cfq-iosched.c 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk.h"
  18. #include "cfq.h"
  19. static struct blkio_policy_type blkio_policy_cfq;
  20. /*
  21. * tunables
  22. */
  23. /* max queue in one round of service */
  24. static const int cfq_quantum = 8;
  25. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  26. /* maximum backwards seek, in KiB */
  27. static const int cfq_back_max = 16 * 1024;
  28. /* penalty of a backwards seek */
  29. static const int cfq_back_penalty = 2;
  30. static const int cfq_slice_sync = HZ / 10;
  31. static int cfq_slice_async = HZ / 25;
  32. static const int cfq_slice_async_rq = 2;
  33. static int cfq_slice_idle = HZ / 125;
  34. static int cfq_group_idle = HZ / 125;
  35. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  36. static const int cfq_hist_divisor = 4;
  37. /*
  38. * offset from end of service tree
  39. */
  40. #define CFQ_IDLE_DELAY (HZ / 5)
  41. /*
  42. * below this threshold, we consider thinktime immediate
  43. */
  44. #define CFQ_MIN_TT (2)
  45. #define CFQ_SLICE_SCALE (5)
  46. #define CFQ_HW_QUEUE_MIN (5)
  47. #define CFQ_SERVICE_SHIFT 12
  48. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  49. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  50. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  51. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  52. #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
  53. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
  54. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
  55. static struct kmem_cache *cfq_pool;
  56. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  57. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  58. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  59. #define sample_valid(samples) ((samples) > 80)
  60. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  61. struct cfq_ttime {
  62. unsigned long last_end_request;
  63. unsigned long ttime_total;
  64. unsigned long ttime_samples;
  65. unsigned long ttime_mean;
  66. };
  67. /*
  68. * Most of our rbtree usage is for sorting with min extraction, so
  69. * if we cache the leftmost node we don't have to walk down the tree
  70. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  71. * move this into the elevator for the rq sorting as well.
  72. */
  73. struct cfq_rb_root {
  74. struct rb_root rb;
  75. struct rb_node *left;
  76. unsigned count;
  77. unsigned total_weight;
  78. u64 min_vdisktime;
  79. struct cfq_ttime ttime;
  80. };
  81. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  82. .ttime = {.last_end_request = jiffies,},}
  83. /*
  84. * Per process-grouping structure
  85. */
  86. struct cfq_queue {
  87. /* reference count */
  88. int ref;
  89. /* various state flags, see below */
  90. unsigned int flags;
  91. /* parent cfq_data */
  92. struct cfq_data *cfqd;
  93. /* service_tree member */
  94. struct rb_node rb_node;
  95. /* service_tree key */
  96. unsigned long rb_key;
  97. /* prio tree member */
  98. struct rb_node p_node;
  99. /* prio tree root we belong to, if any */
  100. struct rb_root *p_root;
  101. /* sorted list of pending requests */
  102. struct rb_root sort_list;
  103. /* if fifo isn't expired, next request to serve */
  104. struct request *next_rq;
  105. /* requests queued in sort_list */
  106. int queued[2];
  107. /* currently allocated requests */
  108. int allocated[2];
  109. /* fifo list of requests in sort_list */
  110. struct list_head fifo;
  111. /* time when queue got scheduled in to dispatch first request. */
  112. unsigned long dispatch_start;
  113. unsigned int allocated_slice;
  114. unsigned int slice_dispatch;
  115. /* time when first request from queue completed and slice started. */
  116. unsigned long slice_start;
  117. unsigned long slice_end;
  118. long slice_resid;
  119. /* pending priority requests */
  120. int prio_pending;
  121. /* number of requests that are on the dispatch list or inside driver */
  122. int dispatched;
  123. /* io prio of this group */
  124. unsigned short ioprio, org_ioprio;
  125. unsigned short ioprio_class;
  126. pid_t pid;
  127. u32 seek_history;
  128. sector_t last_request_pos;
  129. struct cfq_rb_root *service_tree;
  130. struct cfq_queue *new_cfqq;
  131. struct cfq_group *cfqg;
  132. /* Number of sectors dispatched from queue in single dispatch round */
  133. unsigned long nr_sectors;
  134. };
  135. /*
  136. * First index in the service_trees.
  137. * IDLE is handled separately, so it has negative index
  138. */
  139. enum wl_prio_t {
  140. BE_WORKLOAD = 0,
  141. RT_WORKLOAD = 1,
  142. IDLE_WORKLOAD = 2,
  143. CFQ_PRIO_NR,
  144. };
  145. /*
  146. * Second index in the service_trees.
  147. */
  148. enum wl_type_t {
  149. ASYNC_WORKLOAD = 0,
  150. SYNC_NOIDLE_WORKLOAD = 1,
  151. SYNC_WORKLOAD = 2
  152. };
  153. /* This is per cgroup per device grouping structure */
  154. struct cfq_group {
  155. /* group service_tree member */
  156. struct rb_node rb_node;
  157. /* group service_tree key */
  158. u64 vdisktime;
  159. unsigned int weight;
  160. unsigned int new_weight;
  161. bool needs_update;
  162. /* number of cfqq currently on this group */
  163. int nr_cfqq;
  164. /*
  165. * Per group busy queues average. Useful for workload slice calc. We
  166. * create the array for each prio class but at run time it is used
  167. * only for RT and BE class and slot for IDLE class remains unused.
  168. * This is primarily done to avoid confusion and a gcc warning.
  169. */
  170. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  171. /*
  172. * rr lists of queues with requests. We maintain service trees for
  173. * RT and BE classes. These trees are subdivided in subclasses
  174. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  175. * class there is no subclassification and all the cfq queues go on
  176. * a single tree service_tree_idle.
  177. * Counts are embedded in the cfq_rb_root
  178. */
  179. struct cfq_rb_root service_trees[2][3];
  180. struct cfq_rb_root service_tree_idle;
  181. unsigned long saved_workload_slice;
  182. enum wl_type_t saved_workload;
  183. enum wl_prio_t saved_serving_prio;
  184. /* number of requests that are on the dispatch list or inside driver */
  185. int dispatched;
  186. struct cfq_ttime ttime;
  187. };
  188. struct cfq_io_cq {
  189. struct io_cq icq; /* must be the first member */
  190. struct cfq_queue *cfqq[2];
  191. struct cfq_ttime ttime;
  192. int ioprio; /* the current ioprio */
  193. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  194. uint64_t blkcg_id; /* the current blkcg ID */
  195. #endif
  196. };
  197. /*
  198. * Per block device queue structure
  199. */
  200. struct cfq_data {
  201. struct request_queue *queue;
  202. /* Root service tree for cfq_groups */
  203. struct cfq_rb_root grp_service_tree;
  204. struct cfq_group *root_group;
  205. /*
  206. * The priority currently being served
  207. */
  208. enum wl_prio_t serving_prio;
  209. enum wl_type_t serving_type;
  210. unsigned long workload_expires;
  211. struct cfq_group *serving_group;
  212. /*
  213. * Each priority tree is sorted by next_request position. These
  214. * trees are used when determining if two or more queues are
  215. * interleaving requests (see cfq_close_cooperator).
  216. */
  217. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  218. unsigned int busy_queues;
  219. unsigned int busy_sync_queues;
  220. int rq_in_driver;
  221. int rq_in_flight[2];
  222. /*
  223. * queue-depth detection
  224. */
  225. int rq_queued;
  226. int hw_tag;
  227. /*
  228. * hw_tag can be
  229. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  230. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  231. * 0 => no NCQ
  232. */
  233. int hw_tag_est_depth;
  234. unsigned int hw_tag_samples;
  235. /*
  236. * idle window management
  237. */
  238. struct timer_list idle_slice_timer;
  239. struct work_struct unplug_work;
  240. struct cfq_queue *active_queue;
  241. struct cfq_io_cq *active_cic;
  242. /*
  243. * async queue for each priority case
  244. */
  245. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  246. struct cfq_queue *async_idle_cfqq;
  247. sector_t last_position;
  248. /*
  249. * tunables, see top of file
  250. */
  251. unsigned int cfq_quantum;
  252. unsigned int cfq_fifo_expire[2];
  253. unsigned int cfq_back_penalty;
  254. unsigned int cfq_back_max;
  255. unsigned int cfq_slice[2];
  256. unsigned int cfq_slice_async_rq;
  257. unsigned int cfq_slice_idle;
  258. unsigned int cfq_group_idle;
  259. unsigned int cfq_latency;
  260. /*
  261. * Fallback dummy cfqq for extreme OOM conditions
  262. */
  263. struct cfq_queue oom_cfqq;
  264. unsigned long last_delayed_sync;
  265. };
  266. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  267. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  268. enum wl_prio_t prio,
  269. enum wl_type_t type)
  270. {
  271. if (!cfqg)
  272. return NULL;
  273. if (prio == IDLE_WORKLOAD)
  274. return &cfqg->service_tree_idle;
  275. return &cfqg->service_trees[prio][type];
  276. }
  277. enum cfqq_state_flags {
  278. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  279. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  280. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  281. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  282. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  283. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  284. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  285. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  286. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  287. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  288. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  289. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  290. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  291. };
  292. #define CFQ_CFQQ_FNS(name) \
  293. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  294. { \
  295. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  296. } \
  297. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  298. { \
  299. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  300. } \
  301. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  302. { \
  303. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  304. }
  305. CFQ_CFQQ_FNS(on_rr);
  306. CFQ_CFQQ_FNS(wait_request);
  307. CFQ_CFQQ_FNS(must_dispatch);
  308. CFQ_CFQQ_FNS(must_alloc_slice);
  309. CFQ_CFQQ_FNS(fifo_expire);
  310. CFQ_CFQQ_FNS(idle_window);
  311. CFQ_CFQQ_FNS(prio_changed);
  312. CFQ_CFQQ_FNS(slice_new);
  313. CFQ_CFQQ_FNS(sync);
  314. CFQ_CFQQ_FNS(coop);
  315. CFQ_CFQQ_FNS(split_coop);
  316. CFQ_CFQQ_FNS(deep);
  317. CFQ_CFQQ_FNS(wait_busy);
  318. #undef CFQ_CFQQ_FNS
  319. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  320. static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
  321. {
  322. return blkg_to_pdata(blkg, &blkio_policy_cfq);
  323. }
  324. static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
  325. {
  326. return pdata_to_blkg(cfqg, &blkio_policy_cfq);
  327. }
  328. static inline void cfqg_get(struct cfq_group *cfqg)
  329. {
  330. return blkg_get(cfqg_to_blkg(cfqg));
  331. }
  332. static inline void cfqg_put(struct cfq_group *cfqg)
  333. {
  334. return blkg_put(cfqg_to_blkg(cfqg));
  335. }
  336. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  337. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  338. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  339. blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
  340. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  341. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  342. blkg_path(cfqg_to_blkg((cfqg))), ##args) \
  343. #else /* CONFIG_CFQ_GROUP_IOSCHED */
  344. static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg) { return NULL; }
  345. static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg) { return NULL; }
  346. static inline void cfqg_get(struct cfq_group *cfqg) { }
  347. static inline void cfqg_put(struct cfq_group *cfqg) { }
  348. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  349. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  350. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  351. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  352. #define cfq_log(cfqd, fmt, args...) \
  353. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  354. /* Traverses through cfq group service trees */
  355. #define for_each_cfqg_st(cfqg, i, j, st) \
  356. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  357. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  358. : &cfqg->service_tree_idle; \
  359. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  360. (i == IDLE_WORKLOAD && j == 0); \
  361. j++, st = i < IDLE_WORKLOAD ? \
  362. &cfqg->service_trees[i][j]: NULL) \
  363. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  364. struct cfq_ttime *ttime, bool group_idle)
  365. {
  366. unsigned long slice;
  367. if (!sample_valid(ttime->ttime_samples))
  368. return false;
  369. if (group_idle)
  370. slice = cfqd->cfq_group_idle;
  371. else
  372. slice = cfqd->cfq_slice_idle;
  373. return ttime->ttime_mean > slice;
  374. }
  375. static inline bool iops_mode(struct cfq_data *cfqd)
  376. {
  377. /*
  378. * If we are not idling on queues and it is a NCQ drive, parallel
  379. * execution of requests is on and measuring time is not possible
  380. * in most of the cases until and unless we drive shallower queue
  381. * depths and that becomes a performance bottleneck. In such cases
  382. * switch to start providing fairness in terms of number of IOs.
  383. */
  384. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  385. return true;
  386. else
  387. return false;
  388. }
  389. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  390. {
  391. if (cfq_class_idle(cfqq))
  392. return IDLE_WORKLOAD;
  393. if (cfq_class_rt(cfqq))
  394. return RT_WORKLOAD;
  395. return BE_WORKLOAD;
  396. }
  397. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  398. {
  399. if (!cfq_cfqq_sync(cfqq))
  400. return ASYNC_WORKLOAD;
  401. if (!cfq_cfqq_idle_window(cfqq))
  402. return SYNC_NOIDLE_WORKLOAD;
  403. return SYNC_WORKLOAD;
  404. }
  405. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  406. struct cfq_data *cfqd,
  407. struct cfq_group *cfqg)
  408. {
  409. if (wl == IDLE_WORKLOAD)
  410. return cfqg->service_tree_idle.count;
  411. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  412. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  413. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  414. }
  415. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  416. struct cfq_group *cfqg)
  417. {
  418. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  419. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  420. }
  421. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  422. static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
  423. struct cfq_io_cq *cic, struct bio *bio,
  424. gfp_t gfp_mask);
  425. static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
  426. {
  427. /* cic->icq is the first member, %NULL will convert to %NULL */
  428. return container_of(icq, struct cfq_io_cq, icq);
  429. }
  430. static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
  431. struct io_context *ioc)
  432. {
  433. if (ioc)
  434. return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
  435. return NULL;
  436. }
  437. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
  438. {
  439. return cic->cfqq[is_sync];
  440. }
  441. static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
  442. bool is_sync)
  443. {
  444. cic->cfqq[is_sync] = cfqq;
  445. }
  446. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
  447. {
  448. return cic->icq.q->elevator->elevator_data;
  449. }
  450. /*
  451. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  452. * set (in which case it could also be direct WRITE).
