disk-io.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <asm/unaligned.h>
  34. #include "compat.h"
  35. #include "ctree.h"
  36. #include "disk-io.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #ifdef CONFIG_X86
  51. #include <asm/cpufeature.h>
  52. #endif
  53. static struct extent_io_ops btree_extent_io_ops;
  54. static void end_workqueue_fn(struct btrfs_work *work);
  55. static void free_fs_root(struct btrfs_root *root);
  56. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  57. int read_only);
  58. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  59. struct btrfs_root *root);
  60. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  61. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  62. struct btrfs_root *root);
  63. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  64. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  65. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  66. struct extent_io_tree *dirty_pages,
  67. int mark);
  68. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  69. struct extent_io_tree *pinned_extents);
  70. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  71. static void btrfs_error_commit_super(struct btrfs_root *root);
  72. /*
  73. * end_io_wq structs are used to do processing in task context when an IO is
  74. * complete. This is used during reads to verify checksums, and it is used
  75. * by writes to insert metadata for new file extents after IO is complete.
  76. */
  77. struct end_io_wq {
  78. struct bio *bio;
  79. bio_end_io_t *end_io;
  80. void *private;
  81. struct btrfs_fs_info *info;
  82. int error;
  83. int metadata;
  84. struct list_head list;
  85. struct btrfs_work work;
  86. };
  87. /*
  88. * async submit bios are used to offload expensive checksumming
  89. * onto the worker threads. They checksum file and metadata bios
  90. * just before they are sent down the IO stack.
  91. */
  92. struct async_submit_bio {
  93. struct inode *inode;
  94. struct bio *bio;
  95. struct list_head list;
  96. extent_submit_bio_hook_t *submit_bio_start;
  97. extent_submit_bio_hook_t *submit_bio_done;
  98. int rw;
  99. int mirror_num;
  100. unsigned long bio_flags;
  101. /*
  102. * bio_offset is optional, can be used if the pages in the bio
  103. * can't tell us where in the file the bio should go
  104. */
  105. u64 bio_offset;
  106. struct btrfs_work work;
  107. int error;
  108. };
  109. /*
  110. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  111. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  112. * the level the eb occupies in the tree.
  113. *
  114. * Different roots are used for different purposes and may nest inside each
  115. * other and they require separate keysets. As lockdep keys should be
  116. * static, assign keysets according to the purpose of the root as indicated
  117. * by btrfs_root->objectid. This ensures that all special purpose roots
  118. * have separate keysets.
  119. *
  120. * Lock-nesting across peer nodes is always done with the immediate parent
  121. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  122. * subclass to avoid triggering lockdep warning in such cases.
  123. *
  124. * The key is set by the readpage_end_io_hook after the buffer has passed
  125. * csum validation but before the pages are unlocked. It is also set by
  126. * btrfs_init_new_buffer on freshly allocated blocks.
  127. *
  128. * We also add a check to make sure the highest level of the tree is the
  129. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  130. * needs update as well.
  131. */
  132. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  133. # if BTRFS_MAX_LEVEL != 8
  134. # error
  135. # endif
  136. static struct btrfs_lockdep_keyset {
  137. u64 id; /* root objectid */
  138. const char *name_stem; /* lock name stem */
  139. char names[BTRFS_MAX_LEVEL + 1][20];
  140. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  141. } btrfs_lockdep_keysets[] = {
  142. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  143. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  144. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  145. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  146. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  147. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  148. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  149. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  150. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  151. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  152. { .id = 0, .name_stem = "tree" },
  153. };
  154. void __init btrfs_init_lockdep(void)
  155. {
  156. int i, j;
  157. /* initialize lockdep class names */
  158. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  159. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  160. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  161. snprintf(ks->names[j], sizeof(ks->names[j]),
  162. "btrfs-%s-%02d", ks->name_stem, j);
  163. }
  164. }
  165. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  166. int level)
  167. {
  168. struct btrfs_lockdep_keyset *ks;
  169. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  170. /* find the matching keyset, id 0 is the default entry */
  171. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  172. if (ks->id == objectid)
  173. break;
  174. lockdep_set_class_and_name(&eb->lock,
  175. &ks->keys[level], ks->names[level]);
  176. }
  177. #endif
  178. /*
  179. * extents on the btree inode are pretty simple, there's one extent
  180. * that covers the entire device
  181. */
  182. static struct extent_map *btree_get_extent(struct inode *inode,
  183. struct page *page, size_t pg_offset, u64 start, u64 len,
  184. int create)
  185. {
  186. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  187. struct extent_map *em;
  188. int ret;
  189. read_lock(&em_tree->lock);
  190. em = lookup_extent_mapping(em_tree, start, len);
  191. if (em) {
  192. em->bdev =
  193. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  194. read_unlock(&em_tree->lock);
  195. goto out;
  196. }
  197. read_unlock(&em_tree->lock);
  198. em = alloc_extent_map();
  199. if (!em) {
  200. em = ERR_PTR(-ENOMEM);
  201. goto out;
  202. }
  203. em->start = 0;
  204. em->len = (u64)-1;
  205. em->block_len = (u64)-1;
  206. em->block_start = 0;
  207. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  208. write_lock(&em_tree->lock);
  209. ret = add_extent_mapping(em_tree, em, 0);
  210. if (ret == -EEXIST) {
  211. free_extent_map(em);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (!em)
  214. em = ERR_PTR(-EIO);
  215. } else if (ret) {
  216. free_extent_map(em);
  217. em = ERR_PTR(ret);
  218. }
  219. write_unlock(&em_tree->lock);
  220. out:
  221. return em;
  222. }
  223. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  224. {
  225. return crc32c(seed, data, len);
  226. }
  227. void btrfs_csum_final(u32 crc, char *result)
  228. {
  229. put_unaligned_le32(~crc, result);
  230. }
  231. /*
  232. * compute the csum for a btree block, and either verify it or write it
  233. * into the csum field of the block.
