pgtable.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299
  1. #include <linux/mm.h>
  2. #include <asm/pgalloc.h>
  3. #include <asm/pgtable.h>
  4. #include <asm/tlb.h>
  5. #include <asm/fixmap.h>
  6. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  7. {
  8. return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
  9. }
  10. pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
  11. {
  12. struct page *pte;
  13. #ifdef CONFIG_HIGHPTE
  14. pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
  15. #else
  16. pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
  17. #endif
  18. if (pte)
  19. pgtable_page_ctor(pte);
  20. return pte;
  21. }
  22. void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
  23. {
  24. pgtable_page_dtor(pte);
  25. paravirt_release_pte(page_to_pfn(pte));
  26. tlb_remove_page(tlb, pte);
  27. }
  28. #if PAGETABLE_LEVELS > 2
  29. void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
  30. {
  31. paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
  32. tlb_remove_page(tlb, virt_to_page(pmd));
  33. }
  34. #if PAGETABLE_LEVELS > 3
  35. void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
  36. {
  37. paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
  38. tlb_remove_page(tlb, virt_to_page(pud));
  39. }
  40. #endif /* PAGETABLE_LEVELS > 3 */
  41. #endif /* PAGETABLE_LEVELS > 2 */
  42. static inline void pgd_list_add(pgd_t *pgd)
  43. {
  44. struct page *page = virt_to_page(pgd);
  45. list_add(&page->lru, &pgd_list);
  46. }
  47. static inline void pgd_list_del(pgd_t *pgd)
  48. {
  49. struct page *page = virt_to_page(pgd);
  50. list_del(&page->lru);
  51. }
  52. #define UNSHARED_PTRS_PER_PGD \
  53. (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
  54. static void pgd_ctor(void *p)
  55. {
  56. pgd_t *pgd = p;
  57. unsigned long flags;
  58. /* Clear usermode parts of PGD */
  59. memset(pgd, 0, KERNEL_PGD_BOUNDARY*sizeof(pgd_t));
  60. spin_lock_irqsave(&pgd_lock, flags);
  61. /* If the pgd points to a shared pagetable level (either the
  62. ptes in non-PAE, or shared PMD in PAE), then just copy the
  63. references from swapper_pg_dir. */
  64. if (PAGETABLE_LEVELS == 2 ||
  65. (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
  66. PAGETABLE_LEVELS == 4) {
  67. clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
  68. swapper_pg_dir + KERNEL_PGD_BOUNDARY,
  69. KERNEL_PGD_PTRS);
  70. paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
  71. __pa(swapper_pg_dir) >> PAGE_SHIFT,
  72. KERNEL_PGD_BOUNDARY,
  73. KERNEL_PGD_PTRS);
  74. }
  75. /* list required to sync kernel mapping updates */
  76. if (!SHARED_KERNEL_PMD)
  77. pgd_list_add(pgd);
  78. spin_unlock_irqrestore(&pgd_lock, flags);
  79. }
  80. static void pgd_dtor(void *pgd)
  81. {
  82. unsigned long flags; /* can be called from interrupt context */
  83. if (SHARED_KERNEL_PMD)
  84. return;
  85. spin_lock_irqsave(&pgd_lock, flags);
  86. pgd_list_del(pgd);
  87. spin_unlock_irqrestore(&pgd_lock, flags);
  88. }
  89. /*
  90. * List of all pgd's needed for non-PAE so it can invalidate entries
  91. * in both cached and uncached pgd's; not needed for PAE since the
  92. * kernel pmd is shared. If PAE were not to share the pmd a similar
  93. * tactic would be needed. This is essentially codepath-based locking
  94. * against pageattr.c; it is the unique case in which a valid change
  95. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  96. * vmalloc faults work because attached pagetables are never freed.
  97. * -- wli
  98. */
  99. #ifdef CONFIG_X86_PAE
  100. /*
  101. * Mop up any pmd pages which may still be attached to the pgd.
  102. * Normally they will be freed by munmap/exit_mmap, but any pmd we
  103. * preallocate which never got a corresponding vma will need to be
  104. * freed manually.
  105. */
  106. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
  107. {
  108. int i;
  109. for(i = 0; i < UNSHARED_PTRS_PER_PGD; i++) {
  110. pgd_t pgd = pgdp[i];
  111. if (pgd_val(pgd) != 0) {
  112. pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
  113. pgdp[i] = native_make_pgd(0);
  114. paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
  115. pmd_free(mm, pmd);
  116. }
  117. }
  118. }
  119. /*
  120. * In PAE mode, we need to do a cr3 reload (=tlb flush) when
  121. * updating the top-level pagetable entries to guarantee the
  122. * processor notices the update. Since this is expensive, and
  123. * all 4 top-level entries are used almost immediately in a
  124. * new process's life, we just pre-populate them here.