  453. */
  454. static inline bool cfq_bio_sync(struct bio *bio)
  455. {
  456. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  457. }
  458. /*
  459. * scheduler run of queue, if there are requests pending and no one in the
  460. * driver that will restart queueing
  461. */
  462. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  463. {
  464. if (cfqd->busy_queues) {
  465. cfq_log(cfqd, "schedule dispatch");
  466. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  467. }
  468. }
  469. /*
  470. * Scale schedule slice based on io priority. Use the sync time slice only
  471. * if a queue is marked sync and has sync io queued. A sync queue with async
  472. * io only, should not get full sync slice length.
  473. */
  474. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  475. unsigned short prio)
  476. {
  477. const int base_slice = cfqd->cfq_slice[sync];
  478. WARN_ON(prio >= IOPRIO_BE_NR);
  479. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  480. }
  481. static inline int
  482. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  483. {
  484. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  485. }
  486. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  487. {
  488. u64 d = delta << CFQ_SERVICE_SHIFT;
  489. d = d * BLKIO_WEIGHT_DEFAULT;
  490. do_div(d, cfqg->weight);
  491. return d;
  492. }
  493. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  494. {
  495. s64 delta = (s64)(vdisktime - min_vdisktime);
  496. if (delta > 0)
  497. min_vdisktime = vdisktime;
  498. return min_vdisktime;
  499. }
  500. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  501. {
  502. s64 delta = (s64)(vdisktime - min_vdisktime);
  503. if (delta < 0)
  504. min_vdisktime = vdisktime;
  505. return min_vdisktime;
  506. }
  507. static void update_min_vdisktime(struct cfq_rb_root *st)
  508. {
  509. struct cfq_group *cfqg;
  510. if (st->left) {
  511. cfqg = rb_entry_cfqg(st->left);
  512. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  513. cfqg->vdisktime);
  514. }
  515. }
  516. /*
  517. * get averaged number of queues of RT/BE priority.
  518. * average is updated, with a formula that gives more weight to higher numbers,
  519. * to quickly follows sudden increases and decrease slowly
  520. */
  521. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  522. struct cfq_group *cfqg, bool rt)
  523. {
  524. unsigned min_q, max_q;
  525. unsigned mult = cfq_hist_divisor - 1;
  526. unsigned round = cfq_hist_divisor / 2;
  527. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  528. min_q = min(cfqg->busy_queues_avg[rt], busy);
  529. max_q = max(cfqg->busy_queues_avg[rt], busy);
  530. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  531. cfq_hist_divisor;
  532. return cfqg->busy_queues_avg[rt];
  533. }
  534. static inline unsigned
  535. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  536. {
  537. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  538. return cfq_target_latency * cfqg->weight / st->total_weight;
  539. }
  540. static inline unsigned
  541. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  542. {
  543. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  544. if (cfqd->cfq_latency) {
  545. /*
  546. * interested queues (we consider only the ones with the same
  547. * priority class in the cfq group)
  548. */
  549. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  550. cfq_class_rt(cfqq));
  551. unsigned sync_slice = cfqd->cfq_slice[1];
  552. unsigned expect_latency = sync_slice * iq;
  553. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  554. if (expect_latency > group_slice) {
  555. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  556. /* scale low_slice according to IO priority
  557. * and sync vs async */
  558. unsigned low_slice =
  559. min(slice, base_low_slice * slice / sync_slice);
  560. /* the adapted slice value is scaled to fit all iqs
  561. * into the target latency */
  562. slice = max(slice * group_slice / expect_latency,
  563. low_slice);
  564. }
  565. }
  566. return slice;
  567. }
  568. static inline void
  569. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  570. {
  571. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  572. cfqq->slice_start = jiffies;
  573. cfqq->slice_end = jiffies + slice;
  574. cfqq->allocated_slice = slice;
  575. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  576. }
  577. /*
  578. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  579. * isn't valid until the first request from the dispatch is activated
  580. * and the slice time set.
  581. */
  582. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  583. {
  584. if (cfq_cfqq_slice_new(cfqq))
  585. return false;
  586. if (time_before(jiffies, cfqq->slice_end))
  587. return false;
  588. return true;
  589. }
  590. /*
  591. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  592. * We choose the request that is closest to the head right now. Distance
  593. * behind the head is penalized and only allowed to a certain extent.
  594. */
  595. static struct request *
  596. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  597. {
  598. sector_t s1, s2, d1 = 0, d2 = 0;
  599. unsigned long back_max;
  600. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  601. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  602. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  603. if (rq1 == NULL || rq1 == rq2)
  604. return rq2;
  605. if (rq2 == NULL)
  606. return rq1;
  607. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  608. return rq_is_sync(rq1) ? rq1 : rq2;
  609. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  610. return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  611. s1 = blk_rq_pos(rq1);
  612. s2 = blk_rq_pos(rq2);
  613. /*
  614. * by definition, 1KiB is 2 sectors
  615. */
  616. back_max = cfqd->cfq_back_max * 2;
  617. /*
  618. * Strict one way elevator _except_ in the case where we allow
  619. * short backward seeks which are biased as twice the cost of a
  620. * similar forward seek.
  621. */
  622. if (s1 >= last)
  623. d1 = s1 - last;
  624. else if (s1 + back_max >= last)
  625. d1 = (last - s1) * cfqd->cfq_back_penalty;
  626. else
  627. wrap |= CFQ_RQ1_WRAP;
  628. if (s2 >= last)
  629. d2 = s2 - last;
  630. else if (s2 + back_max >= last)
  631. d2 = (last - s2) * cfqd->cfq_back_penalty;
  632. else
  633. wrap |= CFQ_RQ2_WRAP;
  634. /* Found required data */
  635. /*
  636. * By doing switch() on the bit mask "wrap" we avoid having to
  637. * check two variables for all permutations: --> faster!
  638. */
  639. switch (wrap) {
  640. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  641. if (d1 < d2)
  642. return rq1;
  643. else if (d2 < d1)
  644. return rq2;
  645. else {
  646. if (s1 >= s2)
  647. return rq1;
  648. else
  649. return rq2;
  650. }
  651. case CFQ_RQ2_WRAP:
  652. return rq1;
  653. case CFQ_RQ1_WRAP:
  654. return rq2;
  655. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  656. default:
  657. /*
  658. * Since both rqs are wrapped,
  659. * start with the one that's further behind head
  660. * (--> only *one* back seek required),
  661. * since back seek takes more time than forward.
  662. */
  663. if (s1 <= s2)
  664. return rq1;
  665. else
  666. return rq2;
  667. }
  668. }
  669. /*
  670. * The below is leftmost cache rbtree addon
  671. */
  672. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  673. {
  674. /* Service tree is empty */
  675. if (!root->count)
  676. return NULL;
  677. if (!root->left)
  678. root->left = rb_first(&root->rb);
  679. if (root->left)
  680. return rb_entry(root->left, struct cfq_queue, rb_node);
  681. return NULL;
  682. }
  683. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  684. {
  685. if (!root->left)
  686. root->left = rb_first(&root->rb);
  687. if (root->left)
  688. return rb_entry_cfqg(root->left);
  689. return NULL;
  690. }
  691. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  692. {
  693. rb_erase(n, root);
  694. RB_CLEAR_NODE(n);
  695. }
  696. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  697. {
  698. if (root->left == n)
  699. root->left = NULL;
  700. rb_erase_init(n, &root->rb);
  701. --root->count;
  702. }
  703. /*
  704. * would be nice to take fifo expire time into account as well
  705. */
  706. static struct request *
  707. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  708. struct request *last)
  709. {
  710. struct rb_node *rbnext = rb_next(&last->rb_node);
  711. struct rb_node *rbprev = rb_prev(&last->rb_node);
  712. struct request *next = NULL, *prev = NULL;
  713. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  714. if (rbprev)
  715. prev = rb_entry_rq(rbprev);
  716. if (rbnext)
  717. next = rb_entry_rq(rbnext);
  718. else {
  719. rbnext = rb_first(&cfqq->sort_list);
  720. if (rbnext && rbnext != &last->rb_node)
  721. next = rb_entry_rq(rbnext);
  722. }
  723. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  724. }
  725. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  726. struct cfq_queue *cfqq)
  727. {
  728. /*
  729. * just an approximation, should be ok.
  730. */
  731. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  732. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  733. }
  734. static inline s64
  735. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  736. {
  737. return cfqg->vdisktime - st->min_vdisktime;
  738. }
  739. static void
  740. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  741. {
  742. struct rb_node **node = &st->rb.rb_node;
  743. struct rb_node *parent = NULL;
  744. struct cfq_group *__cfqg;
  745. s64 key = cfqg_key(st, cfqg);
  746. int left = 1;
  747. while (*node != NULL) {
  748. parent = *node;
  749. __cfqg = rb_entry_cfqg(parent);
  750. if (key < cfqg_key(st, __cfqg))
  751. node = &parent->rb_left;
  752. else {
  753. node = &parent->rb_right;
  754. left = 0;
  755. }
  756. }
  757. if (left)
  758. st->left = &cfqg->rb_node;
  759. rb_link_node(&cfqg->rb_node, parent, node);
  760. rb_insert_color(&cfqg->rb_node, &st->rb);
  761. }
  762. static void
  763. cfq_update_group_weight(struct cfq_group *cfqg)
  764. {
  765. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  766. if (cfqg->needs_update) {
  767. cfqg->weight = cfqg->new_weight;
  768. cfqg->needs_update = false;
  769. }
  770. }
  771. static void
  772. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  773. {
  774. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  775. cfq_update_group_weight(cfqg);
  776. __cfq_group_service_tree_add(st, cfqg);
  777. st->total_weight += cfqg->weight;
  778. }
  779. static void
  780. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  781. {
  782. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  783. struct cfq_group *__cfqg;
  784. struct rb_node *n;
  785. cfqg->nr_cfqq++;
  786. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  787. return;
  788. /*
  789. * Currently put the group at the end. Later implement something
  790. * so that groups get lesser vtime based on their weights, so that
  791. * if group does not loose all if it was not continuously backlogged.
  792. */
  793. n = rb_last(&st->rb);
  794. if (n) {
  795. __cfqg = rb_entry_cfqg(n);
  796. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  797. } else
  798. cfqg->vdisktime = st->min_vdisktime;
  799. cfq_group_service_tree_add(st, cfqg);
  800. }
  801. static void
  802. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  803. {
  804. st->total_weight -= cfqg->weight;
  805. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  806. cfq_rb_erase(&cfqg->rb_node, st);
  807. }
  808. static void
  809. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  810. {
  811. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  812. BUG_ON(cfqg->nr_cfqq < 1);
  813. cfqg->nr_cfqq--;
  814. /* If there are other cfq queues under this group, don't delete it */
  815. if (cfqg->nr_cfqq)
  816. return;
  817. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  818. cfq_group_service_tree_del(st, cfqg);
  819. cfqg->saved_workload_slice = 0;
  820. cfq_blkiocg_update_dequeue_stats(cfqg_to_blkg(cfqg),
  821. &blkio_policy_cfq, 1);
  822. }
  823. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  824. unsigned int *unaccounted_time)
  825. {
  826. unsigned int slice_used;
  827. /*
  828. * Queue got expired before even a single request completed or
  829. * got expired immediately after first request completion.
  830. */
  831. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  832. /*
  833. * Also charge the seek time incurred to the group, otherwise
  834. * if there are mutiple queues in the group, each can dispatch
  835. * a single request on seeky media and cause lots of seek time
  836. * and group will never know it.
