ll_rw_blk.c 91 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/config.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/backing-dev.h>
  16. #include <linux/bio.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/highmem.h>
  19. #include <linux/mm.h>
  20. #include <linux/kernel_stat.h>
  21. #include <linux/string.h>
  22. #include <linux/init.h>
  23. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  24. #include <linux/completion.h>
  25. #include <linux/slab.h>
  26. #include <linux/swap.h>
  27. #include <linux/writeback.h>
  28. #include <linux/blkdev.h>
  29. /*
  30. * for max sense size
  31. */
  32. #include <scsi/scsi_cmnd.h>
  33. static void blk_unplug_work(void *data);
  34. static void blk_unplug_timeout(unsigned long data);
  35. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  36. /*
  37. * For the allocated request tables
  38. */
  39. static kmem_cache_t *request_cachep;
  40. /*
  41. * For queue allocation
  42. */
  43. static kmem_cache_t *requestq_cachep;
  44. /*
  45. * For io context allocations
  46. */
  47. static kmem_cache_t *iocontext_cachep;
  48. static wait_queue_head_t congestion_wqh[2] = {
  49. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  50. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  51. };
  52. /*
  53. * Controlling structure to kblockd
  54. */
  55. static struct workqueue_struct *kblockd_workqueue;
  56. unsigned long blk_max_low_pfn, blk_max_pfn;
  57. EXPORT_SYMBOL(blk_max_low_pfn);
  58. EXPORT_SYMBOL(blk_max_pfn);
  59. /* Amount of time in which a process may batch requests */
  60. #define BLK_BATCH_TIME (HZ/50UL)
  61. /* Number of requests a "batching" process may submit */
  62. #define BLK_BATCH_REQ 32
  63. /*
  64. * Return the threshold (number of used requests) at which the queue is
  65. * considered to be congested. It include a little hysteresis to keep the
  66. * context switch rate down.
  67. */
  68. static inline int queue_congestion_on_threshold(struct request_queue *q)
  69. {
  70. return q->nr_congestion_on;
  71. }
  72. /*
  73. * The threshold at which a queue is considered to be uncongested
  74. */
  75. static inline int queue_congestion_off_threshold(struct request_queue *q)
  76. {
  77. return q->nr_congestion_off;
  78. }
  79. static void blk_queue_congestion_threshold(struct request_queue *q)
  80. {
  81. int nr;
  82. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  83. if (nr > q->nr_requests)
  84. nr = q->nr_requests;
  85. q->nr_congestion_on = nr;
  86. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  87. if (nr < 1)
  88. nr = 1;
  89. q->nr_congestion_off = nr;
  90. }
  91. /*
  92. * A queue has just exitted congestion. Note this in the global counter of
  93. * congested queues, and wake up anyone who was waiting for requests to be
  94. * put back.
  95. */
  96. static void clear_queue_congested(request_queue_t *q, int rw)
  97. {
  98. enum bdi_state bit;
  99. wait_queue_head_t *wqh = &congestion_wqh[rw];
  100. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  101. clear_bit(bit, &q->backing_dev_info.state);
  102. smp_mb__after_clear_bit();
  103. if (waitqueue_active(wqh))
  104. wake_up(wqh);
  105. }
  106. /*
  107. * A queue has just entered congestion. Flag that in the queue's VM-visible
  108. * state flags and increment the global gounter of congested queues.
  109. */
  110. static void set_queue_congested(request_queue_t *q, int rw)
  111. {
  112. enum bdi_state bit;
  113. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  114. set_bit(bit, &q->backing_dev_info.state);
  115. }
  116. /**
  117. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  118. * @bdev: device
  119. *
  120. * Locates the passed device's request queue and returns the address of its
  121. * backing_dev_info
  122. *
  123. * Will return NULL if the request queue cannot be located.
  124. */
  125. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  126. {
  127. struct backing_dev_info *ret = NULL;
  128. request_queue_t *q = bdev_get_queue(bdev);
  129. if (q)
  130. ret = &q->backing_dev_info;
  131. return ret;
  132. }
  133. EXPORT_SYMBOL(blk_get_backing_dev_info);
  134. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  135. {
  136. q->activity_fn = fn;
  137. q->activity_data = data;
  138. }
  139. EXPORT_SYMBOL(blk_queue_activity_fn);
  140. /**
  141. * blk_queue_prep_rq - set a prepare_request function for queue
  142. * @q: queue
  143. * @pfn: prepare_request function
  144. *
  145. * It's possible for a queue to register a prepare_request callback which
  146. * is invoked before the request is handed to the request_fn. The goal of
  147. * the function is to prepare a request for I/O, it can be used to build a
  148. * cdb from the request data for instance.
  149. *
  150. */
  151. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  152. {
  153. q->prep_rq_fn = pfn;
  154. }
  155. EXPORT_SYMBOL(blk_queue_prep_rq);
  156. /**
  157. * blk_queue_merge_bvec - set a merge_bvec function for queue
  158. * @q: queue
  159. * @mbfn: merge_bvec_fn
  160. *
  161. * Usually queues have static limitations on the max sectors or segments that
  162. * we can put in a request. Stacking drivers may have some settings that
  163. * are dynamic, and thus we have to query the queue whether it is ok to
  164. * add a new bio_vec to a bio at a given offset or not. If the block device
  165. * has such limitations, it needs to register a merge_bvec_fn to control
  166. * the size of bio's sent to it. Note that a block device *must* allow a
  167. * single page to be added to an empty bio. The block device driver may want
  168. * to use the bio_split() function to deal with these bio's. By default
  169. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  170. * honored.
  171. */
  172. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  173. {
  174. q->merge_bvec_fn = mbfn;
  175. }
  176. EXPORT_SYMBOL(blk_queue_merge_bvec);
  177. /**
  178. * blk_queue_make_request - define an alternate make_request function for a device
  179. * @q: the request queue for the device to be affected
  180. * @mfn: the alternate make_request function
  181. *
  182. * Description:
  183. * The normal way for &struct bios to be passed to a device
  184. * driver is for them to be collected into requests on a request
  185. * queue, and then to allow the device driver to select requests
  186. * off that queue when it is ready. This works well for many block
  187. * devices. However some block devices (typically virtual devices
  188. * such as md or lvm) do not benefit from the processing on the
  189. * request queue, and are served best by having the requests passed
  190. * directly to them. This can be achieved by providing a function
  191. * to blk_queue_make_request().
  192. *
  193. * Caveat:
  194. * The driver that does this *must* be able to deal appropriately
  195. * with buffers in "highmemory". This can be accomplished by either calling
  196. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  197. * blk_queue_bounce() to create a buffer in normal memory.
  198. **/
  199. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  200. {
  201. /*
  202. * set defaults
  203. */
  204. q->nr_requests = BLKDEV_MAX_RQ;
  205. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  206. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  207. q->make_request_fn = mfn;
  208. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  209. q->backing_dev_info.state = 0;
  210. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  211. blk_queue_max_sectors(q, MAX_SECTORS);
  212. blk_queue_hardsect_size(q, 512);
  213. blk_queue_dma_alignment(q, 511);
  214. blk_queue_congestion_threshold(q);
  215. q->nr_batching = BLK_BATCH_REQ;
  216. q->unplug_thresh = 4; /* hmm */
  217. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  218. if (q->unplug_delay == 0)
  219. q->unplug_delay = 1;
  220. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  221. q->unplug_timer.function = blk_unplug_timeout;
  222. q->unplug_timer.data = (unsigned long)q;
  223. /*
  224. * by default assume old behaviour and bounce for any highmem page
  225. */
  226. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  227. blk_queue_activity_fn(q, NULL, NULL);
  228. }
  229. EXPORT_SYMBOL(blk_queue_make_request);
  230. static inline void rq_init(request_queue_t *q, struct request *rq)
  231. {
  232. INIT_LIST_HEAD(&rq->queuelist);
  233. rq->errors = 0;
  234. rq->rq_status = RQ_ACTIVE;
  235. rq->bio = rq->biotail = NULL;
  236. rq->ioprio = 0;
  237. rq->buffer = NULL;
  238. rq->ref_count = 1;
  239. rq->q = q;
  240. rq->waiting = NULL;
  241. rq->special = NULL;
  242. rq->data_len = 0;
  243. rq->data = NULL;
  244. rq->nr_phys_segments = 0;
  245. rq->sense = NULL;
  246. rq->end_io = NULL;
  247. rq->end_io_data = NULL;
  248. }
  249. /**
  250. * blk_queue_ordered - does this queue support ordered writes
  251. * @q: the request queue
  252. * @flag: see below
  253. *
  254. * Description:
  255. * For journalled file systems, doing ordered writes on a commit
  256. * block instead of explicitly doing wait_on_buffer (which is bad
  257. * for performance) can be a big win. Block drivers supporting this
  258. * feature should call this function and indicate so.
  259. *
  260. **/
  261. void blk_queue_ordered(request_queue_t *q, int flag)
  262. {
  263. switch (flag) {
  264. case QUEUE_ORDERED_NONE:
  265. if (q->flush_rq)
  266. kmem_cache_free(request_cachep, q->flush_rq);
  267. q->flush_rq = NULL;
  268. q->ordered = flag;
  269. break;
  270. case QUEUE_ORDERED_TAG:
  271. q->ordered = flag;
  272. break;
  273. case QUEUE_ORDERED_FLUSH:
  274. q->ordered = flag;
  275. if (!q->flush_rq)
  276. q->flush_rq = kmem_cache_alloc(request_cachep,
  277. GFP_KERNEL);
  278. break;
  279. default:
  280. printk("blk_queue_ordered: bad value %d\n", flag);
  281. break;
  282. }
  283. }
  284. EXPORT_SYMBOL(blk_queue_ordered);
  285. /**
  286. * blk_queue_issue_flush_fn - set function for issuing a flush
  287. * @q: the request queue
  288. * @iff: the function to be called issuing the flush
  289. *
  290. * Description:
  291. * If a driver supports issuing a flush command, the support is notified
  292. * to the block layer by defining it through this call.
  293. *
  294. **/
  295. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  296. {
  297. q->issue_flush_fn = iff;
  298. }
  299. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  300. /*
  301. * Cache flushing for ordered writes handling
  302. */
  303. static void blk_pre_flush_end_io(struct request *flush_rq)
  304. {
  305. struct request *rq = flush_rq->end_io_data;
  306. request_queue_t *q = rq->q;
  307. elv_completed_request(q, flush_rq);
  308. rq->flags |= REQ_BAR_PREFLUSH;
  309. if (!flush_rq->errors)
  310. elv_requeue_request(q, rq);
  311. else {
  312. q->end_flush_fn(q, flush_rq);
  313. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  314. q->request_fn(q);
  315. }
  316. }
  317. static void blk_post_flush_end_io(struct request *flush_rq)
  318. {
  319. struct request *rq = flush_rq->end_io_data;
  320. request_queue_t *q = rq->q;
  321. elv_completed_request(q, flush_rq);
  322. rq->flags |= REQ_BAR_POSTFLUSH;
  323. q->end_flush_fn(q, flush_rq);
  324. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  325. q->request_fn(q);
  326. }
  327. struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
  328. {
  329. struct request *flush_rq = q->flush_rq;
  330. BUG_ON(!blk_barrier_rq(rq));
  331. if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
  332. return NULL;
  333. rq_init(q, flush_rq);
  334. flush_rq->elevator_private = NULL;
  335. flush_rq->flags = REQ_BAR_FLUSH;
  336. flush_rq->rq_disk = rq->rq_disk;
  337. flush_rq->rl = NULL;
  338. /*
  339. * prepare_flush returns 0 if no flush is needed, just mark both
  340. * pre and post flush as done in that case
  341. */
  342. if (!q->prepare_flush_fn(q, flush_rq)) {
  343. rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
  344. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  345. return rq;
  346. }
  347. /*
  348. * some drivers dequeue requests right away, some only after io
  349. * completion. make sure the request is dequeued.
  350. */
  351. if (!list_empty(&rq->queuelist))
  352. blkdev_dequeue_request(rq);
  353. flush_rq->end_io_data = rq;
  354. flush_rq->end_io = blk_pre_flush_end_io;
  355. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  356. return flush_rq;
  357. }
  358. static void blk_start_post_flush(request_queue_t *q, struct request *rq)
  359. {
  360. struct request *flush_rq = q->flush_rq;
  361. BUG_ON(!blk_barrier_rq(rq));
  362. rq_init(q, flush_rq);
  363. flush_rq->elevator_private = NULL;
  364. flush_rq->flags = REQ_BAR_FLUSH;
  365. flush_rq->rq_disk = rq->rq_disk;
  366. flush_rq->rl = NULL;
  367. if (q->prepare_flush_fn(q, flush_rq)) {
  368. flush_rq->end_io_data = rq;
  369. flush_rq->end_io = blk_post_flush_end_io;
  370. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  371. q->request_fn(q);
  372. }
  373. }
  374. static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
  375. int sectors)
  376. {
  377. if (sectors > rq->nr_sectors)
  378. sectors = rq->nr_sectors;
  379. rq->nr_sectors -= sectors;
  380. return rq->nr_sectors;
  381. }
  382. static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
  383. int sectors, int queue_locked)
  384. {
  385. if (q->ordered != QUEUE_ORDERED_FLUSH)
  386. return 0;
  387. if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
  388. return 0;
  389. if (blk_barrier_postflush(rq))
  390. return 0;
  391. if (!blk_check_end_barrier(q, rq, sectors)) {
  392. unsigned long flags = 0;
  393. if (!queue_locked)
  394. spin_lock_irqsave(q->queue_lock, flags);
  395. blk_start_post_flush(q, rq);
  396. if (!queue_locked)
  397. spin_unlock_irqrestore(q->queue_lock, flags);
  398. }
  399. return 1;
  400. }
  401. /**
  402. * blk_complete_barrier_rq - complete possible barrier request
  403. * @q: the request queue for the device
  404. * @rq: the request
  405. * @sectors: number of sectors to complete
  406. *
  407. * Description:
  408. * Used in driver end_io handling to determine whether to postpone
  409. * completion of a barrier request until a post flush has been done. This
  410. * is the unlocked variant, used if the caller doesn't already hold the
  411. * queue lock.