  234. */
  235. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  236. int verify)
  237. {
  238. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  239. char *result = NULL;
  240. unsigned long len;
  241. unsigned long cur_len;
  242. unsigned long offset = BTRFS_CSUM_SIZE;
  243. char *kaddr;
  244. unsigned long map_start;
  245. unsigned long map_len;
  246. int err;
  247. u32 crc = ~(u32)0;
  248. unsigned long inline_result;
  249. len = buf->len - offset;
  250. while (len > 0) {
  251. err = map_private_extent_buffer(buf, offset, 32,
  252. &kaddr, &map_start, &map_len);
  253. if (err)
  254. return 1;
  255. cur_len = min(len, map_len - (offset - map_start));
  256. crc = btrfs_csum_data(kaddr + offset - map_start,
  257. crc, cur_len);
  258. len -= cur_len;
  259. offset += cur_len;
  260. }
  261. if (csum_size > sizeof(inline_result)) {
  262. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  263. if (!result)
  264. return 1;
  265. } else {
  266. result = (char *)&inline_result;
  267. }
  268. btrfs_csum_final(crc, result);
  269. if (verify) {
  270. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  271. u32 val;
  272. u32 found = 0;
  273. memcpy(&found, result, csum_size);
  274. read_extent_buffer(buf, &val, 0, csum_size);
  275. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  276. "failed on %llu wanted %X found %X "
  277. "level %d\n",
  278. root->fs_info->sb->s_id,
  279. (unsigned long long)buf->start, val, found,
  280. btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  309. 0, &cached_state);
  310. if (extent_buffer_uptodate(eb) &&
  311. btrfs_header_generation(eb) == parent_transid) {
  312. ret = 0;
  313. goto out;
  314. }
  315. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  316. "found %llu\n",
  317. (unsigned long long)eb->start,
  318. (unsigned long long)parent_transid,
  319. (unsigned long long)btrfs_header_generation(eb));
  320. ret = 1;
  321. clear_extent_buffer_uptodate(eb);
  322. out:
  323. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  324. &cached_state, GFP_NOFS);
  325. return ret;
  326. }
  327. /*
  328. * Return 0 if the superblock checksum type matches the checksum value of that
  329. * algorithm. Pass the raw disk superblock data.
  330. */
  331. static int btrfs_check_super_csum(char *raw_disk_sb)
  332. {
  333. struct btrfs_super_block *disk_sb =
  334. (struct btrfs_super_block *)raw_disk_sb;
  335. u16 csum_type = btrfs_super_csum_type(disk_sb);
  336. int ret = 0;
  337. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  338. u32 crc = ~(u32)0;
  339. const int csum_size = sizeof(crc);
  340. char result[csum_size];
  341. /*
  342. * The super_block structure does not span the whole
  343. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  344. * is filled with zeros and is included in the checkum.
  345. */
  346. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  347. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  348. btrfs_csum_final(crc, result);
  349. if (memcmp(raw_disk_sb, result, csum_size))
  350. ret = 1;
  351. if (ret && btrfs_super_generation(disk_sb) < 10) {
  352. printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
  353. ret = 0;
  354. }
  355. }
  356. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  357. printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
  358. csum_type);
  359. ret = 1;
  360. }
  361. return ret;
  362. }
  363. /*
  364. * helper to read a given tree block, doing retries as required when
  365. * the checksums don't match and we have alternate mirrors to try.
  366. */
  367. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  368. struct extent_buffer *eb,
  369. u64 start, u64 parent_transid)
  370. {
  371. struct extent_io_tree *io_tree;
  372. int failed = 0;
  373. int ret;
  374. int num_copies = 0;
  375. int mirror_num = 0;
  376. int failed_mirror = 0;
  377. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  378. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  379. while (1) {
  380. ret = read_extent_buffer_pages(io_tree, eb, start,
  381. WAIT_COMPLETE,
  382. btree_get_extent, mirror_num);
  383. if (!ret) {
  384. if (!verify_parent_transid(io_tree, eb,
  385. parent_transid, 0))
  386. break;
  387. else
  388. ret = -EIO;
  389. }
  390. /*
  391. * This buffer's crc is fine, but its contents are corrupted, so
  392. * there is no reason to read the other copies, they won't be
  393. * any less wrong.
  394. */
  395. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  396. break;
  397. num_copies = btrfs_num_copies(root->fs_info,
  398. eb->start, eb->len);
  399. if (num_copies == 1)
  400. break;
  401. if (!failed_mirror) {
  402. failed = 1;
  403. failed_mirror = eb->read_mirror;
  404. }
  405. mirror_num++;
  406. if (mirror_num == failed_mirror)
  407. mirror_num++;
  408. if (mirror_num > num_copies)
  409. break;
  410. }
  411. if (failed && !ret && failed_mirror)
  412. repair_eb_io_failure(root, eb, failed_mirror);
  413. return ret;
  414. }
  415. /*
  416. * checksum a dirty tree block before IO. This has extra checks to make sure
  417. * we only fill in the checksum field in the first page of a multi-page block
  418. */
  419. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  420. {
  421. struct extent_io_tree *tree;
  422. u64 start = page_offset(page);
  423. u64 found_start;
  424. struct extent_buffer *eb;
  425. tree = &BTRFS_I(page->mapping->host)->io_tree;
  426. eb = (struct extent_buffer *)page->private;
  427. if (page != eb->pages[0])
  428. return 0;
  429. found_start = btrfs_header_bytenr(eb);
  430. if (found_start != start) {
  431. WARN_ON(1);
  432. return 0;
  433. }
  434. if (!PageUptodate(page)) {
  435. WARN_ON(1);
  436. return 0;
  437. }
  438. csum_tree_block(root, eb, 0);
  439. return 0;
  440. }
  441. static int check_tree_block_fsid(struct btrfs_root *root,
  442. struct extent_buffer *eb)
  443. {
  444. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  445. u8 fsid[BTRFS_UUID_SIZE];
  446. int ret = 1;
  447. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  448. BTRFS_FSID_SIZE);
  449. while (fs_devices) {
  450. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  451. ret = 0;
  452. break;
  453. }
  454. fs_devices = fs_devices->seed;
  455. }
  456. return ret;
  457. }
  458. #define CORRUPT(reason, eb, root, slot) \
  459. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  460. "root=%llu, slot=%d\n", reason, \
  461. (unsigned long long)btrfs_header_bytenr(eb), \
  462. (unsigned long long)root->objectid, slot)
  463. static noinline int check_leaf(struct btrfs_root *root,
  464. struct extent_buffer *leaf)
  465. {
  466. struct btrfs_key key;
  467. struct btrfs_key leaf_key;
  468. u32 nritems = btrfs_header_nritems(leaf);
  469. int slot;
  470. if (nritems == 0)
  471. return 0;
  472. /* Check the 0 item */
  473. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  474. BTRFS_LEAF_DATA_SIZE(root)) {
  475. CORRUPT("invalid item offset size pair", leaf, root, 0);
  476. return -EIO;
  477. }
  478. /*
  479. * Check to make sure each items keys are in the correct order and their
  480. * offsets make sense. We only have to loop through nritems-1 because
  481. * we check the current slot against the next slot, which verifies the
  482. * next slot's offset+size makes sense and that the current's slot
  483. * offset is correct.
  484. */
  485. for (slot = 0; slot < nritems - 1; slot++) {
  486. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  487. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  488. /* Make sure the keys are in the right order */
  489. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  490. CORRUPT("bad key order", leaf, root, slot);
  491. return -EIO;
  492. }
  493. /*
  494. * Make sure the offset and ends are right, remember that the
  495. * item data starts at the end of the leaf and grows towards the
  496. * front.
  497. */
  498. if (btrfs_item_offset_nr(leaf, slot) !=
  499. btrfs_item_end_nr(leaf, slot + 1)) {
  500. CORRUPT("slot offset bad", leaf, root, slot);
  501. return -EIO;
  502. }
  503. /*
  504. * Check to make sure that we don't point outside of the leaf,
  505. * just incase all the items are consistent to eachother, but
  506. * all point outside of the leaf.