  837. */
  838. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  839. 1);
  840. } else {
  841. slice_used = jiffies - cfqq->slice_start;
  842. if (slice_used > cfqq->allocated_slice) {
  843. *unaccounted_time = slice_used - cfqq->allocated_slice;
  844. slice_used = cfqq->allocated_slice;
  845. }
  846. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  847. *unaccounted_time += cfqq->slice_start -
  848. cfqq->dispatch_start;
  849. }
  850. return slice_used;
  851. }
  852. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  853. struct cfq_queue *cfqq)
  854. {
  855. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  856. unsigned int used_sl, charge, unaccounted_sl = 0;
  857. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  858. - cfqg->service_tree_idle.count;
  859. BUG_ON(nr_sync < 0);
  860. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  861. if (iops_mode(cfqd))
  862. charge = cfqq->slice_dispatch;
  863. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  864. charge = cfqq->allocated_slice;
  865. /* Can't update vdisktime while group is on service tree */
  866. cfq_group_service_tree_del(st, cfqg);
  867. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  868. /* If a new weight was requested, update now, off tree */
  869. cfq_group_service_tree_add(st, cfqg);
  870. /* This group is being expired. Save the context */
  871. if (time_after(cfqd->workload_expires, jiffies)) {
  872. cfqg->saved_workload_slice = cfqd->workload_expires
  873. - jiffies;
  874. cfqg->saved_workload = cfqd->serving_type;
  875. cfqg->saved_serving_prio = cfqd->serving_prio;
  876. } else
  877. cfqg->saved_workload_slice = 0;
  878. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  879. st->min_vdisktime);
  880. cfq_log_cfqq(cfqq->cfqd, cfqq,
  881. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  882. used_sl, cfqq->slice_dispatch, charge,
  883. iops_mode(cfqd), cfqq->nr_sectors);
  884. cfq_blkiocg_update_timeslice_used(cfqg_to_blkg(cfqg), &blkio_policy_cfq,
  885. used_sl, unaccounted_sl);
  886. cfq_blkiocg_set_start_empty_time(cfqg_to_blkg(cfqg), &blkio_policy_cfq);
  887. }
  888. /**
  889. * cfq_init_cfqg_base - initialize base part of a cfq_group
  890. * @cfqg: cfq_group to initialize
  891. *
  892. * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
  893. * is enabled or not.
  894. */
  895. static void cfq_init_cfqg_base(struct cfq_group *cfqg)
  896. {
  897. struct cfq_rb_root *st;
  898. int i, j;
  899. for_each_cfqg_st(cfqg, i, j, st)
  900. *st = CFQ_RB_ROOT;
  901. RB_CLEAR_NODE(&cfqg->rb_node);
  902. cfqg->ttime.last_end_request = jiffies;
  903. }
  904. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  905. static void cfq_update_blkio_group_weight(struct request_queue *q,
  906. struct blkio_group *blkg,
  907. unsigned int weight)
  908. {
  909. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  910. cfqg->new_weight = weight;
  911. cfqg->needs_update = true;
  912. }
  913. static void cfq_init_blkio_group(struct blkio_group *blkg)
  914. {
  915. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  916. cfq_init_cfqg_base(cfqg);
  917. cfqg->weight = blkg->blkcg->weight;
  918. }
  919. /*
  920. * Search for the cfq group current task belongs to. request_queue lock must
  921. * be held.
  922. */
  923. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  924. struct blkio_cgroup *blkcg)
  925. {
  926. struct request_queue *q = cfqd->queue;
  927. struct cfq_group *cfqg = NULL;
  928. /* avoid lookup for the common case where there's no blkio cgroup */
  929. if (blkcg == &blkio_root_cgroup) {
  930. cfqg = cfqd->root_group;
  931. } else {
  932. struct blkio_group *blkg;
  933. blkg = blkg_lookup_create(blkcg, q, BLKIO_POLICY_PROP, false);
  934. if (!IS_ERR(blkg))
  935. cfqg = blkg_to_cfqg(blkg);
  936. }
  937. return cfqg;
  938. }
  939. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  940. {
  941. /* Currently, all async queues are mapped to root group */
  942. if (!cfq_cfqq_sync(cfqq))
  943. cfqg = cfqq->cfqd->root_group;
  944. cfqq->cfqg = cfqg;
  945. /* cfqq reference on cfqg */
  946. cfqg_get(cfqg);
  947. }
  948. #else /* GROUP_IOSCHED */
  949. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  950. struct blkio_cgroup *blkcg)
  951. {
  952. return cfqd->root_group;
  953. }
  954. static inline void
  955. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  956. cfqq->cfqg = cfqg;
  957. }
  958. #endif /* GROUP_IOSCHED */
  959. /*
  960. * The cfqd->service_trees holds all pending cfq_queue's that have
  961. * requests waiting to be processed. It is sorted in the order that
  962. * we will service the queues.
  963. */
  964. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  965. bool add_front)
  966. {
  967. struct rb_node **p, *parent;
  968. struct cfq_queue *__cfqq;
  969. unsigned long rb_key;
  970. struct cfq_rb_root *service_tree;
  971. int left;
  972. int new_cfqq = 1;
  973. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  974. cfqq_type(cfqq));
  975. if (cfq_class_idle(cfqq)) {
  976. rb_key = CFQ_IDLE_DELAY;
  977. parent = rb_last(&service_tree->rb);
  978. if (parent && parent != &cfqq->rb_node) {
  979. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  980. rb_key += __cfqq->rb_key;
  981. } else
  982. rb_key += jiffies;
  983. } else if (!add_front) {
  984. /*
  985. * Get our rb key offset. Subtract any residual slice
  986. * value carried from last service. A negative resid
  987. * count indicates slice overrun, and this should position
  988. * the next service time further away in the tree.
  989. */
  990. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  991. rb_key -= cfqq->slice_resid;
  992. cfqq->slice_resid = 0;
  993. } else {
  994. rb_key = -HZ;
  995. __cfqq = cfq_rb_first(service_tree);
  996. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  997. }
  998. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  999. new_cfqq = 0;
  1000. /*
  1001. * same position, nothing more to do
  1002. */
  1003. if (rb_key == cfqq->rb_key &&
  1004. cfqq->service_tree == service_tree)
  1005. return;
  1006. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1007. cfqq->service_tree = NULL;
  1008. }
  1009. left = 1;
  1010. parent = NULL;
  1011. cfqq->service_tree = service_tree;
  1012. p = &service_tree->rb.rb_node;
  1013. while (*p) {
  1014. struct rb_node **n;
  1015. parent = *p;
  1016. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1017. /*
  1018. * sort by key, that represents service time.
  1019. */
  1020. if (time_before(rb_key, __cfqq->rb_key))
  1021. n = &(*p)->rb_left;
  1022. else {
  1023. n = &(*p)->rb_right;
  1024. left = 0;
  1025. }
  1026. p = n;
  1027. }
  1028. if (left)
  1029. service_tree->left = &cfqq->rb_node;
  1030. cfqq->rb_key = rb_key;
  1031. rb_link_node(&cfqq->rb_node, parent, p);
  1032. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1033. service_tree->count++;
  1034. if (add_front || !new_cfqq)
  1035. return;
  1036. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1037. }
  1038. static struct cfq_queue *
  1039. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1040. sector_t sector, struct rb_node **ret_parent,
  1041. struct rb_node ***rb_link)
  1042. {
  1043. struct rb_node **p, *parent;
  1044. struct cfq_queue *cfqq = NULL;
  1045. parent = NULL;
  1046. p = &root->rb_node;
  1047. while (*p) {
  1048. struct rb_node **n;
  1049. parent = *p;
  1050. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1051. /*
  1052. * Sort strictly based on sector. Smallest to the left,
  1053. * largest to the right.
  1054. */
  1055. if (sector > blk_rq_pos(cfqq->next_rq))
  1056. n = &(*p)->rb_right;
  1057. else if (sector < blk_rq_pos(cfqq->next_rq))
  1058. n = &(*p)->rb_left;
  1059. else
  1060. break;
  1061. p = n;
  1062. cfqq = NULL;
  1063. }
  1064. *ret_parent = parent;
  1065. if (rb_link)
  1066. *rb_link = p;
  1067. return cfqq;
  1068. }
  1069. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1070. {
  1071. struct rb_node **p, *parent;
  1072. struct cfq_queue *__cfqq;
  1073. if (cfqq->p_root) {
  1074. rb_erase(&cfqq->p_node, cfqq->p_root);
  1075. cfqq->p_root = NULL;
  1076. }
  1077. if (cfq_class_idle(cfqq))
  1078. return;
  1079. if (!cfqq->next_rq)
  1080. return;
  1081. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1082. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1083. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1084. if (!__cfqq) {
  1085. rb_link_node(&cfqq->p_node, parent, p);
  1086. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1087. } else
  1088. cfqq->p_root = NULL;
  1089. }
  1090. /*
  1091. * Update cfqq's position in the service tree.
  1092. */
  1093. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1094. {
  1095. /*
  1096. * Resorting requires the cfqq to be on the RR list already.
  1097. */
  1098. if (cfq_cfqq_on_rr(cfqq)) {
  1099. cfq_service_tree_add(cfqd, cfqq, 0);
  1100. cfq_prio_tree_add(cfqd, cfqq);
  1101. }
  1102. }
  1103. /*
  1104. * add to busy list of queues for service, trying to be fair in ordering
  1105. * the pending list according to last request service
  1106. */
  1107. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1108. {
  1109. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1110. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1111. cfq_mark_cfqq_on_rr(cfqq);
  1112. cfqd->busy_queues++;
  1113. if (cfq_cfqq_sync(cfqq))
  1114. cfqd->busy_sync_queues++;
  1115. cfq_resort_rr_list(cfqd, cfqq);
  1116. }
  1117. /*
  1118. * Called when the cfqq no longer has requests pending, remove it from
  1119. * the service tree.
  1120. */
  1121. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1122. {
  1123. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1124. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1125. cfq_clear_cfqq_on_rr(cfqq);
  1126. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1127. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1128. cfqq->service_tree = NULL;
  1129. }
  1130. if (cfqq->p_root) {
  1131. rb_erase(&cfqq->p_node, cfqq->p_root);
  1132. cfqq->p_root = NULL;
  1133. }
  1134. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1135. BUG_ON(!cfqd->busy_queues);
  1136. cfqd->busy_queues--;
  1137. if (cfq_cfqq_sync(cfqq))
  1138. cfqd->busy_sync_queues--;
  1139. }
  1140. /*
  1141. * rb tree support functions
  1142. */
  1143. static void cfq_del_rq_rb(struct request *rq)
  1144. {
  1145. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1146. const int sync = rq_is_sync(rq);
  1147. BUG_ON(!cfqq->queued[sync]);
  1148. cfqq->queued[sync]--;
  1149. elv_rb_del(&cfqq->sort_list, rq);
  1150. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1151. /*
  1152. * Queue will be deleted from service tree when we actually
  1153. * expire it later. Right now just remove it from prio tree
  1154. * as it is empty.
  1155. */
  1156. if (cfqq->p_root) {
  1157. rb_erase(&cfqq->p_node, cfqq->p_root);
  1158. cfqq->p_root = NULL;
  1159. }
  1160. }
  1161. }
  1162. static void cfq_add_rq_rb(struct request *rq)
  1163. {
  1164. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1165. struct cfq_data *cfqd = cfqq->cfqd;
  1166. struct request *prev;
  1167. cfqq->queued[rq_is_sync(rq)]++;
  1168. elv_rb_add(&cfqq->sort_list, rq);
  1169. if (!cfq_cfqq_on_rr(cfqq))
  1170. cfq_add_cfqq_rr(cfqd, cfqq);
  1171. /*
  1172. * check if this request is a better next-serve candidate
  1173. */
  1174. prev = cfqq->next_rq;
  1175. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1176. /*
  1177. * adjust priority tree position, if ->next_rq changes
  1178. */
  1179. if (prev != cfqq->next_rq)
  1180. cfq_prio_tree_add(cfqd, cfqq);
  1181. BUG_ON(!cfqq->next_rq);
  1182. }
  1183. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1184. {
  1185. elv_rb_del(&cfqq->sort_list, rq);
  1186. cfqq->queued[rq_is_sync(rq)]--;
  1187. cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1188. &blkio_policy_cfq, rq_data_dir(rq),
  1189. rq_is_sync(rq));
  1190. cfq_add_rq_rb(rq);
  1191. cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1192. &blkio_policy_cfq,
  1193. cfqg_to_blkg(cfqq->cfqd->serving_group),
  1194. rq_data_dir(rq), rq_is_sync(rq));
  1195. }
  1196. static struct request *
  1197. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1198. {
  1199. struct task_struct *tsk = current;
  1200. struct cfq_io_cq *cic;
  1201. struct cfq_queue *cfqq;
  1202. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1203. if (!cic)
  1204. return NULL;
  1205. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1206. if (cfqq) {
  1207. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1208. return elv_rb_find(&cfqq->sort_list, sector);
  1209. }
  1210. return NULL;
  1211. }
  1212. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1213. {
  1214. struct cfq_data *cfqd = q->elevator->elevator_data;
  1215. cfqd->rq_in_driver++;
  1216. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1217. cfqd->rq_in_driver);
  1218. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1219. }
  1220. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1221. {
  1222. struct cfq_data *cfqd = q->elevator->elevator_data;
  1223. WARN_ON(!cfqd->rq_in_driver);
  1224. cfqd->rq_in_driver--;
  1225. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1226. cfqd->rq_in_driver);
  1227. }
  1228. static void cfq_remove_request(struct request *rq)
  1229. {
  1230. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1231. if (cfqq->next_rq == rq)
  1232. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1233. list_del_init(&rq->queuelist);
  1234. cfq_del_rq_rb(rq);
  1235. cfqq->cfqd->rq_queued--;
  1236. cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1237. &blkio_policy_cfq, rq_data_dir(rq),
  1238. rq_is_sync(rq));
  1239. if (rq->cmd_flags & REQ_PRIO) {
  1240. WARN_ON(!cfqq->prio_pending);
  1241. cfqq->prio_pending--;
  1242. }
  1243. }
  1244. static int cfq_merge(struct request_queue *q, struct request **req,
  1245. struct bio *bio)
  1246. {
  1247. struct cfq_data *cfqd = q->elevator->elevator_data;
  1248. struct request *__rq;
  1249. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1250. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1251. *req = __rq;
  1252. return ELEVATOR_FRONT_MERGE;
  1253. }
  1254. return ELEVATOR_NO_MERGE;
  1255. }
  1256. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1257. int type)
  1258. {
  1259. if (type == ELEVATOR_FRONT_MERGE) {
  1260. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1261. cfq_reposition_rq_rb(cfqq, req);
  1262. }
  1263. }
  1264. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1265. struct bio *bio)
  1266. {
  1267. cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(req)),
  1268. &blkio_policy_cfq, bio_data_dir(bio),
  1269. cfq_bio_sync(bio));
  1270. }
  1271. static void
  1272. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1273. struct request *next)
  1274. {
  1275. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1276. struct cfq_data *cfqd = q->elevator->elevator_data;
  1277. /*
  1278. * reposition in fifo if next is older than rq
  1279. */
  1280. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1281. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1282. list_move(&rq->queuelist, &next->queuelist);
  1283. rq_set_fifo_time(rq, rq_fifo_time(next));
  1284. }
  1285. if (cfqq->next_rq == next)
  1286. cfqq->next_rq = rq;
  1287. cfq_remove_request(next);
  1288. cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1289. &blkio_policy_cfq, rq_data_dir(next),
  1290. rq_is_sync(next));
  1291. cfqq = RQ_CFQQ(next);
  1292. /*
  1293. * all requests of this queue are merged to other queues, delete it
  1294. * from the service tree. If it's the active_queue,
  1295. * cfq_dispatch_requests() will choose to expire it or do idle
  1296. */
  1297. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
  1298. cfqq != cfqd->active_queue)
  1299. cfq_del_cfqq_rr(cfqd, cfqq);
  1300. }
  1301. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1302. struct bio *bio)
  1303. {
  1304. struct cfq_data *cfqd = q->elevator->elevator_data;
  1305. struct cfq_io_cq *cic;
  1306. struct cfq_queue *cfqq;
  1307. /*
  1308. * Disallow merge of a sync bio into an async request.
