fork.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/seccomp.h>
  36. #include <linux/swap.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/futex.h>
  40. #include <linux/compat.h>
  41. #include <linux/kthread.h>
  42. #include <linux/task_io_accounting_ops.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/ptrace.h>
  45. #include <linux/mount.h>
  46. #include <linux/audit.h>
  47. #include <linux/memcontrol.h>
  48. #include <linux/ftrace.h>
  49. #include <linux/proc_fs.h>
  50. #include <linux/profile.h>
  51. #include <linux/rmap.h>
  52. #include <linux/ksm.h>
  53. #include <linux/acct.h>
  54. #include <linux/tsacct_kern.h>
  55. #include <linux/cn_proc.h>
  56. #include <linux/freezer.h>
  57. #include <linux/delayacct.h>
  58. #include <linux/taskstats_kern.h>
  59. #include <linux/random.h>
  60. #include <linux/tty.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/fs_struct.h>
  63. #include <linux/magic.h>
  64. #include <linux/perf_event.h>
  65. #include <linux/posix-timers.h>
  66. #include <linux/user-return-notifier.h>
  67. #include <linux/oom.h>
  68. #include <linux/khugepaged.h>
  69. #include <linux/signalfd.h>
  70. #include <linux/uprobes.h>
  71. #include <linux/aio.h>
  72. #include <asm/pgtable.h>
  73. #include <asm/pgalloc.h>
  74. #include <asm/uaccess.h>
  75. #include <asm/mmu_context.h>
  76. #include <asm/cacheflush.h>
  77. #include <asm/tlbflush.h>
  78. #include <trace/events/sched.h>
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/task.h>
  81. /*
  82. * Protected counters by write_lock_irq(&tasklist_lock)
  83. */
  84. unsigned long total_forks; /* Handle normal Linux uptimes. */
  85. int nr_threads; /* The idle threads do not count.. */
  86. int max_threads; /* tunable limit on nr_threads */
  87. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  88. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  89. #ifdef CONFIG_PROVE_RCU
  90. int lockdep_tasklist_lock_is_held(void)
  91. {
  92. return lockdep_is_held(&tasklist_lock);
  93. }
  94. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  95. #endif /* #ifdef CONFIG_PROVE_RCU */
  96. int nr_processes(void)
  97. {
  98. int cpu;
  99. int total = 0;
  100. for_each_possible_cpu(cpu)
  101. total += per_cpu(process_counts, cpu);
  102. return total;
  103. }
  104. void __weak arch_release_task_struct(struct task_struct *tsk)
  105. {
  106. }
  107. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  108. static struct kmem_cache *task_struct_cachep;
  109. static inline struct task_struct *alloc_task_struct_node(int node)
  110. {
  111. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  112. }
  113. static inline void free_task_struct(struct task_struct *tsk)
  114. {
  115. kmem_cache_free(task_struct_cachep, tsk);
  116. }
  117. #endif
  118. void __weak arch_release_thread_info(struct thread_info *ti)
  119. {
  120. }
  121. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  122. /*
  123. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  124. * kmemcache based allocator.
  125. */
  126. # if THREAD_SIZE >= PAGE_SIZE
  127. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  128. int node)
  129. {
  130. struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
  131. THREAD_SIZE_ORDER);
  132. return page ? page_address(page) : NULL;
  133. }
  134. static inline void free_thread_info(struct thread_info *ti)
  135. {
  136. free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  137. }
  138. # else
  139. static struct kmem_cache *thread_info_cache;
  140. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  141. int node)
  142. {
  143. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  144. }
  145. static void free_thread_info(struct thread_info *ti)
  146. {
  147. kmem_cache_free(thread_info_cache, ti);
  148. }
  149. void thread_info_cache_init(void)
  150. {
  151. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  152. THREAD_SIZE, 0, NULL);
  153. BUG_ON(thread_info_cache == NULL);
  154. }
  155. # endif
  156. #endif
  157. /* SLAB cache for signal_struct structures (tsk->signal) */
  158. static struct kmem_cache *signal_cachep;
  159. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  160. struct kmem_cache *sighand_cachep;
  161. /* SLAB cache for files_struct structures (tsk->files) */
  162. struct kmem_cache *files_cachep;
  163. /* SLAB cache for fs_struct structures (tsk->fs) */
  164. struct kmem_cache *fs_cachep;
  165. /* SLAB cache for vm_area_struct structures */
  166. struct kmem_cache *vm_area_cachep;
  167. /* SLAB cache for mm_struct structures (tsk->mm) */
  168. static struct kmem_cache *mm_cachep;
  169. static void account_kernel_stack(struct thread_info *ti, int account)
  170. {
  171. struct zone *zone = page_zone(virt_to_page(ti));
  172. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  173. }
  174. void free_task(struct task_struct *tsk)
  175. {
  176. account_kernel_stack(tsk->stack, -1);
  177. arch_release_thread_info(tsk->stack);
  178. free_thread_info(tsk->stack);
  179. rt_mutex_debug_task_free(tsk);
  180. ftrace_graph_exit_task(tsk);
  181. put_seccomp_filter(tsk);
  182. arch_release_task_struct(tsk);
  183. free_task_struct(tsk);
  184. }
  185. EXPORT_SYMBOL(free_task);
  186. static inline void free_signal_struct(struct signal_struct *sig)
  187. {
  188. taskstats_tgid_free(sig);
  189. sched_autogroup_exit(sig);
  190. kmem_cache_free(signal_cachep, sig);
  191. }
  192. static inline void put_signal_struct(struct signal_struct *sig)
  193. {
  194. if (atomic_dec_and_test(&sig->sigcnt))
  195. free_signal_struct(sig);
  196. }
  197. void __put_task_struct(struct task_struct *tsk)
  198. {
  199. WARN_ON(!tsk->exit_state);
  200. WARN_ON(atomic_read(&tsk->usage));
  201. WARN_ON(tsk == current);
  202. security_task_free(tsk);
  203. exit_creds(tsk);
  204. delayacct_tsk_free(tsk);
  205. put_signal_struct(tsk->signal);
  206. if (!profile_handoff_task(tsk))
  207. free_task(tsk);
  208. }
  209. EXPORT_SYMBOL_GPL(__put_task_struct);
  210. void __init __weak arch_task_cache_init(void) { }
  211. void __init fork_init(unsigned long mempages)
  212. {
  213. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  214. #ifndef ARCH_MIN_TASKALIGN
  215. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  216. #endif
  217. /* create a slab on which task_structs can be allocated */
  218. task_struct_cachep =
  219. kmem_cache_create("task_struct", sizeof(struct task_struct),
  220. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  221. #endif
  222. /* do the arch specific task caches init */
  223. arch_task_cache_init();
  224. /*
  225. * The default maximum number of threads is set to a safe
  226. * value: the thread structures can take up at most half
  227. * of memory.