  125. *
  126. * Also, if we're in a paravirt environment where the kernel pmd is
  127. * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
  128. * and initialize the kernel pmds here.
  129. */
  130. static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
  131. {
  132. pud_t *pud;
  133. unsigned long addr;
  134. int i;
  135. pud = pud_offset(pgd, 0);
  136. for (addr = i = 0; i < UNSHARED_PTRS_PER_PGD;
  137. i++, pud++, addr += PUD_SIZE) {
  138. pmd_t *pmd = pmd_alloc_one(mm, addr);
  139. if (!pmd) {
  140. pgd_mop_up_pmds(mm, pgd);
  141. return 0;
  142. }
  143. if (i >= KERNEL_PGD_BOUNDARY)
  144. memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
  145. sizeof(pmd_t) * PTRS_PER_PMD);
  146. pud_populate(mm, pud, pmd);
  147. }
  148. return 1;
  149. }
  150. void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
  151. {
  152. paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
  153. /* Note: almost everything apart from _PAGE_PRESENT is
  154. reserved at the pmd (PDPT) level. */
  155. set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
  156. /*
  157. * According to Intel App note "TLBs, Paging-Structure Caches,
  158. * and Their Invalidation", April 2007, document 317080-001,
  159. * section 8.1: in PAE mode we explicitly have to flush the
  160. * TLB via cr3 if the top-level pgd is changed...
  161. */
  162. if (mm == current->active_mm)
  163. write_cr3(read_cr3());
  164. }
  165. #else /* !CONFIG_X86_PAE */
  166. /* No need to prepopulate any pagetable entries in non-PAE modes. */
  167. static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
  168. {
  169. return 1;
  170. }
  171. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgd)
  172. {
  173. }
  174. #endif /* CONFIG_X86_PAE */
  175. pgd_t *pgd_alloc(struct mm_struct *mm)
  176. {
  177. pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
  178. /* so that alloc_pmd can use it */
  179. mm->pgd = pgd;
  180. if (pgd) {
  181. pgd_ctor(pgd);
  182. if (paravirt_pgd_alloc(mm) != 0 ||
  183. !pgd_prepopulate_pmd(mm, pgd)) {
  184. pgd_dtor(pgd);
  185. free_page((unsigned long)pgd);
  186. pgd = NULL;
  187. }
  188. }
  189. return pgd;
  190. }
  191. void pgd_free(struct mm_struct *mm, pgd_t *pgd)
  192. {
  193. pgd_mop_up_pmds(mm, pgd);
  194. pgd_dtor(pgd);
  195. paravirt_pgd_free(mm, pgd);
  196. free_page((unsigned long)pgd);
  197. }
  198. int ptep_set_access_flags(struct vm_area_struct *vma,
  199. unsigned long address, pte_t *ptep,
  200. pte_t entry, int dirty)
  201. {
  202. int changed = !pte_same(*ptep, entry);
  203. if (changed && dirty) {
  204. *ptep = entry;
  205. pte_update_defer(vma->vm_mm, address, ptep);
  206. flush_tlb_page(vma, address);
  207. }
  208. return changed;
  209. }
  210. int ptep_test_and_clear_young(struct vm_area_struct *vma,
  211. unsigned long addr, pte_t *ptep)
  212. {
  213. int ret = 0;
  214. if (pte_young(*ptep))
  215. ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
  216. (unsigned long *) &ptep->pte);
  217. if (ret)
  218. pte_update(vma->vm_mm, addr, ptep);
  219. return ret;
  220. }
  221. int ptep_clear_flush_young(struct vm_area_struct *vma,
  222. unsigned long address, pte_t *ptep)
  223. {
  224. int young;
  225. young = ptep_test_and_clear_young(vma, address, ptep);
  226. if (young)
  227. flush_tlb_page(vma, address);
  228. return young;
  229. }
  230. int fixmaps_set;
  231. void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
  232. {
  233. unsigned long address = __fix_to_virt(idx);
  234. if (idx >= __end_of_fixed_addresses) {
  235. BUG();
  236. return;
  237. }
  238. set_pte_vaddr(address, pte);
  239. fixmaps_set++;
  240. }
  241. void native_set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
  242. {
  243. __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
  244. }