  1309. */
  1310. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1311. return false;
  1312. /*
  1313. * Lookup the cfqq that this bio will be queued with and allow
  1314. * merge only if rq is queued there.
  1315. */
  1316. cic = cfq_cic_lookup(cfqd, current->io_context);
  1317. if (!cic)
  1318. return false;
  1319. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1320. return cfqq == RQ_CFQQ(rq);
  1321. }
  1322. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1323. {
  1324. del_timer(&cfqd->idle_slice_timer);
  1325. cfq_blkiocg_update_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
  1326. &blkio_policy_cfq);
  1327. }
  1328. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1329. struct cfq_queue *cfqq)
  1330. {
  1331. if (cfqq) {
  1332. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1333. cfqd->serving_prio, cfqd->serving_type);
  1334. cfq_blkiocg_update_avg_queue_size_stats(cfqg_to_blkg(cfqq->cfqg),
  1335. &blkio_policy_cfq);
  1336. cfqq->slice_start = 0;
  1337. cfqq->dispatch_start = jiffies;
  1338. cfqq->allocated_slice = 0;
  1339. cfqq->slice_end = 0;
  1340. cfqq->slice_dispatch = 0;
  1341. cfqq->nr_sectors = 0;
  1342. cfq_clear_cfqq_wait_request(cfqq);
  1343. cfq_clear_cfqq_must_dispatch(cfqq);
  1344. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1345. cfq_clear_cfqq_fifo_expire(cfqq);
  1346. cfq_mark_cfqq_slice_new(cfqq);
  1347. cfq_del_timer(cfqd, cfqq);
  1348. }
  1349. cfqd->active_queue = cfqq;
  1350. }
  1351. /*
  1352. * current cfqq expired its slice (or was too idle), select new one
  1353. */
  1354. static void
  1355. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1356. bool timed_out)
  1357. {
  1358. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1359. if (cfq_cfqq_wait_request(cfqq))
  1360. cfq_del_timer(cfqd, cfqq);
  1361. cfq_clear_cfqq_wait_request(cfqq);
  1362. cfq_clear_cfqq_wait_busy(cfqq);
  1363. /*
  1364. * If this cfqq is shared between multiple processes, check to
  1365. * make sure that those processes are still issuing I/Os within
  1366. * the mean seek distance. If not, it may be time to break the
  1367. * queues apart again.
  1368. */
  1369. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1370. cfq_mark_cfqq_split_coop(cfqq);
  1371. /*
  1372. * store what was left of this slice, if the queue idled/timed out
  1373. */
  1374. if (timed_out) {
  1375. if (cfq_cfqq_slice_new(cfqq))
  1376. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1377. else
  1378. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1379. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1380. }
  1381. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1382. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1383. cfq_del_cfqq_rr(cfqd, cfqq);
  1384. cfq_resort_rr_list(cfqd, cfqq);
  1385. if (cfqq == cfqd->active_queue)
  1386. cfqd->active_queue = NULL;
  1387. if (cfqd->active_cic) {
  1388. put_io_context(cfqd->active_cic->icq.ioc);
  1389. cfqd->active_cic = NULL;
  1390. }
  1391. }
  1392. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1393. {
  1394. struct cfq_queue *cfqq = cfqd->active_queue;
  1395. if (cfqq)
  1396. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1397. }
  1398. /*
  1399. * Get next queue for service. Unless we have a queue preemption,
  1400. * we'll simply select the first cfqq in the service tree.
  1401. */
  1402. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1403. {
  1404. struct cfq_rb_root *service_tree =
  1405. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1406. cfqd->serving_type);
  1407. if (!cfqd->rq_queued)
  1408. return NULL;
  1409. /* There is nothing to dispatch */
  1410. if (!service_tree)
  1411. return NULL;
  1412. if (RB_EMPTY_ROOT(&service_tree->rb))
  1413. return NULL;
  1414. return cfq_rb_first(service_tree);
  1415. }
  1416. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1417. {
  1418. struct cfq_group *cfqg;
  1419. struct cfq_queue *cfqq;
  1420. int i, j;
  1421. struct cfq_rb_root *st;
  1422. if (!cfqd->rq_queued)
  1423. return NULL;
  1424. cfqg = cfq_get_next_cfqg(cfqd);
  1425. if (!cfqg)
  1426. return NULL;
  1427. for_each_cfqg_st(cfqg, i, j, st)
  1428. if ((cfqq = cfq_rb_first(st)) != NULL)
  1429. return cfqq;
  1430. return NULL;
  1431. }
  1432. /*
  1433. * Get and set a new active queue for service.
  1434. */
  1435. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1436. struct cfq_queue *cfqq)
  1437. {
  1438. if (!cfqq)
  1439. cfqq = cfq_get_next_queue(cfqd);
  1440. __cfq_set_active_queue(cfqd, cfqq);
  1441. return cfqq;
  1442. }
  1443. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1444. struct request *rq)
  1445. {
  1446. if (blk_rq_pos(rq) >= cfqd->last_position)
  1447. return blk_rq_pos(rq) - cfqd->last_position;
  1448. else
  1449. return cfqd->last_position - blk_rq_pos(rq);
  1450. }
  1451. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1452. struct request *rq)
  1453. {
  1454. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1455. }
  1456. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1457. struct cfq_queue *cur_cfqq)
  1458. {
  1459. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1460. struct rb_node *parent, *node;
  1461. struct cfq_queue *__cfqq;
  1462. sector_t sector = cfqd->last_position;
  1463. if (RB_EMPTY_ROOT(root))
  1464. return NULL;
  1465. /*
  1466. * First, if we find a request starting at the end of the last
  1467. * request, choose it.
  1468. */
  1469. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1470. if (__cfqq)
  1471. return __cfqq;
  1472. /*
  1473. * If the exact sector wasn't found, the parent of the NULL leaf
  1474. * will contain the closest sector.
  1475. */
  1476. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1477. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1478. return __cfqq;
  1479. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1480. node = rb_next(&__cfqq->p_node);
  1481. else
  1482. node = rb_prev(&__cfqq->p_node);
  1483. if (!node)
  1484. return NULL;
  1485. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1486. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1487. return __cfqq;
  1488. return NULL;
  1489. }
  1490. /*
  1491. * cfqd - obvious
  1492. * cur_cfqq - passed in so that we don't decide that the current queue is
  1493. * closely cooperating with itself.
  1494. *
  1495. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1496. * one request, and that cfqd->last_position reflects a position on the disk
  1497. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1498. * assumption.
  1499. */
  1500. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1501. struct cfq_queue *cur_cfqq)
  1502. {
  1503. struct cfq_queue *cfqq;
  1504. if (cfq_class_idle(cur_cfqq))
  1505. return NULL;
  1506. if (!cfq_cfqq_sync(cur_cfqq))
  1507. return NULL;
  1508. if (CFQQ_SEEKY(cur_cfqq))
  1509. return NULL;
  1510. /*
  1511. * Don't search priority tree if it's the only queue in the group.
  1512. */
  1513. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1514. return NULL;
  1515. /*
  1516. * We should notice if some of the queues are cooperating, eg
  1517. * working closely on the same area of the disk. In that case,
  1518. * we can group them together and don't waste time idling.
  1519. */
  1520. cfqq = cfqq_close(cfqd, cur_cfqq);
  1521. if (!cfqq)
  1522. return NULL;
  1523. /* If new queue belongs to different cfq_group, don't choose it */
  1524. if (cur_cfqq->cfqg != cfqq->cfqg)
  1525. return NULL;
  1526. /*
  1527. * It only makes sense to merge sync queues.
  1528. */
  1529. if (!cfq_cfqq_sync(cfqq))
  1530. return NULL;
  1531. if (CFQQ_SEEKY(cfqq))
  1532. return NULL;
  1533. /*
  1534. * Do not merge queues of different priority classes
  1535. */
  1536. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1537. return NULL;
  1538. return cfqq;
  1539. }
  1540. /*
  1541. * Determine whether we should enforce idle window for this queue.
  1542. */
  1543. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1544. {
  1545. enum wl_prio_t prio = cfqq_prio(cfqq);
  1546. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1547. BUG_ON(!service_tree);
  1548. BUG_ON(!service_tree->count);
  1549. if (!cfqd->cfq_slice_idle)
  1550. return false;
  1551. /* We never do for idle class queues. */
  1552. if (prio == IDLE_WORKLOAD)
  1553. return false;
  1554. /* We do for queues that were marked with idle window flag. */
  1555. if (cfq_cfqq_idle_window(cfqq) &&
  1556. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1557. return true;
  1558. /*
  1559. * Otherwise, we do only if they are the last ones
  1560. * in their service tree.
  1561. */
  1562. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
  1563. !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
  1564. return true;
  1565. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1566. service_tree->count);
  1567. return false;
  1568. }
  1569. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1570. {
  1571. struct cfq_queue *cfqq = cfqd->active_queue;
  1572. struct cfq_io_cq *cic;
  1573. unsigned long sl, group_idle = 0;
  1574. /*
  1575. * SSD device without seek penalty, disable idling. But only do so
  1576. * for devices that support queuing, otherwise we still have a problem
  1577. * with sync vs async workloads.
  1578. */
  1579. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1580. return;
  1581. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1582. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1583. /*
  1584. * idle is disabled, either manually or by past process history
  1585. */
  1586. if (!cfq_should_idle(cfqd, cfqq)) {
  1587. /* no queue idling. Check for group idling */
  1588. if (cfqd->cfq_group_idle)
  1589. group_idle = cfqd->cfq_group_idle;
  1590. else
  1591. return;
  1592. }
  1593. /*
  1594. * still active requests from this queue, don't idle
  1595. */
  1596. if (cfqq->dispatched)
  1597. return;
  1598. /*
  1599. * task has exited, don't wait
  1600. */
  1601. cic = cfqd->active_cic;
  1602. if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
  1603. return;
  1604. /*
  1605. * If our average think time is larger than the remaining time
  1606. * slice, then don't idle. This avoids overrunning the allotted
  1607. * time slice.
  1608. */
  1609. if (sample_valid(cic->ttime.ttime_samples) &&
  1610. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  1611. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1612. cic->ttime.ttime_mean);
  1613. return;
  1614. }
  1615. /* There are other queues in the group, don't do group idle */
  1616. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1617. return;
  1618. cfq_mark_cfqq_wait_request(cfqq);
  1619. if (group_idle)
  1620. sl = cfqd->cfq_group_idle;
  1621. else
  1622. sl = cfqd->cfq_slice_idle;
  1623. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1624. cfq_blkiocg_update_set_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
  1625. &blkio_policy_cfq);
  1626. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1627. group_idle ? 1 : 0);
  1628. }
  1629. /*
  1630. * Move request from internal lists to the request queue dispatch list.
  1631. */
  1632. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1633. {
  1634. struct cfq_data *cfqd = q->elevator->elevator_data;
  1635. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1636. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1637. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1638. cfq_remove_request(rq);
  1639. cfqq->dispatched++;
  1640. (RQ_CFQG(rq))->dispatched++;
  1641. elv_dispatch_sort(q, rq);
  1642. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1643. cfqq->nr_sectors += blk_rq_sectors(rq);
  1644. cfq_blkiocg_update_dispatch_stats(cfqg_to_blkg(cfqq->cfqg),
  1645. &blkio_policy_cfq, blk_rq_bytes(rq),
  1646. rq_data_dir(rq), rq_is_sync(rq));
  1647. }
  1648. /*
  1649. * return expired entry, or NULL to just start from scratch in rbtree
  1650. */
  1651. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1652. {
  1653. struct request *rq = NULL;
  1654. if (cfq_cfqq_fifo_expire(cfqq))
  1655. return NULL;
  1656. cfq_mark_cfqq_fifo_expire(cfqq);
  1657. if (list_empty(&cfqq->fifo))
  1658. return NULL;
  1659. rq = rq_entry_fifo(cfqq->fifo.next);
  1660. if (time_before(jiffies, rq_fifo_time(rq)))
  1661. rq = NULL;
  1662. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1663. return rq;
  1664. }
  1665. static inline int
  1666. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1667. {
  1668. const int base_rq = cfqd->cfq_slice_async_rq;
  1669. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1670. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1671. }
  1672. /*
  1673. * Must be called with the queue_lock held.