  228. */
  229. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  230. /*
  231. * we need to allow at least 20 threads to boot a system
  232. */
  233. if (max_threads < 20)
  234. max_threads = 20;
  235. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  236. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  237. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  238. init_task.signal->rlim[RLIMIT_NPROC];
  239. }
  240. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  241. struct task_struct *src)
  242. {
  243. *dst = *src;
  244. return 0;
  245. }
  246. static struct task_struct *dup_task_struct(struct task_struct *orig)
  247. {
  248. struct task_struct *tsk;
  249. struct thread_info *ti;
  250. unsigned long *stackend;
  251. int node = tsk_fork_get_node(orig);
  252. int err;
  253. tsk = alloc_task_struct_node(node);
  254. if (!tsk)
  255. return NULL;
  256. ti = alloc_thread_info_node(tsk, node);
  257. if (!ti)
  258. goto free_tsk;
  259. err = arch_dup_task_struct(tsk, orig);
  260. if (err)
  261. goto free_ti;
  262. tsk->stack = ti;
  263. setup_thread_stack(tsk, orig);
  264. clear_user_return_notifier(tsk);
  265. clear_tsk_need_resched(tsk);
  266. stackend = end_of_stack(tsk);
  267. *stackend = STACK_END_MAGIC; /* for overflow detection */
  268. #ifdef CONFIG_CC_STACKPROTECTOR
  269. tsk->stack_canary = get_random_int();
  270. #endif
  271. /*
  272. * One for us, one for whoever does the "release_task()" (usually
  273. * parent)
  274. */
  275. atomic_set(&tsk->usage, 2);
  276. #ifdef CONFIG_BLK_DEV_IO_TRACE
  277. tsk->btrace_seq = 0;
  278. #endif
  279. tsk->splice_pipe = NULL;
  280. tsk->task_frag.page = NULL;
  281. account_kernel_stack(ti, 1);
  282. return tsk;
  283. free_ti:
  284. free_thread_info(ti);
  285. free_tsk:
  286. free_task_struct(tsk);
  287. return NULL;
  288. }
  289. #ifdef CONFIG_MMU
  290. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  291. {
  292. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  293. struct rb_node **rb_link, *rb_parent;
  294. int retval;
  295. unsigned long charge;
  296. struct mempolicy *pol;
  297. uprobe_start_dup_mmap();
  298. down_write(&oldmm->mmap_sem);
  299. flush_cache_dup_mm(oldmm);
  300. uprobe_dup_mmap(oldmm, mm);
  301. /*
  302. * Not linked in yet - no deadlock potential:
  303. */
  304. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  305. mm->locked_vm = 0;
  306. mm->mmap = NULL;
  307. mm->mmap_cache = NULL;
  308. mm->free_area_cache = oldmm->mmap_base;
  309. mm->cached_hole_size = ~0UL;
  310. mm->map_count = 0;
  311. cpumask_clear(mm_cpumask(mm));
  312. mm->mm_rb = RB_ROOT;
  313. rb_link = &mm->mm_rb.rb_node;
  314. rb_parent = NULL;
  315. pprev = &mm->mmap;
  316. retval = ksm_fork(mm, oldmm);
  317. if (retval)
  318. goto out;
  319. retval = khugepaged_fork(mm, oldmm);
  320. if (retval)
  321. goto out;
  322. prev = NULL;
  323. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  324. struct file *file;
  325. if (mpnt->vm_flags & VM_DONTCOPY) {
  326. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  327. -vma_pages(mpnt));
  328. continue;
  329. }
  330. charge = 0;
  331. if (mpnt->vm_flags & VM_ACCOUNT) {
  332. unsigned long len = vma_pages(mpnt);
  333. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  334. goto fail_nomem;
  335. charge = len;
  336. }
  337. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  338. if (!tmp)
  339. goto fail_nomem;
  340. *tmp = *mpnt;
  341. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  342. pol = mpol_dup(vma_policy(mpnt));
  343. retval = PTR_ERR(pol);
  344. if (IS_ERR(pol))
  345. goto fail_nomem_policy;
  346. vma_set_policy(tmp, pol);
  347. tmp->vm_mm = mm;
  348. if (anon_vma_fork(tmp, mpnt))
  349. goto fail_nomem_anon_vma_fork;
  350. tmp->vm_flags &= ~VM_LOCKED;
  351. tmp->vm_next = tmp->vm_prev = NULL;
  352. file = tmp->vm_file;
  353. if (file) {
  354. struct inode *inode = file_inode(file);
  355. struct address_space *mapping = file->f_mapping;
  356. get_file(file);
  357. if (tmp->vm_flags & VM_DENYWRITE)
  358. atomic_dec(&inode->i_writecount);
  359. mutex_lock(&mapping->i_mmap_mutex);
  360. if (tmp->vm_flags & VM_SHARED)
  361. mapping->i_mmap_writable++;
  362. flush_dcache_mmap_lock(mapping);
  363. /* insert tmp into the share list, just after mpnt */
  364. if (unlikely(tmp->vm_flags & VM_NONLINEAR))
  365. vma_nonlinear_insert(tmp,
  366. &mapping->i_mmap_nonlinear);
  367. else
  368. vma_interval_tree_insert_after(tmp, mpnt,
  369. &mapping->i_mmap);
  370. flush_dcache_mmap_unlock(mapping);
  371. mutex_unlock(&mapping->i_mmap_mutex);
  372. }
  373. /*
  374. * Clear hugetlb-related page reserves for children. This only
  375. * affects MAP_PRIVATE mappings. Faults generated by the child
  376. * are not guaranteed to succeed, even if read-only
  377. */
  378. if (is_vm_hugetlb_page(tmp))
  379. reset_vma_resv_huge_pages(tmp);
  380. /*
  381. * Link in the new vma and copy the page table entries.
  382. */
  383. *pprev = tmp;
  384. pprev = &tmp->vm_next;
  385. tmp->vm_prev = prev;
  386. prev = tmp;
  387. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  388. rb_link = &tmp->vm_rb.rb_right;
  389. rb_parent = &tmp->vm_rb;
  390. mm->map_count++;
  391. retval = copy_page_range(mm, oldmm, mpnt);
  392. if (tmp->vm_ops && tmp->vm_ops->open)
  393. tmp->vm_ops->open(tmp);
  394. if (retval)
  395. goto out;
  396. }
  397. /* a new mm has just been created */
  398. arch_dup_mmap(oldmm, mm);
  399. retval = 0;
  400. out:
  401. up_write(&mm->mmap_sem);
  402. flush_tlb_mm(oldmm);
  403. up_write(&oldmm->mmap_sem);
  404. uprobe_end_dup_mmap();
  405. return retval;
  406. fail_nomem_anon_vma_fork:
  407. mpol_put(pol);
  408. fail_nomem_policy:
  409. kmem_cache_free(vm_area_cachep, tmp);
  410. fail_nomem:
  411. retval = -ENOMEM;
  412. vm_unacct_memory(charge);
  413. goto out;
  414. }
  415. static inline int mm_alloc_pgd(struct mm_struct *mm)
  416. {
  417. mm->pgd = pgd_alloc(mm);
  418. if (unlikely(!mm->pgd))
  419. return -ENOMEM;
  420. return 0;
  421. }
  422. static inline void mm_free_pgd(struct mm_struct *mm)
  423. {
  424. pgd_free(mm, mm->pgd);
  425. }
  426. #else
  427. #define dup_mmap(mm, oldmm) (0)
  428. #define mm_alloc_pgd(mm) (0)
  429. #define mm_free_pgd(mm)
  430. #endif /* CONFIG_MMU */
  431. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  432. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  433. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  434. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  435. static int __init coredump_filter_setup(char *s)
  436. {
  437. default_dump_filter =
  438. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  439. MMF_DUMP_FILTER_MASK;
  440. return 1;
  441. }
  442. __setup("coredump_filter=", coredump_filter_setup);
  443. #include <linux/init_task.h>
  444. static void mm_init_aio(struct mm_struct *mm)
  445. {
  446. #ifdef CONFIG_AIO
  447. spin_lock_init(&mm->ioctx_lock);
  448. INIT_HLIST_HEAD(&mm->ioctx_list);
  449. #endif
  450. }
  451. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  452. {
  453. atomic_set(&mm->mm_users, 1);
  454. atomic_set(&mm->mm_count, 1);
  455. init_rwsem(&mm->mmap_sem);
  456. INIT_LIST_HEAD(&mm->mmlist);
  457. mm->flags = (current->mm) ?