  412. **/
  413. int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
  414. {
  415. return __blk_complete_barrier_rq(q, rq, sectors, 0);
  416. }
  417. EXPORT_SYMBOL(blk_complete_barrier_rq);
  418. /**
  419. * blk_complete_barrier_rq_locked - complete possible barrier request
  420. * @q: the request queue for the device
  421. * @rq: the request
  422. * @sectors: number of sectors to complete
  423. *
  424. * Description:
  425. * See blk_complete_barrier_rq(). This variant must be used if the caller
  426. * holds the queue lock.
  427. **/
  428. int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
  429. int sectors)
  430. {
  431. return __blk_complete_barrier_rq(q, rq, sectors, 1);
  432. }
  433. EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
  434. /**
  435. * blk_queue_bounce_limit - set bounce buffer limit for queue
  436. * @q: the request queue for the device
  437. * @dma_addr: bus address limit
  438. *
  439. * Description:
  440. * Different hardware can have different requirements as to what pages
  441. * it can do I/O directly to. A low level driver can call
  442. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  443. * buffers for doing I/O to pages residing above @page. By default
  444. * the block layer sets this to the highest numbered "low" memory page.
  445. **/
  446. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  447. {
  448. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  449. /*
  450. * set appropriate bounce gfp mask -- unfortunately we don't have a
  451. * full 4GB zone, so we have to resort to low memory for any bounces.
  452. * ISA has its own < 16MB zone.
  453. */
  454. if (bounce_pfn < blk_max_low_pfn) {
  455. BUG_ON(dma_addr < BLK_BOUNCE_ISA);
  456. init_emergency_isa_pool();
  457. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  458. } else
  459. q->bounce_gfp = GFP_NOIO;
  460. q->bounce_pfn = bounce_pfn;
  461. }
  462. EXPORT_SYMBOL(blk_queue_bounce_limit);
  463. /**
  464. * blk_queue_max_sectors - set max sectors for a request for this queue
  465. * @q: the request queue for the device
  466. * @max_sectors: max sectors in the usual 512b unit
  467. *
  468. * Description:
  469. * Enables a low level driver to set an upper limit on the size of
  470. * received requests.
  471. **/
  472. void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
  473. {
  474. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  475. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  476. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  477. }
  478. q->max_sectors = q->max_hw_sectors = max_sectors;
  479. }
  480. EXPORT_SYMBOL(blk_queue_max_sectors);
  481. /**
  482. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  483. * @q: the request queue for the device
  484. * @max_segments: max number of segments
  485. *
  486. * Description:
  487. * Enables a low level driver to set an upper limit on the number of
  488. * physical data segments in a request. This would be the largest sized
  489. * scatter list the driver could handle.
  490. **/
  491. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  492. {
  493. if (!max_segments) {
  494. max_segments = 1;
  495. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  496. }
  497. q->max_phys_segments = max_segments;
  498. }
  499. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  500. /**
  501. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  502. * @q: the request queue for the device
  503. * @max_segments: max number of segments
  504. *
  505. * Description:
  506. * Enables a low level driver to set an upper limit on the number of
  507. * hw data segments in a request. This would be the largest number of
  508. * address/length pairs the host adapter can actually give as once
  509. * to the device.
  510. **/
  511. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  512. {
  513. if (!max_segments) {
  514. max_segments = 1;
  515. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  516. }
  517. q->max_hw_segments = max_segments;
  518. }
  519. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  520. /**
  521. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  522. * @q: the request queue for the device
  523. * @max_size: max size of segment in bytes
  524. *
  525. * Description:
  526. * Enables a low level driver to set an upper limit on the size of a
  527. * coalesced segment
  528. **/
  529. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  530. {
  531. if (max_size < PAGE_CACHE_SIZE) {
  532. max_size = PAGE_CACHE_SIZE;
  533. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  534. }
  535. q->max_segment_size = max_size;
  536. }
  537. EXPORT_SYMBOL(blk_queue_max_segment_size);
  538. /**
  539. * blk_queue_hardsect_size - set hardware sector size for the queue
  540. * @q: the request queue for the device
  541. * @size: the hardware sector size, in bytes
  542. *
  543. * Description:
  544. * This should typically be set to the lowest possible sector size
  545. * that the hardware can operate on (possible without reverting to
  546. * even internal read-modify-write operations). Usually the default
  547. * of 512 covers most hardware.
  548. **/
  549. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  550. {
  551. q->hardsect_size = size;
  552. }
  553. EXPORT_SYMBOL(blk_queue_hardsect_size);
  554. /*
  555. * Returns the minimum that is _not_ zero, unless both are zero.
  556. */
  557. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  558. /**
  559. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  560. * @t: the stacking driver (top)
  561. * @b: the underlying device (bottom)
  562. **/
  563. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  564. {
  565. /* zero is "infinity" */
  566. t->max_sectors = t->max_hw_sectors =
  567. min_not_zero(t->max_sectors,b->max_sectors);
  568. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  569. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  570. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  571. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  572. }
  573. EXPORT_SYMBOL(blk_queue_stack_limits);
  574. /**
  575. * blk_queue_segment_boundary - set boundary rules for segment merging
  576. * @q: the request queue for the device
  577. * @mask: the memory boundary mask
  578. **/
  579. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  580. {
  581. if (mask < PAGE_CACHE_SIZE - 1) {
  582. mask = PAGE_CACHE_SIZE - 1;
  583. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  584. }
  585. q->seg_boundary_mask = mask;
  586. }
  587. EXPORT_SYMBOL(blk_queue_segment_boundary);
  588. /**
  589. * blk_queue_dma_alignment - set dma length and memory alignment
  590. * @q: the request queue for the device
  591. * @mask: alignment mask
  592. *
  593. * description:
  594. * set required memory and length aligment for direct dma transactions.
  595. * this is used when buiding direct io requests for the queue.
  596. *
  597. **/
  598. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  599. {
  600. q->dma_alignment = mask;
  601. }
  602. EXPORT_SYMBOL(blk_queue_dma_alignment);
  603. /**
  604. * blk_queue_find_tag - find a request by its tag and queue
  605. * @q: The request queue for the device
  606. * @tag: The tag of the request
  607. *
  608. * Notes:
  609. * Should be used when a device returns a tag and you want to match
  610. * it with a request.
  611. *
  612. * no locks need be held.
  613. **/
  614. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  615. {
  616. struct blk_queue_tag *bqt = q->queue_tags;
  617. if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
  618. return NULL;
  619. return bqt->tag_index[tag];
  620. }
  621. EXPORT_SYMBOL(blk_queue_find_tag);
  622. /**
  623. * __blk_queue_free_tags - release tag maintenance info
  624. * @q: the request queue for the device
  625. *
  626. * Notes:
  627. * blk_cleanup_queue() will take care of calling this function, if tagging
  628. * has been used. So there's no need to call this directly.
  629. **/
  630. static void __blk_queue_free_tags(request_queue_t *q)
  631. {
  632. struct blk_queue_tag *bqt = q->queue_tags;
  633. if (!bqt)
  634. return;
  635. if (atomic_dec_and_test(&bqt->refcnt)) {
  636. BUG_ON(bqt->busy);
  637. BUG_ON(!list_empty(&bqt->busy_list));
  638. kfree(bqt->tag_index);
  639. bqt->tag_index = NULL;
  640. kfree(bqt->tag_map);
  641. bqt->tag_map = NULL;
  642. kfree(bqt);
  643. }
  644. q->queue_tags = NULL;
  645. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  646. }
  647. /**
  648. * blk_queue_free_tags - release tag maintenance info
  649. * @q: the request queue for the device
  650. *
  651. * Notes:
  652. * This is used to disabled tagged queuing to a device, yet leave
  653. * queue in function.
  654. **/
  655. void blk_queue_free_tags(request_queue_t *q)
  656. {
  657. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  658. }
  659. EXPORT_SYMBOL(blk_queue_free_tags);
  660. static int
  661. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  662. {
  663. struct request **tag_index;
  664. unsigned long *tag_map;
  665. int nr_ulongs;
  666. if (depth > q->nr_requests * 2) {
  667. depth = q->nr_requests * 2;
  668. printk(KERN_ERR "%s: adjusted depth to %d\n",
  669. __FUNCTION__, depth);
  670. }
  671. tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  672. if (!tag_index)
  673. goto fail;
  674. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  675. tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  676. if (!tag_map)
  677. goto fail;
  678. memset(tag_index, 0, depth * sizeof(struct request *));
  679. memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
  680. tags->real_max_depth = depth;
  681. tags->max_depth = depth;
  682. tags->tag_index = tag_index;
  683. tags->tag_map = tag_map;
  684. return 0;
  685. fail:
  686. kfree(tag_index);
  687. return -ENOMEM;
  688. }
  689. /**
  690. * blk_queue_init_tags - initialize the queue tag info
  691. * @q: the request queue for the device
  692. * @depth: the maximum queue depth supported
  693. * @tags: the tag to use
  694. **/
  695. int blk_queue_init_tags(request_queue_t *q, int depth,
  696. struct blk_queue_tag *tags)
  697. {
  698. int rc;
  699. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  700. if (!tags && !q->queue_tags) {
  701. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  702. if (!tags)
  703. goto fail;
  704. if (init_tag_map(q, tags, depth))
  705. goto fail;
  706. INIT_LIST_HEAD(&tags->busy_list);
  707. tags->busy = 0;
  708. atomic_set(&tags->refcnt, 1);
  709. } else if (q->queue_tags) {
  710. if ((rc = blk_queue_resize_tags(q, depth)))
  711. return rc;
  712. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  713. return 0;
  714. } else
  715. atomic_inc(&tags->refcnt);
  716. /*
  717. * assign it, all done
  718. */
  719. q->queue_tags = tags;
  720. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  721. return 0;
  722. fail:
  723. kfree(tags);
  724. return -ENOMEM;
  725. }
  726. EXPORT_SYMBOL(blk_queue_init_tags);
  727. /**
  728. * blk_queue_resize_tags - change the queueing depth
  729. * @q: the request queue for the device
  730. * @new_depth: the new max command queueing depth
  731. *
  732. * Notes:
  733. * Must be called with the queue lock held.
  734. **/
  735. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  736. {
  737. struct blk_queue_tag *bqt = q->queue_tags;
  738. struct request **tag_index;
  739. unsigned long *tag_map;
  740. int max_depth, nr_ulongs;
  741. if (!bqt)
  742. return -ENXIO;
  743. /*
  744. * if we already have large enough real_max_depth. just
  745. * adjust max_depth. *NOTE* as requests with tag value
  746. * between new_depth and real_max_depth can be in-flight, tag
  747. * map can not be shrunk blindly here.
  748. */
  749. if (new_depth <= bqt->real_max_depth) {
  750. bqt->max_depth = new_depth;
  751. return 0;
  752. }
  753. /*
  754. * save the old state info, so we can copy it back
  755. */
  756. tag_index = bqt->tag_index;
  757. tag_map = bqt->tag_map;
  758. max_depth = bqt->real_max_depth;
  759. if (init_tag_map(q, bqt, new_depth))
  760. return -ENOMEM;
  761. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  762. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  763. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  764. kfree(tag_index);
  765. kfree(tag_map);
  766. return 0;
  767. }
  768. EXPORT_SYMBOL(blk_queue_resize_tags);
  769. /**
  770. * blk_queue_end_tag - end tag operations for a request
  771. * @q: the request queue for the device
  772. * @rq: the request that has completed
  773. *
  774. * Description:
  775. * Typically called when end_that_request_first() returns 0, meaning
  776. * all transfers have been done for a request. It's important to call
  777. * this function before end_that_request_last(), as that will put the
  778. * request back on the free list thus corrupting the internal tag list.
  779. *
  780. * Notes:
  781. * queue lock must be held.
  782. **/
  783. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  784. {
  785. struct blk_queue_tag *bqt = q->queue_tags;
  786. int tag = rq->tag;
  787. BUG_ON(tag == -1);
  788. if (unlikely(tag >= bqt->real_max_depth))
  789. /*
  790. * This can happen after tag depth has been reduced.
  791. * FIXME: how about a warning or info message here?