  1674. */
  1675. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1676. {
  1677. int process_refs, io_refs;
  1678. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1679. process_refs = cfqq->ref - io_refs;
  1680. BUG_ON(process_refs < 0);
  1681. return process_refs;
  1682. }
  1683. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1684. {
  1685. int process_refs, new_process_refs;
  1686. struct cfq_queue *__cfqq;
  1687. /*
  1688. * If there are no process references on the new_cfqq, then it is
  1689. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1690. * chain may have dropped their last reference (not just their
  1691. * last process reference).
  1692. */
  1693. if (!cfqq_process_refs(new_cfqq))
  1694. return;
  1695. /* Avoid a circular list and skip interim queue merges */
  1696. while ((__cfqq = new_cfqq->new_cfqq)) {
  1697. if (__cfqq == cfqq)
  1698. return;
  1699. new_cfqq = __cfqq;
  1700. }
  1701. process_refs = cfqq_process_refs(cfqq);
  1702. new_process_refs = cfqq_process_refs(new_cfqq);
  1703. /*
  1704. * If the process for the cfqq has gone away, there is no
  1705. * sense in merging the queues.
  1706. */
  1707. if (process_refs == 0 || new_process_refs == 0)
  1708. return;
  1709. /*
  1710. * Merge in the direction of the lesser amount of work.
  1711. */
  1712. if (new_process_refs >= process_refs) {
  1713. cfqq->new_cfqq = new_cfqq;
  1714. new_cfqq->ref += process_refs;
  1715. } else {
  1716. new_cfqq->new_cfqq = cfqq;
  1717. cfqq->ref += new_process_refs;
  1718. }
  1719. }
  1720. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1721. struct cfq_group *cfqg, enum wl_prio_t prio)
  1722. {
  1723. struct cfq_queue *queue;
  1724. int i;
  1725. bool key_valid = false;
  1726. unsigned long lowest_key = 0;
  1727. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1728. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1729. /* select the one with lowest rb_key */
  1730. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1731. if (queue &&
  1732. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1733. lowest_key = queue->rb_key;
  1734. cur_best = i;
  1735. key_valid = true;
  1736. }
  1737. }
  1738. return cur_best;
  1739. }
  1740. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1741. {
  1742. unsigned slice;
  1743. unsigned count;
  1744. struct cfq_rb_root *st;
  1745. unsigned group_slice;
  1746. enum wl_prio_t original_prio = cfqd->serving_prio;
  1747. /* Choose next priority. RT > BE > IDLE */
  1748. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1749. cfqd->serving_prio = RT_WORKLOAD;
  1750. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1751. cfqd->serving_prio = BE_WORKLOAD;
  1752. else {
  1753. cfqd->serving_prio = IDLE_WORKLOAD;
  1754. cfqd->workload_expires = jiffies + 1;
  1755. return;
  1756. }
  1757. if (original_prio != cfqd->serving_prio)
  1758. goto new_workload;
  1759. /*
  1760. * For RT and BE, we have to choose also the type
  1761. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1762. * expiration time
  1763. */
  1764. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1765. count = st->count;
  1766. /*
  1767. * check workload expiration, and that we still have other queues ready
  1768. */
  1769. if (count && !time_after(jiffies, cfqd->workload_expires))
  1770. return;
  1771. new_workload:
  1772. /* otherwise select new workload type */
  1773. cfqd->serving_type =
  1774. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1775. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1776. count = st->count;
  1777. /*
  1778. * the workload slice is computed as a fraction of target latency
  1779. * proportional to the number of queues in that workload, over
  1780. * all the queues in the same priority class
  1781. */
  1782. group_slice = cfq_group_slice(cfqd, cfqg);
  1783. slice = group_slice * count /
  1784. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1785. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1786. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1787. unsigned int tmp;
  1788. /*
  1789. * Async queues are currently system wide. Just taking
  1790. * proportion of queues with-in same group will lead to higher
  1791. * async ratio system wide as generally root group is going
  1792. * to have higher weight. A more accurate thing would be to
  1793. * calculate system wide asnc/sync ratio.
  1794. */
  1795. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1796. tmp = tmp/cfqd->busy_queues;
  1797. slice = min_t(unsigned, slice, tmp);
  1798. /* async workload slice is scaled down according to
  1799. * the sync/async slice ratio. */
  1800. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1801. } else
  1802. /* sync workload slice is at least 2 * cfq_slice_idle */
  1803. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1804. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1805. cfq_log(cfqd, "workload slice:%d", slice);
  1806. cfqd->workload_expires = jiffies + slice;
  1807. }
  1808. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1809. {
  1810. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1811. struct cfq_group *cfqg;
  1812. if (RB_EMPTY_ROOT(&st->rb))
  1813. return NULL;
  1814. cfqg = cfq_rb_first_group(st);
  1815. update_min_vdisktime(st);
  1816. return cfqg;
  1817. }
  1818. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1819. {
  1820. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1821. cfqd->serving_group = cfqg;
  1822. /* Restore the workload type data */
  1823. if (cfqg->saved_workload_slice) {
  1824. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1825. cfqd->serving_type = cfqg->saved_workload;
  1826. cfqd->serving_prio = cfqg->saved_serving_prio;
  1827. } else
  1828. cfqd->workload_expires = jiffies - 1;
  1829. choose_service_tree(cfqd, cfqg);
  1830. }
  1831. /*
  1832. * Select a queue for service. If we have a current active queue,
  1833. * check whether to continue servicing it, or retrieve and set a new one.
  1834. */
  1835. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1836. {
  1837. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1838. cfqq = cfqd->active_queue;
  1839. if (!cfqq)
  1840. goto new_queue;
  1841. if (!cfqd->rq_queued)
  1842. return NULL;
  1843. /*
  1844. * We were waiting for group to get backlogged. Expire the queue
  1845. */
  1846. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1847. goto expire;
  1848. /*
  1849. * The active queue has run out of time, expire it and select new.
  1850. */
  1851. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1852. /*
  1853. * If slice had not expired at the completion of last request
  1854. * we might not have turned on wait_busy flag. Don't expire
  1855. * the queue yet. Allow the group to get backlogged.
  1856. *
  1857. * The very fact that we have used the slice, that means we
  1858. * have been idling all along on this queue and it should be
  1859. * ok to wait for this request to complete.
  1860. */
  1861. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1862. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1863. cfqq = NULL;
  1864. goto keep_queue;
  1865. } else
  1866. goto check_group_idle;
  1867. }
  1868. /*
  1869. * The active queue has requests and isn't expired, allow it to
  1870. * dispatch.
  1871. */
  1872. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1873. goto keep_queue;
  1874. /*
  1875. * If another queue has a request waiting within our mean seek
  1876. * distance, let it run. The expire code will check for close
  1877. * cooperators and put the close queue at the front of the service
  1878. * tree. If possible, merge the expiring queue with the new cfqq.
  1879. */
  1880. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1881. if (new_cfqq) {
  1882. if (!cfqq->new_cfqq)
  1883. cfq_setup_merge(cfqq, new_cfqq);
  1884. goto expire;
  1885. }
  1886. /*
  1887. * No requests pending. If the active queue still has requests in
  1888. * flight or is idling for a new request, allow either of these
  1889. * conditions to happen (or time out) before selecting a new queue.
  1890. */
  1891. if (timer_pending(&cfqd->idle_slice_timer)) {
  1892. cfqq = NULL;
  1893. goto keep_queue;
  1894. }
  1895. /*
  1896. * This is a deep seek queue, but the device is much faster than
  1897. * the queue can deliver, don't idle
  1898. **/
  1899. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1900. (cfq_cfqq_slice_new(cfqq) ||
  1901. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1902. cfq_clear_cfqq_deep(cfqq);
  1903. cfq_clear_cfqq_idle_window(cfqq);
  1904. }
  1905. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1906. cfqq = NULL;
  1907. goto keep_queue;
  1908. }
  1909. /*
  1910. * If group idle is enabled and there are requests dispatched from
  1911. * this group, wait for requests to complete.
  1912. */
  1913. check_group_idle:
  1914. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
  1915. cfqq->cfqg->dispatched &&
  1916. !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
  1917. cfqq = NULL;
  1918. goto keep_queue;
  1919. }
  1920. expire:
  1921. cfq_slice_expired(cfqd, 0);
  1922. new_queue:
  1923. /*
  1924. * Current queue expired. Check if we have to switch to a new
  1925. * service tree
  1926. */
  1927. if (!new_cfqq)
  1928. cfq_choose_cfqg(cfqd);
  1929. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1930. keep_queue:
  1931. return cfqq;
  1932. }
  1933. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1934. {
  1935. int dispatched = 0;
  1936. while (cfqq->next_rq) {
  1937. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1938. dispatched++;
  1939. }
  1940. BUG_ON(!list_empty(&cfqq->fifo));
  1941. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1942. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1943. return dispatched;
  1944. }
  1945. /*
  1946. * Drain our current requests. Used for barriers and when switching
  1947. * io schedulers on-the-fly.
  1948. */
  1949. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1950. {
  1951. struct cfq_queue *cfqq;
  1952. int dispatched = 0;
  1953. /* Expire the timeslice of the current active queue first */
  1954. cfq_slice_expired(cfqd, 0);
  1955. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1956. __cfq_set_active_queue(cfqd, cfqq);
  1957. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1958. }
  1959. BUG_ON(cfqd->busy_queues);
  1960. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1961. return dispatched;
  1962. }
  1963. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  1964. struct cfq_queue *cfqq)
  1965. {
  1966. /* the queue hasn't finished any request, can't estimate */
  1967. if (cfq_cfqq_slice_new(cfqq))
  1968. return true;
  1969. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  1970. cfqq->slice_end))
  1971. return true;
  1972. return false;
  1973. }
  1974. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1975. {
  1976. unsigned int max_dispatch;
  1977. /*
  1978. * Drain async requests before we start sync IO
  1979. */
  1980. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  1981. return false;
  1982. /*
  1983. * If this is an async queue and we have sync IO in flight, let it wait
  1984. */
  1985. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  1986. return false;
  1987. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  1988. if (cfq_class_idle(cfqq))
  1989. max_dispatch = 1;
  1990. /*
  1991. * Does this cfqq already have too much IO in flight?
  1992. */
  1993. if (cfqq->dispatched >= max_dispatch) {
  1994. bool promote_sync = false;
  1995. /*
  1996. * idle queue must always only have a single IO in flight
  1997. */
  1998. if (cfq_class_idle(cfqq))
  1999. return false;
  2000. /*
  2001. * If there is only one sync queue
  2002. * we can ignore async queue here and give the sync
  2003. * queue no dispatch limit. The reason is a sync queue can
  2004. * preempt async queue, limiting the sync queue doesn't make
  2005. * sense. This is useful for aiostress test.
  2006. */
  2007. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2008. promote_sync = true;
  2009. /*
  2010. * We have other queues, don't allow more IO from this one
  2011. */
  2012. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2013. !promote_sync)
  2014. return false;
  2015. /*
  2016. * Sole queue user, no limit
  2017. */
  2018. if (cfqd->busy_queues == 1 || promote_sync)
  2019. max_dispatch = -1;
  2020. else
  2021. /*
  2022. * Normally we start throttling cfqq when cfq_quantum/2
  2023. * requests have been dispatched. But we can drive
  2024. * deeper queue depths at the beginning of slice
  2025. * subjected to upper limit of cfq_quantum.
  2026. * */
  2027. max_dispatch = cfqd->cfq_quantum;
  2028. }
  2029. /*
  2030. * Async queues must wait a bit before being allowed dispatch.
  2031. * We also ramp up the dispatch depth gradually for async IO,
  2032. * based on the last sync IO we serviced
  2033. */
  2034. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2035. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2036. unsigned int depth;
  2037. depth = last_sync / cfqd->cfq_slice[1];
  2038. if (!depth && !cfqq->dispatched)
  2039. depth = 1;
  2040. if (depth < max_dispatch)
  2041. max_dispatch = depth;
  2042. }
  2043. /*
  2044. * If we're below the current max, allow a dispatch
  2045. */
  2046. return cfqq->dispatched < max_dispatch;
  2047. }
  2048. /*
  2049. * Dispatch a request from cfqq, moving them to the request queue
  2050. * dispatch list.