  458. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  459. mm->core_state = NULL;
  460. mm->nr_ptes = 0;
  461. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  462. spin_lock_init(&mm->page_table_lock);
  463. mm->free_area_cache = TASK_UNMAPPED_BASE;
  464. mm->cached_hole_size = ~0UL;
  465. mm_init_aio(mm);
  466. mm_init_owner(mm, p);
  467. if (likely(!mm_alloc_pgd(mm))) {
  468. mm->def_flags = 0;
  469. mmu_notifier_mm_init(mm);
  470. return mm;
  471. }
  472. free_mm(mm);
  473. return NULL;
  474. }
  475. static void check_mm(struct mm_struct *mm)
  476. {
  477. int i;
  478. for (i = 0; i < NR_MM_COUNTERS; i++) {
  479. long x = atomic_long_read(&mm->rss_stat.count[i]);
  480. if (unlikely(x))
  481. printk(KERN_ALERT "BUG: Bad rss-counter state "
  482. "mm:%p idx:%d val:%ld\n", mm, i, x);
  483. }
  484. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  485. VM_BUG_ON(mm->pmd_huge_pte);
  486. #endif
  487. }
  488. /*
  489. * Allocate and initialize an mm_struct.
  490. */
  491. struct mm_struct *mm_alloc(void)
  492. {
  493. struct mm_struct *mm;
  494. mm = allocate_mm();
  495. if (!mm)
  496. return NULL;
  497. memset(mm, 0, sizeof(*mm));
  498. mm_init_cpumask(mm);
  499. return mm_init(mm, current);
  500. }
  501. /*
  502. * Called when the last reference to the mm
  503. * is dropped: either by a lazy thread or by
  504. * mmput. Free the page directory and the mm.
  505. */
  506. void __mmdrop(struct mm_struct *mm)
  507. {
  508. BUG_ON(mm == &init_mm);
  509. mm_free_pgd(mm);
  510. destroy_context(mm);
  511. mmu_notifier_mm_destroy(mm);
  512. check_mm(mm);
  513. free_mm(mm);
  514. }
  515. EXPORT_SYMBOL_GPL(__mmdrop);
  516. /*
  517. * Decrement the use count and release all resources for an mm.
  518. */
  519. void mmput(struct mm_struct *mm)
  520. {
  521. might_sleep();
  522. if (atomic_dec_and_test(&mm->mm_users)) {
  523. uprobe_clear_state(mm);
  524. exit_aio(mm);
  525. ksm_exit(mm);
  526. khugepaged_exit(mm); /* must run before exit_mmap */
  527. exit_mmap(mm);
  528. set_mm_exe_file(mm, NULL);
  529. if (!list_empty(&mm->mmlist)) {
  530. spin_lock(&mmlist_lock);
  531. list_del(&mm->mmlist);
  532. spin_unlock(&mmlist_lock);
  533. }
  534. if (mm->binfmt)
  535. module_put(mm->binfmt->module);
  536. mmdrop(mm);
  537. }
  538. }
  539. EXPORT_SYMBOL_GPL(mmput);
  540. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  541. {
  542. if (new_exe_file)
  543. get_file(new_exe_file);
  544. if (mm->exe_file)
  545. fput(mm->exe_file);
  546. mm->exe_file = new_exe_file;
  547. }
  548. struct file *get_mm_exe_file(struct mm_struct *mm)
  549. {
  550. struct file *exe_file;
  551. /* We need mmap_sem to protect against races with removal of exe_file */
  552. down_read(&mm->mmap_sem);
  553. exe_file = mm->exe_file;
  554. if (exe_file)
  555. get_file(exe_file);
  556. up_read(&mm->mmap_sem);
  557. return exe_file;
  558. }
  559. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  560. {
  561. /* It's safe to write the exe_file pointer without exe_file_lock because
  562. * this is called during fork when the task is not yet in /proc */
  563. newmm->exe_file = get_mm_exe_file(oldmm);
  564. }
  565. /**
  566. * get_task_mm - acquire a reference to the task's mm
  567. *
  568. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  569. * this kernel workthread has transiently adopted a user mm with use_mm,
  570. * to do its AIO) is not set and if so returns a reference to it, after
  571. * bumping up the use count. User must release the mm via mmput()
  572. * after use. Typically used by /proc and ptrace.
  573. */
  574. struct mm_struct *get_task_mm(struct task_struct *task)
  575. {
  576. struct mm_struct *mm;
  577. task_lock(task);
  578. mm = task->mm;
  579. if (mm) {
  580. if (task->flags & PF_KTHREAD)
  581. mm = NULL;
  582. else
  583. atomic_inc(&mm->mm_users);
  584. }
  585. task_unlock(task);
  586. return mm;
  587. }
  588. EXPORT_SYMBOL_GPL(get_task_mm);
  589. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  590. {
  591. struct mm_struct *mm;
  592. int err;
  593. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  594. if (err)
  595. return ERR_PTR(err);
  596. mm = get_task_mm(task);
  597. if (mm && mm != current->mm &&
  598. !ptrace_may_access(task, mode)) {
  599. mmput(mm);
  600. mm = ERR_PTR(-EACCES);
  601. }
  602. mutex_unlock(&task->signal->cred_guard_mutex);
  603. return mm;
  604. }
  605. static void complete_vfork_done(struct task_struct *tsk)
  606. {
  607. struct completion *vfork;
  608. task_lock(tsk);
  609. vfork = tsk->vfork_done;
  610. if (likely(vfork)) {
  611. tsk->vfork_done = NULL;
  612. complete(vfork);
  613. }
  614. task_unlock(tsk);
  615. }
  616. static int wait_for_vfork_done(struct task_struct *child,
  617. struct completion *vfork)
  618. {
  619. int killed;
  620. freezer_do_not_count();
  621. killed = wait_for_completion_killable(vfork);
  622. freezer_count();
  623. if (killed) {
  624. task_lock(child);
  625. child->vfork_done = NULL;
  626. task_unlock(child);
  627. }
  628. put_task_struct(child);
  629. return killed;
  630. }
  631. /* Please note the differences between mmput and mm_release.
  632. * mmput is called whenever we stop holding onto a mm_struct,
  633. * error success whatever.
  634. *
  635. * mm_release is called after a mm_struct has been removed
  636. * from the current process.
  637. *
  638. * This difference is important for error handling, when we
  639. * only half set up a mm_struct for a new process and need to restore
  640. * the old one. Because we mmput the new mm_struct before
  641. * restoring the old one. . .