  792. */
  793. return;
  794. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  795. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  796. __FUNCTION__, tag);
  797. return;
  798. }
  799. list_del_init(&rq->queuelist);
  800. rq->flags &= ~REQ_QUEUED;
  801. rq->tag = -1;
  802. if (unlikely(bqt->tag_index[tag] == NULL))
  803. printk(KERN_ERR "%s: tag %d is missing\n",
  804. __FUNCTION__, tag);
  805. bqt->tag_index[tag] = NULL;
  806. bqt->busy--;
  807. }
  808. EXPORT_SYMBOL(blk_queue_end_tag);
  809. /**
  810. * blk_queue_start_tag - find a free tag and assign it
  811. * @q: the request queue for the device
  812. * @rq: the block request that needs tagging
  813. *
  814. * Description:
  815. * This can either be used as a stand-alone helper, or possibly be
  816. * assigned as the queue &prep_rq_fn (in which case &struct request
  817. * automagically gets a tag assigned). Note that this function
  818. * assumes that any type of request can be queued! if this is not
  819. * true for your device, you must check the request type before
  820. * calling this function. The request will also be removed from
  821. * the request queue, so it's the drivers responsibility to readd
  822. * it if it should need to be restarted for some reason.
  823. *
  824. * Notes:
  825. * queue lock must be held.
  826. **/
  827. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  828. {
  829. struct blk_queue_tag *bqt = q->queue_tags;
  830. int tag;
  831. if (unlikely((rq->flags & REQ_QUEUED))) {
  832. printk(KERN_ERR
  833. "%s: request %p for device [%s] already tagged %d",
  834. __FUNCTION__, rq,
  835. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  836. BUG();
  837. }
  838. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  839. if (tag >= bqt->max_depth)
  840. return 1;
  841. __set_bit(tag, bqt->tag_map);
  842. rq->flags |= REQ_QUEUED;
  843. rq->tag = tag;
  844. bqt->tag_index[tag] = rq;
  845. blkdev_dequeue_request(rq);
  846. list_add(&rq->queuelist, &bqt->busy_list);
  847. bqt->busy++;
  848. return 0;
  849. }
  850. EXPORT_SYMBOL(blk_queue_start_tag);
  851. /**
  852. * blk_queue_invalidate_tags - invalidate all pending tags
  853. * @q: the request queue for the device
  854. *
  855. * Description:
  856. * Hardware conditions may dictate a need to stop all pending requests.
  857. * In this case, we will safely clear the block side of the tag queue and
  858. * readd all requests to the request queue in the right order.
  859. *
  860. * Notes:
  861. * queue lock must be held.
  862. **/
  863. void blk_queue_invalidate_tags(request_queue_t *q)
  864. {
  865. struct blk_queue_tag *bqt = q->queue_tags;
  866. struct list_head *tmp, *n;
  867. struct request *rq;
  868. list_for_each_safe(tmp, n, &bqt->busy_list) {
  869. rq = list_entry_rq(tmp);
  870. if (rq->tag == -1) {
  871. printk(KERN_ERR
  872. "%s: bad tag found on list\n", __FUNCTION__);
  873. list_del_init(&rq->queuelist);
  874. rq->flags &= ~REQ_QUEUED;
  875. } else
  876. blk_queue_end_tag(q, rq);
  877. rq->flags &= ~REQ_STARTED;
  878. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  879. }
  880. }
  881. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  882. static char *rq_flags[] = {
  883. "REQ_RW",
  884. "REQ_FAILFAST",
  885. "REQ_SORTED",
  886. "REQ_SOFTBARRIER",
  887. "REQ_HARDBARRIER",
  888. "REQ_CMD",
  889. "REQ_NOMERGE",
  890. "REQ_STARTED",
  891. "REQ_DONTPREP",
  892. "REQ_QUEUED",
  893. "REQ_ELVPRIV",
  894. "REQ_PC",
  895. "REQ_BLOCK_PC",
  896. "REQ_SENSE",
  897. "REQ_FAILED",
  898. "REQ_QUIET",
  899. "REQ_SPECIAL",
  900. "REQ_DRIVE_CMD",
  901. "REQ_DRIVE_TASK",
  902. "REQ_DRIVE_TASKFILE",
  903. "REQ_PREEMPT",
  904. "REQ_PM_SUSPEND",
  905. "REQ_PM_RESUME",
  906. "REQ_PM_SHUTDOWN",
  907. };
  908. void blk_dump_rq_flags(struct request *rq, char *msg)
  909. {
  910. int bit;
  911. printk("%s: dev %s: flags = ", msg,
  912. rq->rq_disk ? rq->rq_disk->disk_name : "?");
  913. bit = 0;
  914. do {
  915. if (rq->flags & (1 << bit))
  916. printk("%s ", rq_flags[bit]);
  917. bit++;
  918. } while (bit < __REQ_NR_BITS);
  919. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  920. rq->nr_sectors,
  921. rq->current_nr_sectors);
  922. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  923. if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
  924. printk("cdb: ");
  925. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  926. printk("%02x ", rq->cmd[bit]);
  927. printk("\n");
  928. }
  929. }
  930. EXPORT_SYMBOL(blk_dump_rq_flags);
  931. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  932. {
  933. struct bio_vec *bv, *bvprv = NULL;
  934. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  935. int high, highprv = 1;
  936. if (unlikely(!bio->bi_io_vec))
  937. return;
  938. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  939. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  940. bio_for_each_segment(bv, bio, i) {
  941. /*
  942. * the trick here is making sure that a high page is never
  943. * considered part of another segment, since that might
  944. * change with the bounce page.
  945. */
  946. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  947. if (high || highprv)
  948. goto new_hw_segment;
  949. if (cluster) {
  950. if (seg_size + bv->bv_len > q->max_segment_size)
  951. goto new_segment;
  952. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  953. goto new_segment;
  954. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  955. goto new_segment;
  956. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  957. goto new_hw_segment;
  958. seg_size += bv->bv_len;
  959. hw_seg_size += bv->bv_len;
  960. bvprv = bv;
  961. continue;
  962. }
  963. new_segment:
  964. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  965. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  966. hw_seg_size += bv->bv_len;
  967. } else {
  968. new_hw_segment:
  969. if (hw_seg_size > bio->bi_hw_front_size)
  970. bio->bi_hw_front_size = hw_seg_size;
  971. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  972. nr_hw_segs++;
  973. }
  974. nr_phys_segs++;
  975. bvprv = bv;
  976. seg_size = bv->bv_len;
  977. highprv = high;
  978. }
  979. if (hw_seg_size > bio->bi_hw_back_size)
  980. bio->bi_hw_back_size = hw_seg_size;
  981. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  982. bio->bi_hw_front_size = hw_seg_size;
  983. bio->bi_phys_segments = nr_phys_segs;
  984. bio->bi_hw_segments = nr_hw_segs;
  985. bio->bi_flags |= (1 << BIO_SEG_VALID);
  986. }
  987. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  988. struct bio *nxt)
  989. {
  990. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  991. return 0;
  992. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  993. return 0;
  994. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  995. return 0;
  996. /*
  997. * bio and nxt are contigous in memory, check if the queue allows
  998. * these two to be merged into one
  999. */
  1000. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1001. return 1;
  1002. return 0;
  1003. }
  1004. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1005. struct bio *nxt)
  1006. {
  1007. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1008. blk_recount_segments(q, bio);
  1009. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1010. blk_recount_segments(q, nxt);
  1011. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1012. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1013. return 0;
  1014. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1015. return 0;
  1016. return 1;
  1017. }
  1018. /*
  1019. * map a request to scatterlist, return number of sg entries setup. Caller
  1020. * must make sure sg can hold rq->nr_phys_segments entries
  1021. */
  1022. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1023. {
  1024. struct bio_vec *bvec, *bvprv;
  1025. struct bio *bio;
  1026. int nsegs, i, cluster;
  1027. nsegs = 0;
  1028. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1029. /*
  1030. * for each bio in rq
  1031. */
  1032. bvprv = NULL;
  1033. rq_for_each_bio(bio, rq) {
  1034. /*
  1035. * for each segment in bio
  1036. */
  1037. bio_for_each_segment(bvec, bio, i) {
  1038. int nbytes = bvec->bv_len;
  1039. if (bvprv && cluster) {
  1040. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1041. goto new_segment;
  1042. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1043. goto new_segment;
  1044. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1045. goto new_segment;
  1046. sg[nsegs - 1].length += nbytes;
  1047. } else {
  1048. new_segment:
  1049. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1050. sg[nsegs].page = bvec->bv_page;
  1051. sg[nsegs].length = nbytes;
  1052. sg[nsegs].offset = bvec->bv_offset;
  1053. nsegs++;
  1054. }
  1055. bvprv = bvec;
  1056. } /* segments in bio */
  1057. } /* bios in rq */
  1058. return nsegs;
  1059. }
  1060. EXPORT_SYMBOL(blk_rq_map_sg);
  1061. /*
  1062. * the standard queue merge functions, can be overridden with device
  1063. * specific ones if so desired
  1064. */
  1065. static inline int ll_new_mergeable(request_queue_t *q,
  1066. struct request *req,
  1067. struct bio *bio)
  1068. {
  1069. int nr_phys_segs = bio_phys_segments(q, bio);
  1070. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1071. req->flags |= REQ_NOMERGE;
  1072. if (req == q->last_merge)
  1073. q->last_merge = NULL;
  1074. return 0;
  1075. }
  1076. /*
  1077. * A hw segment is just getting larger, bump just the phys
  1078. * counter.
  1079. */
  1080. req->nr_phys_segments += nr_phys_segs;
  1081. return 1;
  1082. }
  1083. static inline int ll_new_hw_segment(request_queue_t *q,
  1084. struct request *req,
  1085. struct bio *bio)
  1086. {
  1087. int nr_hw_segs = bio_hw_segments(q, bio);
  1088. int nr_phys_segs = bio_phys_segments(q, bio);
  1089. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1090. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1091. req->flags |= REQ_NOMERGE;
  1092. if (req == q->last_merge)
  1093. q->last_merge = NULL;
  1094. return 0;
  1095. }
  1096. /*
  1097. * This will form the start of a new hw segment. Bump both
  1098. * counters.
  1099. */
  1100. req->nr_hw_segments += nr_hw_segs;
  1101. req->nr_phys_segments += nr_phys_segs;
  1102. return 1;
  1103. }
  1104. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1105. struct bio *bio)
  1106. {
  1107. int len;
  1108. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1109. req->flags |= REQ_NOMERGE;
  1110. if (req == q->last_merge)
  1111. q->last_merge = NULL;
  1112. return 0;
  1113. }
  1114. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1115. blk_recount_segments(q, req->biotail);
  1116. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1117. blk_recount_segments(q, bio);
  1118. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1119. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1120. !BIOVEC_VIRT_OVERSIZE(len)) {
  1121. int mergeable = ll_new_mergeable(q, req, bio);
  1122. if (mergeable) {
  1123. if (req->nr_hw_segments == 1)
  1124. req->bio->bi_hw_front_size = len;
  1125. if (bio->bi_hw_segments == 1)
  1126. bio->bi_hw_back_size = len;
  1127. }
  1128. return mergeable;
  1129. }
  1130. return ll_new_hw_segment(q, req, bio);
  1131. }
  1132. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1133. struct bio *bio)
  1134. {
  1135. int len;
  1136. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1137. req->flags |= REQ_NOMERGE;
  1138. if (req == q->last_merge)
  1139. q->last_merge = NULL;
  1140. return 0;
  1141. }
  1142. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1143. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1144. blk_recount_segments(q, bio);
  1145. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1146. blk_recount_segments(q, req->bio);
  1147. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1148. !BIOVEC_VIRT_OVERSIZE(len)) {
  1149. int mergeable = ll_new_mergeable(q, req, bio);
  1150. if (mergeable) {
  1151. if (bio->bi_hw_segments == 1)
  1152. bio->bi_hw_front_size = len;
  1153. if (req->nr_hw_segments == 1)
  1154. req->biotail->bi_hw_back_size = len;
  1155. }
  1156. return mergeable;
  1157. }
  1158. return ll_new_hw_segment(q, req, bio);
  1159. }
  1160. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1161. struct request *next)
  1162. {
  1163. int total_phys_segments;
  1164. int total_hw_segments;
  1165. /*
  1166. * First check if the either of the requests are re-queued
  1167. * requests. Can't merge them if they are.
  1168. */
  1169. if (req->special || next->special)
  1170. return 0;
  1171. /*
  1172. * Will it become too large?
  1173. */
  1174. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1175. return 0;
  1176. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1177. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1178. total_phys_segments--;
  1179. if (total_phys_segments > q->max_phys_segments)
  1180. return 0;
  1181. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1182. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1183. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1184. /*
  1185. * propagate the combined length to the end of the requests
  1186. */
  1187. if (req->nr_hw_segments == 1)
  1188. req->bio->bi_hw_front_size = len;
  1189. if (next->nr_hw_segments == 1)
  1190. next->biotail->bi_hw_back_size = len;
  1191. total_hw_segments--;
  1192. }
  1193. if (total_hw_segments > q->max_hw_segments)
  1194. return 0;
  1195. /* Merge is OK... */
  1196. req->nr_phys_segments = total_phys_segments;
  1197. req->nr_hw_segments = total_hw_segments;
  1198. return 1;
  1199. }
  1200. /*
  1201. * "plug" the device if there are no outstanding requests: this will
  1202. * force the transfer to start only after we have put all the requests
  1203. * on the list.
  1204. *
  1205. * This is called with interrupts off and no requests on the queue and
  1206. * with the queue lock held.
  1207. */
  1208. void blk_plug_device(request_queue_t *q)
  1209. {
  1210. WARN_ON(!irqs_disabled());
  1211. /*
  1212. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1213. * which will restart the queueing
  1214. */
  1215. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1216. return;
  1217. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1218. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1219. }
  1220. EXPORT_SYMBOL(blk_plug_device);
  1221. /*
  1222. * remove the queue from the plugged list, if present. called with
  1223. * queue lock held and interrupts disabled.