  507. */
  508. if (btrfs_item_end_nr(leaf, slot) >
  509. BTRFS_LEAF_DATA_SIZE(root)) {
  510. CORRUPT("slot end outside of leaf", leaf, root, slot);
  511. return -EIO;
  512. }
  513. }
  514. return 0;
  515. }
  516. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  517. struct extent_state *state, int mirror)
  518. {
  519. struct extent_io_tree *tree;
  520. u64 found_start;
  521. int found_level;
  522. struct extent_buffer *eb;
  523. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  524. int ret = 0;
  525. int reads_done;
  526. if (!page->private)
  527. goto out;
  528. tree = &BTRFS_I(page->mapping->host)->io_tree;
  529. eb = (struct extent_buffer *)page->private;
  530. /* the pending IO might have been the only thing that kept this buffer
  531. * in memory. Make sure we have a ref for all this other checks
  532. */
  533. extent_buffer_get(eb);
  534. reads_done = atomic_dec_and_test(&eb->io_pages);
  535. if (!reads_done)
  536. goto err;
  537. eb->read_mirror = mirror;
  538. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  539. ret = -EIO;
  540. goto err;
  541. }
  542. found_start = btrfs_header_bytenr(eb);
  543. if (found_start != eb->start) {
  544. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  545. "%llu %llu\n",
  546. (unsigned long long)found_start,
  547. (unsigned long long)eb->start);
  548. ret = -EIO;
  549. goto err;
  550. }
  551. if (check_tree_block_fsid(root, eb)) {
  552. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  553. (unsigned long long)eb->start);
  554. ret = -EIO;
  555. goto err;
  556. }
  557. found_level = btrfs_header_level(eb);
  558. if (found_level >= BTRFS_MAX_LEVEL) {
  559. btrfs_info(root->fs_info, "bad tree block level %d\n",
  560. (int)btrfs_header_level(eb));
  561. ret = -EIO;
  562. goto err;
  563. }
  564. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  565. eb, found_level);
  566. ret = csum_tree_block(root, eb, 1);
  567. if (ret) {
  568. ret = -EIO;
  569. goto err;
  570. }
  571. /*
  572. * If this is a leaf block and it is corrupt, set the corrupt bit so
  573. * that we don't try and read the other copies of this block, just
  574. * return -EIO.
  575. */
  576. if (found_level == 0 && check_leaf(root, eb)) {
  577. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  578. ret = -EIO;
  579. }
  580. if (!ret)
  581. set_extent_buffer_uptodate(eb);
  582. err:
  583. if (reads_done &&
  584. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  585. btree_readahead_hook(root, eb, eb->start, ret);
  586. if (ret) {
  587. /*
  588. * our io error hook is going to dec the io pages
  589. * again, we have to make sure it has something
  590. * to decrement
  591. */
  592. atomic_inc(&eb->io_pages);
  593. clear_extent_buffer_uptodate(eb);
  594. }
  595. free_extent_buffer(eb);
  596. out:
  597. return ret;
  598. }
  599. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  600. {
  601. struct extent_buffer *eb;
  602. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  603. eb = (struct extent_buffer *)page->private;
  604. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  605. eb->read_mirror = failed_mirror;
  606. atomic_dec(&eb->io_pages);
  607. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  608. btree_readahead_hook(root, eb, eb->start, -EIO);
  609. return -EIO; /* we fixed nothing */
  610. }
  611. static void end_workqueue_bio(struct bio *bio, int err)
  612. {
  613. struct end_io_wq *end_io_wq = bio->bi_private;
  614. struct btrfs_fs_info *fs_info;
  615. fs_info = end_io_wq->info;
  616. end_io_wq->error = err;
  617. end_io_wq->work.func = end_workqueue_fn;
  618. end_io_wq->work.flags = 0;
  619. if (bio->bi_rw & REQ_WRITE) {
  620. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  621. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  622. &end_io_wq->work);
  623. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  624. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  625. &end_io_wq->work);
  626. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  627. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  628. &end_io_wq->work);
  629. else
  630. btrfs_queue_worker(&fs_info->endio_write_workers,
  631. &end_io_wq->work);
  632. } else {
  633. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  634. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  635. &end_io_wq->work);
  636. else if (end_io_wq->metadata)
  637. btrfs_queue_worker(&fs_info->endio_meta_workers,
  638. &end_io_wq->work);
  639. else
  640. btrfs_queue_worker(&fs_info->endio_workers,
  641. &end_io_wq->work);
  642. }
  643. }
  644. /*
  645. * For the metadata arg you want
  646. *
  647. * 0 - if data
  648. * 1 - if normal metadta
  649. * 2 - if writing to the free space cache area
  650. * 3 - raid parity work
  651. */
  652. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  653. int metadata)
  654. {
  655. struct end_io_wq *end_io_wq;
  656. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  657. if (!end_io_wq)
  658. return -ENOMEM;
  659. end_io_wq->private = bio->bi_private;
  660. end_io_wq->end_io = bio->bi_end_io;
  661. end_io_wq->info = info;
  662. end_io_wq->error = 0;
  663. end_io_wq->bio = bio;
  664. end_io_wq->metadata = metadata;
  665. bio->bi_private = end_io_wq;
  666. bio->bi_end_io = end_workqueue_bio;
  667. return 0;
  668. }
  669. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  670. {
  671. unsigned long limit = min_t(unsigned long,
  672. info->workers.max_workers,
  673. info->fs_devices->open_devices);
  674. return 256 * limit;
  675. }
  676. static void run_one_async_start(struct btrfs_work *work)
  677. {
  678. struct async_submit_bio *async;
  679. int ret;
  680. async = container_of(work, struct async_submit_bio, work);
  681. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  682. async->mirror_num, async->bio_flags,
  683. async->bio_offset);
  684. if (ret)
  685. async->error = ret;
  686. }
  687. static void run_one_async_done(struct btrfs_work *work)
  688. {
  689. struct btrfs_fs_info *fs_info;
  690. struct async_submit_bio *async;
  691. int limit;
  692. async = container_of(work, struct async_submit_bio, work);
  693. fs_info = BTRFS_I(async->inode)->root->fs_info;
  694. limit = btrfs_async_submit_limit(fs_info);
  695. limit = limit * 2 / 3;
  696. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  697. waitqueue_active(&fs_info->async_submit_wait))
  698. wake_up(&fs_info->async_submit_wait);
  699. /* If an error occured we just want to clean up the bio and move on */
  700. if (async->error) {
  701. bio_endio(async->bio, async->error);
  702. return;
  703. }
  704. async->submit_bio_done(async->inode, async->rw, async->bio,