  2051. */
  2052. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2053. {
  2054. struct request *rq;
  2055. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2056. if (!cfq_may_dispatch(cfqd, cfqq))
  2057. return false;
  2058. /*
  2059. * follow expired path, else get first next available
  2060. */
  2061. rq = cfq_check_fifo(cfqq);
  2062. if (!rq)
  2063. rq = cfqq->next_rq;
  2064. /*
  2065. * insert request into driver dispatch list
  2066. */
  2067. cfq_dispatch_insert(cfqd->queue, rq);
  2068. if (!cfqd->active_cic) {
  2069. struct cfq_io_cq *cic = RQ_CIC(rq);
  2070. atomic_long_inc(&cic->icq.ioc->refcount);
  2071. cfqd->active_cic = cic;
  2072. }
  2073. return true;
  2074. }
  2075. /*
  2076. * Find the cfqq that we need to service and move a request from that to the
  2077. * dispatch list
  2078. */
  2079. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2080. {
  2081. struct cfq_data *cfqd = q->elevator->elevator_data;
  2082. struct cfq_queue *cfqq;
  2083. if (!cfqd->busy_queues)
  2084. return 0;
  2085. if (unlikely(force))
  2086. return cfq_forced_dispatch(cfqd);
  2087. cfqq = cfq_select_queue(cfqd);
  2088. if (!cfqq)
  2089. return 0;
  2090. /*
  2091. * Dispatch a request from this cfqq, if it is allowed
  2092. */
  2093. if (!cfq_dispatch_request(cfqd, cfqq))
  2094. return 0;
  2095. cfqq->slice_dispatch++;
  2096. cfq_clear_cfqq_must_dispatch(cfqq);
  2097. /*
  2098. * expire an async queue immediately if it has used up its slice. idle
  2099. * queue always expire after 1 dispatch round.
  2100. */
  2101. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2102. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2103. cfq_class_idle(cfqq))) {
  2104. cfqq->slice_end = jiffies + 1;
  2105. cfq_slice_expired(cfqd, 0);
  2106. }
  2107. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2108. return 1;
  2109. }
  2110. /*
  2111. * task holds one reference to the queue, dropped when task exits. each rq
  2112. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2113. *
  2114. * Each cfq queue took a reference on the parent group. Drop it now.
  2115. * queue lock must be held here.
  2116. */
  2117. static void cfq_put_queue(struct cfq_queue *cfqq)
  2118. {
  2119. struct cfq_data *cfqd = cfqq->cfqd;
  2120. struct cfq_group *cfqg;
  2121. BUG_ON(cfqq->ref <= 0);
  2122. cfqq->ref--;
  2123. if (cfqq->ref)
  2124. return;
  2125. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2126. BUG_ON(rb_first(&cfqq->sort_list));
  2127. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2128. cfqg = cfqq->cfqg;
  2129. if (unlikely(cfqd->active_queue == cfqq)) {
  2130. __cfq_slice_expired(cfqd, cfqq, 0);
  2131. cfq_schedule_dispatch(cfqd);
  2132. }
  2133. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2134. kmem_cache_free(cfq_pool, cfqq);
  2135. cfqg_put(cfqg);
  2136. }
  2137. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2138. {
  2139. struct cfq_queue *__cfqq, *next;
  2140. /*
  2141. * If this queue was scheduled to merge with another queue, be
  2142. * sure to drop the reference taken on that queue (and others in
  2143. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2144. */
  2145. __cfqq = cfqq->new_cfqq;
  2146. while (__cfqq) {
  2147. if (__cfqq == cfqq) {
  2148. WARN(1, "cfqq->new_cfqq loop detected\n");
  2149. break;
  2150. }
  2151. next = __cfqq->new_cfqq;
  2152. cfq_put_queue(__cfqq);
  2153. __cfqq = next;
  2154. }
  2155. }
  2156. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2157. {
  2158. if (unlikely(cfqq == cfqd->active_queue)) {
  2159. __cfq_slice_expired(cfqd, cfqq, 0);
  2160. cfq_schedule_dispatch(cfqd);
  2161. }
  2162. cfq_put_cooperator(cfqq);
  2163. cfq_put_queue(cfqq);
  2164. }
  2165. static void cfq_init_icq(struct io_cq *icq)
  2166. {
  2167. struct cfq_io_cq *cic = icq_to_cic(icq);
  2168. cic->ttime.last_end_request = jiffies;
  2169. }
  2170. static void cfq_exit_icq(struct io_cq *icq)
  2171. {
  2172. struct cfq_io_cq *cic = icq_to_cic(icq);
  2173. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2174. if (cic->cfqq[BLK_RW_ASYNC]) {
  2175. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2176. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2177. }
  2178. if (cic->cfqq[BLK_RW_SYNC]) {
  2179. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2180. cic->cfqq[BLK_RW_SYNC] = NULL;
  2181. }
  2182. }
  2183. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
  2184. {
  2185. struct task_struct *tsk = current;
  2186. int ioprio_class;
  2187. if (!cfq_cfqq_prio_changed(cfqq))
  2188. return;
  2189. ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
  2190. switch (ioprio_class) {
  2191. default:
  2192. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2193. case IOPRIO_CLASS_NONE:
  2194. /*
  2195. * no prio set, inherit CPU scheduling settings
  2196. */
  2197. cfqq->ioprio = task_nice_ioprio(tsk);
  2198. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2199. break;
  2200. case IOPRIO_CLASS_RT:
  2201. cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2202. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2203. break;
  2204. case IOPRIO_CLASS_BE:
  2205. cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2206. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2207. break;
  2208. case IOPRIO_CLASS_IDLE:
  2209. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2210. cfqq->ioprio = 7;
  2211. cfq_clear_cfqq_idle_window(cfqq);
  2212. break;
  2213. }
  2214. /*
  2215. * keep track of original prio settings in case we have to temporarily
  2216. * elevate the priority of this queue
  2217. */
  2218. cfqq->org_ioprio = cfqq->ioprio;
  2219. cfq_clear_cfqq_prio_changed(cfqq);
  2220. }
  2221. static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
  2222. {
  2223. int ioprio = cic->icq.ioc->ioprio;
  2224. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2225. struct cfq_queue *cfqq;
  2226. /*
  2227. * Check whether ioprio has changed. The condition may trigger
  2228. * spuriously on a newly created cic but there's no harm.
  2229. */
  2230. if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
  2231. return;
  2232. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2233. if (cfqq) {
  2234. struct cfq_queue *new_cfqq;
  2235. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
  2236. GFP_ATOMIC);
  2237. if (new_cfqq) {
  2238. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2239. cfq_put_queue(cfqq);
  2240. }
  2241. }
  2242. cfqq = cic->cfqq[BLK_RW_SYNC];
  2243. if (cfqq)
  2244. cfq_mark_cfqq_prio_changed(cfqq);
  2245. cic->ioprio = ioprio;
  2246. }
  2247. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2248. pid_t pid, bool is_sync)
  2249. {
  2250. RB_CLEAR_NODE(&cfqq->rb_node);
  2251. RB_CLEAR_NODE(&cfqq->p_node);
  2252. INIT_LIST_HEAD(&cfqq->fifo);
  2253. cfqq->ref = 0;
  2254. cfqq->cfqd = cfqd;
  2255. cfq_mark_cfqq_prio_changed(cfqq);
  2256. if (is_sync) {
  2257. if (!cfq_class_idle(cfqq))
  2258. cfq_mark_cfqq_idle_window(cfqq);
  2259. cfq_mark_cfqq_sync(cfqq);
  2260. }
  2261. cfqq->pid = pid;
  2262. }
  2263. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2264. static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
  2265. {
  2266. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2267. struct cfq_queue *sync_cfqq;
  2268. uint64_t id;
  2269. rcu_read_lock();
  2270. id = bio_blkio_cgroup(bio)->id;
  2271. rcu_read_unlock();
  2272. /*
  2273. * Check whether blkcg has changed. The condition may trigger
  2274. * spuriously on a newly created cic but there's no harm.
  2275. */
  2276. if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
  2277. return;
  2278. sync_cfqq = cic_to_cfqq(cic, 1);
  2279. if (sync_cfqq) {
  2280. /*
  2281. * Drop reference to sync queue. A new sync queue will be
  2282. * assigned in new group upon arrival of a fresh request.
  2283. */
  2284. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2285. cic_set_cfqq(cic, NULL, 1);
  2286. cfq_put_queue(sync_cfqq);
  2287. }
  2288. cic->blkcg_id = id;
  2289. }
  2290. #else
  2291. static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
  2292. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2293. static struct cfq_queue *
  2294. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
  2295. struct bio *bio, gfp_t gfp_mask)
  2296. {
  2297. struct blkio_cgroup *blkcg;
  2298. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2299. struct cfq_group *cfqg;
  2300. retry:
  2301. rcu_read_lock();
  2302. blkcg = bio_blkio_cgroup(bio);
  2303. cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
  2304. cfqq = cic_to_cfqq(cic, is_sync);
  2305. /*
  2306. * Always try a new alloc if we fell back to the OOM cfqq
  2307. * originally, since it should just be a temporary situation.
  2308. */
  2309. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2310. cfqq = NULL;
  2311. if (new_cfqq) {
  2312. cfqq = new_cfqq;
  2313. new_cfqq = NULL;
  2314. } else if (gfp_mask & __GFP_WAIT) {
  2315. rcu_read_unlock();
  2316. spin_unlock_irq(cfqd->queue->queue_lock);
  2317. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2318. gfp_mask | __GFP_ZERO,
  2319. cfqd->queue->node);
  2320. spin_lock_irq(cfqd->queue->queue_lock);
  2321. if (new_cfqq)
  2322. goto retry;
  2323. } else {
  2324. cfqq = kmem_cache_alloc_node(cfq_pool,
  2325. gfp_mask | __GFP_ZERO,
  2326. cfqd->queue->node);
  2327. }
  2328. if (cfqq) {
  2329. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2330. cfq_init_prio_data(cfqq, cic);
  2331. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2332. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2333. } else
  2334. cfqq = &cfqd->oom_cfqq;
  2335. }
  2336. if (new_cfqq)
  2337. kmem_cache_free(cfq_pool, new_cfqq);
  2338. rcu_read_unlock();
  2339. return cfqq;
  2340. }
  2341. static struct cfq_queue **
  2342. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2343. {
  2344. switch (ioprio_class) {
  2345. case IOPRIO_CLASS_RT:
  2346. return &cfqd->async_cfqq[0][ioprio];
  2347. case IOPRIO_CLASS_NONE:
  2348. ioprio = IOPRIO_NORM;
  2349. /* fall through */
  2350. case IOPRIO_CLASS_BE:
  2351. return &cfqd->async_cfqq[1][ioprio];
  2352. case IOPRIO_CLASS_IDLE:
  2353. return &cfqd->async_idle_cfqq;
  2354. default:
  2355. BUG();
  2356. }
  2357. }
  2358. static struct cfq_queue *
  2359. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
  2360. struct bio *bio, gfp_t gfp_mask)
  2361. {
  2362. const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
  2363. const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2364. struct cfq_queue **async_cfqq = NULL;
  2365. struct cfq_queue *cfqq = NULL;
  2366. if (!is_sync) {
  2367. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2368. cfqq = *async_cfqq;
  2369. }
  2370. if (!cfqq)
  2371. cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
  2372. /*
  2373. * pin the queue now that it's allocated, scheduler exit will prune it
  2374. */
  2375. if (!is_sync && !(*async_cfqq)) {
  2376. cfqq->ref++;
  2377. *async_cfqq = cfqq;
  2378. }
  2379. cfqq->ref++;
  2380. return cfqq;
  2381. }
  2382. static void
  2383. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2384. {
  2385. unsigned long elapsed = jiffies - ttime->last_end_request;
  2386. elapsed = min(elapsed, 2UL * slice_idle);
  2387. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2388. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2389. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2390. }
  2391. static void
  2392. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2393. struct cfq_io_cq *cic)
  2394. {
  2395. if (cfq_cfqq_sync(cfqq)) {
  2396. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2397. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  2398. cfqd->cfq_slice_idle);
  2399. }
  2400. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2401. __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
  2402. #endif
  2403. }
  2404. static void
  2405. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2406. struct request *rq)
  2407. {
  2408. sector_t sdist = 0;
  2409. sector_t n_sec = blk_rq_sectors(rq);
  2410. if (cfqq->last_request_pos) {
  2411. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2412. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2413. else
  2414. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2415. }
  2416. cfqq->seek_history <<= 1;
  2417. if (blk_queue_nonrot(cfqd->queue))
  2418. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2419. else
  2420. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2421. }
  2422. /*
  2423. * Disable idle window if the process thinks too long or seeks so much that
  2424. * it doesn't matter
  2425. */
  2426. static void
  2427. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2428. struct cfq_io_cq *cic)
  2429. {
  2430. int old_idle, enable_idle;
  2431. /*
  2432. * Don't idle for async or idle io prio class
  2433. */
  2434. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2435. return;
  2436. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2437. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2438. cfq_mark_cfqq_deep(cfqq);
  2439. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2440. enable_idle = 0;
  2441. else if (!atomic_read(&cic->icq.ioc->active_ref) ||
  2442. !cfqd->cfq_slice_idle ||
  2443. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2444. enable_idle = 0;
  2445. else if (sample_valid(cic->ttime.ttime_samples)) {
  2446. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2447. enable_idle = 0;
  2448. else
  2449. enable_idle = 1;
  2450. }
  2451. if (old_idle != enable_idle) {
  2452. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2453. if (enable_idle)
  2454. cfq_mark_cfqq_idle_window(cfqq);
  2455. else
  2456. cfq_clear_cfqq_idle_window(cfqq);
  2457. }
  2458. }
  2459. /*
  2460. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2461. * no or if we aren't sure, a 1 will cause a preempt.
