv(dev);
  3849. u8 __iomem *base = get_hwbase(dev);
  3850. int retcode = 0;
  3851. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3852. if (data) {
  3853. np->rx_csum = 1;
  3854. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3855. } else {
  3856. np->rx_csum = 0;
  3857. /* vlan is dependent on rx checksum offload */
  3858. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3859. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3860. }
  3861. if (netif_running(dev)) {
  3862. spin_lock_irq(&np->lock);
  3863. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3864. spin_unlock_irq(&np->lock);
  3865. }
  3866. } else {
  3867. return -EINVAL;
  3868. }
  3869. return retcode;
  3870. }
  3871. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3872. {
  3873. struct fe_priv *np = netdev_priv(dev);
  3874. if (np->driver_data & DEV_HAS_CHECKSUM)
  3875. return ethtool_op_set_tx_hw_csum(dev, data);
  3876. else
  3877. return -EOPNOTSUPP;
  3878. }
  3879. static int nv_set_sg(struct net_device *dev, u32 data)
  3880. {
  3881. struct fe_priv *np = netdev_priv(dev);
  3882. if (np->driver_data & DEV_HAS_CHECKSUM)
  3883. return ethtool_op_set_sg(dev, data);
  3884. else
  3885. return -EOPNOTSUPP;
  3886. }
  3887. static int nv_get_sset_count(struct net_device *dev, int sset)
  3888. {
  3889. struct fe_priv *np = netdev_priv(dev);
  3890. switch (sset) {
  3891. case ETH_SS_TEST:
  3892. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3893. return NV_TEST_COUNT_EXTENDED;
  3894. else
  3895. return NV_TEST_COUNT_BASE;
  3896. case ETH_SS_STATS:
  3897. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  3898. return NV_DEV_STATISTICS_V1_COUNT;
  3899. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  3900. return NV_DEV_STATISTICS_V2_COUNT;
  3901. else
  3902. return 0;
  3903. default:
  3904. return -EOPNOTSUPP;
  3905. }
  3906. }
  3907. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3908. {
  3909. struct fe_priv *np = netdev_priv(dev);
  3910. /* update stats */
  3911. nv_do_stats_poll((unsigned long)dev);
  3912. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  3913. }
  3914. static int nv_link_test(struct net_device *dev)
  3915. {
  3916. struct fe_priv *np = netdev_priv(dev);
  3917. int mii_status;
  3918. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3919. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3920. /* check phy link status */
  3921. if (!(mii_status & BMSR_LSTATUS))
  3922. return 0;
  3923. else
  3924. return 1;
  3925. }
  3926. static int nv_register_test(struct net_device *dev)
  3927. {
  3928. u8 __iomem *base = get_hwbase(dev);
  3929. int i = 0;
  3930. u32 orig_read, new_read;
  3931. do {
  3932. orig_read = readl(base + nv_registers_test[i].reg);
  3933. /* xor with mask to toggle bits */
  3934. orig_read ^= nv_registers_test[i].mask;
  3935. writel(orig_read, base + nv_registers_test[i].reg);
  3936. new_read = readl(base + nv_registers_test[i].reg);
  3937. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3938. return 0;
  3939. /* restore original value */
  3940. orig_read ^= nv_registers_test[i].mask;
  3941. writel(orig_read, base + nv_registers_test[i].reg);
  3942. } while (nv_registers_test[++i].reg != 0);
  3943. return 1;
  3944. }
  3945. static int nv_interrupt_test(struct net_device *dev)
  3946. {
  3947. struct fe_priv *np = netdev_priv(dev);
  3948. u8 __iomem *base = get_hwbase(dev);
  3949. int ret = 1;
  3950. int testcnt;
  3951. u32 save_msi_flags, save_poll_interval = 0;
  3952. if (netif_running(dev)) {
  3953. /* free current irq */
  3954. nv_free_irq(dev);
  3955. save_poll_interval = readl(base+NvRegPollingInterval);
  3956. }
  3957. /* flag to test interrupt handler */
  3958. np->intr_test = 0;
  3959. /* setup test irq */
  3960. save_msi_flags = np->msi_flags;
  3961. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  3962. np->msi_flags |= 0x001; /* setup 1 vector */
  3963. if (nv_request_irq(dev, 1))
  3964. return 0;
  3965. /* setup timer interrupt */
  3966. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3967. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3968. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3969. /* wait for at least one interrupt */
  3970. msleep(100);
  3971. spin_lock_irq(&np->lock);
  3972. /* flag should be set within ISR */
  3973. testcnt = np->intr_test;
  3974. if (!testcnt)
  3975. ret = 2;
  3976. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3977. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3978. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3979. else
  3980. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3981. spin_unlock_irq(&np->lock);
  3982. nv_free_irq(dev);
  3983. np->msi_flags = save_msi_flags;
  3984. if (netif_running(dev)) {
  3985. writel(save_poll_interval, base + NvRegPollingInterval);
  3986. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3987. /* restore original irq */
  3988. if (nv_request_irq(dev, 0))
  3989. return 0;
  3990. }
  3991. return ret;
  3992. }
  3993. static int nv_loopback_test(struct net_device *dev)
  3994. {
  3995. struct fe_priv *np = netdev_priv(dev);
  3996. u8 __iomem *base = get_hwbase(dev);