  642. * Eric Biederman 10 January 1998
  643. */
  644. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  645. {
  646. /* Get rid of any futexes when releasing the mm */
  647. #ifdef CONFIG_FUTEX
  648. if (unlikely(tsk->robust_list)) {
  649. exit_robust_list(tsk);
  650. tsk->robust_list = NULL;
  651. }
  652. #ifdef CONFIG_COMPAT
  653. if (unlikely(tsk->compat_robust_list)) {
  654. compat_exit_robust_list(tsk);
  655. tsk->compat_robust_list = NULL;
  656. }
  657. #endif
  658. if (unlikely(!list_empty(&tsk->pi_state_list)))
  659. exit_pi_state_list(tsk);
  660. #endif
  661. uprobe_free_utask(tsk);
  662. /* Get rid of any cached register state */
  663. deactivate_mm(tsk, mm);
  664. /*
  665. * If we're exiting normally, clear a user-space tid field if
  666. * requested. We leave this alone when dying by signal, to leave
  667. * the value intact in a core dump, and to save the unnecessary
  668. * trouble, say, a killed vfork parent shouldn't touch this mm.
  669. * Userland only wants this done for a sys_exit.
  670. */
  671. if (tsk->clear_child_tid) {
  672. if (!(tsk->flags & PF_SIGNALED) &&
  673. atomic_read(&mm->mm_users) > 1) {
  674. /*
  675. * We don't check the error code - if userspace has
  676. * not set up a proper pointer then tough luck.
  677. */
  678. put_user(0, tsk->clear_child_tid);
  679. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  680. 1, NULL, NULL, 0);
  681. }
  682. tsk->clear_child_tid = NULL;
  683. }
  684. /*
  685. * All done, finally we can wake up parent and return this mm to him.
  686. * Also kthread_stop() uses this completion for synchronization.
  687. */
  688. if (tsk->vfork_done)
  689. complete_vfork_done(tsk);
  690. }
  691. /*
  692. * Allocate a new mm structure and copy contents from the
  693. * mm structure of the passed in task structure.
  694. */
  695. struct mm_struct *dup_mm(struct task_struct *tsk)
  696. {
  697. struct mm_struct *mm, *oldmm = current->mm;
  698. int err;
  699. if (!oldmm)
  700. return NULL;
  701. mm = allocate_mm();
  702. if (!mm)
  703. goto fail_nomem;
  704. memcpy(mm, oldmm, sizeof(*mm));
  705. mm_init_cpumask(mm);
  706. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  707. mm->pmd_huge_pte = NULL;
  708. #endif
  709. #ifdef CONFIG_NUMA_BALANCING
  710. mm->first_nid = NUMA_PTE_SCAN_INIT;
  711. #endif
  712. if (!mm_init(mm, tsk))
  713. goto fail_nomem;
  714. if (init_new_context(tsk, mm))
  715. goto fail_nocontext;
  716. dup_mm_exe_file(oldmm, mm);
  717. err = dup_mmap(mm, oldmm);
  718. if (err)
  719. goto free_pt;
  720. mm->hiwater_rss = get_mm_rss(mm);
  721. mm->hiwater_vm = mm->total_vm;
  722. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  723. goto free_pt;
  724. return mm;
  725. free_pt:
  726. /* don't put binfmt in mmput, we haven't got module yet */
  727. mm->binfmt = NULL;
  728. mmput(mm);
  729. fail_nomem:
  730. return NULL;
  731. fail_nocontext:
  732. /*
  733. * If init_new_context() failed, we cannot use mmput() to free the mm
  734. * because it calls destroy_context()
  735. */
  736. mm_free_pgd(mm);
  737. free_mm(mm);
  738. return NULL;
  739. }
  740. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  741. {
  742. struct mm_struct *mm, *oldmm;
  743. int retval;
  744. tsk->min_flt = tsk->maj_flt = 0;
  745. tsk->nvcsw = tsk->nivcsw = 0;
  746. #ifdef CONFIG_DETECT_HUNG_TASK
  747. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  748. #endif
  749. tsk->mm = NULL;
  750. tsk->active_mm = NULL;
  751. /*
  752. * Are we cloning a kernel thread?
  753. *
  754. * We need to steal a active VM for that..
  755. */
  756. oldmm = current->mm;
  757. if (!oldmm)
  758. return 0;
  759. if (clone_flags & CLONE_VM) {
  760. atomic_inc(&oldmm->mm_users);
  761. mm = oldmm;
  762. goto good_mm;
  763. }
  764. retval = -ENOMEM;
  765. mm = dup_mm(tsk);
  766. if (!mm)
  767. goto fail_nomem;
  768. good_mm:
  769. tsk->mm = mm;
  770. tsk->active_mm = mm;
  771. return 0;
  772. fail_nomem:
  773. return retval;
  774. }
  775. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  776. {
  777. struct fs_struct *fs = current->fs;
  778. if (clone_flags & CLONE_FS) {
  779. /* tsk->fs is already what we want */
  780. spin_lock(&fs->lock);
  781. if (fs->in_exec) {
  782. spin_unlock(&fs->lock);
  783. return -EAGAIN;
  784. }
  785. fs->users++;
  786. spin_unlock(&fs->lock);
  787. return 0;
  788. }
  789. tsk->fs = copy_fs_struct(fs);
  790. if (!tsk->fs)
  791. return -ENOMEM;
  792. return 0;
  793. }
  794. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  795. {
  796. struct files_struct *oldf, *newf;
  797. int error = 0;
  798. /*
  799. * A background process may not have any files ...
  800. */
  801. oldf = current->files;
  802. if (!oldf)
  803. goto out;
  804. if (clone_flags & CLONE_FILES) {
  805. atomic_inc(&oldf->count);
  806. goto out;
  807. }
  808. newf = dup_fd(oldf, &error);
  809. if (!newf)
  810. goto out;
  811. tsk->files = newf;
  812. error = 0;
  813. out:
  814. return error;
  815. }
  816. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  817. {
  818. #ifdef CONFIG_BLOCK
  819. struct io_context *ioc = current->io_context;
  820. struct io_context *new_ioc;
  821. if (!ioc)
  822. return 0;
  823. /*
  824. * Share io context with parent, if CLONE_IO is set
  825. */
  826. if (clone_flags & CLONE_IO) {
  827. ioc_task_link(ioc);
  828. tsk->io_context = ioc;
  829. } else if (ioprio_valid(ioc->ioprio)) {
  830. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  831. if (unlikely(!new_ioc))
  832. return -ENOMEM;
  833. new_ioc->ioprio = ioc->ioprio;
  834. put_io_context(new_ioc);
  835. }
  836. #endif
  837. return 0;
  838. }
  839. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  840. {
  841. struct sighand_struct *sig;
  842. if (clone_flags & CLONE_SIGHAND) {
  843. atomic_inc(&current->sighand->count);
  844. return 0;
  845. }
  846. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  847. rcu_assign_pointer(tsk->sighand, sig);
  848. if (!sig)
  849. return -ENOMEM;
  850. atomic_set(&sig->count, 1);
  851. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  852. return 0;
  853. }
  854. void __cleanup_sighand(struct sighand_struct *sighand)
  855. {
  856. if (atomic_dec_and_test(&sighand->count)) {
  857. signalfd_cleanup(sighand);
  858. kmem_cache_free(sighand_cachep, sighand);
  859. }
  860. }
  861. /*
  862. * Initialize POSIX timer handling for a thread group.