  2462. */
  2463. static bool
  2464. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2465. struct request *rq)
  2466. {
  2467. struct cfq_queue *cfqq;
  2468. cfqq = cfqd->active_queue;
  2469. if (!cfqq)
  2470. return false;
  2471. if (cfq_class_idle(new_cfqq))
  2472. return false;
  2473. if (cfq_class_idle(cfqq))
  2474. return true;
  2475. /*
  2476. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2477. */
  2478. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2479. return false;
  2480. /*
  2481. * if the new request is sync, but the currently running queue is
  2482. * not, let the sync request have priority.
  2483. */
  2484. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2485. return true;
  2486. if (new_cfqq->cfqg != cfqq->cfqg)
  2487. return false;
  2488. if (cfq_slice_used(cfqq))
  2489. return true;
  2490. /* Allow preemption only if we are idling on sync-noidle tree */
  2491. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2492. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2493. new_cfqq->service_tree->count == 2 &&
  2494. RB_EMPTY_ROOT(&cfqq->sort_list))
  2495. return true;
  2496. /*
  2497. * So both queues are sync. Let the new request get disk time if
  2498. * it's a metadata request and the current queue is doing regular IO.
  2499. */
  2500. if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
  2501. return true;
  2502. /*
  2503. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2504. */
  2505. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2506. return true;
  2507. /* An idle queue should not be idle now for some reason */
  2508. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2509. return true;
  2510. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2511. return false;
  2512. /*
  2513. * if this request is as-good as one we would expect from the
  2514. * current cfqq, let it preempt
  2515. */
  2516. if (cfq_rq_close(cfqd, cfqq, rq))
  2517. return true;
  2518. return false;
  2519. }
  2520. /*
  2521. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2522. * let it have half of its nominal slice.
  2523. */
  2524. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2525. {
  2526. enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
  2527. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2528. cfq_slice_expired(cfqd, 1);
  2529. /*
  2530. * workload type is changed, don't save slice, otherwise preempt
  2531. * doesn't happen
  2532. */
  2533. if (old_type != cfqq_type(cfqq))
  2534. cfqq->cfqg->saved_workload_slice = 0;
  2535. /*
  2536. * Put the new queue at the front of the of the current list,
  2537. * so we know that it will be selected next.
  2538. */
  2539. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2540. cfq_service_tree_add(cfqd, cfqq, 1);
  2541. cfqq->slice_end = 0;
  2542. cfq_mark_cfqq_slice_new(cfqq);
  2543. }
  2544. /*
  2545. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2546. * something we should do about it
  2547. */
  2548. static void
  2549. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2550. struct request *rq)
  2551. {
  2552. struct cfq_io_cq *cic = RQ_CIC(rq);
  2553. cfqd->rq_queued++;
  2554. if (rq->cmd_flags & REQ_PRIO)
  2555. cfqq->prio_pending++;
  2556. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2557. cfq_update_io_seektime(cfqd, cfqq, rq);
  2558. cfq_update_idle_window(cfqd, cfqq, cic);
  2559. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2560. if (cfqq == cfqd->active_queue) {
  2561. /*
  2562. * Remember that we saw a request from this process, but
  2563. * don't start queuing just yet. Otherwise we risk seeing lots
  2564. * of tiny requests, because we disrupt the normal plugging
  2565. * and merging. If the request is already larger than a single
  2566. * page, let it rip immediately. For that case we assume that
  2567. * merging is already done. Ditto for a busy system that
  2568. * has other work pending, don't risk delaying until the
  2569. * idle timer unplug to continue working.
  2570. */
  2571. if (cfq_cfqq_wait_request(cfqq)) {
  2572. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2573. cfqd->busy_queues > 1) {
  2574. cfq_del_timer(cfqd, cfqq);
  2575. cfq_clear_cfqq_wait_request(cfqq);
  2576. __blk_run_queue(cfqd->queue);
  2577. } else {
  2578. cfq_blkiocg_update_idle_time_stats(
  2579. cfqg_to_blkg(cfqq->cfqg),
  2580. &blkio_policy_cfq);
  2581. cfq_mark_cfqq_must_dispatch(cfqq);
  2582. }
  2583. }
  2584. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2585. /*
  2586. * not the active queue - expire current slice if it is
  2587. * idle and has expired it's mean thinktime or this new queue
  2588. * has some old slice time left and is of higher priority or
  2589. * this new queue is RT and the current one is BE
  2590. */
  2591. cfq_preempt_queue(cfqd, cfqq);
  2592. __blk_run_queue(cfqd->queue);
  2593. }
  2594. }
  2595. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2596. {
  2597. struct cfq_data *cfqd = q->elevator->elevator_data;
  2598. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2599. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2600. cfq_init_prio_data(cfqq, RQ_CIC(rq));
  2601. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2602. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2603. cfq_add_rq_rb(rq);
  2604. cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  2605. &blkio_policy_cfq,
  2606. cfqg_to_blkg(cfqd->serving_group),
  2607. rq_data_dir(rq), rq_is_sync(rq));
  2608. cfq_rq_enqueued(cfqd, cfqq, rq);
  2609. }
  2610. /*
  2611. * Update hw_tag based on peak queue depth over 50 samples under
  2612. * sufficient load.
  2613. */
  2614. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2615. {
  2616. struct cfq_queue *cfqq = cfqd->active_queue;
  2617. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2618. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2619. if (cfqd->hw_tag == 1)
  2620. return;
  2621. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2622. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2623. return;
  2624. /*
  2625. * If active queue hasn't enough requests and can idle, cfq might not
  2626. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2627. * case
  2628. */
  2629. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2630. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2631. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2632. return;
  2633. if (cfqd->hw_tag_samples++ < 50)
  2634. return;
  2635. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2636. cfqd->hw_tag = 1;
  2637. else
  2638. cfqd->hw_tag = 0;
  2639. }
  2640. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2641. {
  2642. struct cfq_io_cq *cic = cfqd->active_cic;
  2643. /* If the queue already has requests, don't wait */
  2644. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2645. return false;
  2646. /* If there are other queues in the group, don't wait */
  2647. if (cfqq->cfqg->nr_cfqq > 1)
  2648. return false;
  2649. /* the only queue in the group, but think time is big */
  2650. if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
  2651. return false;
  2652. if (cfq_slice_used(cfqq))
  2653. return true;
  2654. /* if slice left is less than think time, wait busy */
  2655. if (cic && sample_valid(cic->ttime.ttime_samples)
  2656. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  2657. return true;
  2658. /*
  2659. * If think times is less than a jiffy than ttime_mean=0 and above
  2660. * will not be true. It might happen that slice has not expired yet
  2661. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2662. * case where think time is less than a jiffy, mark the queue wait
  2663. * busy if only 1 jiffy is left in the slice.
  2664. */
  2665. if (cfqq->slice_end - jiffies == 1)
  2666. return true;
  2667. return false;
  2668. }
  2669. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2670. {
  2671. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2672. struct cfq_data *cfqd = cfqq->cfqd;
  2673. const int sync = rq_is_sync(rq);
  2674. unsigned long now;
  2675. now = jiffies;
  2676. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2677. !!(rq->cmd_flags & REQ_NOIDLE));
  2678. cfq_update_hw_tag(cfqd);
  2679. WARN_ON(!cfqd->rq_in_driver);
  2680. WARN_ON(!cfqq->dispatched);
  2681. cfqd->rq_in_driver--;
  2682. cfqq->dispatched--;
  2683. (RQ_CFQG(rq))->dispatched--;
  2684. cfq_blkiocg_update_completion_stats(cfqg_to_blkg(cfqq->cfqg),
  2685. &blkio_policy_cfq, rq_start_time_ns(rq),
  2686. rq_io_start_time_ns(rq), rq_data_dir(rq),
  2687. rq_is_sync(rq));
  2688. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2689. if (sync) {
  2690. struct cfq_rb_root *service_tree;
  2691. RQ_CIC(rq)->ttime.last_end_request = now;
  2692. if (cfq_cfqq_on_rr(cfqq))
  2693. service_tree = cfqq->service_tree;
  2694. else
  2695. service_tree = service_tree_for(cfqq->cfqg,
  2696. cfqq_prio(cfqq), cfqq_type(cfqq));
  2697. service_tree->ttime.last_end_request = now;
  2698. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2699. cfqd->last_delayed_sync = now;
  2700. }
  2701. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2702. cfqq->cfqg->ttime.last_end_request = now;
  2703. #endif
  2704. /*
  2705. * If this is the active queue, check if it needs to be expired,
  2706. * or if we want to idle in case it has no pending requests.
  2707. */
  2708. if (cfqd->active_queue == cfqq) {
  2709. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2710. if (cfq_cfqq_slice_new(cfqq)) {
  2711. cfq_set_prio_slice(cfqd, cfqq);
  2712. cfq_clear_cfqq_slice_new(cfqq);
  2713. }
  2714. /*
  2715. * Should we wait for next request to come in before we expire
  2716. * the queue.
  2717. */
  2718. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2719. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2720. if (!cfqd->cfq_slice_idle)
  2721. extend_sl = cfqd->cfq_group_idle;
  2722. cfqq->slice_end = jiffies + extend_sl;
  2723. cfq_mark_cfqq_wait_busy(cfqq);
  2724. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2725. }
  2726. /*
  2727. * Idling is not enabled on:
  2728. * - expired queues
  2729. * - idle-priority queues
  2730. * - async queues
  2731. * - queues with still some requests queued
  2732. * - when there is a close cooperator
  2733. */
  2734. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2735. cfq_slice_expired(cfqd, 1);
  2736. else if (sync && cfqq_empty &&
  2737. !cfq_close_cooperator(cfqd, cfqq)) {
  2738. cfq_arm_slice_timer(cfqd);
  2739. }
  2740. }
  2741. if (!cfqd->rq_in_driver)
  2742. cfq_schedule_dispatch(cfqd);
  2743. }
  2744. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2745. {
  2746. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2747. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2748. return ELV_MQUEUE_MUST;
  2749. }
  2750. return ELV_MQUEUE_MAY;
  2751. }
  2752. static int cfq_may_queue(struct request_queue *q, int rw)
  2753. {
  2754. struct cfq_data *cfqd = q->elevator->elevator_data;
  2755. struct task_struct *tsk = current;
  2756. struct cfq_io_cq *cic;
  2757. struct cfq_queue *cfqq;
  2758. /*
  2759. * don't force setup of a queue from here, as a call to may_queue
  2760. * does not necessarily imply that a request actually will be queued.
  2761. * so just lookup a possibly existing queue, or return 'may queue'
  2762. * if that fails
  2763. */
  2764. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2765. if (!cic)
  2766. return ELV_MQUEUE_MAY;
  2767. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2768. if (cfqq) {
  2769. cfq_init_prio_data(cfqq, cic);
  2770. return __cfq_may_queue(cfqq);
  2771. }
  2772. return ELV_MQUEUE_MAY;
  2773. }
  2774. /*
  2775. * queue lock held here
  2776. */
  2777. static void cfq_put_request(struct request *rq)
  2778. {
  2779. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2780. if (cfqq) {
  2781. const int rw = rq_data_dir(rq);
  2782. BUG_ON(!cfqq->allocated[rw]);
  2783. cfqq->allocated[rw]--;
  2784. /* Put down rq reference on cfqg */
  2785. cfqg_put(RQ_CFQG(rq));
  2786. rq->elv.priv[0] = NULL;
  2787. rq->elv.priv[1] = NULL;
  2788. cfq_put_queue(cfqq);
  2789. }
  2790. }
  2791. static struct cfq_queue *
  2792. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
  2793. struct cfq_queue *cfqq)
  2794. {
  2795. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2796. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2797. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2798. cfq_put_queue(cfqq);
  2799. return cic_to_cfqq(cic, 1);
  2800. }
  2801. /*
  2802. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2803. * was the last process referring to said cfqq.
  2804. */
  2805. static struct cfq_queue *
  2806. split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
  2807. {
  2808. if (cfqq_process_refs(cfqq) == 1) {
  2809. cfqq->pid = current->pid;
  2810. cfq_clear_cfqq_coop(cfqq);
  2811. cfq_clear_cfqq_split_coop(cfqq);
  2812. return cfqq;
  2813. }
  2814. cic_set_cfqq(cic, NULL, 1);
  2815. cfq_put_cooperator(cfqq);
  2816. cfq_put_queue(cfqq);
  2817. return NULL;
  2818. }
  2819. /*
  2820. * Allocate cfq data structures associated with this request.
  2821. */
  2822. static int
  2823. cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
  2824. gfp_t gfp_mask)
  2825. {
  2826. struct cfq_data *cfqd = q->elevator->elevator_data;
  2827. struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
  2828. const int rw = rq_data_dir(rq);
  2829. const bool is_sync = rq_is_sync(rq);
  2830. struct cfq_queue *cfqq;
  2831. might_sleep_if(gfp_mask & __GFP_WAIT);
  2832. spin_lock_irq(q->queue_lock);
  2833. check_ioprio_changed(cic, bio);
  2834. check_blkcg_changed(cic, bio);
  2835. new_queue:
  2836. cfqq = cic_to_cfqq(cic, is_sync);
  2837. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2838. cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
  2839. cic_set_cfqq(cic, cfqq, is_sync);
  2840. } else {
  2841. /*
  2842. * If the queue was seeky for too long, break it apart.