  3997. struct sk_buff *tx_skb, *rx_skb;
  3998. dma_addr_t test_dma_addr;
  3999. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4000. u32 flags;
  4001. int len, i, pkt_len;
  4002. u8 *pkt_data;
  4003. u32 filter_flags = 0;
  4004. u32 misc1_flags = 0;
  4005. int ret = 1;
  4006. if (netif_running(dev)) {
  4007. nv_disable_irq(dev);
  4008. filter_flags = readl(base + NvRegPacketFilterFlags);
  4009. misc1_flags = readl(base + NvRegMisc1);
  4010. } else {
  4011. nv_txrx_reset(dev);
  4012. }
  4013. /* reinit driver view of the rx queue */
  4014. set_bufsize(dev);
  4015. nv_init_ring(dev);
  4016. /* setup hardware for loopback */
  4017. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4018. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4019. /* reinit nic view of the rx queue */
  4020. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4021. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4022. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4023. base + NvRegRingSizes);
  4024. pci_push(base);
  4025. /* restart rx engine */
  4026. nv_start_rx(dev);
  4027. nv_start_tx(dev);
  4028. /* setup packet for tx */
  4029. pkt_len = ETH_DATA_LEN;
  4030. tx_skb = dev_alloc_skb(pkt_len);
  4031. if (!tx_skb) {
  4032. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4033. " of %s\n", dev->name);
  4034. ret = 0;
  4035. goto out;
  4036. }
  4037. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4038. skb_tailroom(tx_skb),
  4039. PCI_DMA_FROMDEVICE);
  4040. pkt_data = skb_put(tx_skb, pkt_len);
  4041. for (i = 0; i < pkt_len; i++)
  4042. pkt_data[i] = (u8)(i & 0xff);
  4043. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4044. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4045. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4046. } else {
  4047. np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
  4048. np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
  4049. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4050. }
  4051. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4052. pci_push(get_hwbase(dev));
  4053. msleep(500);
  4054. /* check for rx of the packet */
  4055. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4056. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4057. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4058. } else {
  4059. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4060. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4061. }
  4062. if (flags & NV_RX_AVAIL) {
  4063. ret = 0;
  4064. } else if (np->desc_ver == DESC_VER_1) {
  4065. if (flags & NV_RX_ERROR)
  4066. ret = 0;
  4067. } else {
  4068. if (flags & NV_RX2_ERROR) {
  4069. ret = 0;
  4070. }
  4071. }
  4072. if (ret) {
  4073. if (len != pkt_len) {
  4074. ret = 0;
  4075. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4076. dev->name, len, pkt_len);
  4077. } else {
  4078. rx_skb = np->rx_skb[0].skb;
  4079. for (i = 0; i < pkt_len; i++) {
  4080. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4081. ret = 0;
  4082. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4083. dev->name, i);
  4084. break;
  4085. }
  4086. }
  4087. }
  4088. } else {
  4089. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4090. }
  4091. pci_unmap_page(np->pci_dev, test_dma_addr,
  4092. (skb_end_pointer(tx_skb) - tx_skb->data),
  4093. PCI_DMA_TODEVICE);
  4094. dev_kfree_skb_any(tx_skb);
  4095. out:
  4096. /* stop engines */
  4097. nv_stop_rx(dev);
  4098. nv_stop_tx(dev);
  4099. nv_txrx_reset(dev);
  4100. /* drain rx queue */
  4101. nv_drain_rx(dev);
  4102. nv_drain_tx(dev);
  4103. if (netif_running(dev)) {
  4104. writel(misc1_flags, base + NvRegMisc1);
  4105. writel(filter_flags, base + NvRegPacketFilterFlags);
  4106. nv_enable_irq(dev);
  4107. }
  4108. return ret;
  4109. }
  4110. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4111. {
  4112. struct fe_priv *np = netdev_priv(dev);
  4113. u8 __iomem *base = get_hwbase(dev);
  4114. int result;
  4115. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4116. if (!nv_link_test(dev)) {
  4117. test->flags |= ETH_TEST_FL_FAILED;
  4118. buffer[0] = 1;
  4119. }
  4120. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4121. if (netif_running(dev)) {
  4122. netif_stop_queue(dev);
  4123. #ifdef CONFIG_FORCEDETH_NAPI
  4124. napi_disable(&np->napi);
  4125. #endif
  4126. netif_tx_lock_bh(dev);
  4127. spin_lock_irq(&np->lock);
  4128. nv_disable_hw_interrupts(dev, np->irqmask);
  4129. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4130. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4131. } else {
  4132. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4133. }
  4134. /* stop engines */
  4135. nv_stop_rx(dev);
  4136. nv_stop_tx(dev);
  4137. nv_txrx_reset(dev);
  4138. /* drain rx queue */
  4139. nv_drain_rx(dev);
  4140. nv_drain_tx(dev);
  4141. spin_unlock_irq(&np->lock);
  4142. netif_tx_unlock_bh(dev);
  4143. }
  4144. if (!nv_register_test(dev)) {
  4145. test->flags |= ETH_TEST_FL_FAILED;
  4146. buffer[1] = 1;
  4147. }
  4148. result = nv_interrupt_test(dev);
  4149. if (result != 1) {
  4150. test->flags |= ETH_TEST_FL_FAILED;
  4151. buffer[2] = 1;