  705. async->mirror_num, async->bio_flags,
  706. async->bio_offset);
  707. }
  708. static void run_one_async_free(struct btrfs_work *work)
  709. {
  710. struct async_submit_bio *async;
  711. async = container_of(work, struct async_submit_bio, work);
  712. kfree(async);
  713. }
  714. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  715. int rw, struct bio *bio, int mirror_num,
  716. unsigned long bio_flags,
  717. u64 bio_offset,
  718. extent_submit_bio_hook_t *submit_bio_start,
  719. extent_submit_bio_hook_t *submit_bio_done)
  720. {
  721. struct async_submit_bio *async;
  722. async = kmalloc(sizeof(*async), GFP_NOFS);
  723. if (!async)
  724. return -ENOMEM;
  725. async->inode = inode;
  726. async->rw = rw;
  727. async->bio = bio;
  728. async->mirror_num = mirror_num;
  729. async->submit_bio_start = submit_bio_start;
  730. async->submit_bio_done = submit_bio_done;
  731. async->work.func = run_one_async_start;
  732. async->work.ordered_func = run_one_async_done;
  733. async->work.ordered_free = run_one_async_free;
  734. async->work.flags = 0;
  735. async->bio_flags = bio_flags;
  736. async->bio_offset = bio_offset;
  737. async->error = 0;
  738. atomic_inc(&fs_info->nr_async_submits);
  739. if (rw & REQ_SYNC)
  740. btrfs_set_work_high_prio(&async->work);
  741. btrfs_queue_worker(&fs_info->workers, &async->work);
  742. while (atomic_read(&fs_info->async_submit_draining) &&
  743. atomic_read(&fs_info->nr_async_submits)) {
  744. wait_event(fs_info->async_submit_wait,
  745. (atomic_read(&fs_info->nr_async_submits) == 0));
  746. }
  747. return 0;
  748. }
  749. static int btree_csum_one_bio(struct bio *bio)
  750. {
  751. struct bio_vec *bvec = bio->bi_io_vec;
  752. int bio_index = 0;
  753. struct btrfs_root *root;
  754. int ret = 0;
  755. WARN_ON(bio->bi_vcnt <= 0);
  756. while (bio_index < bio->bi_vcnt) {
  757. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  758. ret = csum_dirty_buffer(root, bvec->bv_page);
  759. if (ret)
  760. break;
  761. bio_index++;
  762. bvec++;
  763. }
  764. return ret;
  765. }
  766. static int __btree_submit_bio_start(struct inode *inode, int rw,
  767. struct bio *bio, int mirror_num,
  768. unsigned long bio_flags,
  769. u64 bio_offset)
  770. {
  771. /*
  772. * when we're called for a write, we're already in the async
  773. * submission context. Just jump into btrfs_map_bio
  774. */
  775. return btree_csum_one_bio(bio);
  776. }
  777. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  778. int mirror_num, unsigned long bio_flags,
  779. u64 bio_offset)
  780. {
  781. int ret;
  782. /*
  783. * when we're called for a write, we're already in the async
  784. * submission context. Just jump into btrfs_map_bio
  785. */
  786. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  787. if (ret)
  788. bio_endio(bio, ret);
  789. return ret;
  790. }
  791. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  792. {
  793. if (bio_flags & EXTENT_BIO_TREE_LOG)
  794. return 0;
  795. #ifdef CONFIG_X86
  796. if (cpu_has_xmm4_2)
  797. return 0;
  798. #endif
  799. return 1;
  800. }
  801. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  802. int mirror_num, unsigned long bio_flags,
  803. u64 bio_offset)
  804. {
  805. int async = check_async_write(inode, bio_flags);
  806. int ret;
  807. if (!(rw & REQ_WRITE)) {
  808. /*
  809. * called for a read, do the setup so that checksum validation
  810. * can happen in the async kernel threads
  811. */
  812. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  813. bio, 1);
  814. if (ret)
  815. goto out_w_error;
  816. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  817. mirror_num, 0);
  818. } else if (!async) {
  819. ret = btree_csum_one_bio(bio);
  820. if (ret)
  821. goto out_w_error;
  822. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  823. mirror_num, 0);
  824. } else {
  825. /*
  826. * kthread helpers are used to submit writes so that
  827. * checksumming can happen in parallel across all CPUs
  828. */
  829. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  830. inode, rw, bio, mirror_num, 0,
  831. bio_offset,
  832. __btree_submit_bio_start,
  833. __btree_submit_bio_done);
  834. }
  835. if (ret) {
  836. out_w_error:
  837. bio_endio(bio, ret);
  838. }
  839. return ret;
  840. }
  841. #ifdef CONFIG_MIGRATION
  842. static int btree_migratepage(struct address_space *mapping,
  843. struct page *newpage, struct page *page,
  844. enum migrate_mode mode)
  845. {
  846. /*
  847. * we can't safely write a btree page from here,
  848. * we haven't done the locking hook
  849. */
  850. if (PageDirty(page))
  851. return -EAGAIN;
  852. /*
  853. * Buffers may be managed in a filesystem specific way.
  854. * We must have no buffers or drop them.
  855. */
  856. if (page_has_private(page) &&
  857. !try_to_release_page(page, GFP_KERNEL))
  858. return -EAGAIN;
  859. return migrate_page(mapping, newpage, page, mode);
  860. }
  861. #endif
  862. static int btree_writepages(struct address_space *mapping,
  863. struct writeback_control *wbc)
  864. {
  865. struct extent_io_tree *tree;
  866. struct btrfs_fs_info *fs_info;
  867. int ret;
  868. tree = &BTRFS_I(mapping->host)->io_tree;
  869. if (wbc->sync_mode == WB_SYNC_NONE) {
  870. if (wbc->for_kupdate)
  871. return 0;
  872. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  873. /* this is a bit racy, but that's ok */
  874. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  875. BTRFS_DIRTY_METADATA_THRESH);
  876. if (ret < 0)
  877. return 0;
  878. }
  879. return btree_write_cache_pages(mapping, wbc);
  880. }
  881. static int btree_readpage(struct file *file, struct page *page)
  882. {
  883. struct extent_io_tree *tree;
  884. tree = &BTRFS_I(page->mapping->host)->io_tree;
  885. return extent_read_full_page(tree, page, btree_get_extent, 0);
  886. }
  887. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  888. {
  889. if (PageWriteback(page) || PageDirty(page))
  890. return 0;
  891. return try_release_extent_buffer(page);
  892. }
  893. static void btree_invalidatepage(struct page *page, unsigned long offset)
  894. {
  895. struct extent_io_tree *tree;
  896. tree = &BTRFS_I(page->mapping->host)->io_tree;
  897. extent_invalidatepage(tree, page, offset);
  898. btree_releasepage(page, GFP_NOFS);
  899. if (PagePrivate(page)) {
  900. printk(KERN_WARNING "btrfs warning page private not zero "
  901. "on page %llu\n", (unsigned long long)page_offset(page));
  902. ClearPagePrivate(page);
  903. set_page_private(page, 0);
  904. page_cache_release(page);
  905. }
  906. }
  907. static int btree_set_page_dirty(struct page *page)
  908. {
  909. #ifdef DEBUG
  910. struct extent_buffer *eb;