  1224. */
  1225. int blk_remove_plug(request_queue_t *q)
  1226. {
  1227. WARN_ON(!irqs_disabled());
  1228. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1229. return 0;
  1230. del_timer(&q->unplug_timer);
  1231. return 1;
  1232. }
  1233. EXPORT_SYMBOL(blk_remove_plug);
  1234. /*
  1235. * remove the plug and let it rip..
  1236. */
  1237. void __generic_unplug_device(request_queue_t *q)
  1238. {
  1239. if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
  1240. return;
  1241. if (!blk_remove_plug(q))
  1242. return;
  1243. q->request_fn(q);
  1244. }
  1245. EXPORT_SYMBOL(__generic_unplug_device);
  1246. /**
  1247. * generic_unplug_device - fire a request queue
  1248. * @q: The &request_queue_t in question
  1249. *
  1250. * Description:
  1251. * Linux uses plugging to build bigger requests queues before letting
  1252. * the device have at them. If a queue is plugged, the I/O scheduler
  1253. * is still adding and merging requests on the queue. Once the queue
  1254. * gets unplugged, the request_fn defined for the queue is invoked and
  1255. * transfers started.
  1256. **/
  1257. void generic_unplug_device(request_queue_t *q)
  1258. {
  1259. spin_lock_irq(q->queue_lock);
  1260. __generic_unplug_device(q);
  1261. spin_unlock_irq(q->queue_lock);
  1262. }
  1263. EXPORT_SYMBOL(generic_unplug_device);
  1264. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1265. struct page *page)
  1266. {
  1267. request_queue_t *q = bdi->unplug_io_data;
  1268. /*
  1269. * devices don't necessarily have an ->unplug_fn defined
  1270. */
  1271. if (q->unplug_fn)
  1272. q->unplug_fn(q);
  1273. }
  1274. static void blk_unplug_work(void *data)
  1275. {
  1276. request_queue_t *q = data;
  1277. q->unplug_fn(q);
  1278. }
  1279. static void blk_unplug_timeout(unsigned long data)
  1280. {
  1281. request_queue_t *q = (request_queue_t *)data;
  1282. kblockd_schedule_work(&q->unplug_work);
  1283. }
  1284. /**
  1285. * blk_start_queue - restart a previously stopped queue
  1286. * @q: The &request_queue_t in question
  1287. *
  1288. * Description:
  1289. * blk_start_queue() will clear the stop flag on the queue, and call
  1290. * the request_fn for the queue if it was in a stopped state when
  1291. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1292. **/
  1293. void blk_start_queue(request_queue_t *q)
  1294. {
  1295. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1296. /*
  1297. * one level of recursion is ok and is much faster than kicking
  1298. * the unplug handling
  1299. */
  1300. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1301. q->request_fn(q);
  1302. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1303. } else {
  1304. blk_plug_device(q);
  1305. kblockd_schedule_work(&q->unplug_work);
  1306. }
  1307. }
  1308. EXPORT_SYMBOL(blk_start_queue);
  1309. /**
  1310. * blk_stop_queue - stop a queue
  1311. * @q: The &request_queue_t in question
  1312. *
  1313. * Description:
  1314. * The Linux block layer assumes that a block driver will consume all
  1315. * entries on the request queue when the request_fn strategy is called.
  1316. * Often this will not happen, because of hardware limitations (queue
  1317. * depth settings). If a device driver gets a 'queue full' response,
  1318. * or if it simply chooses not to queue more I/O at one point, it can
  1319. * call this function to prevent the request_fn from being called until
  1320. * the driver has signalled it's ready to go again. This happens by calling
  1321. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1322. **/
  1323. void blk_stop_queue(request_queue_t *q)
  1324. {
  1325. blk_remove_plug(q);
  1326. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1327. }
  1328. EXPORT_SYMBOL(blk_stop_queue);
  1329. /**
  1330. * blk_sync_queue - cancel any pending callbacks on a queue
  1331. * @q: the queue
  1332. *
  1333. * Description:
  1334. * The block layer may perform asynchronous callback activity
  1335. * on a queue, such as calling the unplug function after a timeout.
  1336. * A block device may call blk_sync_queue to ensure that any
  1337. * such activity is cancelled, thus allowing it to release resources
  1338. * the the callbacks might use. The caller must already have made sure
  1339. * that its ->make_request_fn will not re-add plugging prior to calling
  1340. * this function.
  1341. *
  1342. */
  1343. void blk_sync_queue(struct request_queue *q)
  1344. {
  1345. del_timer_sync(&q->unplug_timer);
  1346. kblockd_flush();
  1347. }
  1348. EXPORT_SYMBOL(blk_sync_queue);
  1349. /**
  1350. * blk_run_queue - run a single device queue
  1351. * @q: The queue to run
  1352. */
  1353. void blk_run_queue(struct request_queue *q)
  1354. {
  1355. unsigned long flags;
  1356. spin_lock_irqsave(q->queue_lock, flags);
  1357. blk_remove_plug(q);
  1358. if (!elv_queue_empty(q))
  1359. q->request_fn(q);
  1360. spin_unlock_irqrestore(q->queue_lock, flags);
  1361. }
  1362. EXPORT_SYMBOL(blk_run_queue);
  1363. /**
  1364. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1365. * @q: the request queue to be released
  1366. *
  1367. * Description:
  1368. * blk_cleanup_queue is the pair to blk_init_queue() or
  1369. * blk_queue_make_request(). It should be called when a request queue is
  1370. * being released; typically when a block device is being de-registered.
  1371. * Currently, its primary task it to free all the &struct request
  1372. * structures that were allocated to the queue and the queue itself.
  1373. *
  1374. * Caveat:
  1375. * Hopefully the low level driver will have finished any
  1376. * outstanding requests first...
  1377. **/
  1378. void blk_cleanup_queue(request_queue_t * q)
  1379. {
  1380. struct request_list *rl = &q->rq;
  1381. if (!atomic_dec_and_test(&q->refcnt))
  1382. return;
  1383. if (q->elevator)
  1384. elevator_exit(q->elevator);
  1385. blk_sync_queue(q);
  1386. if (rl->rq_pool)
  1387. mempool_destroy(rl->rq_pool);
  1388. if (q->queue_tags)
  1389. __blk_queue_free_tags(q);
  1390. blk_queue_ordered(q, QUEUE_ORDERED_NONE);
  1391. kmem_cache_free(requestq_cachep, q);
  1392. }
  1393. EXPORT_SYMBOL(blk_cleanup_queue);
  1394. static int blk_init_free_list(request_queue_t *q)
  1395. {
  1396. struct request_list *rl = &q->rq;
  1397. rl->count[READ] = rl->count[WRITE] = 0;
  1398. rl->starved[READ] = rl->starved[WRITE] = 0;
  1399. rl->elvpriv = 0;
  1400. init_waitqueue_head(&rl->wait[READ]);
  1401. init_waitqueue_head(&rl->wait[WRITE]);
  1402. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1403. mempool_free_slab, request_cachep, q->node);
  1404. if (!rl->rq_pool)
  1405. return -ENOMEM;
  1406. return 0;
  1407. }
  1408. static int __make_request(request_queue_t *, struct bio *);
  1409. request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
  1410. {
  1411. return blk_alloc_queue_node(gfp_mask, -1);
  1412. }
  1413. EXPORT_SYMBOL(blk_alloc_queue);
  1414. request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1415. {
  1416. request_queue_t *q;
  1417. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1418. if (!q)
  1419. return NULL;
  1420. memset(q, 0, sizeof(*q));
  1421. init_timer(&q->unplug_timer);
  1422. atomic_set(&q->refcnt, 1);
  1423. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1424. q->backing_dev_info.unplug_io_data = q;
  1425. return q;
  1426. }
  1427. EXPORT_SYMBOL(blk_alloc_queue_node);
  1428. /**
  1429. * blk_init_queue - prepare a request queue for use with a block device
  1430. * @rfn: The function to be called to process requests that have been
  1431. * placed on the queue.
  1432. * @lock: Request queue spin lock
  1433. *
  1434. * Description:
  1435. * If a block device wishes to use the standard request handling procedures,
  1436. * which sorts requests and coalesces adjacent requests, then it must
  1437. * call blk_init_queue(). The function @rfn will be called when there
  1438. * are requests on the queue that need to be processed. If the device
  1439. * supports plugging, then @rfn may not be called immediately when requests
  1440. * are available on the queue, but may be called at some time later instead.
  1441. * Plugged queues are generally unplugged when a buffer belonging to one
  1442. * of the requests on the queue is needed, or due to memory pressure.
  1443. *
  1444. * @rfn is not required, or even expected, to remove all requests off the
  1445. * queue, but only as many as it can handle at a time. If it does leave
  1446. * requests on the queue, it is responsible for arranging that the requests
  1447. * get dealt with eventually.
  1448. *
  1449. * The queue spin lock must be held while manipulating the requests on the
  1450. * request queue.
  1451. *
  1452. * Function returns a pointer to the initialized request queue, or NULL if
  1453. * it didn't succeed.
  1454. *
  1455. * Note:
  1456. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1457. * when the block device is deactivated (such as at module unload).
  1458. **/
  1459. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1460. {
  1461. return blk_init_queue_node(rfn, lock, -1);
  1462. }
  1463. EXPORT_SYMBOL(blk_init_queue);
  1464. request_queue_t *
  1465. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1466. {
  1467. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1468. if (!q)
  1469. return NULL;
  1470. q->node = node_id;
  1471. if (blk_init_free_list(q))
  1472. goto out_init;
  1473. /*
  1474. * if caller didn't supply a lock, they get per-queue locking with
  1475. * our embedded lock
  1476. */
  1477. if (!lock) {
  1478. spin_lock_init(&q->__queue_lock);
  1479. lock = &q->__queue_lock;
  1480. }
  1481. q->request_fn = rfn;
  1482. q->back_merge_fn = ll_back_merge_fn;
  1483. q->front_merge_fn = ll_front_merge_fn;
  1484. q->merge_requests_fn = ll_merge_requests_fn;
  1485. q->prep_rq_fn = NULL;
  1486. q->unplug_fn = generic_unplug_device;
  1487. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1488. q->queue_lock = lock;
  1489. blk_queue_segment_boundary(q, 0xffffffff);
  1490. blk_queue_make_request(q, __make_request);
  1491. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1492. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1493. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1494. /*
  1495. * all done
  1496. */
  1497. if (!elevator_init(q, NULL)) {
  1498. blk_queue_congestion_threshold(q);
  1499. return q;
  1500. }
  1501. blk_cleanup_queue(q);
  1502. out_init:
  1503. kmem_cache_free(requestq_cachep, q);
  1504. return NULL;
  1505. }
  1506. EXPORT_SYMBOL(blk_init_queue_node);
  1507. int blk_get_queue(request_queue_t *q)
  1508. {
  1509. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1510. atomic_inc(&q->refcnt);
  1511. return 0;
  1512. }
  1513. return 1;
  1514. }
  1515. EXPORT_SYMBOL(blk_get_queue);
  1516. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1517. {
  1518. if (rq->flags & REQ_ELVPRIV)
  1519. elv_put_request(q, rq);
  1520. mempool_free(rq, q->rq.rq_pool);
  1521. }
  1522. static inline struct request *
  1523. blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
  1524. int priv, gfp_t gfp_mask)
  1525. {
  1526. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1527. if (!rq)
  1528. return NULL;
  1529. /*
  1530. * first three bits are identical in rq->flags and bio->bi_rw,
  1531. * see bio.h and blkdev.h
  1532. */
  1533. rq->flags = rw;
  1534. if (priv) {
  1535. if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
  1536. mempool_free(rq, q->rq.rq_pool);
  1537. return NULL;
  1538. }
  1539. rq->flags |= REQ_ELVPRIV;
  1540. }
  1541. return rq;
  1542. }
  1543. /*
  1544. * ioc_batching returns true if the ioc is a valid batching request and
  1545. * should be given priority access to a request.
  1546. */
  1547. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1548. {
  1549. if (!ioc)
  1550. return 0;
  1551. /*
  1552. * Make sure the process is able to allocate at least 1 request
  1553. * even if the batch times out, otherwise we could theoretically
  1554. * lose wakeups.
  1555. */
  1556. return ioc->nr_batch_requests == q->nr_batching ||
  1557. (ioc->nr_batch_requests > 0
  1558. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1559. }
  1560. /*
  1561. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1562. * will cause the process to be a "batcher" on all queues in the system. This
  1563. * is the behaviour we want though - once it gets a wakeup it should be given
  1564. * a nice run.
  1565. */
  1566. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1567. {
  1568. if (!ioc || ioc_batching(q, ioc))
  1569. return;
  1570. ioc->nr_batch_requests = q->nr_batching;
  1571. ioc->last_waited = jiffies;
  1572. }
  1573. static void __freed_request(request_queue_t *q, int rw)
  1574. {
  1575. struct request_list *rl = &q->rq;
  1576. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1577. clear_queue_congested(q, rw);
  1578. if (rl->count[rw] + 1 <= q->nr_requests) {
  1579. if (waitqueue_active(&rl->wait[rw]))
  1580. wake_up(&rl->wait[rw]);
  1581. blk_clear_queue_full(q, rw);
  1582. }
  1583. }
  1584. /*
  1585. * A request has just been released. Account for it, update the full and
  1586. * congestion status, wake up any waiters. Called under q->queue_lock.