  4152. }
  4153. if (result == 0) {
  4154. /* bail out */
  4155. return;
  4156. }
  4157. if (!nv_loopback_test(dev)) {
  4158. test->flags |= ETH_TEST_FL_FAILED;
  4159. buffer[3] = 1;
  4160. }
  4161. if (netif_running(dev)) {
  4162. /* reinit driver view of the rx queue */
  4163. set_bufsize(dev);
  4164. if (nv_init_ring(dev)) {
  4165. if (!np->in_shutdown)
  4166. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4167. }
  4168. /* reinit nic view of the rx queue */
  4169. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4170. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4171. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4172. base + NvRegRingSizes);
  4173. pci_push(base);
  4174. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4175. pci_push(base);
  4176. /* restart rx engine */
  4177. nv_start_rx(dev);
  4178. nv_start_tx(dev);
  4179. netif_start_queue(dev);
  4180. #ifdef CONFIG_FORCEDETH_NAPI
  4181. napi_enable(&np->napi);
  4182. #endif
  4183. nv_enable_hw_interrupts(dev, np->irqmask);
  4184. }
  4185. }
  4186. }
  4187. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4188. {
  4189. switch (stringset) {
  4190. case ETH_SS_STATS:
  4191. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4192. break;
  4193. case ETH_SS_TEST:
  4194. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4195. break;
  4196. }
  4197. }
  4198. static const struct ethtool_ops ops = {
  4199. .get_drvinfo = nv_get_drvinfo,
  4200. .get_link = ethtool_op_get_link,
  4201. .get_wol = nv_get_wol,
  4202. .set_wol = nv_set_wol,
  4203. .get_settings = nv_get_settings,
  4204. .set_settings = nv_set_settings,
  4205. .get_regs_len = nv_get_regs_len,
  4206. .get_regs = nv_get_regs,
  4207. .nway_reset = nv_nway_reset,
  4208. .set_tso = nv_set_tso,
  4209. .get_ringparam = nv_get_ringparam,
  4210. .set_ringparam = nv_set_ringparam,
  4211. .get_pauseparam = nv_get_pauseparam,
  4212. .set_pauseparam = nv_set_pauseparam,
  4213. .get_rx_csum = nv_get_rx_csum,
  4214. .set_rx_csum = nv_set_rx_csum,
  4215. .set_tx_csum = nv_set_tx_csum,
  4216. .set_sg = nv_set_sg,
  4217. .get_strings = nv_get_strings,
  4218. .get_ethtool_stats = nv_get_ethtool_stats,
  4219. .get_sset_count = nv_get_sset_count,
  4220. .self_test = nv_self_test,
  4221. };
  4222. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4223. {
  4224. struct fe_priv *np = get_nvpriv(dev);
  4225. spin_lock_irq(&np->lock);
  4226. /* save vlan group */
  4227. np->vlangrp = grp;
  4228. if (grp) {
  4229. /* enable vlan on MAC */
  4230. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4231. } else {
  4232. /* disable vlan on MAC */
  4233. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4234. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4235. }
  4236. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4237. spin_unlock_irq(&np->lock);
  4238. }
  4239. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4240. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4241. {
  4242. u8 __iomem *base = get_hwbase(dev);
  4243. int i;
  4244. u32 tx_ctrl, mgmt_sema;
  4245. for (i = 0; i < 10; i++) {
  4246. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4247. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4248. break;
  4249. msleep(500);
  4250. }
  4251. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4252. return 0;
  4253. for (i = 0; i < 2; i++) {
  4254. tx_ctrl = readl(base + NvRegTransmitterControl);
  4255. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4256. writel(tx_ctrl, base + NvRegTransmitterControl);
  4257. /* verify that semaphore was acquired */
  4258. tx_ctrl = readl(base + NvRegTransmitterControl);
  4259. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4260. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4261. return 1;
  4262. else
  4263. udelay(50);
  4264. }
  4265. return 0;
  4266. }
  4267. static int nv_open(struct net_device *dev)
  4268. {
  4269. struct fe_priv *np = netdev_priv(dev);
  4270. u8 __iomem *base = get_hwbase(dev);
  4271. int ret = 1;
  4272. int oom, i;
  4273. dprintk(KERN_DEBUG "nv_open: begin\n");
  4274. /* erase previous misconfiguration */
  4275. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4276. nv_mac_reset(dev);
  4277. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4278. writel(0, base + NvRegMulticastAddrB);
  4279. writel(0, base + NvRegMulticastMaskA);
  4280. writel(0, base + NvRegMulticastMaskB);
  4281. writel(0, base + NvRegPacketFilterFlags);
  4282. writel(0, base + NvRegTransmitterControl);
  4283. writel(0, base + NvRegReceiverControl);
  4284. writel(0, base + NvRegAdapterControl);
  4285. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4286. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4287. /* initialize descriptor rings */
  4288. set_bufsize(dev);
  4289. oom = nv_init_ring(dev);
  4290. writel(0, base + NvRegLinkSpeed);
  4291. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4292. nv_txrx_reset(dev);
  4293. writel(0, base + NvRegUnknownSetupReg6);
  4294. np->in_shutdown = 0;
  4295. /* give hw rings */
  4296. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4297. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4298. base + NvRegRingSizes);