  911. BUG_ON(!PagePrivate(page));
  912. eb = (struct extent_buffer *)page->private;
  913. BUG_ON(!eb);
  914. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  915. BUG_ON(!atomic_read(&eb->refs));
  916. btrfs_assert_tree_locked(eb);
  917. #endif
  918. return __set_page_dirty_nobuffers(page);
  919. }
  920. static const struct address_space_operations btree_aops = {
  921. .readpage = btree_readpage,
  922. .writepages = btree_writepages,
  923. .releasepage = btree_releasepage,
  924. .invalidatepage = btree_invalidatepage,
  925. #ifdef CONFIG_MIGRATION
  926. .migratepage = btree_migratepage,
  927. #endif
  928. .set_page_dirty = btree_set_page_dirty,
  929. };
  930. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  931. u64 parent_transid)
  932. {
  933. struct extent_buffer *buf = NULL;
  934. struct inode *btree_inode = root->fs_info->btree_inode;
  935. int ret = 0;
  936. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  937. if (!buf)
  938. return 0;
  939. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  940. buf, 0, WAIT_NONE, btree_get_extent, 0);
  941. free_extent_buffer(buf);
  942. return ret;
  943. }
  944. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  945. int mirror_num, struct extent_buffer **eb)
  946. {
  947. struct extent_buffer *buf = NULL;
  948. struct inode *btree_inode = root->fs_info->btree_inode;
  949. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  950. int ret;
  951. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  952. if (!buf)
  953. return 0;
  954. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  955. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  956. btree_get_extent, mirror_num);
  957. if (ret) {
  958. free_extent_buffer(buf);
  959. return ret;
  960. }
  961. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  962. free_extent_buffer(buf);
  963. return -EIO;
  964. } else if (extent_buffer_uptodate(buf)) {
  965. *eb = buf;
  966. } else {
  967. free_extent_buffer(buf);
  968. }
  969. return 0;
  970. }
  971. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  972. u64 bytenr, u32 blocksize)
  973. {
  974. struct inode *btree_inode = root->fs_info->btree_inode;
  975. struct extent_buffer *eb;
  976. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  977. bytenr, blocksize);
  978. return eb;
  979. }
  980. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  981. u64 bytenr, u32 blocksize)
  982. {
  983. struct inode *btree_inode = root->fs_info->btree_inode;
  984. struct extent_buffer *eb;
  985. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  986. bytenr, blocksize);
  987. return eb;
  988. }
  989. int btrfs_write_tree_block(struct extent_buffer *buf)
  990. {
  991. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  992. buf->start + buf->len - 1);
  993. }
  994. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  995. {
  996. return filemap_fdatawait_range(buf->pages[0]->mapping,
  997. buf->start, buf->start + buf->len - 1);
  998. }
  999. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1000. u32 blocksize, u64 parent_transid)
  1001. {
  1002. struct extent_buffer *buf = NULL;
  1003. int ret;
  1004. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1005. if (!buf)
  1006. return NULL;
  1007. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1008. return buf;
  1009. }
  1010. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1011. struct extent_buffer *buf)
  1012. {
  1013. struct btrfs_fs_info *fs_info = root->fs_info;
  1014. if (btrfs_header_generation(buf) ==
  1015. fs_info->running_transaction->transid) {
  1016. btrfs_assert_tree_locked(buf);
  1017. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1018. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1019. -buf->len,
  1020. fs_info->dirty_metadata_batch);
  1021. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1022. btrfs_set_lock_blocking(buf);
  1023. clear_extent_buffer_dirty(buf);
  1024. }
  1025. }
  1026. }
  1027. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1028. u32 stripesize, struct btrfs_root *root,
  1029. struct btrfs_fs_info *fs_info,
  1030. u64 objectid)
  1031. {
  1032. root->node = NULL;
  1033. root->commit_root = NULL;
  1034. root->sectorsize = sectorsize;
  1035. root->nodesize = nodesize;
  1036. root->leafsize = leafsize;
  1037. root->stripesize = stripesize;
  1038. root->ref_cows = 0;
  1039. root->track_dirty = 0;
  1040. root->in_radix = 0;
  1041. root->orphan_item_inserted = 0;
  1042. root->orphan_cleanup_state = 0;
  1043. root->objectid = objectid;
  1044. root->last_trans = 0;
  1045. root->highest_objectid = 0;
  1046. root->nr_delalloc_inodes = 0;
  1047. root->name = NULL;
  1048. root->inode_tree = RB_ROOT;
  1049. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1050. root->block_rsv = NULL;
  1051. root->orphan_block_rsv = NULL;
  1052. INIT_LIST_HEAD(&root->dirty_list);
  1053. INIT_LIST_HEAD(&root->root_list);
  1054. INIT_LIST_HEAD(&root->delalloc_inodes);
  1055. INIT_LIST_HEAD(&root->delalloc_root);
  1056. INIT_LIST_HEAD(&root->logged_list[0]);
  1057. INIT_LIST_HEAD(&root->logged_list[1]);
  1058. spin_lock_init(&root->orphan_lock);
  1059. spin_lock_init(&root->inode_lock);
  1060. spin_lock_init(&root->delalloc_lock);
  1061. spin_lock_init(&root->accounting_lock);
  1062. spin_lock_init(&root->log_extents_lock[0]);
  1063. spin_lock_init(&root->log_extents_lock[1]);
  1064. mutex_init(&root->objectid_mutex);
  1065. mutex_init(&root->log_mutex);
  1066. init_waitqueue_head(&root->log_writer_wait);
  1067. init_waitqueue_head(&root->log_commit_wait[0]);
  1068. init_waitqueue_head(&root->log_commit_wait[1]);
  1069. atomic_set(&root->log_commit[0], 0);
  1070. atomic_set(&root->log_commit[1], 0);
  1071. atomic_set(&root->log_writers, 0);
  1072. atomic_set(&root->log_batch, 0);
  1073. atomic_set(&root->orphan_inodes, 0);
  1074. atomic_set(&root->refs, 1);
  1075. root->log_transid = 0;
  1076. root->last_log_commit = 0;
  1077. extent_io_tree_init(&root->dirty_log_pages,
  1078. fs_info->btree_inode->i_mapping);
  1079. memset(&root->root_key, 0, sizeof(root->root_key));
  1080. memset(&root->root_item, 0, sizeof(root->root_item));
  1081. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1082. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1083. root->defrag_trans_start = fs_info->generation;
  1084. init_completion(&root->kobj_unregister);
  1085. root->defrag_running = 0;
  1086. root->root_key.objectid = objectid;
  1087. root->anon_dev = 0;
  1088. spin_lock_init(&root->root_item_lock);
  1089. }
  1090. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1091. {
  1092. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1093. if (root)
  1094. root->fs_info = fs_info;