  1587. */
  1588. static void freed_request(request_queue_t *q, int rw, int priv)
  1589. {
  1590. struct request_list *rl = &q->rq;
  1591. rl->count[rw]--;
  1592. if (priv)
  1593. rl->elvpriv--;
  1594. __freed_request(q, rw);
  1595. if (unlikely(rl->starved[rw ^ 1]))
  1596. __freed_request(q, rw ^ 1);
  1597. }
  1598. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1599. /*
  1600. * Get a free request, queue_lock must be held.
  1601. * Returns NULL on failure, with queue_lock held.
  1602. * Returns !NULL on success, with queue_lock *not held*.
  1603. */
  1604. static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
  1605. gfp_t gfp_mask)
  1606. {
  1607. struct request *rq = NULL;
  1608. struct request_list *rl = &q->rq;
  1609. struct io_context *ioc = current_io_context(GFP_ATOMIC);
  1610. int priv;
  1611. if (rl->count[rw]+1 >= q->nr_requests) {
  1612. /*
  1613. * The queue will fill after this allocation, so set it as
  1614. * full, and mark this process as "batching". This process
  1615. * will be allowed to complete a batch of requests, others
  1616. * will be blocked.
  1617. */
  1618. if (!blk_queue_full(q, rw)) {
  1619. ioc_set_batching(q, ioc);
  1620. blk_set_queue_full(q, rw);
  1621. }
  1622. }
  1623. switch (elv_may_queue(q, rw, bio)) {
  1624. case ELV_MQUEUE_NO:
  1625. goto rq_starved;
  1626. case ELV_MQUEUE_MAY:
  1627. break;
  1628. case ELV_MQUEUE_MUST:
  1629. goto get_rq;
  1630. }
  1631. if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
  1632. /*
  1633. * The queue is full and the allocating process is not a
  1634. * "batcher", and not exempted by the IO scheduler
  1635. */
  1636. goto out;
  1637. }
  1638. get_rq:
  1639. /*
  1640. * Only allow batching queuers to allocate up to 50% over the defined
  1641. * limit of requests, otherwise we could have thousands of requests
  1642. * allocated with any setting of ->nr_requests
  1643. */
  1644. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1645. goto out;
  1646. rl->count[rw]++;
  1647. rl->starved[rw] = 0;
  1648. if (rl->count[rw] >= queue_congestion_on_threshold(q))
  1649. set_queue_congested(q, rw);
  1650. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1651. if (priv)
  1652. rl->elvpriv++;
  1653. spin_unlock_irq(q->queue_lock);
  1654. rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
  1655. if (!rq) {
  1656. /*
  1657. * Allocation failed presumably due to memory. Undo anything
  1658. * we might have messed up.
  1659. *
  1660. * Allocating task should really be put onto the front of the
  1661. * wait queue, but this is pretty rare.
  1662. */
  1663. spin_lock_irq(q->queue_lock);
  1664. freed_request(q, rw, priv);
  1665. /*
  1666. * in the very unlikely event that allocation failed and no
  1667. * requests for this direction was pending, mark us starved
  1668. * so that freeing of a request in the other direction will
  1669. * notice us. another possible fix would be to split the
  1670. * rq mempool into READ and WRITE
  1671. */
  1672. rq_starved:
  1673. if (unlikely(rl->count[rw] == 0))
  1674. rl->starved[rw] = 1;
  1675. goto out;
  1676. }
  1677. if (ioc_batching(q, ioc))
  1678. ioc->nr_batch_requests--;
  1679. rq_init(q, rq);
  1680. rq->rl = rl;
  1681. out:
  1682. return rq;
  1683. }
  1684. /*
  1685. * No available requests for this queue, unplug the device and wait for some
  1686. * requests to become available.
  1687. *
  1688. * Called with q->queue_lock held, and returns with it unlocked.
  1689. */
  1690. static struct request *get_request_wait(request_queue_t *q, int rw,
  1691. struct bio *bio)
  1692. {
  1693. struct request *rq;
  1694. rq = get_request(q, rw, bio, GFP_NOIO);
  1695. while (!rq) {
  1696. DEFINE_WAIT(wait);
  1697. struct request_list *rl = &q->rq;
  1698. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1699. TASK_UNINTERRUPTIBLE);
  1700. rq = get_request(q, rw, bio, GFP_NOIO);
  1701. if (!rq) {
  1702. struct io_context *ioc;
  1703. __generic_unplug_device(q);
  1704. spin_unlock_irq(q->queue_lock);
  1705. io_schedule();
  1706. /*
  1707. * After sleeping, we become a "batching" process and
  1708. * will be able to allocate at least one request, and
  1709. * up to a big batch of them for a small period time.
  1710. * See ioc_batching, ioc_set_batching
  1711. */
  1712. ioc = current_io_context(GFP_NOIO);
  1713. ioc_set_batching(q, ioc);
  1714. spin_lock_irq(q->queue_lock);
  1715. }
  1716. finish_wait(&rl->wait[rw], &wait);
  1717. }
  1718. return rq;
  1719. }
  1720. struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
  1721. {
  1722. struct request *rq;
  1723. BUG_ON(rw != READ && rw != WRITE);
  1724. spin_lock_irq(q->queue_lock);
  1725. if (gfp_mask & __GFP_WAIT) {
  1726. rq = get_request_wait(q, rw, NULL);
  1727. } else {
  1728. rq = get_request(q, rw, NULL, gfp_mask);
  1729. if (!rq)
  1730. spin_unlock_irq(q->queue_lock);
  1731. }
  1732. /* q->queue_lock is unlocked at this point */
  1733. return rq;
  1734. }
  1735. EXPORT_SYMBOL(blk_get_request);
  1736. /**
  1737. * blk_requeue_request - put a request back on queue
  1738. * @q: request queue where request should be inserted
  1739. * @rq: request to be inserted
  1740. *
  1741. * Description:
  1742. * Drivers often keep queueing requests until the hardware cannot accept
  1743. * more, when that condition happens we need to put the request back
  1744. * on the queue. Must be called with queue lock held.
  1745. */
  1746. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1747. {
  1748. if (blk_rq_tagged(rq))
  1749. blk_queue_end_tag(q, rq);
  1750. elv_requeue_request(q, rq);
  1751. }
  1752. EXPORT_SYMBOL(blk_requeue_request);
  1753. /**
  1754. * blk_insert_request - insert a special request in to a request queue
  1755. * @q: request queue where request should be inserted
  1756. * @rq: request to be inserted
  1757. * @at_head: insert request at head or tail of queue
  1758. * @data: private data
  1759. *
  1760. * Description:
  1761. * Many block devices need to execute commands asynchronously, so they don't
  1762. * block the whole kernel from preemption during request execution. This is
  1763. * accomplished normally by inserting aritficial requests tagged as
  1764. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1765. * scheduled for actual execution by the request queue.
  1766. *
  1767. * We have the option of inserting the head or the tail of the queue.
  1768. * Typically we use the tail for new ioctls and so forth. We use the head
  1769. * of the queue for things like a QUEUE_FULL message from a device, or a
  1770. * host that is unable to accept a particular command.
  1771. */
  1772. void blk_insert_request(request_queue_t *q, struct request *rq,
  1773. int at_head, void *data)
  1774. {
  1775. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1776. unsigned long flags;
  1777. /*
  1778. * tell I/O scheduler that this isn't a regular read/write (ie it
  1779. * must not attempt merges on this) and that it acts as a soft
  1780. * barrier
  1781. */
  1782. rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
  1783. rq->special = data;
  1784. spin_lock_irqsave(q->queue_lock, flags);
  1785. /*
  1786. * If command is tagged, release the tag
  1787. */
  1788. if (blk_rq_tagged(rq))
  1789. blk_queue_end_tag(q, rq);
  1790. drive_stat_acct(rq, rq->nr_sectors, 1);
  1791. __elv_add_request(q, rq, where, 0);
  1792. if (blk_queue_plugged(q))
  1793. __generic_unplug_device(q);
  1794. else
  1795. q->request_fn(q);
  1796. spin_unlock_irqrestore(q->queue_lock, flags);
  1797. }
  1798. EXPORT_SYMBOL(blk_insert_request);
  1799. /**
  1800. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1801. * @q: request queue where request should be inserted
  1802. * @rq: request structure to fill
  1803. * @ubuf: the user buffer
  1804. * @len: length of user data
  1805. *
  1806. * Description:
  1807. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1808. * a kernel bounce buffer is used.
  1809. *
  1810. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1811. * still in process context.
  1812. *
  1813. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1814. * before being submitted to the device, as pages mapped may be out of
  1815. * reach. It's the callers responsibility to make sure this happens. The
  1816. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1817. * unmapping.
  1818. */
  1819. int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
  1820. unsigned int len)
  1821. {
  1822. unsigned long uaddr;
  1823. struct bio *bio;
  1824. int reading;
  1825. if (len > (q->max_sectors << 9))
  1826. return -EINVAL;
  1827. if (!len || !ubuf)
  1828. return -EINVAL;
  1829. reading = rq_data_dir(rq) == READ;
  1830. /*
  1831. * if alignment requirement is satisfied, map in user pages for
  1832. * direct dma. else, set up kernel bounce buffers
  1833. */
  1834. uaddr = (unsigned long) ubuf;
  1835. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1836. bio = bio_map_user(q, NULL, uaddr, len, reading);
  1837. else
  1838. bio = bio_copy_user(q, uaddr, len, reading);
  1839. if (!IS_ERR(bio)) {
  1840. rq->bio = rq->biotail = bio;
  1841. blk_rq_bio_prep(q, rq, bio);
  1842. rq->buffer = rq->data = NULL;
  1843. rq->data_len = len;
  1844. return 0;
  1845. }
  1846. /*
  1847. * bio is the err-ptr
  1848. */
  1849. return PTR_ERR(bio);
  1850. }
  1851. EXPORT_SYMBOL(blk_rq_map_user);
  1852. /**
  1853. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  1854. * @q: request queue where request should be inserted
  1855. * @rq: request to map data to
  1856. * @iov: pointer to the iovec
  1857. * @iov_count: number of elements in the iovec
  1858. *
  1859. * Description:
  1860. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1861. * a kernel bounce buffer is used.
  1862. *
  1863. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1864. * still in process context.
  1865. *
  1866. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1867. * before being submitted to the device, as pages mapped may be out of
  1868. * reach. It's the callers responsibility to make sure this happens. The
  1869. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1870. * unmapping.
  1871. */
  1872. int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
  1873. struct sg_iovec *iov, int iov_count)
  1874. {
  1875. struct bio *bio;
  1876. if (!iov || iov_count <= 0)
  1877. return -EINVAL;
  1878. /* we don't allow misaligned data like bio_map_user() does. If the
  1879. * user is using sg, they're expected to know the alignment constraints
  1880. * and respect them accordingly */
  1881. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  1882. if (IS_ERR(bio))
  1883. return PTR_ERR(bio);
  1884. rq->bio = rq->biotail = bio;
  1885. blk_rq_bio_prep(q, rq, bio);
  1886. rq->buffer = rq->data = NULL;
  1887. rq->data_len = bio->bi_size;
  1888. return 0;
  1889. }
  1890. EXPORT_SYMBOL(blk_rq_map_user_iov);
  1891. /**
  1892. * blk_rq_unmap_user - unmap a request with user data
  1893. * @bio: bio to be unmapped
  1894. * @ulen: length of user buffer
  1895. *
  1896. * Description:
  1897. * Unmap a bio previously mapped by blk_rq_map_user().
  1898. */
  1899. int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
  1900. {
  1901. int ret = 0;
  1902. if (bio) {
  1903. if (bio_flagged(bio, BIO_USER_MAPPED))
  1904. bio_unmap_user(bio);
  1905. else
  1906. ret = bio_uncopy_user(bio);
  1907. }
  1908. return 0;
  1909. }
  1910. EXPORT_SYMBOL(blk_rq_unmap_user);
  1911. /**
  1912. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  1913. * @q: request queue where request should be inserted
  1914. * @rq: request to fill
  1915. * @kbuf: the kernel buffer
  1916. * @len: length of user data
  1917. * @gfp_mask: memory allocation flags
  1918. */
  1919. int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
  1920. unsigned int len, gfp_t gfp_mask)
  1921. {
  1922. struct bio *bio;
  1923. if (len > (q->max_sectors << 9))
  1924. return -EINVAL;
  1925. if (!len || !kbuf)
  1926. return -EINVAL;
  1927. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  1928. if (IS_ERR(bio))
  1929. return PTR_ERR(bio);
  1930. if (rq_data_dir(rq) == WRITE)
  1931. bio->bi_rw |= (1 << BIO_RW);
  1932. rq->bio = rq->biotail = bio;
  1933. blk_rq_bio_prep(q, rq, bio);
  1934. rq->buffer = rq->data = NULL;
  1935. rq->data_len = len;
  1936. return 0;
  1937. }
  1938. EXPORT_SYMBOL(blk_rq_map_kern);
  1939. /**
  1940. * blk_execute_rq_nowait - insert a request into queue for execution
  1941. * @q: queue to insert the request in
  1942. * @bd_disk: matching gendisk
  1943. * @rq: request to insert
  1944. * @at_head: insert request at head or tail of queue
  1945. * @done: I/O completion handler
  1946. *
  1947. * Description:
  1948. * Insert a fully prepared request at the back of the io scheduler queue
  1949. * for execution. Don't wait for completion.