  4299. writel(np->linkspeed, base + NvRegLinkSpeed);
  4300. if (np->desc_ver == DESC_VER_1)
  4301. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4302. else
  4303. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4304. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4305. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4306. pci_push(base);
  4307. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4308. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4309. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4310. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4311. writel(0, base + NvRegMIIMask);
  4312. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4313. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  4314. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4315. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4316. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4317. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4318. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4319. get_random_bytes(&i, sizeof(i));
  4320. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  4321. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4322. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4323. if (poll_interval == -1) {
  4324. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4325. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4326. else
  4327. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4328. }
  4329. else
  4330. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4331. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4332. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4333. base + NvRegAdapterControl);
  4334. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4335. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4336. if (np->wolenabled)
  4337. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4338. i = readl(base + NvRegPowerState);
  4339. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4340. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4341. pci_push(base);
  4342. udelay(10);
  4343. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4344. nv_disable_hw_interrupts(dev, np->irqmask);
  4345. pci_push(base);
  4346. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  4347. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4348. pci_push(base);
  4349. if (nv_request_irq(dev, 0)) {
  4350. goto out_drain;
  4351. }
  4352. /* ask for interrupts */
  4353. nv_enable_hw_interrupts(dev, np->irqmask);
  4354. spin_lock_irq(&np->lock);
  4355. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4356. writel(0, base + NvRegMulticastAddrB);
  4357. writel(0, base + NvRegMulticastMaskA);
  4358. writel(0, base + NvRegMulticastMaskB);
  4359. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4360. /* One manual link speed update: Interrupts are enabled, future link
  4361. * speed changes cause interrupts and are handled by nv_link_irq().
  4362. */
  4363. {
  4364. u32 miistat;
  4365. miistat = readl(base + NvRegMIIStatus);
  4366. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4367. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4368. }
  4369. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4370. * to init hw */
  4371. np->linkspeed = 0;
  4372. ret = nv_update_linkspeed(dev);
  4373. nv_start_rx(dev);
  4374. nv_start_tx(dev);
  4375. netif_start_queue(dev);
  4376. #ifdef CONFIG_FORCEDETH_NAPI
  4377. napi_enable(&np->napi);
  4378. #endif
  4379. if (ret) {
  4380. netif_carrier_on(dev);
  4381. } else {
  4382. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4383. netif_carrier_off(dev);
  4384. }
  4385. if (oom)
  4386. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4387. /* start statistics timer */
  4388. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
  4389. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  4390. spin_unlock_irq(&np->lock);
  4391. return 0;
  4392. out_drain:
  4393. drain_ring(dev);
  4394. return ret;
  4395. }
  4396. static int nv_close(struct net_device *dev)
  4397. {
  4398. struct fe_priv *np = netdev_priv(dev);
  4399. u8 __iomem *base;
  4400. spin_lock_irq(&np->lock);
  4401. np->in_shutdown = 1;
  4402. spin_unlock_irq(&np->lock);
  4403. #ifdef CONFIG_FORCEDETH_NAPI
  4404. napi_disable(&np->napi);
  4405. #endif
  4406. synchronize_irq(dev->irq);
  4407. del_timer_sync(&np->oom_kick);
  4408. del_timer_sync(&np->nic_poll);
  4409. del_timer_sync(&np->stats_poll);
  4410. netif_stop_queue(dev);
  4411. spin_lock_irq(&np->lock);
  4412. nv_stop_tx(dev);
  4413. nv_stop_rx(dev);
  4414. nv_txrx_reset(dev);
  4415. /* disable interrupts on the nic or we will lock up */
  4416. base = get_hwbase(dev);
  4417. nv_disable_hw_interrupts(dev, np->irqmask);
  4418. pci_push(base);
  4419. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4420. spin_unlock_irq(&np->lock);
  4421. nv_free_irq(dev);
  4422. drain_ring(dev);
  4423. if (np->wolenabled) {
  4424. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4425. nv_start_rx(dev);
  4426. }
  4427. /* FIXME: power down nic */
  4428. return 0;
  4429. }