  863. */
  864. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  865. {
  866. unsigned long cpu_limit;
  867. /* Thread group counters. */
  868. thread_group_cputime_init(sig);
  869. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  870. if (cpu_limit != RLIM_INFINITY) {
  871. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  872. sig->cputimer.running = 1;
  873. }
  874. /* The timer lists. */
  875. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  876. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  877. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  878. }
  879. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  880. {
  881. struct signal_struct *sig;
  882. if (clone_flags & CLONE_THREAD)
  883. return 0;
  884. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  885. tsk->signal = sig;
  886. if (!sig)
  887. return -ENOMEM;
  888. sig->nr_threads = 1;
  889. atomic_set(&sig->live, 1);
  890. atomic_set(&sig->sigcnt, 1);
  891. init_waitqueue_head(&sig->wait_chldexit);
  892. sig->curr_target = tsk;
  893. init_sigpending(&sig->shared_pending);
  894. INIT_LIST_HEAD(&sig->posix_timers);
  895. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  896. sig->real_timer.function = it_real_fn;
  897. task_lock(current->group_leader);
  898. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  899. task_unlock(current->group_leader);
  900. posix_cpu_timers_init_group(sig);
  901. tty_audit_fork(sig);
  902. sched_autogroup_fork(sig);
  903. #ifdef CONFIG_CGROUPS
  904. init_rwsem(&sig->group_rwsem);
  905. #endif
  906. sig->oom_score_adj = current->signal->oom_score_adj;
  907. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  908. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  909. current->signal->is_child_subreaper;
  910. mutex_init(&sig->cred_guard_mutex);
  911. return 0;
  912. }
  913. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  914. {
  915. unsigned long new_flags = p->flags;
  916. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  917. new_flags |= PF_FORKNOEXEC;
  918. p->flags = new_flags;
  919. }
  920. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  921. {
  922. current->clear_child_tid = tidptr;
  923. return task_pid_vnr(current);
  924. }
  925. static void rt_mutex_init_task(struct task_struct *p)
  926. {
  927. raw_spin_lock_init(&p->pi_lock);
  928. #ifdef CONFIG_RT_MUTEXES
  929. plist_head_init(&p->pi_waiters);
  930. p->pi_blocked_on = NULL;
  931. #endif
  932. }
  933. #ifdef CONFIG_MM_OWNER
  934. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  935. {
  936. mm->owner = p;
  937. }
  938. #endif /* CONFIG_MM_OWNER */
  939. /*
  940. * Initialize POSIX timer handling for a single task.
  941. */
  942. static void posix_cpu_timers_init(struct task_struct *tsk)
  943. {
  944. tsk->cputime_expires.prof_exp = 0;
  945. tsk->cputime_expires.virt_exp = 0;
  946. tsk->cputime_expires.sched_exp = 0;
  947. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  948. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  949. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  950. }
  951. /*
  952. * This creates a new process as a copy of the old one,
  953. * but does not actually start it yet.
  954. *
  955. * It copies the registers, and all the appropriate
  956. * parts of the process environment (as per the clone
  957. * flags). The actual kick-off is left to the caller.
  958. */
  959. static struct task_struct *copy_process(unsigned long clone_flags,
  960. unsigned long stack_start,
  961. unsigned long stack_size,
  962. int __user *child_tidptr,
  963. struct pid *pid,
  964. int trace)
  965. {
  966. int retval;
  967. struct task_struct *p;
  968. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  969. return ERR_PTR(-EINVAL);
  970. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  971. return ERR_PTR(-EINVAL);
  972. /*
  973. * Thread groups must share signals as well, and detached threads
  974. * can only be started up within the thread group.
  975. */
  976. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  977. return ERR_PTR(-EINVAL);
  978. /*
  979. * Shared signal handlers imply shared VM. By way of the above,
  980. * thread groups also imply shared VM. Blocking this case allows
  981. * for various simplifications in other code.
  982. */
  983. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  984. return ERR_PTR(-EINVAL);
  985. /*
  986. * Siblings of global init remain as zombies on exit since they are
  987. * not reaped by their parent (swapper). To solve this and to avoid
  988. * multi-rooted process trees, prevent global and container-inits
  989. * from creating siblings.
  990. */
  991. if ((clone_flags & CLONE_PARENT) &&
  992. current->signal->flags & SIGNAL_UNKILLABLE)
  993. return ERR_PTR(-EINVAL);
  994. /*
  995. * If the new process will be in a different pid namespace
  996. * don't allow the creation of threads.
  997. */
  998. if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) &&
  999. (task_active_pid_ns(current) != current->nsproxy->pid_ns))
  1000. return ERR_PTR(-EINVAL);
  1001. retval = security_task_create(clone_flags);
  1002. if (retval)
  1003. goto fork_out;
  1004. retval = -ENOMEM;
  1005. p = dup_task_struct(current);
  1006. if (!p)
  1007. goto fork_out;
  1008. ftrace_graph_init_task(p);
  1009. get_seccomp_filter(p);
  1010. rt_mutex_init_task(p);
  1011. #ifdef CONFIG_PROVE_LOCKING
  1012. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1013. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1014. #endif
  1015. retval = -EAGAIN;
  1016. if (atomic_read(&p->real_cred->user->processes) >=
  1017. task_rlimit(p, RLIMIT_NPROC)) {
  1018. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  1019. p->real_cred->user != INIT_USER)
  1020. goto bad_fork_free;
  1021. }
  1022. current->flags &= ~PF_NPROC_EXCEEDED;
  1023. retval = copy_creds(p, clone_flags);
  1024. if (retval < 0)
  1025. goto bad_fork_free;
  1026. /*
  1027. * If multiple threads are within copy_process(), then this check
  1028. * triggers too late. This doesn't hurt, the check is only there
  1029. * to stop root fork bombs.