  1095. return root;
  1096. }
  1097. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1098. struct btrfs_fs_info *fs_info,
  1099. u64 objectid)
  1100. {
  1101. struct extent_buffer *leaf;
  1102. struct btrfs_root *tree_root = fs_info->tree_root;
  1103. struct btrfs_root *root;
  1104. struct btrfs_key key;
  1105. int ret = 0;
  1106. u64 bytenr;
  1107. uuid_le uuid;
  1108. root = btrfs_alloc_root(fs_info);
  1109. if (!root)
  1110. return ERR_PTR(-ENOMEM);
  1111. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1112. tree_root->sectorsize, tree_root->stripesize,
  1113. root, fs_info, objectid);
  1114. root->root_key.objectid = objectid;
  1115. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1116. root->root_key.offset = 0;
  1117. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1118. 0, objectid, NULL, 0, 0, 0);
  1119. if (IS_ERR(leaf)) {
  1120. ret = PTR_ERR(leaf);
  1121. leaf = NULL;
  1122. goto fail;
  1123. }
  1124. bytenr = leaf->start;
  1125. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1126. btrfs_set_header_bytenr(leaf, leaf->start);
  1127. btrfs_set_header_generation(leaf, trans->transid);
  1128. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1129. btrfs_set_header_owner(leaf, objectid);
  1130. root->node = leaf;
  1131. write_extent_buffer(leaf, fs_info->fsid,
  1132. (unsigned long)btrfs_header_fsid(leaf),
  1133. BTRFS_FSID_SIZE);
  1134. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1135. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1136. BTRFS_UUID_SIZE);
  1137. btrfs_mark_buffer_dirty(leaf);
  1138. root->commit_root = btrfs_root_node(root);
  1139. root->track_dirty = 1;
  1140. root->root_item.flags = 0;
  1141. root->root_item.byte_limit = 0;
  1142. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1143. btrfs_set_root_generation(&root->root_item, trans->transid);
  1144. btrfs_set_root_level(&root->root_item, 0);
  1145. btrfs_set_root_refs(&root->root_item, 1);
  1146. btrfs_set_root_used(&root->root_item, leaf->len);
  1147. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1148. btrfs_set_root_dirid(&root->root_item, 0);
  1149. uuid_le_gen(&uuid);
  1150. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1151. root->root_item.drop_level = 0;
  1152. key.objectid = objectid;
  1153. key.type = BTRFS_ROOT_ITEM_KEY;
  1154. key.offset = 0;
  1155. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1156. if (ret)
  1157. goto fail;
  1158. btrfs_tree_unlock(leaf);
  1159. return root;
  1160. fail:
  1161. if (leaf) {
  1162. btrfs_tree_unlock(leaf);
  1163. free_extent_buffer(leaf);
  1164. }
  1165. kfree(root);
  1166. return ERR_PTR(ret);
  1167. }
  1168. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1169. struct btrfs_fs_info *fs_info)
  1170. {
  1171. struct btrfs_root *root;
  1172. struct btrfs_root *tree_root = fs_info->tree_root;
  1173. struct extent_buffer *leaf;
  1174. root = btrfs_alloc_root(fs_info);
  1175. if (!root)
  1176. return ERR_PTR(-ENOMEM);
  1177. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1178. tree_root->sectorsize, tree_root->stripesize,
  1179. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1180. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1181. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1182. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1183. /*
  1184. * log trees do not get reference counted because they go away
  1185. * before a real commit is actually done. They do store pointers
  1186. * to file data extents, and those reference counts still get
  1187. * updated (along with back refs to the log tree).
  1188. */
  1189. root->ref_cows = 0;
  1190. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1191. BTRFS_TREE_LOG_OBJECTID, NULL,
  1192. 0, 0, 0);
  1193. if (IS_ERR(leaf)) {
  1194. kfree(root);
  1195. return ERR_CAST(leaf);
  1196. }
  1197. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1198. btrfs_set_header_bytenr(leaf, leaf->start);
  1199. btrfs_set_header_generation(leaf, trans->transid);
  1200. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1201. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1202. root->node = leaf;
  1203. write_extent_buffer(root->node, root->fs_info->fsid,
  1204. (unsigned long)btrfs_header_fsid(root->node),
  1205. BTRFS_FSID_SIZE);
  1206. btrfs_mark_buffer_dirty(root->node);
  1207. btrfs_tree_unlock(root->node);
  1208. return root;
  1209. }
  1210. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1211. struct btrfs_fs_info *fs_info)
  1212. {
  1213. struct btrfs_root *log_root;
  1214. log_root = alloc_log_tree(trans, fs_info);
  1215. if (IS_ERR(log_root))
  1216. return PTR_ERR(log_root);
  1217. WARN_ON(fs_info->log_root_tree);
  1218. fs_info->log_root_tree = log_root;
  1219. return 0;
  1220. }
  1221. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1222. struct btrfs_root *root)
  1223. {
  1224. struct btrfs_root *log_root;
  1225. struct btrfs_inode_item *inode_item;
  1226. log_root = alloc_log_tree(trans, root->fs_info);
  1227. if (IS_ERR(log_root))
  1228. return PTR_ERR(log_root);
  1229. log_root->last_trans = trans->transid;
  1230. log_root->root_key.offset = root->root_key.objectid;
  1231. inode_item = &log_root->root_item.inode;
  1232. inode_item->generation = cpu_to_le64(1);
  1233. inode_item->size = cpu_to_le64(3);
  1234. inode_item->nlink = cpu_to_le32(1);
  1235. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1236. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1237. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1238. WARN_ON(root->log_root);
  1239. root->log_root = log_root;
  1240. root->log_transid = 0;
  1241. root->last_log_commit = 0;
  1242. return 0;
  1243. }
  1244. struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1245. struct btrfs_key *key)
  1246. {
  1247. struct btrfs_root *root;
  1248. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1249. struct btrfs_path *path;
  1250. u64 generation;
  1251. u32 blocksize;
  1252. int ret;
  1253. path = btrfs_alloc_path();
  1254. if (!path)
  1255. return ERR_PTR(-ENOMEM);
  1256. root = btrfs_alloc_root(fs_info);
  1257. if (!root) {
  1258. ret = -ENOMEM;
  1259. goto alloc_fail;
  1260. }
  1261. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1262. tree_root->sectorsize, tree_root->stripesize,
  1263. root, fs_info, key->objectid);
  1264. ret = btrfs_find_root(tree_root, key, path,
  1265. &root->root_item, &root->root_key);
  1266. if (ret) {
  1267. if (ret > 0)
  1268. ret = -ENOENT;
  1269. goto find_fail;
  1270. }
  1271. generation = btrfs_root_generation(&root->root_item);
  1272. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1273. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1274. blocksize, generation);