  2843. */
  2844. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  2845. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2846. cfqq = split_cfqq(cic, cfqq);
  2847. if (!cfqq)
  2848. goto new_queue;
  2849. }
  2850. /*
  2851. * Check to see if this queue is scheduled to merge with
  2852. * another, closely cooperating queue. The merging of
  2853. * queues happens here as it must be done in process context.
  2854. * The reference on new_cfqq was taken in merge_cfqqs.
  2855. */
  2856. if (cfqq->new_cfqq)
  2857. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2858. }
  2859. cfqq->allocated[rw]++;
  2860. cfqq->ref++;
  2861. cfqg_get(cfqq->cfqg);
  2862. rq->elv.priv[0] = cfqq;
  2863. rq->elv.priv[1] = cfqq->cfqg;
  2864. spin_unlock_irq(q->queue_lock);
  2865. return 0;
  2866. }
  2867. static void cfq_kick_queue(struct work_struct *work)
  2868. {
  2869. struct cfq_data *cfqd =
  2870. container_of(work, struct cfq_data, unplug_work);
  2871. struct request_queue *q = cfqd->queue;
  2872. spin_lock_irq(q->queue_lock);
  2873. __blk_run_queue(cfqd->queue);
  2874. spin_unlock_irq(q->queue_lock);
  2875. }
  2876. /*
  2877. * Timer running if the active_queue is currently idling inside its time slice
  2878. */
  2879. static void cfq_idle_slice_timer(unsigned long data)
  2880. {
  2881. struct cfq_data *cfqd = (struct cfq_data *) data;
  2882. struct cfq_queue *cfqq;
  2883. unsigned long flags;
  2884. int timed_out = 1;
  2885. cfq_log(cfqd, "idle timer fired");
  2886. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2887. cfqq = cfqd->active_queue;
  2888. if (cfqq) {
  2889. timed_out = 0;
  2890. /*
  2891. * We saw a request before the queue expired, let it through
  2892. */
  2893. if (cfq_cfqq_must_dispatch(cfqq))
  2894. goto out_kick;
  2895. /*
  2896. * expired
  2897. */
  2898. if (cfq_slice_used(cfqq))
  2899. goto expire;
  2900. /*
  2901. * only expire and reinvoke request handler, if there are
  2902. * other queues with pending requests
  2903. */
  2904. if (!cfqd->busy_queues)
  2905. goto out_cont;
  2906. /*
  2907. * not expired and it has a request pending, let it dispatch
  2908. */
  2909. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2910. goto out_kick;
  2911. /*
  2912. * Queue depth flag is reset only when the idle didn't succeed
  2913. */
  2914. cfq_clear_cfqq_deep(cfqq);
  2915. }
  2916. expire:
  2917. cfq_slice_expired(cfqd, timed_out);
  2918. out_kick:
  2919. cfq_schedule_dispatch(cfqd);
  2920. out_cont:
  2921. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2922. }
  2923. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  2924. {
  2925. del_timer_sync(&cfqd->idle_slice_timer);
  2926. cancel_work_sync(&cfqd->unplug_work);
  2927. }
  2928. static void cfq_put_async_queues(struct cfq_data *cfqd)
  2929. {
  2930. int i;
  2931. for (i = 0; i < IOPRIO_BE_NR; i++) {
  2932. if (cfqd->async_cfqq[0][i])
  2933. cfq_put_queue(cfqd->async_cfqq[0][i]);
  2934. if (cfqd->async_cfqq[1][i])
  2935. cfq_put_queue(cfqd->async_cfqq[1][i]);
  2936. }
  2937. if (cfqd->async_idle_cfqq)
  2938. cfq_put_queue(cfqd->async_idle_cfqq);
  2939. }
  2940. static void cfq_exit_queue(struct elevator_queue *e)
  2941. {
  2942. struct cfq_data *cfqd = e->elevator_data;
  2943. struct request_queue *q = cfqd->queue;
  2944. cfq_shutdown_timer_wq(cfqd);
  2945. spin_lock_irq(q->queue_lock);
  2946. if (cfqd->active_queue)
  2947. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  2948. cfq_put_async_queues(cfqd);
  2949. spin_unlock_irq(q->queue_lock);
  2950. cfq_shutdown_timer_wq(cfqd);
  2951. #ifndef CONFIG_CFQ_GROUP_IOSCHED
  2952. kfree(cfqd->root_group);
  2953. #endif
  2954. update_root_blkg_pd(q, BLKIO_POLICY_PROP);
  2955. kfree(cfqd);
  2956. }
  2957. static int cfq_init_queue(struct request_queue *q)
  2958. {
  2959. struct cfq_data *cfqd;
  2960. struct blkio_group *blkg __maybe_unused;
  2961. int i;
  2962. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  2963. if (!cfqd)
  2964. return -ENOMEM;
  2965. cfqd->queue = q;
  2966. q->elevator->elevator_data = cfqd;
  2967. /* Init root service tree */
  2968. cfqd->grp_service_tree = CFQ_RB_ROOT;
  2969. /* Init root group and prefer root group over other groups by default */
  2970. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2971. rcu_read_lock();
  2972. spin_lock_irq(q->queue_lock);
  2973. blkg = blkg_lookup_create(&blkio_root_cgroup, q, BLKIO_POLICY_PROP,
  2974. true);
  2975. if (!IS_ERR(blkg))
  2976. cfqd->root_group = blkg_to_cfqg(blkg);
  2977. spin_unlock_irq(q->queue_lock);
  2978. rcu_read_unlock();
  2979. #else
  2980. cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
  2981. GFP_KERNEL, cfqd->queue->node);
  2982. if (cfqd->root_group)
  2983. cfq_init_cfqg_base(cfqd->root_group);
  2984. #endif
  2985. if (!cfqd->root_group) {
  2986. kfree(cfqd);
  2987. return -ENOMEM;
  2988. }
  2989. cfqd->root_group->weight = 2*BLKIO_WEIGHT_DEFAULT;
  2990. /*
  2991. * Not strictly needed (since RB_ROOT just clears the node and we
  2992. * zeroed cfqd on alloc), but better be safe in case someone decides
  2993. * to add magic to the rb code
  2994. */
  2995. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  2996. cfqd->prio_trees[i] = RB_ROOT;
  2997. /*
  2998. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  2999. * Grab a permanent reference to it, so that the normal code flow
  3000. * will not attempt to free it. oom_cfqq is linked to root_group
  3001. * but shouldn't hold a reference as it'll never be unlinked. Lose
  3002. * the reference from linking right away.
  3003. */
  3004. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3005. cfqd->oom_cfqq.ref++;
  3006. spin_lock_irq(q->queue_lock);
  3007. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
  3008. cfqg_put(cfqd->root_group);
  3009. spin_unlock_irq(q->queue_lock);
  3010. init_timer(&cfqd->idle_slice_timer);
  3011. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3012. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3013. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3014. cfqd->cfq_quantum = cfq_quantum;
  3015. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3016. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3017. cfqd->cfq_back_max = cfq_back_max;
  3018. cfqd->cfq_back_penalty = cfq_back_penalty;
  3019. cfqd->cfq_slice[0] = cfq_slice_async;
  3020. cfqd->cfq_slice[1] = cfq_slice_sync;
  3021. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3022. cfqd->cfq_slice_idle = cfq_slice_idle;
  3023. cfqd->cfq_group_idle = cfq_group_idle;
  3024. cfqd->cfq_latency = 1;
  3025. cfqd->hw_tag = -1;
  3026. /*
  3027. * we optimistically start assuming sync ops weren't delayed in last
  3028. * second, in order to have larger depth for async operations.
  3029. */
  3030. cfqd->last_delayed_sync = jiffies - HZ;
  3031. return 0;
  3032. }
  3033. /*
  3034. * sysfs parts below -->
  3035. */
  3036. static ssize_t
  3037. cfq_var_show(unsigned int var, char *page)
  3038. {
  3039. return sprintf(page, "%d\n", var);
  3040. }
  3041. static ssize_t
  3042. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3043. {
  3044. char *p = (char *) page;
  3045. *var = simple_strtoul(p, &p, 10);
  3046. return count;
  3047. }
  3048. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3049. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3050. { \
  3051. struct cfq_data *cfqd = e->elevator_data; \
  3052. unsigned int __data = __VAR; \
  3053. if (__CONV) \
  3054. __data = jiffies_to_msecs(__data); \
  3055. return cfq_var_show(__data, (page)); \
  3056. }
  3057. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3058. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3059. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3060. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3061. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3062. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3063. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3064. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3065. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3066. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3067. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3068. #undef SHOW_FUNCTION
  3069. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3070. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3071. { \
  3072. struct cfq_data *cfqd = e->elevator_data; \
  3073. unsigned int __data; \
  3074. int ret = cfq_var_store(&__data, (page), count); \
  3075. if (__data < (MIN)) \
  3076. __data = (MIN); \
  3077. else if (__data > (MAX)) \
  3078. __data = (MAX); \
  3079. if (__CONV) \
  3080. *(__PTR) = msecs_to_jiffies(__data); \
  3081. else \
  3082. *(__PTR) = __data; \
  3083. return ret; \
  3084. }
  3085. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3086. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3087. UINT_MAX, 1);
  3088. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3089. UINT_MAX, 1);
  3090. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3091. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3092. UINT_MAX, 0);
  3093. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3094. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3095. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3096. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3097. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3098. UINT_MAX, 0);
  3099. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3100. #undef STORE_FUNCTION
  3101. #define CFQ_ATTR(name) \
  3102. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3103. static struct elv_fs_entry cfq_attrs[] = {
  3104. CFQ_ATTR(quantum),
  3105. CFQ_ATTR(fifo_expire_sync),
  3106. CFQ_ATTR(fifo_expire_async),
  3107. CFQ_ATTR(back_seek_max),
  3108. CFQ_ATTR(back_seek_penalty),
  3109. CFQ_ATTR(slice_sync),
  3110. CFQ_ATTR(slice_async),
  3111. CFQ_ATTR(slice_async_rq),
  3112. CFQ_ATTR(slice_idle),
  3113. CFQ_ATTR(group_idle),
  3114. CFQ_ATTR(low_latency),
  3115. __ATTR_NULL
  3116. };
  3117. static struct elevator_type iosched_cfq = {
  3118. .ops = {
  3119. .elevator_merge_fn = cfq_merge,
  3120. .elevator_merged_fn = cfq_merged_request,
  3121. .elevator_merge_req_fn = cfq_merged_requests,
  3122. .elevator_allow_merge_fn = cfq_allow_merge,
  3123. .elevator_bio_merged_fn = cfq_bio_merged,
  3124. .elevator_dispatch_fn = cfq_dispatch_requests,
  3125. .elevator_add_req_fn = cfq_insert_request,
  3126. .elevator_activate_req_fn = cfq_activate_request,
  3127. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3128. .elevator_completed_req_fn = cfq_completed_request,
  3129. .elevator_former_req_fn = elv_rb_former_request,
  3130. .elevator_latter_req_fn = elv_rb_latter_request,
  3131. .elevator_init_icq_fn = cfq_init_icq,
  3132. .elevator_exit_icq_fn = cfq_exit_icq,
  3133. .elevator_set_req_fn = cfq_set_request,
  3134. .elevator_put_req_fn = cfq_put_request,
  3135. .elevator_may_queue_fn = cfq_may_queue,
  3136. .elevator_init_fn = cfq_init_queue,
  3137. .elevator_exit_fn = cfq_exit_queue,
  3138. },
  3139. .icq_size = sizeof(struct cfq_io_cq),
  3140. .icq_align = __alignof__(struct cfq_io_cq),
  3141. .elevator_attrs = cfq_attrs,
  3142. .elevator_name = "cfq",
  3143. .elevator_owner = THIS_MODULE,
  3144. };
  3145. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3146. static struct blkio_policy_type blkio_policy_cfq = {
  3147. .ops = {
  3148. .blkio_init_group_fn = cfq_init_blkio_group,
  3149. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3150. },
  3151. .plid = BLKIO_POLICY_PROP,
  3152. .pdata_size = sizeof(struct cfq_group),
  3153. };
  3154. #endif
  3155. static int __init cfq_init(void)
  3156. {
  3157. int ret;
  3158. /*
  3159. * could be 0 on HZ < 1000 setups
  3160. */
  3161. if (!cfq_slice_async)
  3162. cfq_slice_async = 1;
  3163. if (!cfq_slice_idle)
  3164. cfq_slice_idle = 1;
  3165. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3166. if (!cfq_group_idle)
  3167. cfq_group_idle = 1;
  3168. #else
  3169. cfq_group_idle = 0;
  3170. #endif
  3171. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3172. if (!cfq_pool)
  3173. return -ENOMEM;
  3174. ret = elv_register(&iosched_cfq);
  3175. if (ret) {
  3176. kmem_cache_destroy(cfq_pool);
  3177. return ret;
  3178. }
  3179. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3180. blkio_policy_register(&blkio_policy_cfq);
  3181. #endif
  3182. return 0;
  3183. }
  3184. static void __exit cfq_exit(void)
  3185. {
  3186. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3187. blkio_policy_unregister(&blkio_policy_cfq);
  3188. #endif
  3189. elv_unregister(&iosched_cfq);
  3190. kmem_cache_destroy(cfq_pool);
  3191. }
  3192. module_init(cfq_init);
  3193. module_exit(cfq_exit);
  3194. MODULE_AUTHOR("Jens Axboe");
  3195. MODULE_LICENSE("GPL");
  3196. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");