  1950. */
  1951. void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
  1952. struct request *rq, int at_head,
  1953. void (*done)(struct request *))
  1954. {
  1955. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1956. rq->rq_disk = bd_disk;
  1957. rq->flags |= REQ_NOMERGE;
  1958. rq->end_io = done;
  1959. elv_add_request(q, rq, where, 1);
  1960. generic_unplug_device(q);
  1961. }
  1962. /**
  1963. * blk_execute_rq - insert a request into queue for execution
  1964. * @q: queue to insert the request in
  1965. * @bd_disk: matching gendisk
  1966. * @rq: request to insert
  1967. * @at_head: insert request at head or tail of queue
  1968. *
  1969. * Description:
  1970. * Insert a fully prepared request at the back of the io scheduler queue
  1971. * for execution and wait for completion.
  1972. */
  1973. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  1974. struct request *rq, int at_head)
  1975. {
  1976. DECLARE_COMPLETION(wait);
  1977. char sense[SCSI_SENSE_BUFFERSIZE];
  1978. int err = 0;
  1979. /*
  1980. * we need an extra reference to the request, so we can look at
  1981. * it after io completion
  1982. */
  1983. rq->ref_count++;
  1984. if (!rq->sense) {
  1985. memset(sense, 0, sizeof(sense));
  1986. rq->sense = sense;
  1987. rq->sense_len = 0;
  1988. }
  1989. rq->waiting = &wait;
  1990. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  1991. wait_for_completion(&wait);
  1992. rq->waiting = NULL;
  1993. if (rq->errors)
  1994. err = -EIO;
  1995. return err;
  1996. }
  1997. EXPORT_SYMBOL(blk_execute_rq);
  1998. /**
  1999. * blkdev_issue_flush - queue a flush
  2000. * @bdev: blockdev to issue flush for
  2001. * @error_sector: error sector
  2002. *
  2003. * Description:
  2004. * Issue a flush for the block device in question. Caller can supply
  2005. * room for storing the error offset in case of a flush error, if they
  2006. * wish to. Caller must run wait_for_completion() on its own.
  2007. */
  2008. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2009. {
  2010. request_queue_t *q;
  2011. if (bdev->bd_disk == NULL)
  2012. return -ENXIO;
  2013. q = bdev_get_queue(bdev);
  2014. if (!q)
  2015. return -ENXIO;
  2016. if (!q->issue_flush_fn)
  2017. return -EOPNOTSUPP;
  2018. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2019. }
  2020. EXPORT_SYMBOL(blkdev_issue_flush);
  2021. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2022. {
  2023. int rw = rq_data_dir(rq);
  2024. if (!blk_fs_request(rq) || !rq->rq_disk)
  2025. return;
  2026. if (!new_io) {
  2027. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2028. } else {
  2029. disk_round_stats(rq->rq_disk);
  2030. rq->rq_disk->in_flight++;
  2031. }
  2032. }
  2033. /*
  2034. * add-request adds a request to the linked list.
  2035. * queue lock is held and interrupts disabled, as we muck with the
  2036. * request queue list.
  2037. */
  2038. static inline void add_request(request_queue_t * q, struct request * req)
  2039. {
  2040. drive_stat_acct(req, req->nr_sectors, 1);
  2041. if (q->activity_fn)
  2042. q->activity_fn(q->activity_data, rq_data_dir(req));
  2043. /*
  2044. * elevator indicated where it wants this request to be
  2045. * inserted at elevator_merge time
  2046. */
  2047. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2048. }
  2049. /*
  2050. * disk_round_stats() - Round off the performance stats on a struct
  2051. * disk_stats.
  2052. *
  2053. * The average IO queue length and utilisation statistics are maintained
  2054. * by observing the current state of the queue length and the amount of
  2055. * time it has been in this state for.
  2056. *
  2057. * Normally, that accounting is done on IO completion, but that can result
  2058. * in more than a second's worth of IO being accounted for within any one
  2059. * second, leading to >100% utilisation. To deal with that, we call this
  2060. * function to do a round-off before returning the results when reading
  2061. * /proc/diskstats. This accounts immediately for all queue usage up to
  2062. * the current jiffies and restarts the counters again.
  2063. */
  2064. void disk_round_stats(struct gendisk *disk)
  2065. {
  2066. unsigned long now = jiffies;
  2067. if (now == disk->stamp)
  2068. return;
  2069. if (disk->in_flight) {
  2070. __disk_stat_add(disk, time_in_queue,
  2071. disk->in_flight * (now - disk->stamp));
  2072. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2073. }
  2074. disk->stamp = now;
  2075. }
  2076. /*
  2077. * queue lock must be held
  2078. */
  2079. static void __blk_put_request(request_queue_t *q, struct request *req)
  2080. {
  2081. struct request_list *rl = req->rl;
  2082. if (unlikely(!q))
  2083. return;
  2084. if (unlikely(--req->ref_count))
  2085. return;
  2086. elv_completed_request(q, req);
  2087. req->rq_status = RQ_INACTIVE;
  2088. req->rl = NULL;
  2089. /*
  2090. * Request may not have originated from ll_rw_blk. if not,
  2091. * it didn't come out of our reserved rq pools
  2092. */
  2093. if (rl) {
  2094. int rw = rq_data_dir(req);
  2095. int priv = req->flags & REQ_ELVPRIV;
  2096. BUG_ON(!list_empty(&req->queuelist));
  2097. blk_free_request(q, req);
  2098. freed_request(q, rw, priv);
  2099. }
  2100. }
  2101. void blk_put_request(struct request *req)
  2102. {
  2103. unsigned long flags;
  2104. request_queue_t *q = req->q;
  2105. /*
  2106. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2107. * following if (q) test.
  2108. */
  2109. if (q) {
  2110. spin_lock_irqsave(q->queue_lock, flags);
  2111. __blk_put_request(q, req);
  2112. spin_unlock_irqrestore(q->queue_lock, flags);
  2113. }
  2114. }
  2115. EXPORT_SYMBOL(blk_put_request);
  2116. /**
  2117. * blk_end_sync_rq - executes a completion event on a request
  2118. * @rq: request to complete
  2119. */
  2120. void blk_end_sync_rq(struct request *rq)
  2121. {
  2122. struct completion *waiting = rq->waiting;
  2123. rq->waiting = NULL;
  2124. __blk_put_request(rq->q, rq);
  2125. /*
  2126. * complete last, if this is a stack request the process (and thus
  2127. * the rq pointer) could be invalid right after this complete()
  2128. */
  2129. complete(waiting);
  2130. }
  2131. EXPORT_SYMBOL(blk_end_sync_rq);
  2132. /**
  2133. * blk_congestion_wait - wait for a queue to become uncongested
  2134. * @rw: READ or WRITE
  2135. * @timeout: timeout in jiffies
  2136. *
  2137. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2138. * If no queues are congested then just wait for the next request to be
  2139. * returned.
  2140. */
  2141. long blk_congestion_wait(int rw, long timeout)
  2142. {
  2143. long ret;
  2144. DEFINE_WAIT(wait);
  2145. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2146. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2147. ret = io_schedule_timeout(timeout);
  2148. finish_wait(wqh, &wait);
  2149. return ret;
  2150. }
  2151. EXPORT_SYMBOL(blk_congestion_wait);
  2152. /*
  2153. * Has to be called with the request spinlock acquired
  2154. */
  2155. static int attempt_merge(request_queue_t *q, struct request *req,
  2156. struct request *next)
  2157. {
  2158. if (!rq_mergeable(req) || !rq_mergeable(next))
  2159. return 0;
  2160. /*
  2161. * not contigious
  2162. */
  2163. if (req->sector + req->nr_sectors != next->sector)
  2164. return 0;
  2165. if (rq_data_dir(req) != rq_data_dir(next)
  2166. || req->rq_disk != next->rq_disk
  2167. || next->waiting || next->special)
  2168. return 0;
  2169. /*
  2170. * If we are allowed to merge, then append bio list
  2171. * from next to rq and release next. merge_requests_fn
  2172. * will have updated segment counts, update sector
  2173. * counts here.
  2174. */
  2175. if (!q->merge_requests_fn(q, req, next))
  2176. return 0;
  2177. /*
  2178. * At this point we have either done a back merge
  2179. * or front merge. We need the smaller start_time of
  2180. * the merged requests to be the current request
  2181. * for accounting purposes.
  2182. */
  2183. if (time_after(req->start_time, next->start_time))
  2184. req->start_time = next->start_time;
  2185. req->biotail->bi_next = next->bio;
  2186. req->biotail = next->biotail;
  2187. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2188. elv_merge_requests(q, req, next);
  2189. if (req->rq_disk) {
  2190. disk_round_stats(req->rq_disk);
  2191. req->rq_disk->in_flight--;
  2192. }
  2193. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2194. __blk_put_request(q, next);
  2195. return 1;
  2196. }
  2197. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2198. {
  2199. struct request *next = elv_latter_request(q, rq);
  2200. if (next)
  2201. return attempt_merge(q, rq, next);
  2202. return 0;
  2203. }
  2204. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2205. {
  2206. struct request *prev = elv_former_request(q, rq);
  2207. if (prev)
  2208. return attempt_merge(q, prev, rq);
  2209. return 0;
  2210. }
  2211. /**
  2212. * blk_attempt_remerge - attempt to remerge active head with next request
  2213. * @q: The &request_queue_t belonging to the device
  2214. * @rq: The head request (usually)
  2215. *
  2216. * Description:
  2217. * For head-active devices, the queue can easily be unplugged so quickly
  2218. * that proper merging is not done on the front request. This may hurt
  2219. * performance greatly for some devices. The block layer cannot safely
  2220. * do merging on that first request for these queues, but the driver can
  2221. * call this function and make it happen any way. Only the driver knows
  2222. * when it is safe to do so.
  2223. **/
  2224. void blk_attempt_remerge(request_queue_t *q, struct request *rq)
  2225. {
  2226. unsigned long flags;
  2227. spin_lock_irqsave(q->queue_lock, flags);
  2228. attempt_back_merge(q, rq);
  2229. spin_unlock_irqrestore(q->queue_lock, flags);
  2230. }
  2231. EXPORT_SYMBOL(blk_attempt_remerge);
  2232. static int __make_request(request_queue_t *q, struct bio *bio)
  2233. {
  2234. struct request *req;
  2235. int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
  2236. unsigned short prio;
  2237. sector_t sector;
  2238. sector = bio->bi_sector;
  2239. nr_sectors = bio_sectors(bio);
  2240. cur_nr_sectors = bio_cur_sectors(bio);
  2241. prio = bio_prio(bio);
  2242. rw = bio_data_dir(bio);
  2243. sync = bio_sync(bio);
  2244. /*
  2245. * low level driver can indicate that it wants pages above a
  2246. * certain limit bounced to low memory (ie for highmem, or even
  2247. * ISA dma in theory)
  2248. */
  2249. blk_queue_bounce(q, &bio);
  2250. spin_lock_prefetch(q->queue_lock);
  2251. barrier = bio_barrier(bio);
  2252. if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
  2253. err = -EOPNOTSUPP;
  2254. goto end_io;
  2255. }
  2256. spin_lock_irq(q->queue_lock);
  2257. if (unlikely(barrier) || elv_queue_empty(q))
  2258. goto get_rq;
  2259. el_ret = elv_merge(q, &req, bio);
  2260. switch (el_ret) {
  2261. case ELEVATOR_BACK_MERGE:
  2262. BUG_ON(!rq_mergeable(req));
  2263. if (!q->back_merge_fn(q, req, bio))
  2264. break;
  2265. req->biotail->bi_next = bio;
  2266. req->biotail = bio;
  2267. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2268. req->ioprio = ioprio_best(req->ioprio, prio);
  2269. drive_stat_acct(req, nr_sectors, 0);
  2270. if (!attempt_back_merge(q, req))
  2271. elv_merged_request(q, req);
  2272. goto out;
  2273. case ELEVATOR_FRONT_MERGE:
  2274. BUG_ON(!rq_mergeable(req));
  2275. if (!q->front_merge_fn(q, req, bio))
  2276. break;
  2277. bio->bi_next = req->bio;
  2278. req->bio = bio;
  2279. /*
  2280. * may not be valid. if the low level driver said
  2281. * it didn't need a bounce buffer then it better
  2282. * not touch req->buffer either...
  2283. */
  2284. req->buffer = bio_data(bio);
  2285. req->current_nr_sectors = cur_nr_sectors;
  2286. req->hard_cur_sectors = cur_nr_sectors;
  2287. req->sector = req->hard_sector = sector;
  2288. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2289. req->ioprio = ioprio_best(req->ioprio, prio);
  2290. drive_stat_acct(req, nr_sectors, 0);
  2291. if (!attempt_front_merge(q, req))
  2292. elv_merged_request(q, req);
  2293. goto out;
  2294. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2295. default:
  2296. ;
  2297. }
  2298. get_rq:
  2299. /*
  2300. * Grab a free request. This is might sleep but can not fail.
  2301. * Returns with the queue unlocked.
  2302. */
  2303. req = get_request_wait(q, rw, bio);
  2304. /*
  2305. * After dropping the lock and possibly sleeping here, our request
  2306. * may now be mergeable after it had proven unmergeable (above).
  2307. * We don't worry about that case for efficiency. It won't happen
  2308. * often, and the elevators are able to handle it.