  4430. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4431. {
  4432. struct net_device *dev;
  4433. struct fe_priv *np;
  4434. unsigned long addr;
  4435. u8 __iomem *base;
  4436. int err, i;
  4437. u32 powerstate, txreg;
  4438. u32 phystate_orig = 0, phystate;
  4439. int phyinitialized = 0;
  4440. DECLARE_MAC_BUF(mac);
  4441. static int printed_version;
  4442. if (!printed_version++)
  4443. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4444. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4445. dev = alloc_etherdev(sizeof(struct fe_priv));
  4446. err = -ENOMEM;
  4447. if (!dev)
  4448. goto out;
  4449. np = netdev_priv(dev);
  4450. np->dev = dev;
  4451. np->pci_dev = pci_dev;
  4452. spin_lock_init(&np->lock);
  4453. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4454. init_timer(&np->oom_kick);
  4455. np->oom_kick.data = (unsigned long) dev;
  4456. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4457. init_timer(&np->nic_poll);
  4458. np->nic_poll.data = (unsigned long) dev;
  4459. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4460. init_timer(&np->stats_poll);
  4461. np->stats_poll.data = (unsigned long) dev;
  4462. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4463. err = pci_enable_device(pci_dev);
  4464. if (err)
  4465. goto out_free;
  4466. pci_set_master(pci_dev);
  4467. err = pci_request_regions(pci_dev, DRV_NAME);
  4468. if (err < 0)
  4469. goto out_disable;
  4470. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
  4471. np->register_size = NV_PCI_REGSZ_VER3;
  4472. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4473. np->register_size = NV_PCI_REGSZ_VER2;
  4474. else
  4475. np->register_size = NV_PCI_REGSZ_VER1;
  4476. err = -EINVAL;
  4477. addr = 0;
  4478. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4479. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4480. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4481. pci_resource_len(pci_dev, i),
  4482. pci_resource_flags(pci_dev, i));
  4483. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4484. pci_resource_len(pci_dev, i) >= np->register_size) {
  4485. addr = pci_resource_start(pci_dev, i);
  4486. break;
  4487. }
  4488. }
  4489. if (i == DEVICE_COUNT_RESOURCE) {
  4490. dev_printk(KERN_INFO, &pci_dev->dev,
  4491. "Couldn't find register window\n");
  4492. goto out_relreg;
  4493. }
  4494. /* copy of driver data */
  4495. np->driver_data = id->driver_data;
  4496. /* handle different descriptor versions */
  4497. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4498. /* packet format 3: supports 40-bit addressing */
  4499. np->desc_ver = DESC_VER_3;
  4500. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4501. if (dma_64bit) {
  4502. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4503. dev_printk(KERN_INFO, &pci_dev->dev,
  4504. "64-bit DMA failed, using 32-bit addressing\n");
  4505. else
  4506. dev->features |= NETIF_F_HIGHDMA;
  4507. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4508. dev_printk(KERN_INFO, &pci_dev->dev,
  4509. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4510. }
  4511. }
  4512. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4513. /* packet format 2: supports jumbo frames */
  4514. np->desc_ver = DESC_VER_2;
  4515. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4516. } else {
  4517. /* original packet format */
  4518. np->desc_ver = DESC_VER_1;
  4519. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4520. }
  4521. np->pkt_limit = NV_PKTLIMIT_1;
  4522. if (id->driver_data & DEV_HAS_LARGEDESC)
  4523. np->pkt_limit = NV_PKTLIMIT_2;
  4524. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4525. np->rx_csum = 1;
  4526. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4527. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4528. dev->features |= NETIF_F_TSO;
  4529. }
  4530. np->vlanctl_bits = 0;
  4531. if (id->driver_data & DEV_HAS_VLAN) {
  4532. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4533. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4534. dev->vlan_rx_register = nv_vlan_rx_register;
  4535. }
  4536. np->msi_flags = 0;
  4537. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4538. np->msi_flags |= NV_MSI_CAPABLE;
  4539. }
  4540. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4541. np->msi_flags |= NV_MSI_X_CAPABLE;
  4542. }
  4543. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4544. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  4545. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4546. }
  4547. err = -ENOMEM;
  4548. np->base = ioremap(addr, np->register_size);
  4549. if (!np->base)
  4550. goto out_relreg;
  4551. dev->base_addr = (unsigned long)np->base;
  4552. dev->irq = pci_dev->irq;
  4553. np->rx_ring_size = RX_RING_DEFAULT;
  4554. np->tx_ring_size = TX_RING_DEFAULT;
  4555. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4556. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4557. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4558. &np->ring_addr);
  4559. if (!np->rx_ring.orig)
  4560. goto out_unmap;
  4561. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4562. } else {