  1030. */
  1031. retval = -EAGAIN;
  1032. if (nr_threads >= max_threads)
  1033. goto bad_fork_cleanup_count;
  1034. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1035. goto bad_fork_cleanup_count;
  1036. p->did_exec = 0;
  1037. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1038. copy_flags(clone_flags, p);
  1039. INIT_LIST_HEAD(&p->children);
  1040. INIT_LIST_HEAD(&p->sibling);
  1041. rcu_copy_process(p);
  1042. p->vfork_done = NULL;
  1043. spin_lock_init(&p->alloc_lock);
  1044. init_sigpending(&p->pending);
  1045. p->utime = p->stime = p->gtime = 0;
  1046. p->utimescaled = p->stimescaled = 0;
  1047. #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  1048. p->prev_cputime.utime = p->prev_cputime.stime = 0;
  1049. #endif
  1050. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1051. seqlock_init(&p->vtime_seqlock);
  1052. p->vtime_snap = 0;
  1053. p->vtime_snap_whence = VTIME_SLEEPING;
  1054. #endif
  1055. #if defined(SPLIT_RSS_COUNTING)
  1056. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1057. #endif
  1058. p->default_timer_slack_ns = current->timer_slack_ns;
  1059. task_io_accounting_init(&p->ioac);
  1060. acct_clear_integrals(p);
  1061. posix_cpu_timers_init(p);
  1062. do_posix_clock_monotonic_gettime(&p->start_time);
  1063. p->real_start_time = p->start_time;
  1064. monotonic_to_bootbased(&p->real_start_time);
  1065. p->io_context = NULL;
  1066. p->audit_context = NULL;
  1067. if (clone_flags & CLONE_THREAD)
  1068. threadgroup_change_begin(current);
  1069. cgroup_fork(p);
  1070. #ifdef CONFIG_NUMA
  1071. p->mempolicy = mpol_dup(p->mempolicy);
  1072. if (IS_ERR(p->mempolicy)) {
  1073. retval = PTR_ERR(p->mempolicy);
  1074. p->mempolicy = NULL;
  1075. goto bad_fork_cleanup_cgroup;
  1076. }
  1077. mpol_fix_fork_child_flag(p);
  1078. #endif
  1079. #ifdef CONFIG_CPUSETS
  1080. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1081. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1082. seqcount_init(&p->mems_allowed_seq);
  1083. #endif
  1084. #ifdef CONFIG_TRACE_IRQFLAGS
  1085. p->irq_events = 0;
  1086. p->hardirqs_enabled = 0;
  1087. p->hardirq_enable_ip = 0;
  1088. p->hardirq_enable_event = 0;
  1089. p->hardirq_disable_ip = _THIS_IP_;
  1090. p->hardirq_disable_event = 0;
  1091. p->softirqs_enabled = 1;
  1092. p->softirq_enable_ip = _THIS_IP_;
  1093. p->softirq_enable_event = 0;
  1094. p->softirq_disable_ip = 0;
  1095. p->softirq_disable_event = 0;
  1096. p->hardirq_context = 0;
  1097. p->softirq_context = 0;
  1098. #endif
  1099. #ifdef CONFIG_LOCKDEP
  1100. p->lockdep_depth = 0; /* no locks held yet */
  1101. p->curr_chain_key = 0;
  1102. p->lockdep_recursion = 0;
  1103. #endif
  1104. #ifdef CONFIG_DEBUG_MUTEXES
  1105. p->blocked_on = NULL; /* not blocked yet */
  1106. #endif
  1107. #ifdef CONFIG_MEMCG
  1108. p->memcg_batch.do_batch = 0;
  1109. p->memcg_batch.memcg = NULL;
  1110. #endif
  1111. #ifdef CONFIG_BCACHE
  1112. p->sequential_io = 0;
  1113. p->sequential_io_avg = 0;
  1114. #endif
  1115. /* Perform scheduler related setup. Assign this task to a CPU. */
  1116. sched_fork(p);
  1117. retval = perf_event_init_task(p);
  1118. if (retval)
  1119. goto bad_fork_cleanup_policy;
  1120. retval = audit_alloc(p);
  1121. if (retval)
  1122. goto bad_fork_cleanup_policy;
  1123. /* copy all the process information */
  1124. retval = copy_semundo(clone_flags, p);
  1125. if (retval)
  1126. goto bad_fork_cleanup_audit;
  1127. retval = copy_files(clone_flags, p);
  1128. if (retval)
  1129. goto bad_fork_cleanup_semundo;
  1130. retval = copy_fs(clone_flags, p);
  1131. if (retval)
  1132. goto bad_fork_cleanup_files;
  1133. retval = copy_sighand(clone_flags, p);
  1134. if (retval)
  1135. goto bad_fork_cleanup_fs;
  1136. retval = copy_signal(clone_flags, p);
  1137. if (retval)
  1138. goto bad_fork_cleanup_sighand;
  1139. retval = copy_mm(clone_flags, p);
  1140. if (retval)
  1141. goto bad_fork_cleanup_signal;
  1142. retval = copy_namespaces(clone_flags, p);
  1143. if (retval)
  1144. goto bad_fork_cleanup_mm;
  1145. retval = copy_io(clone_flags, p);
  1146. if (retval)
  1147. goto bad_fork_cleanup_namespaces;
  1148. retval = copy_thread(clone_flags, stack_start, stack_size, p);
  1149. if (retval)
  1150. goto bad_fork_cleanup_io;
  1151. if (pid != &init_struct_pid) {
  1152. retval = -ENOMEM;
  1153. pid = alloc_pid(p->nsproxy->pid_ns);
  1154. if (!pid)
  1155. goto bad_fork_cleanup_io;
  1156. }
  1157. p->pid = pid_nr(pid);
  1158. p->tgid = p->pid;
  1159. if (clone_flags & CLONE_THREAD)
  1160. p->tgid = current->tgid;
  1161. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1162. /*
  1163. * Clear TID on mm_release()?
  1164. */
  1165. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1166. #ifdef CONFIG_BLOCK
  1167. p->plug = NULL;
  1168. #endif
  1169. #ifdef CONFIG_FUTEX
  1170. p->robust_list = NULL;
  1171. #ifdef CONFIG_COMPAT
  1172. p->compat_robust_list = NULL;
  1173. #endif
  1174. INIT_LIST_HEAD(&p->pi_state_list);
  1175. p->pi_state_cache = NULL;
  1176. #endif
  1177. uprobe_copy_process(p);
  1178. /*
  1179. * sigaltstack should be cleared when sharing the same VM
  1180. */
  1181. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1182. p->sas_ss_sp = p->sas_ss_size = 0;
  1183. /*
  1184. * Syscall tracing and stepping should be turned off in the
  1185. * child regardless of CLONE_PTRACE.
  1186. */
  1187. user_disable_single_step(p);
  1188. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1189. #ifdef TIF_SYSCALL_EMU
  1190. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1191. #endif
  1192. clear_all_latency_tracing(p);
  1193. /* ok, now we should be set up.. */
  1194. if (clone_flags & CLONE_THREAD)
  1195. p->exit_signal = -1;
  1196. else if (clone_flags & CLONE_PARENT)
  1197. p->exit_signal = current->group_leader->exit_signal;
  1198. else
  1199. p->exit_signal = (clone_flags & CSIGNAL);
  1200. p->pdeath_signal = 0;
  1201. p->exit_state = 0;
  1202. p->nr_dirtied = 0;
  1203. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1204. p->dirty_paused_when = 0;
  1205. /*
  1206. * Ok, make it visible to the rest of the system.
  1207. * We dont wake it up yet.
  1208. */
  1209. p->group_leader = p;
  1210. INIT_LIST_HEAD(&p->thread_group);
  1211. p->task_works = NULL;
  1212. /* Need tasklist lock for parent etc handling! */
  1213. write_lock_irq(&tasklist_lock);
  1214. /* CLONE_PARENT re-uses the old parent */
  1215. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1216. p->real_parent = current->real_parent;
  1217. p->parent_exec_id = current->parent_exec_id;
  1218. } else {
  1219. p->real_parent = current;
  1220. p->parent_exec_id = current->self_exec_id;
  1221. }
  1222. spin_lock(&current->sighand->siglock);
  1223. /*
  1224. * Process group and session signals need to be delivered to just the
  1225. * parent before the fork or both the parent and the child after the
  1226. * fork. Restart if a signal comes in before we add the new process to
  1227. * it's process group.