  2309. */
  2310. req->flags |= REQ_CMD;
  2311. /*
  2312. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2313. */
  2314. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2315. req->flags |= REQ_FAILFAST;
  2316. /*
  2317. * REQ_BARRIER implies no merging, but lets make it explicit
  2318. */
  2319. if (unlikely(barrier))
  2320. req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2321. req->errors = 0;
  2322. req->hard_sector = req->sector = sector;
  2323. req->hard_nr_sectors = req->nr_sectors = nr_sectors;
  2324. req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
  2325. req->nr_phys_segments = bio_phys_segments(q, bio);
  2326. req->nr_hw_segments = bio_hw_segments(q, bio);
  2327. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2328. req->waiting = NULL;
  2329. req->bio = req->biotail = bio;
  2330. req->ioprio = prio;
  2331. req->rq_disk = bio->bi_bdev->bd_disk;
  2332. req->start_time = jiffies;
  2333. spin_lock_irq(q->queue_lock);
  2334. if (elv_queue_empty(q))
  2335. blk_plug_device(q);
  2336. add_request(q, req);
  2337. out:
  2338. if (sync)
  2339. __generic_unplug_device(q);
  2340. spin_unlock_irq(q->queue_lock);
  2341. return 0;
  2342. end_io:
  2343. bio_endio(bio, nr_sectors << 9, err);
  2344. return 0;
  2345. }
  2346. /*
  2347. * If bio->bi_dev is a partition, remap the location
  2348. */
  2349. static inline void blk_partition_remap(struct bio *bio)
  2350. {
  2351. struct block_device *bdev = bio->bi_bdev;
  2352. if (bdev != bdev->bd_contains) {
  2353. struct hd_struct *p = bdev->bd_part;
  2354. const int rw = bio_data_dir(bio);
  2355. p->sectors[rw] += bio_sectors(bio);
  2356. p->ios[rw]++;
  2357. bio->bi_sector += p->start_sect;
  2358. bio->bi_bdev = bdev->bd_contains;
  2359. }
  2360. }
  2361. static void handle_bad_sector(struct bio *bio)
  2362. {
  2363. char b[BDEVNAME_SIZE];
  2364. printk(KERN_INFO "attempt to access beyond end of device\n");
  2365. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2366. bdevname(bio->bi_bdev, b),
  2367. bio->bi_rw,
  2368. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2369. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2370. set_bit(BIO_EOF, &bio->bi_flags);
  2371. }
  2372. /**
  2373. * generic_make_request: hand a buffer to its device driver for I/O
  2374. * @bio: The bio describing the location in memory and on the device.
  2375. *
  2376. * generic_make_request() is used to make I/O requests of block
  2377. * devices. It is passed a &struct bio, which describes the I/O that needs
  2378. * to be done.
  2379. *
  2380. * generic_make_request() does not return any status. The
  2381. * success/failure status of the request, along with notification of
  2382. * completion, is delivered asynchronously through the bio->bi_end_io
  2383. * function described (one day) else where.
  2384. *
  2385. * The caller of generic_make_request must make sure that bi_io_vec
  2386. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2387. * set to describe the device address, and the
  2388. * bi_end_io and optionally bi_private are set to describe how
  2389. * completion notification should be signaled.
  2390. *
  2391. * generic_make_request and the drivers it calls may use bi_next if this
  2392. * bio happens to be merged with someone else, and may change bi_dev and
  2393. * bi_sector for remaps as it sees fit. So the values of these fields
  2394. * should NOT be depended on after the call to generic_make_request.
  2395. */
  2396. void generic_make_request(struct bio *bio)
  2397. {
  2398. request_queue_t *q;
  2399. sector_t maxsector;
  2400. int ret, nr_sectors = bio_sectors(bio);
  2401. might_sleep();
  2402. /* Test device or partition size, when known. */
  2403. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2404. if (maxsector) {
  2405. sector_t sector = bio->bi_sector;
  2406. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2407. /*
  2408. * This may well happen - the kernel calls bread()
  2409. * without checking the size of the device, e.g., when
  2410. * mounting a device.
  2411. */
  2412. handle_bad_sector(bio);
  2413. goto end_io;
  2414. }
  2415. }
  2416. /*
  2417. * Resolve the mapping until finished. (drivers are
  2418. * still free to implement/resolve their own stacking
  2419. * by explicitly returning 0)
  2420. *
  2421. * NOTE: we don't repeat the blk_size check for each new device.
  2422. * Stacking drivers are expected to know what they are doing.
  2423. */
  2424. do {
  2425. char b[BDEVNAME_SIZE];
  2426. q = bdev_get_queue(bio->bi_bdev);
  2427. if (!q) {
  2428. printk(KERN_ERR
  2429. "generic_make_request: Trying to access "
  2430. "nonexistent block-device %s (%Lu)\n",
  2431. bdevname(bio->bi_bdev, b),
  2432. (long long) bio->bi_sector);
  2433. end_io:
  2434. bio_endio(bio, bio->bi_size, -EIO);
  2435. break;
  2436. }
  2437. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2438. printk("bio too big device %s (%u > %u)\n",
  2439. bdevname(bio->bi_bdev, b),
  2440. bio_sectors(bio),
  2441. q->max_hw_sectors);
  2442. goto end_io;
  2443. }
  2444. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2445. goto end_io;
  2446. /*
  2447. * If this device has partitions, remap block n
  2448. * of partition p to block n+start(p) of the disk.
  2449. */
  2450. blk_partition_remap(bio);
  2451. ret = q->make_request_fn(q, bio);
  2452. } while (ret);
  2453. }
  2454. EXPORT_SYMBOL(generic_make_request);
  2455. /**
  2456. * submit_bio: submit a bio to the block device layer for I/O
  2457. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2458. * @bio: The &struct bio which describes the I/O
  2459. *
  2460. * submit_bio() is very similar in purpose to generic_make_request(), and
  2461. * uses that function to do most of the work. Both are fairly rough
  2462. * interfaces, @bio must be presetup and ready for I/O.
  2463. *
  2464. */
  2465. void submit_bio(int rw, struct bio *bio)
  2466. {
  2467. int count = bio_sectors(bio);
  2468. BIO_BUG_ON(!bio->bi_size);
  2469. BIO_BUG_ON(!bio->bi_io_vec);
  2470. bio->bi_rw |= rw;
  2471. if (rw & WRITE)
  2472. mod_page_state(pgpgout, count);
  2473. else
  2474. mod_page_state(pgpgin, count);
  2475. if (unlikely(block_dump)) {
  2476. char b[BDEVNAME_SIZE];
  2477. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2478. current->comm, current->pid,
  2479. (rw & WRITE) ? "WRITE" : "READ",
  2480. (unsigned long long)bio->bi_sector,
  2481. bdevname(bio->bi_bdev,b));
  2482. }
  2483. generic_make_request(bio);
  2484. }
  2485. EXPORT_SYMBOL(submit_bio);
  2486. static void blk_recalc_rq_segments(struct request *rq)
  2487. {
  2488. struct bio *bio, *prevbio = NULL;
  2489. int nr_phys_segs, nr_hw_segs;
  2490. unsigned int phys_size, hw_size;
  2491. request_queue_t *q = rq->q;
  2492. if (!rq->bio)
  2493. return;
  2494. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2495. rq_for_each_bio(bio, rq) {
  2496. /* Force bio hw/phys segs to be recalculated. */
  2497. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2498. nr_phys_segs += bio_phys_segments(q, bio);
  2499. nr_hw_segs += bio_hw_segments(q, bio);
  2500. if (prevbio) {
  2501. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2502. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2503. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2504. pseg <= q->max_segment_size) {
  2505. nr_phys_segs--;
  2506. phys_size += prevbio->bi_size + bio->bi_size;
  2507. } else
  2508. phys_size = 0;
  2509. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2510. hseg <= q->max_segment_size) {
  2511. nr_hw_segs--;
  2512. hw_size += prevbio->bi_size + bio->bi_size;
  2513. } else
  2514. hw_size = 0;
  2515. }
  2516. prevbio = bio;
  2517. }
  2518. rq->nr_phys_segments = nr_phys_segs;
  2519. rq->nr_hw_segments = nr_hw_segs;
  2520. }
  2521. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2522. {
  2523. if (blk_fs_request(rq)) {
  2524. rq->hard_sector += nsect;
  2525. rq->hard_nr_sectors -= nsect;
  2526. /*
  2527. * Move the I/O submission pointers ahead if required.
  2528. */
  2529. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2530. (rq->sector <= rq->hard_sector)) {
  2531. rq->sector = rq->hard_sector;
  2532. rq->nr_sectors = rq->hard_nr_sectors;
  2533. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2534. rq->current_nr_sectors = rq->hard_cur_sectors;
  2535. rq->buffer = bio_data(rq->bio);
  2536. }
  2537. /*
  2538. * if total number of sectors is less than the first segment
  2539. * size, something has gone terribly wrong
  2540. */
  2541. if (rq->nr_sectors < rq->current_nr_sectors) {
  2542. printk("blk: request botched\n");
  2543. rq->nr_sectors = rq->current_nr_sectors;
  2544. }
  2545. }
  2546. }
  2547. static int __end_that_request_first(struct request *req, int uptodate,
  2548. int nr_bytes)
  2549. {
  2550. int total_bytes, bio_nbytes, error, next_idx = 0;
  2551. struct bio *bio;
  2552. /*
  2553. * extend uptodate bool to allow < 0 value to be direct io error
  2554. */
  2555. error = 0;
  2556. if (end_io_error(uptodate))
  2557. error = !uptodate ? -EIO : uptodate;
  2558. /*
  2559. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2560. * sense key with us all the way through
  2561. */
  2562. if (!blk_pc_request(req))
  2563. req->errors = 0;
  2564. if (!uptodate) {
  2565. if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
  2566. printk("end_request: I/O error, dev %s, sector %llu\n",
  2567. req->rq_disk ? req->rq_disk->disk_name : "?",
  2568. (unsigned long long)req->sector);
  2569. }
  2570. if (blk_fs_request(req) && req->rq_disk) {
  2571. const int rw = rq_data_dir(req);
  2572. __disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2573. }
  2574. total_bytes = bio_nbytes = 0;
  2575. while ((bio = req->bio) != NULL) {
  2576. int nbytes;
  2577. if (nr_bytes >= bio->bi_size) {
  2578. req->bio = bio->bi_next;
  2579. nbytes = bio->bi_size;
  2580. bio_endio(bio, nbytes, error);
  2581. next_idx = 0;
  2582. bio_nbytes = 0;
  2583. } else {
  2584. int idx = bio->bi_idx + next_idx;
  2585. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2586. blk_dump_rq_flags(req, "__end_that");
  2587. printk("%s: bio idx %d >= vcnt %d\n",
  2588. __FUNCTION__,
  2589. bio->bi_idx, bio->bi_vcnt);
  2590. break;
  2591. }
  2592. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2593. BIO_BUG_ON(nbytes > bio->bi_size);
  2594. /*
  2595. * not a complete bvec done
  2596. */
  2597. if (unlikely(nbytes > nr_bytes)) {
  2598. bio_nbytes += nr_bytes;
  2599. total_bytes += nr_bytes;
  2600. break;
  2601. }
  2602. /*
  2603. * advance to the next vector
  2604. */
  2605. next_idx++;
  2606. bio_nbytes += nbytes;
  2607. }
  2608. total_bytes += nbytes;
  2609. nr_bytes -= nbytes;
  2610. if ((bio = req->bio)) {
  2611. /*
  2612. * end more in this run, or just return 'not-done'
  2613. */
  2614. if (unlikely(nr_bytes <= 0))
  2615. break;
  2616. }
  2617. }
  2618. /*
  2619. * completely done
  2620. */
  2621. if (!req->bio)
  2622. return 0;
  2623. /*
  2624. * if the request wasn't completed, update state
  2625. */
  2626. if (bio_nbytes) {
  2627. bio_endio(bio, bio_nbytes, error);
  2628. bio->bi_idx += next_idx;
  2629. bio_iovec(bio)->bv_offset += nr_bytes;
  2630. bio_iovec(bio)->bv_len -= nr_bytes;
  2631. }
  2632. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2633. blk_recalc_rq_segments(req);
  2634. return 1;
  2635. }
  2636. /**
  2637. * end_that_request_first - end I/O on a request
  2638. * @req: the request being processed
  2639. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2640. * @nr_sectors: number of sectors to end I/O on
  2641. *
  2642. * Description:
  2643. * Ends I/O on a number of sectors attached to @req, and sets it up
  2644. * for the next range of segments (if any) in the cluster.
  2645. *
  2646. * Return:
  2647. * 0 - we are done with this request, call end_that_request_last()
  2648. * 1 - still buffers pending for this request
  2649. **/
  2650. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2651. {
  2652. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2653. }
  2654. EXPORT_SYMBOL(end_that_request_first);
  2655. /**
  2656. * end_that_request_chunk - end I/O on a request
  2657. * @req: the request being processed
  2658. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2659. * @nr_bytes: number of bytes to complete
  2660. *
  2661. * Description:
  2662. * Ends I/O on a number of bytes attached to @req, and sets it up
  2663. * for the next range of segments (if any). Like end_that_request_first(),
  2664. * but deals with bytes instead of sectors.