  1275. if (!root->node) {
  1276. ret = -ENOMEM;
  1277. goto find_fail;
  1278. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1279. ret = -EIO;
  1280. goto read_fail;
  1281. }
  1282. root->commit_root = btrfs_root_node(root);
  1283. out:
  1284. btrfs_free_path(path);
  1285. return root;
  1286. read_fail:
  1287. free_extent_buffer(root->node);
  1288. find_fail:
  1289. kfree(root);
  1290. alloc_fail:
  1291. root = ERR_PTR(ret);
  1292. goto out;
  1293. }
  1294. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1295. struct btrfs_key *location)
  1296. {
  1297. struct btrfs_root *root;
  1298. root = btrfs_read_tree_root(tree_root, location);
  1299. if (IS_ERR(root))
  1300. return root;
  1301. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1302. root->ref_cows = 1;
  1303. btrfs_check_and_init_root_item(&root->root_item);
  1304. }
  1305. return root;
  1306. }
  1307. int btrfs_init_fs_root(struct btrfs_root *root)
  1308. {
  1309. int ret;
  1310. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1311. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1312. GFP_NOFS);
  1313. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1314. ret = -ENOMEM;
  1315. goto fail;
  1316. }
  1317. btrfs_init_free_ino_ctl(root);
  1318. mutex_init(&root->fs_commit_mutex);
  1319. spin_lock_init(&root->cache_lock);
  1320. init_waitqueue_head(&root->cache_wait);
  1321. ret = get_anon_bdev(&root->anon_dev);
  1322. if (ret)
  1323. goto fail;
  1324. return 0;
  1325. fail:
  1326. kfree(root->free_ino_ctl);
  1327. kfree(root->free_ino_pinned);
  1328. return ret;
  1329. }
  1330. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1331. u64 root_id)
  1332. {
  1333. struct btrfs_root *root;
  1334. spin_lock(&fs_info->fs_roots_radix_lock);
  1335. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1336. (unsigned long)root_id);
  1337. spin_unlock(&fs_info->fs_roots_radix_lock);
  1338. return root;
  1339. }
  1340. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1341. struct btrfs_root *root)
  1342. {
  1343. int ret;
  1344. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1345. if (ret)
  1346. return ret;
  1347. spin_lock(&fs_info->fs_roots_radix_lock);
  1348. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1349. (unsigned long)root->root_key.objectid,
  1350. root);
  1351. if (ret == 0)
  1352. root->in_radix = 1;
  1353. spin_unlock(&fs_info->fs_roots_radix_lock);
  1354. radix_tree_preload_end();
  1355. return ret;
  1356. }
  1357. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1358. struct btrfs_key *location)
  1359. {
  1360. struct btrfs_root *root;
  1361. int ret;
  1362. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1363. return fs_info->tree_root;
  1364. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1365. return fs_info->extent_root;
  1366. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1367. return fs_info->chunk_root;
  1368. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1369. return fs_info->dev_root;
  1370. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1371. return fs_info->csum_root;
  1372. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1373. return fs_info->quota_root ? fs_info->quota_root :
  1374. ERR_PTR(-ENOENT);
  1375. again:
  1376. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1377. if (root)
  1378. return root;
  1379. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1380. if (IS_ERR(root))
  1381. return root;
  1382. if (btrfs_root_refs(&root->root_item) == 0) {
  1383. ret = -ENOENT;
  1384. goto fail;
  1385. }
  1386. ret = btrfs_init_fs_root(root);
  1387. if (ret)
  1388. goto fail;
  1389. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1390. if (ret < 0)
  1391. goto fail;
  1392. if (ret == 0)
  1393. root->orphan_item_inserted = 1;
  1394. ret = btrfs_insert_fs_root(fs_info, root);
  1395. if (ret) {
  1396. if (ret == -EEXIST) {
  1397. free_fs_root(root);
  1398. goto again;
  1399. }
  1400. goto fail;
  1401. }
  1402. return root;
  1403. fail:
  1404. free_fs_root(root);
  1405. return ERR_PTR(ret);
  1406. }
  1407. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1408. {
  1409. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1410. int ret = 0;
  1411. struct btrfs_device *device;
  1412. struct backing_dev_info *bdi;
  1413. rcu_read_lock();
  1414. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1415. if (!device->bdev)
  1416. continue;
  1417. bdi = blk_get_backing_dev_info(device->bdev);
  1418. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1419. ret = 1;
  1420. break;
  1421. }
  1422. }
  1423. rcu_read_unlock();
  1424. return ret;
  1425. }
  1426. /*
  1427. * If this fails, caller must call bdi_destroy() to get rid of the
  1428. * bdi again.
  1429. */
  1430. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1431. {
  1432. int err;
  1433. bdi->capabilities = BDI_CAP_MAP_COPY;
  1434. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1435. if (err)
  1436. return err;
  1437. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1438. bdi->congested_fn = btrfs_congested_fn;
  1439. bdi->congested_data = info;
  1440. return 0;
  1441. }
  1442. /*
  1443. * called by the kthread helper functions to finally call the bio end_io
  1444. * functions. This is where read checksum verification actually happens
  1445. */
  1446. static void end_workqueue_fn(struct btrfs_work *work)
  1447. {
  1448. struct bio *bio;
  1449. struct end_io_wq *end_io_wq;
  1450. struct btrfs_fs_info *fs_info;
  1451. int error;
  1452. end_io_wq = container_of(work, struct end_io_wq, work);
  1453. bio = end_io_wq->bio;
  1454. fs_info = end_io_wq->info;
  1455. error = end_io_wq->error;
  1456. bio->bi_private = end_io_wq->private;
  1457. bio->bi_end_io = end_io_wq->end_io;
  1458. kfree(end_io_wq);
  1459. bio_endio(bio, error);
  1460. }
  1461. static int cleaner_kthread(void *arg)
  1462. {
  1463. struct btrfs_root *root = arg;
  1464. int again;
  1465. do {
  1466. again = 0;
  1467. /* Make the cleaner go to sleep early. */
  1468. if (btrfs_need_cleaner_sleep(root))
  1469. goto sleep;
  1470. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1471. goto sleep;
  1472. /*
  1473. * Avoid the problem that we change the status of the fs
  1474. * during the above check and trylock.
  1475. */
  1476. if (btrfs_need_cleaner_sleep(root)) {
  1477. mutex_unlock(&root->fs_info->cleaner_mutex);
  1478. goto sleep;
  1479. }
  1480. btrfs_run_delayed_iputs(root);
  1481. again = btrfs_clean_one_deleted_snapshot(root);
  1482. mutex_unlock(&root->fs_info->cleaner_mutex);
  1483. /*
  1484. * The defragger has dealt with the R/O remount and umount,
  1485. * needn't do anything special here.