  4563. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4564. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4565. &np->ring_addr);
  4566. if (!np->rx_ring.ex)
  4567. goto out_unmap;
  4568. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4569. }
  4570. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4571. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4572. if (!np->rx_skb || !np->tx_skb)
  4573. goto out_freering;
  4574. dev->open = nv_open;
  4575. dev->stop = nv_close;
  4576. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  4577. dev->hard_start_xmit = nv_start_xmit;
  4578. else
  4579. dev->hard_start_xmit = nv_start_xmit_optimized;
  4580. dev->get_stats = nv_get_stats;
  4581. dev->change_mtu = nv_change_mtu;
  4582. dev->set_mac_address = nv_set_mac_address;
  4583. dev->set_multicast_list = nv_set_multicast;
  4584. #ifdef CONFIG_NET_POLL_CONTROLLER
  4585. dev->poll_controller = nv_poll_controller;
  4586. #endif
  4587. #ifdef CONFIG_FORCEDETH_NAPI
  4588. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4589. #endif
  4590. SET_ETHTOOL_OPS(dev, &ops);
  4591. dev->tx_timeout = nv_tx_timeout;
  4592. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4593. pci_set_drvdata(pci_dev, dev);
  4594. /* read the mac address */
  4595. base = get_hwbase(dev);
  4596. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4597. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4598. /* check the workaround bit for correct mac address order */
  4599. txreg = readl(base + NvRegTransmitPoll);
  4600. if ((txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) ||
  4601. (id->driver_data & DEV_HAS_CORRECT_MACADDR)) {
  4602. /* mac address is already in correct order */
  4603. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4604. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4605. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4606. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4607. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4608. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4609. } else {
  4610. /* need to reverse mac address to correct order */
  4611. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4612. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4613. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4614. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4615. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4616. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4617. /* set permanent address to be correct aswell */
  4618. np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  4619. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  4620. np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  4621. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4622. }
  4623. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4624. if (!is_valid_ether_addr(dev->perm_addr)) {
  4625. /*
  4626. * Bad mac address. At least one bios sets the mac address
  4627. * to 01:23:45:67:89:ab
  4628. */
  4629. dev_printk(KERN_ERR, &pci_dev->dev,
  4630. "Invalid Mac address detected: %s\n",
  4631. print_mac(mac, dev->dev_addr));
  4632. dev_printk(KERN_ERR, &pci_dev->dev,
  4633. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4634. dev->dev_addr[0] = 0x00;
  4635. dev->dev_addr[1] = 0x00;
  4636. dev->dev_addr[2] = 0x6c;
  4637. get_random_bytes(&dev->dev_addr[3], 3);
  4638. }
  4639. dprintk(KERN_DEBUG "%s: MAC Address %s\n",
  4640. pci_name(pci_dev), print_mac(mac, dev->dev_addr));
  4641. /* set mac address */
  4642. nv_copy_mac_to_hw(dev);
  4643. /* disable WOL */
  4644. writel(0, base + NvRegWakeUpFlags);
  4645. np->wolenabled = 0;
  4646. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4647. /* take phy and nic out of low power mode */
  4648. powerstate = readl(base + NvRegPowerState2);
  4649. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4650. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4651. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4652. pci_dev->revision >= 0xA3)
  4653. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4654. writel(powerstate, base + NvRegPowerState2);
  4655. }
  4656. if (np->desc_ver == DESC_VER_1) {
  4657. np->tx_flags = NV_TX_VALID;
  4658. } else {
  4659. np->tx_flags = NV_TX2_VALID;
  4660. }
  4661. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4662. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4663. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4664. np->msi_flags |= 0x0003;
  4665. } else {
  4666. np->irqmask = NVREG_IRQMASK_CPU;
  4667. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4668. np->msi_flags |= 0x0001;
  4669. }
  4670. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4671. np->irqmask |= NVREG_IRQ_TIMER;
  4672. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4673. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4674. np->need_linktimer = 1;
  4675. np->link_timeout = jiffies + LINK_TIMEOUT;
  4676. } else {
  4677. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4678. np->need_linktimer = 0;
  4679. }
  4680. /* clear phy state and temporarily halt phy interrupts */
  4681. writel(0, base + NvRegMIIMask);
  4682. phystate = readl(base + NvRegAdapterControl);