  2665. *
  2666. * Return:
  2667. * 0 - we are done with this request, call end_that_request_last()
  2668. * 1 - still buffers pending for this request
  2669. **/
  2670. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2671. {
  2672. return __end_that_request_first(req, uptodate, nr_bytes);
  2673. }
  2674. EXPORT_SYMBOL(end_that_request_chunk);
  2675. /*
  2676. * queue lock must be held
  2677. */
  2678. void end_that_request_last(struct request *req)
  2679. {
  2680. struct gendisk *disk = req->rq_disk;
  2681. if (unlikely(laptop_mode) && blk_fs_request(req))
  2682. laptop_io_completion();
  2683. if (disk && blk_fs_request(req)) {
  2684. unsigned long duration = jiffies - req->start_time;
  2685. const int rw = rq_data_dir(req);
  2686. __disk_stat_inc(disk, ios[rw]);
  2687. __disk_stat_add(disk, ticks[rw], duration);
  2688. disk_round_stats(disk);
  2689. disk->in_flight--;
  2690. }
  2691. if (req->end_io)
  2692. req->end_io(req);
  2693. else
  2694. __blk_put_request(req->q, req);
  2695. }
  2696. EXPORT_SYMBOL(end_that_request_last);
  2697. void end_request(struct request *req, int uptodate)
  2698. {
  2699. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2700. add_disk_randomness(req->rq_disk);
  2701. blkdev_dequeue_request(req);
  2702. end_that_request_last(req);
  2703. }
  2704. }
  2705. EXPORT_SYMBOL(end_request);
  2706. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2707. {
  2708. /* first three bits are identical in rq->flags and bio->bi_rw */
  2709. rq->flags |= (bio->bi_rw & 7);
  2710. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2711. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2712. rq->current_nr_sectors = bio_cur_sectors(bio);
  2713. rq->hard_cur_sectors = rq->current_nr_sectors;
  2714. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2715. rq->buffer = bio_data(bio);
  2716. rq->bio = rq->biotail = bio;
  2717. }
  2718. EXPORT_SYMBOL(blk_rq_bio_prep);
  2719. int kblockd_schedule_work(struct work_struct *work)
  2720. {
  2721. return queue_work(kblockd_workqueue, work);
  2722. }
  2723. EXPORT_SYMBOL(kblockd_schedule_work);
  2724. void kblockd_flush(void)
  2725. {
  2726. flush_workqueue(kblockd_workqueue);
  2727. }
  2728. EXPORT_SYMBOL(kblockd_flush);
  2729. int __init blk_dev_init(void)
  2730. {
  2731. kblockd_workqueue = create_workqueue("kblockd");
  2732. if (!kblockd_workqueue)
  2733. panic("Failed to create kblockd\n");
  2734. request_cachep = kmem_cache_create("blkdev_requests",
  2735. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  2736. requestq_cachep = kmem_cache_create("blkdev_queue",
  2737. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  2738. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  2739. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  2740. blk_max_low_pfn = max_low_pfn;
  2741. blk_max_pfn = max_pfn;
  2742. return 0;
  2743. }
  2744. /*
  2745. * IO Context helper functions
  2746. */
  2747. void put_io_context(struct io_context *ioc)
  2748. {
  2749. if (ioc == NULL)
  2750. return;
  2751. BUG_ON(atomic_read(&ioc->refcount) == 0);
  2752. if (atomic_dec_and_test(&ioc->refcount)) {
  2753. if (ioc->aic && ioc->aic->dtor)
  2754. ioc->aic->dtor(ioc->aic);
  2755. if (ioc->cic && ioc->cic->dtor)
  2756. ioc->cic->dtor(ioc->cic);
  2757. kmem_cache_free(iocontext_cachep, ioc);
  2758. }
  2759. }
  2760. EXPORT_SYMBOL(put_io_context);
  2761. /* Called by the exitting task */
  2762. void exit_io_context(void)
  2763. {
  2764. unsigned long flags;
  2765. struct io_context *ioc;
  2766. local_irq_save(flags);
  2767. task_lock(current);
  2768. ioc = current->io_context;
  2769. current->io_context = NULL;
  2770. ioc->task = NULL;
  2771. task_unlock(current);
  2772. local_irq_restore(flags);
  2773. if (ioc->aic && ioc->aic->exit)
  2774. ioc->aic->exit(ioc->aic);
  2775. if (ioc->cic && ioc->cic->exit)
  2776. ioc->cic->exit(ioc->cic);
  2777. put_io_context(ioc);
  2778. }
  2779. /*
  2780. * If the current task has no IO context then create one and initialise it.
  2781. * Otherwise, return its existing IO context.
  2782. *
  2783. * This returned IO context doesn't have a specifically elevated refcount,
  2784. * but since the current task itself holds a reference, the context can be
  2785. * used in general code, so long as it stays within `current` context.
  2786. */
  2787. struct io_context *current_io_context(gfp_t gfp_flags)
  2788. {
  2789. struct task_struct *tsk = current;
  2790. struct io_context *ret;
  2791. ret = tsk->io_context;
  2792. if (likely(ret))
  2793. return ret;
  2794. ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
  2795. if (ret) {
  2796. atomic_set(&ret->refcount, 1);
  2797. ret->task = current;
  2798. ret->set_ioprio = NULL;
  2799. ret->last_waited = jiffies; /* doesn't matter... */
  2800. ret->nr_batch_requests = 0; /* because this is 0 */
  2801. ret->aic = NULL;
  2802. ret->cic = NULL;
  2803. tsk->io_context = ret;
  2804. }
  2805. return ret;
  2806. }
  2807. EXPORT_SYMBOL(current_io_context);
  2808. /*
  2809. * If the current task has no IO context then create one and initialise it.
  2810. * If it does have a context, take a ref on it.
  2811. *
  2812. * This is always called in the context of the task which submitted the I/O.
  2813. */
  2814. struct io_context *get_io_context(gfp_t gfp_flags)
  2815. {
  2816. struct io_context *ret;
  2817. ret = current_io_context(gfp_flags);
  2818. if (likely(ret))
  2819. atomic_inc(&ret->refcount);
  2820. return ret;
  2821. }
  2822. EXPORT_SYMBOL(get_io_context);
  2823. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  2824. {
  2825. struct io_context *src = *psrc;
  2826. struct io_context *dst = *pdst;
  2827. if (src) {
  2828. BUG_ON(atomic_read(&src->refcount) == 0);
  2829. atomic_inc(&src->refcount);
  2830. put_io_context(dst);
  2831. *pdst = src;
  2832. }
  2833. }
  2834. EXPORT_SYMBOL(copy_io_context);
  2835. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  2836. {
  2837. struct io_context *temp;
  2838. temp = *ioc1;
  2839. *ioc1 = *ioc2;
  2840. *ioc2 = temp;
  2841. }
  2842. EXPORT_SYMBOL(swap_io_context);
  2843. /*
  2844. * sysfs parts below
  2845. */
  2846. struct queue_sysfs_entry {
  2847. struct attribute attr;
  2848. ssize_t (*show)(struct request_queue *, char *);
  2849. ssize_t (*store)(struct request_queue *, const char *, size_t);
  2850. };
  2851. static ssize_t
  2852. queue_var_show(unsigned int var, char *page)
  2853. {
  2854. return sprintf(page, "%d\n", var);
  2855. }
  2856. static ssize_t
  2857. queue_var_store(unsigned long *var, const char *page, size_t count)
  2858. {
  2859. char *p = (char *) page;
  2860. *var = simple_strtoul(p, &p, 10);
  2861. return count;
  2862. }
  2863. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  2864. {
  2865. return queue_var_show(q->nr_requests, (page));
  2866. }
  2867. static ssize_t
  2868. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  2869. {
  2870. struct request_list *rl = &q->rq;
  2871. int ret = queue_var_store(&q->nr_requests, page, count);
  2872. if (q->nr_requests < BLKDEV_MIN_RQ)
  2873. q->nr_requests = BLKDEV_MIN_RQ;
  2874. blk_queue_congestion_threshold(q);
  2875. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  2876. set_queue_congested(q, READ);
  2877. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  2878. clear_queue_congested(q, READ);
  2879. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  2880. set_queue_congested(q, WRITE);
  2881. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  2882. clear_queue_congested(q, WRITE);
  2883. if (rl->count[READ] >= q->nr_requests) {
  2884. blk_set_queue_full(q, READ);
  2885. } else if (rl->count[READ]+1 <= q->nr_requests) {
  2886. blk_clear_queue_full(q, READ);
  2887. wake_up(&rl->wait[READ]);
  2888. }
  2889. if (rl->count[WRITE] >= q->nr_requests) {
  2890. blk_set_queue_full(q, WRITE);
  2891. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  2892. blk_clear_queue_full(q, WRITE);
  2893. wake_up(&rl->wait[WRITE]);
  2894. }
  2895. return ret;
  2896. }
  2897. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  2898. {
  2899. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2900. return queue_var_show(ra_kb, (page));
  2901. }
  2902. static ssize_t
  2903. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  2904. {
  2905. unsigned long ra_kb;
  2906. ssize_t ret = queue_var_store(&ra_kb, page, count);
  2907. spin_lock_irq(q->queue_lock);
  2908. if (ra_kb > (q->max_sectors >> 1))
  2909. ra_kb = (q->max_sectors >> 1);
  2910. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  2911. spin_unlock_irq(q->queue_lock);
  2912. return ret;
  2913. }
  2914. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  2915. {
  2916. int max_sectors_kb = q->max_sectors >> 1;
  2917. return queue_var_show(max_sectors_kb, (page));
  2918. }
  2919. static ssize_t
  2920. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  2921. {
  2922. unsigned long max_sectors_kb,
  2923. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  2924. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  2925. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  2926. int ra_kb;
  2927. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  2928. return -EINVAL;
  2929. /*
  2930. * Take the queue lock to update the readahead and max_sectors
  2931. * values synchronously:
  2932. */
  2933. spin_lock_irq(q->queue_lock);
  2934. /*
  2935. * Trim readahead window as well, if necessary:
  2936. */
  2937. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2938. if (ra_kb > max_sectors_kb)
  2939. q->backing_dev_info.ra_pages =
  2940. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  2941. q->max_sectors = max_sectors_kb << 1;
  2942. spin_unlock_irq(q->queue_lock);
  2943. return ret;
  2944. }
  2945. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  2946. {
  2947. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  2948. return queue_var_show(max_hw_sectors_kb, (page));
  2949. }
  2950. static struct queue_sysfs_entry queue_requests_entry = {
  2951. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  2952. .show = queue_requests_show,
  2953. .store = queue_requests_store,
  2954. };
  2955. static struct queue_sysfs_entry queue_ra_entry = {
  2956. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  2957. .show = queue_ra_show,
  2958. .store = queue_ra_store,
  2959. };
  2960. static struct queue_sysfs_entry queue_max_sectors_entry = {
  2961. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  2962. .show = queue_max_sectors_show,
  2963. .store = queue_max_sectors_store,
  2964. };
  2965. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  2966. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  2967. .show = queue_max_hw_sectors_show,
  2968. };
  2969. static struct queue_sysfs_entry queue_iosched_entry = {
  2970. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  2971. .show = elv_iosched_show,
  2972. .store = elv_iosched_store,
  2973. };
  2974. static struct attribute *default_attrs[] = {
  2975. &queue_requests_entry.attr,
  2976. &queue_ra_entry.attr,
  2977. &queue_max_hw_sectors_entry.attr,
  2978. &queue_max_sectors_entry.attr,
  2979. &queue_iosched_entry.attr,
  2980. NULL,
  2981. };
  2982. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  2983. static ssize_t
  2984. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2985. {
  2986. struct queue_sysfs_entry *entry = to_queue(attr);
  2987. struct request_queue *q;
  2988. q = container_of(kobj, struct request_queue, kobj);
  2989. if (!entry->show)
  2990. return -EIO;
  2991. return entry->show(q, page);
  2992. }
  2993. static ssize_t
  2994. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  2995. const char *page, size_t length)
  2996. {
  2997. struct queue_sysfs_entry *entry = to_queue(attr);
  2998. struct request_queue *q;
  2999. q = container_of(kobj, struct request_queue, kobj);
  3000. if (!entry->store)
  3001. return -EIO;
  3002. return entry->store(q, page, length);
  3003. }
  3004. static struct sysfs_ops queue_sysfs_ops = {
  3005. .show = queue_attr_show,
  3006. .store = queue_attr_store,
  3007. };
  3008. static struct kobj_type queue_ktype = {
  3009. .sysfs_ops = &queue_sysfs_ops,
  3010. .default_attrs = default_attrs,
  3011. };
  3012. int blk_register_queue(struct gendisk *disk)
  3013. {
  3014. int ret;
  3015. request_queue_t *q = disk->queue;
  3016. if (!q || !q->request_fn)
  3017. return -ENXIO;
  3018. q->kobj.parent = kobject_get(&disk->kobj);
  3019. if (!q->kobj.parent)
  3020. return -EBUSY;
  3021. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  3022. q->kobj.ktype = &queue_ktype;
  3023. ret = kobject_register(&q->kobj);
  3024. if (ret < 0)
  3025. return ret;
  3026. ret = elv_register_queue(q);
  3027. if (ret) {
  3028. kobject_unregister(&q->kobj);
  3029. return ret;
  3030. }
  3031. return 0;
  3032. }
  3033. void blk_unregister_queue(struct gendisk *disk)
  3034. {
  3035. request_queue_t *q = disk->queue;
  3036. if (q && q->request_fn) {
  3037. elv_unregister_queue(q);
  3038. kobject_unregister(&q->kobj);
  3039. kobject_put(&disk->kobj);
  3040. }
  3041. }