  1228. * A fatal signal pending means that current will exit, so the new
  1229. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1230. */
  1231. recalc_sigpending();
  1232. if (signal_pending(current)) {
  1233. spin_unlock(&current->sighand->siglock);
  1234. write_unlock_irq(&tasklist_lock);
  1235. retval = -ERESTARTNOINTR;
  1236. goto bad_fork_free_pid;
  1237. }
  1238. if (clone_flags & CLONE_THREAD) {
  1239. current->signal->nr_threads++;
  1240. atomic_inc(&current->signal->live);
  1241. atomic_inc(&current->signal->sigcnt);
  1242. p->group_leader = current->group_leader;
  1243. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1244. }
  1245. if (likely(p->pid)) {
  1246. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1247. if (thread_group_leader(p)) {
  1248. if (is_child_reaper(pid)) {
  1249. ns_of_pid(pid)->child_reaper = p;
  1250. p->signal->flags |= SIGNAL_UNKILLABLE;
  1251. }
  1252. p->signal->leader_pid = pid;
  1253. p->signal->tty = tty_kref_get(current->signal->tty);
  1254. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1255. attach_pid(p, PIDTYPE_SID, task_session(current));
  1256. list_add_tail(&p->sibling, &p->real_parent->children);
  1257. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1258. __this_cpu_inc(process_counts);
  1259. }
  1260. attach_pid(p, PIDTYPE_PID, pid);
  1261. nr_threads++;
  1262. }
  1263. total_forks++;
  1264. spin_unlock(&current->sighand->siglock);
  1265. write_unlock_irq(&tasklist_lock);
  1266. proc_fork_connector(p);
  1267. cgroup_post_fork(p);
  1268. if (clone_flags & CLONE_THREAD)
  1269. threadgroup_change_end(current);
  1270. perf_event_fork(p);
  1271. trace_task_newtask(p, clone_flags);
  1272. return p;
  1273. bad_fork_free_pid:
  1274. if (pid != &init_struct_pid)
  1275. free_pid(pid);
  1276. bad_fork_cleanup_io:
  1277. if (p->io_context)
  1278. exit_io_context(p);
  1279. bad_fork_cleanup_namespaces:
  1280. exit_task_namespaces(p);
  1281. bad_fork_cleanup_mm:
  1282. if (p->mm)
  1283. mmput(p->mm);
  1284. bad_fork_cleanup_signal:
  1285. if (!(clone_flags & CLONE_THREAD))
  1286. free_signal_struct(p->signal);
  1287. bad_fork_cleanup_sighand:
  1288. __cleanup_sighand(p->sighand);
  1289. bad_fork_cleanup_fs:
  1290. exit_fs(p); /* blocking */
  1291. bad_fork_cleanup_files:
  1292. exit_files(p); /* blocking */
  1293. bad_fork_cleanup_semundo:
  1294. exit_sem(p);
  1295. bad_fork_cleanup_audit:
  1296. audit_free(p);
  1297. bad_fork_cleanup_policy:
  1298. perf_event_free_task(p);
  1299. #ifdef CONFIG_NUMA
  1300. mpol_put(p->mempolicy);
  1301. bad_fork_cleanup_cgroup:
  1302. #endif
  1303. if (clone_flags & CLONE_THREAD)
  1304. threadgroup_change_end(current);
  1305. cgroup_exit(p, 0);
  1306. delayacct_tsk_free(p);
  1307. module_put(task_thread_info(p)->exec_domain->module);
  1308. bad_fork_cleanup_count:
  1309. atomic_dec(&p->cred->user->processes);
  1310. exit_creds(p);
  1311. bad_fork_free:
  1312. free_task(p);
  1313. fork_out:
  1314. return ERR_PTR(retval);
  1315. }
  1316. static inline void init_idle_pids(struct pid_link *links)
  1317. {
  1318. enum pid_type type;
  1319. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1320. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1321. links[type].pid = &init_struct_pid;
  1322. }
  1323. }
  1324. struct task_struct * __cpuinit fork_idle(int cpu)
  1325. {
  1326. struct task_struct *task;
  1327. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
  1328. if (!IS_ERR(task)) {
  1329. init_idle_pids(task->pids);
  1330. init_idle(task, cpu);
  1331. }
  1332. return task;
  1333. }
  1334. /*
  1335. * Ok, this is the main fork-routine.
  1336. *
  1337. * It copies the process, and if successful kick-starts
  1338. * it and waits for it to finish using the VM if required.
  1339. */
  1340. long do_fork(unsigned long clone_flags,
  1341. unsigned long stack_start,
  1342. unsigned long stack_size,
  1343. int __user *parent_tidptr,
  1344. int __user *child_tidptr)
  1345. {
  1346. struct task_struct *p;
  1347. int trace = 0;
  1348. long nr;
  1349. /*
  1350. * Do some preliminary argument and permissions checking before we
  1351. * actually start allocating stuff
  1352. */
  1353. if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
  1354. if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
  1355. return -EINVAL;
  1356. }
  1357. /*
  1358. * Determine whether and which event to report to ptracer. When
  1359. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1360. * requested, no event is reported; otherwise, report if the event
  1361. * for the type of forking is enabled.
  1362. */
  1363. if (!(clone_flags & CLONE_UNTRACED)) {
  1364. if (clone_flags & CLONE_VFORK)
  1365. trace = PTRACE_EVENT_VFORK;
  1366. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1367. trace = PTRACE_EVENT_CLONE;
  1368. else
  1369. trace = PTRACE_EVENT_FORK;
  1370. if (likely(!ptrace_event_enabled(current, trace)))
  1371. trace = 0;
  1372. }
  1373. p = copy_process(clone_flags, stack_start, stack_size,
  1374. child_tidptr, NULL, trace);
  1375. /*
  1376. * Do this prior waking up the new thread - the thread pointer
  1377. * might get invalid after that point, if the thread exits quickly.
  1378. */
  1379. if (!IS_ERR(p)) {
  1380. struct completion vfork;
  1381. trace_sched_process_fork(current, p);
  1382. nr = task_pid_vnr(p);
  1383. if (clone_flags & CLONE_PARENT_SETTID)
  1384. put_user(nr, parent_tidptr);
  1385. if (clone_flags & CLONE_VFORK) {
  1386. p->vfork_done = &vfork;
  1387. init_completion(&vfork);
  1388. get_task_struct(p);
  1389. }
  1390. wake_up_new_task(p);
  1391. /* forking complete and child started to run, tell ptracer */
  1392. if (unlikely(trace))
  1393. ptrace_event(trace, nr);
  1394. if (clone_flags & CLONE_VFORK) {
  1395. if (!wait_for_vfork_done(p, &vfork))
  1396. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1397. }
  1398. } else {
  1399. nr = PTR_ERR(p);
  1400. }
  1401. return nr;
  1402. }
  1403. /*
  1404. * Create a kernel thread.
  1405. */
  1406. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1407. {
  1408. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1409. (unsigned long)arg, NULL, NULL);
  1410. }
  1411. #ifdef __ARCH_WANT_SYS_FORK
  1412. SYSCALL_DEFINE0(fork)
  1413. {
  1414. #ifdef CONFIG_MMU
  1415. return do_fork(SIGCHLD, 0, 0, NULL, NULL);
  1416. #else
  1417. /* can not support in nommu mode */
  1418. return(-EINVAL);
  1419. #endif
  1420. }
  1421. #endif
  1422. #ifdef __ARCH_WANT_SYS_VFORK
  1423. SYSCALL_DEFINE0(vfork)
  1424. {
  1425. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1426. 0, NULL, NULL);
  1427. }
  1428. #endif
  1429. #ifdef __ARCH_WANT_SYS_CLONE
  1430. #ifdef CONFIG_CLONE_BACKWARDS
  1431. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1432. int __user *, parent_tidptr,
  1433. int, tls_val,
  1434. int __user *, child_tidptr)
  1435. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1436. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1437. int __user *, parent_tidptr,
  1438. int __user *, child_tidptr,
  1439. int, tls_val)
  1440. #else
  1441. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1442. int __user *, parent_tidptr,
  1443. int __user *, child_tidptr,
  1444. int, tls_val)
  1445. #endif
  1446. {
  1447. return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
  1448. }
  1449. #endif
  1450. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1451. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1452. #endif
  1453. static void sighand_ctor(void *data)
  1454. {
  1455. struct sighand_struct *sighand = data;
  1456. spin_lock_init(&sighand->siglock);
  1457. init_waitqueue_head(&sighand->signalfd_wqh);
  1458. }
  1459. void __init proc_caches_init(void)
  1460. {
  1461. sighand_cachep = kmem_cache_create("sighand_cache",
  1462. sizeof(struct sighand_struct), 0,
  1463. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1464. SLAB_NOTRACK, sighand_ctor);
  1465. signal_cachep = kmem_cache_create("signal_cache",
  1466. sizeof(struct signal_struct), 0,
  1467. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1468. files_cachep = kmem_cache_create("files_cache",
  1469. sizeof(struct files_struct), 0,
  1470. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1471. fs_cachep = kmem_cache_create("fs_cache",
  1472. sizeof(struct fs_struct), 0,
  1473. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1474. /*
  1475. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1476. * whole struct cpumask for the OFFSTACK case. We could change
  1477. * this to *only* allocate as much of it as required by the
  1478. * maximum number of CPU's we can ever have. The cpumask_allocation
  1479. * is at the end of the structure, exactly for that reason.