  4683. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4684. phystate_orig = 1;
  4685. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4686. writel(phystate, base + NvRegAdapterControl);
  4687. }
  4688. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4689. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4690. /* management unit running on the mac? */
  4691. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  4692. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4693. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  4694. for (i = 0; i < 5000; i++) {
  4695. msleep(1);
  4696. if (nv_mgmt_acquire_sema(dev)) {
  4697. /* management unit setup the phy already? */
  4698. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  4699. NVREG_XMITCTL_SYNC_PHY_INIT) {
  4700. /* phy is inited by mgmt unit */
  4701. phyinitialized = 1;
  4702. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  4703. } else {
  4704. /* we need to init the phy */
  4705. }
  4706. break;
  4707. }
  4708. }
  4709. }
  4710. }
  4711. /* find a suitable phy */
  4712. for (i = 1; i <= 32; i++) {
  4713. int id1, id2;
  4714. int phyaddr = i & 0x1F;
  4715. spin_lock_irq(&np->lock);
  4716. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4717. spin_unlock_irq(&np->lock);
  4718. if (id1 < 0 || id1 == 0xffff)
  4719. continue;
  4720. spin_lock_irq(&np->lock);
  4721. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4722. spin_unlock_irq(&np->lock);
  4723. if (id2 < 0 || id2 == 0xffff)
  4724. continue;
  4725. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4726. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4727. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4728. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4729. pci_name(pci_dev), id1, id2, phyaddr);
  4730. np->phyaddr = phyaddr;
  4731. np->phy_oui = id1 | id2;
  4732. break;
  4733. }
  4734. if (i == 33) {
  4735. dev_printk(KERN_INFO, &pci_dev->dev,
  4736. "open: Could not find a valid PHY.\n");
  4737. goto out_error;
  4738. }
  4739. if (!phyinitialized) {
  4740. /* reset it */
  4741. phy_init(dev);
  4742. } else {
  4743. /* see if it is a gigabit phy */
  4744. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4745. if (mii_status & PHY_GIGABIT) {
  4746. np->gigabit = PHY_GIGABIT;
  4747. }
  4748. }
  4749. /* set default link speed settings */
  4750. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4751. np->duplex = 0;
  4752. np->autoneg = 1;
  4753. err = register_netdev(dev);
  4754. if (err) {
  4755. dev_printk(KERN_INFO, &pci_dev->dev,
  4756. "unable to register netdev: %d\n", err);
  4757. goto out_error;
  4758. }
  4759. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  4760. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  4761. dev->name,
  4762. np->phy_oui,
  4763. np->phyaddr,
  4764. dev->dev_addr[0],
  4765. dev->dev_addr[1],
  4766. dev->dev_addr[2],
  4767. dev->dev_addr[3],
  4768. dev->dev_addr[4],
  4769. dev->dev_addr[5]);
  4770. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  4771. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  4772. dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
  4773. "csum " : "",
  4774. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  4775. "vlan " : "",
  4776. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  4777. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  4778. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  4779. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  4780. np->need_linktimer ? "lnktim " : "",
  4781. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  4782. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  4783. np->desc_ver);
  4784. return 0;
  4785. out_error:
  4786. if (phystate_orig)
  4787. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  4788. pci_set_drvdata(pci_dev, NULL);
  4789. out_freering:
  4790. free_rings(dev);
  4791. out_unmap:
  4792. iounmap(get_hwbase(dev));
  4793. out_relreg:
  4794. pci_release_regions(pci_dev);
  4795. out_disable:
  4796. pci_disable_device(pci_dev);
  4797. out_free:
  4798. free_netdev(dev);
  4799. out:
  4800. return err;
  4801. }
  4802. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4803. {
  4804. struct net_device *dev = pci_get_drvdata(pci_dev);
  4805. struct fe_priv *np = netdev_priv(dev);
  4806. u8 __iomem *base = get_hwbase(dev);
  4807. unregister_netdev(dev);
  4808. /* special op: write back the misordered MAC address - otherwise
  4809. * the next nv_probe would see a wrong address.
  4810. */
  4811. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4812. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4813. /* free all structures */
  4814. free_rings(dev);
  4815. iounmap(get_hwbase(dev));
  4816. pci_release_regions(pci_dev);
  4817. pci_disable_device(pci_dev);
  4818. free_netdev(dev);
  4819. pci_set_drvdata(pci_dev, NULL);
  4820. }
  4821. #ifdef CONFIG_PM
  4822. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  4823. {
  4824. struct net_device *dev = pci_get_drvdata(pdev);
  4825. struct fe_priv *np = netdev_priv(dev);
  4826. if (!netif_running(dev))
  4827. goto out;
  4828. netif_device_detach(dev);
  4829. // Gross.
  4830. nv_close(dev);
  4831. pci_save_state(pdev);
  4832. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  4833. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4834. out:
  4835. return 0;
  4836. }
  4837. static int nv_resume(struct pci_dev *pdev)
  4838. {
  4839. struct net_device *dev = pci_get_drvdata(pdev);
  4840. int rc = 0;
  4841. if (!netif_running(dev))
  4842. goto out;
  4843. netif_device_attach(dev);
  4844. pci_set_power_state(pdev, PCI_D0);
  4845. pci_restore_state(pdev);
  4846. pci_enable_wake(pdev, PCI_D0, 0);
  4847. rc = nv_open(dev);
  4848. out:
  4849. return rc;
  4850. }
  4851. #else
  4852. #define nv_suspend NULL
  4853. #define nv_resume NULL
  4854. #endif /* CONFIG_PM */
  4855. static struct pci_device_id pci_tbl[] = {
  4856. { /* nForce Ethernet Controller */
  4857. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4858. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4859. },
  4860. { /* nForce2 Ethernet Controller */
  4861. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4862. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4863. },
  4864. { /* nForce3 Ethernet Controller */
  4865. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4866. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4867. },
  4868. { /* nForce3 Ethernet Controller */
  4869. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4870. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4871. },
  4872. { /* nForce3 Ethernet Controller */
  4873. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4874. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4875. },
  4876. { /* nForce3 Ethernet Controller */
  4877. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  4878. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4879. },
  4880. { /* nForce3 Ethernet Controller */
  4881. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  4882. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4883. },
  4884. { /* CK804 Ethernet Controller */
  4885. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  4886. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4887. },
  4888. { /* CK804 Ethernet Controller */
  4889. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  4890. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4891. },
  4892. { /* MCP04 Ethernet Controller */
  4893. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  4894. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4895. },
  4896. { /* MCP04 Ethernet Controller */
  4897. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  4898. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4899. },
  4900. { /* MCP51 Ethernet Controller */
  4901. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  4902. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4903. },
  4904. { /* MCP51 Ethernet Controller */
  4905. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  4906. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4907. },
  4908. { /* MCP55 Ethernet Controller */
  4909. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  4910. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4911. },
  4912. { /* MCP55 Ethernet Controller */
  4913. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  4914. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4915. },
  4916. { /* MCP61 Ethernet Controller */
  4917. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  4918. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4919. },
  4920. { /* MCP61 Ethernet Controller */
  4921. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  4922. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4923. },
  4924. { /* MCP61 Ethernet Controller */
  4925. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  4926. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4927. },
  4928. { /* MCP61 Ethernet Controller */
  4929. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  4930. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4931. },
  4932. { /* MCP65 Ethernet Controller */
  4933. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  4934. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4935. },
  4936. { /* MCP65 Ethernet Controller */
  4937. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  4938. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4939. },
  4940. { /* MCP65 Ethernet Controller */
  4941. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4942. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4943. },
  4944. { /* MCP65 Ethernet Controller */
  4945. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4946. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4947. },
  4948. { /* MCP67 Ethernet Controller */
  4949. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  4950. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4951. },
  4952. { /* MCP67 Ethernet Controller */
  4953. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  4954. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4955. },
  4956. { /* MCP67 Ethernet Controller */
  4957. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  4958. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4959. },
  4960. { /* MCP67 Ethernet Controller */
  4961. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  4962. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4963. },
  4964. { /* MCP73 Ethernet Controller */
  4965. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  4966. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4967. },
  4968. { /* MCP73 Ethernet Controller */
  4969. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  4970. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4971. },
  4972. { /* MCP73 Ethernet Controller */
  4973. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  4974. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4975. },
  4976. { /* MCP73 Ethernet Controller */
  4977. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  4978. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4979. },
  4980. {0,},
  4981. };
  4982. static struct pci_driver driver = {
  4983. .name = DRV_NAME,
  4984. .id_table = pci_tbl,
  4985. .probe = nv_probe,
  4986. .remove = __devexit_p(nv_remove),
  4987. .suspend = nv_suspend,
  4988. .resume = nv_resume,
  4989. };
  4990. static int __init init_nic(void)
  4991. {
  4992. return pci_register_driver(&driver);
  4993. }
  4994. static void __exit exit_nic(void)
  4995. {
  4996. pci_unregister_driver(&driver);
  4997. }
  4998. module_param(max_interrupt_work, int, 0);
  4999. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5000. module_param(optimization_mode, int, 0);
  5001. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5002. module_param(poll_interval, int, 0);
  5003. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5004. module_param(msi, int, 0);
  5005. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5006. module_param(msix, int, 0);
  5007. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5008. module_param(dma_64bit, int, 0);
  5009. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5010. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5011. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5012. MODULE_LICENSE("GPL");
  5013. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5014. module_init(init_nic);
  5015. module_exit(exit_nic);