  1480. */
  1481. mm_cachep = kmem_cache_create("mm_struct",
  1482. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1483. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1484. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1485. mmap_init();
  1486. nsproxy_cache_init();
  1487. }
  1488. /*
  1489. * Check constraints on flags passed to the unshare system call.
  1490. */
  1491. static int check_unshare_flags(unsigned long unshare_flags)
  1492. {
  1493. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1494. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1495. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1496. CLONE_NEWUSER|CLONE_NEWPID))
  1497. return -EINVAL;
  1498. /*
  1499. * Not implemented, but pretend it works if there is nothing to
  1500. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1501. * needs to unshare vm.
  1502. */
  1503. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1504. /* FIXME: get_task_mm() increments ->mm_users */
  1505. if (atomic_read(&current->mm->mm_users) > 1)
  1506. return -EINVAL;
  1507. }
  1508. return 0;
  1509. }
  1510. /*
  1511. * Unshare the filesystem structure if it is being shared
  1512. */
  1513. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1514. {
  1515. struct fs_struct *fs = current->fs;
  1516. if (!(unshare_flags & CLONE_FS) || !fs)
  1517. return 0;
  1518. /* don't need lock here; in the worst case we'll do useless copy */
  1519. if (fs->users == 1)
  1520. return 0;
  1521. *new_fsp = copy_fs_struct(fs);
  1522. if (!*new_fsp)
  1523. return -ENOMEM;
  1524. return 0;
  1525. }
  1526. /*
  1527. * Unshare file descriptor table if it is being shared
  1528. */
  1529. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1530. {
  1531. struct files_struct *fd = current->files;
  1532. int error = 0;
  1533. if ((unshare_flags & CLONE_FILES) &&
  1534. (fd && atomic_read(&fd->count) > 1)) {
  1535. *new_fdp = dup_fd(fd, &error);
  1536. if (!*new_fdp)
  1537. return error;
  1538. }
  1539. return 0;
  1540. }
  1541. /*
  1542. * unshare allows a process to 'unshare' part of the process
  1543. * context which was originally shared using clone. copy_*
  1544. * functions used by do_fork() cannot be used here directly
  1545. * because they modify an inactive task_struct that is being
  1546. * constructed. Here we are modifying the current, active,
  1547. * task_struct.
  1548. */
  1549. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1550. {
  1551. struct fs_struct *fs, *new_fs = NULL;
  1552. struct files_struct *fd, *new_fd = NULL;
  1553. struct cred *new_cred = NULL;
  1554. struct nsproxy *new_nsproxy = NULL;
  1555. int do_sysvsem = 0;
  1556. int err;
  1557. /*
  1558. * If unsharing a user namespace must also unshare the thread.
  1559. */
  1560. if (unshare_flags & CLONE_NEWUSER)
  1561. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1562. /*
  1563. * If unsharing a pid namespace must also unshare the thread.
  1564. */
  1565. if (unshare_flags & CLONE_NEWPID)
  1566. unshare_flags |= CLONE_THREAD;
  1567. /*
  1568. * If unsharing a thread from a thread group, must also unshare vm.
  1569. */
  1570. if (unshare_flags & CLONE_THREAD)
  1571. unshare_flags |= CLONE_VM;
  1572. /*
  1573. * If unsharing vm, must also unshare signal handlers.
  1574. */
  1575. if (unshare_flags & CLONE_VM)
  1576. unshare_flags |= CLONE_SIGHAND;
  1577. /*
  1578. * If unsharing namespace, must also unshare filesystem information.
  1579. */
  1580. if (unshare_flags & CLONE_NEWNS)
  1581. unshare_flags |= CLONE_FS;
  1582. err = check_unshare_flags(unshare_flags);
  1583. if (err)
  1584. goto bad_unshare_out;
  1585. /*
  1586. * CLONE_NEWIPC must also detach from the undolist: after switching
  1587. * to a new ipc namespace, the semaphore arrays from the old
  1588. * namespace are unreachable.
  1589. */
  1590. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1591. do_sysvsem = 1;
  1592. err = unshare_fs(unshare_flags, &new_fs);
  1593. if (err)
  1594. goto bad_unshare_out;
  1595. err = unshare_fd(unshare_flags, &new_fd);
  1596. if (err)
  1597. goto bad_unshare_cleanup_fs;
  1598. err = unshare_userns(unshare_flags, &new_cred);
  1599. if (err)
  1600. goto bad_unshare_cleanup_fd;
  1601. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1602. new_cred, new_fs);
  1603. if (err)
  1604. goto bad_unshare_cleanup_cred;
  1605. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1606. if (do_sysvsem) {
  1607. /*
  1608. * CLONE_SYSVSEM is equivalent to sys_exit().
  1609. */
  1610. exit_sem(current);
  1611. }
  1612. if (new_nsproxy)
  1613. switch_task_namespaces(current, new_nsproxy);
  1614. task_lock(current);
  1615. if (new_fs) {
  1616. fs = current->fs;
  1617. spin_lock(&fs->lock);
  1618. current->fs = new_fs;
  1619. if (--fs->users)
  1620. new_fs = NULL;
  1621. else
  1622. new_fs = fs;
  1623. spin_unlock(&fs->lock);
  1624. }
  1625. if (new_fd) {
  1626. fd = current->files;
  1627. current->files = new_fd;
  1628. new_fd = fd;
  1629. }
  1630. task_unlock(current);
  1631. if (new_cred) {
  1632. /* Install the new user namespace */
  1633. commit_creds(new_cred);
  1634. new_cred = NULL;
  1635. }
  1636. }
  1637. bad_unshare_cleanup_cred:
  1638. if (new_cred)
  1639. put_cred(new_cred);
  1640. bad_unshare_cleanup_fd:
  1641. if (new_fd)
  1642. put_files_struct(new_fd);
  1643. bad_unshare_cleanup_fs:
  1644. if (new_fs)
  1645. free_fs_struct(new_fs);
  1646. bad_unshare_out:
  1647. return err;
  1648. }
  1649. /*
  1650. * Helper to unshare the files of the current task.
  1651. * We don't want to expose copy_files internals to
  1652. * the exec layer of the kernel.
  1653. */
  1654. int unshare_files(struct files_struct **displaced)
  1655. {
  1656. struct task_struct *task = current;
  1657. struct files_struct *copy = NULL;
  1658. int error;
  1659. error = unshare_fd(CLONE_FILES, &copy);
  1660. if (error || !copy) {
  1661. *displaced = NULL;
  1662. return error;
  1663. }
  1664. *displaced = task->files;
  1665. task_lock(task);
  1666. task->files = copy;
  1667. task_unlock(task);
  1668. return 0;
  1669. }