  1486. */
  1487. btrfs_run_defrag_inodes(root->fs_info);
  1488. sleep:
  1489. if (!try_to_freeze() && !again) {
  1490. set_current_state(TASK_INTERRUPTIBLE);
  1491. if (!kthread_should_stop())
  1492. schedule();
  1493. __set_current_state(TASK_RUNNING);
  1494. }
  1495. } while (!kthread_should_stop());
  1496. return 0;
  1497. }
  1498. static int transaction_kthread(void *arg)
  1499. {
  1500. struct btrfs_root *root = arg;
  1501. struct btrfs_trans_handle *trans;
  1502. struct btrfs_transaction *cur;
  1503. u64 transid;
  1504. unsigned long now;
  1505. unsigned long delay;
  1506. bool cannot_commit;
  1507. do {
  1508. cannot_commit = false;
  1509. delay = HZ * 30;
  1510. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1511. spin_lock(&root->fs_info->trans_lock);
  1512. cur = root->fs_info->running_transaction;
  1513. if (!cur) {
  1514. spin_unlock(&root->fs_info->trans_lock);
  1515. goto sleep;
  1516. }
  1517. now = get_seconds();
  1518. if (!cur->blocked &&
  1519. (now < cur->start_time || now - cur->start_time < 30)) {
  1520. spin_unlock(&root->fs_info->trans_lock);
  1521. delay = HZ * 5;
  1522. goto sleep;
  1523. }
  1524. transid = cur->transid;
  1525. spin_unlock(&root->fs_info->trans_lock);
  1526. /* If the file system is aborted, this will always fail. */
  1527. trans = btrfs_attach_transaction(root);
  1528. if (IS_ERR(trans)) {
  1529. if (PTR_ERR(trans) != -ENOENT)
  1530. cannot_commit = true;
  1531. goto sleep;
  1532. }
  1533. if (transid == trans->transid) {
  1534. btrfs_commit_transaction(trans, root);
  1535. } else {
  1536. btrfs_end_transaction(trans, root);
  1537. }
  1538. sleep:
  1539. wake_up_process(root->fs_info->cleaner_kthread);
  1540. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1541. if (!try_to_freeze()) {
  1542. set_current_state(TASK_INTERRUPTIBLE);
  1543. if (!kthread_should_stop() &&
  1544. (!btrfs_transaction_blocked(root->fs_info) ||
  1545. cannot_commit))
  1546. schedule_timeout(delay);
  1547. __set_current_state(TASK_RUNNING);
  1548. }
  1549. } while (!kthread_should_stop());
  1550. return 0;
  1551. }
  1552. /*
  1553. * this will find the highest generation in the array of
  1554. * root backups. The index of the highest array is returned,
  1555. * or -1 if we can't find anything.
  1556. *
  1557. * We check to make sure the array is valid by comparing the
  1558. * generation of the latest root in the array with the generation
  1559. * in the super block. If they don't match we pitch it.
  1560. */
  1561. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1562. {
  1563. u64 cur;
  1564. int newest_index = -1;
  1565. struct btrfs_root_backup *root_backup;
  1566. int i;
  1567. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1568. root_backup = info->super_copy->super_roots + i;
  1569. cur = btrfs_backup_tree_root_gen(root_backup);
  1570. if (cur == newest_gen)
  1571. newest_index = i;
  1572. }
  1573. /* check to see if we actually wrapped around */
  1574. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1575. root_backup = info->super_copy->super_roots;
  1576. cur = btrfs_backup_tree_root_gen(root_backup);
  1577. if (cur == newest_gen)
  1578. newest_index = 0;
  1579. }
  1580. return newest_index;
  1581. }
  1582. /*
  1583. * find the oldest backup so we know where to store new entries
  1584. * in the backup array. This will set the backup_root_index
  1585. * field in the fs_info struct
  1586. */
  1587. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1588. u64 newest_gen)
  1589. {
  1590. int newest_index = -1;
  1591. newest_index = find_newest_super_backup(info, newest_gen);
  1592. /* if there was garbage in there, just move along */
  1593. if (newest_index == -1) {
  1594. info->backup_root_index = 0;
  1595. } else {
  1596. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1597. }
  1598. }
  1599. /*
  1600. * copy all the root pointers into the super backup array.
  1601. * this will bump the backup pointer by one when it is
  1602. * done
  1603. */
  1604. static void backup_super_roots(struct btrfs_fs_info *info)
  1605. {
  1606. int next_backup;
  1607. struct btrfs_root_backup *root_backup;
  1608. int last_backup;
  1609. next_backup = info->backup_root_index;
  1610. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1611. BTRFS_NUM_BACKUP_ROOTS;
  1612. /*
  1613. * just overwrite the last backup if we're at the same generation
  1614. * this happens only at umount
  1615. */
  1616. root_backup = info->super_for_commit->super_roots + last_backup;
  1617. if (btrfs_backup_tree_root_gen(root_backup) ==
  1618. btrfs_header_generation(info->tree_root->node))
  1619. next_backup = last_backup;
  1620. root_backup = info->super_for_commit->super_roots + next_backup;
  1621. /*
  1622. * make sure all of our padding and empty slots get zero filled
  1623. * regardless of which ones we use today
  1624. */
  1625. memset(root_backup, 0, sizeof(*root_backup));
  1626. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1627. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1628. btrfs_set_backup_tree_root_gen(root_backup,
  1629. btrfs_header_generation(info->tree_root->node));
  1630. btrfs_set_backup_tree_root_level(root_backup,
  1631. btrfs_header_level(info->tree_root->node));
  1632. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1633. btrfs_set_backup_chunk_root_gen(root_backup,
  1634. btrfs_header_generation(info->chunk_root->node));
  1635. btrfs_set_backup_chunk_root_level(root_backup,
  1636. btrfs_header_level(info->chunk_root->node));
  1637. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1638. btrfs_set_backup_extent_root_gen(root_backup,
  1639. btrfs_header_generation(info->extent_root->node));
  1640. btrfs_set_backup_extent_root_level(root_backup,
  1641. btrfs_header_level(info->extent_root->node));
  1642. /*
  1643. * we might commit during log recovery, which happens before we set
  1644. * the fs_root. Make sure it is valid before we fill it in.
  1645. */
  1646. if (info->fs_root && info->fs_root->node) {
  1647. btrfs_set_backup_fs_root(root_backup,
  1648. info->fs_root->node->start);
  1649. btrfs_set_backup_fs_root_gen(root_backup,
  1650. btrfs_header_generation(info->fs_root->node));
  1651. btrfs_set_backup_fs_root_level(root_backup,
  1652. btrfs_header_level(info->fs_root->node));
  1653. }
  1654. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1655. btrfs_set_backup_dev_root_gen(root_backup,
  1656. btrfs_header_generation(info->dev_root->node));
  1657. btrfs_set_backup_dev_root_level(root_backup,
  1658. btrfs_header_level(info->dev_root->node));
  1659. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1660. btrfs_set_backup_csum_root_gen(root_backup,
  1661. btrfs_header_generation(info->csum_root->node));
  1662. btrfs_set_backup_csum_root_level(root_backup,
  1663. btrfs_header_level(info->csum_root->node));
  1664. btrfs_set_backup_total_bytes(root_backup,
  1665. btrfs_super_total_bytes(info->super_copy));
  1666. btrfs_set_backup_bytes_used(root_backup,
  1667. btrfs_super_bytes_used(info->super_copy));
  1668. btrfs_set_backup_num_devices(root_backup,
  1669. btrfs_super_num_devices(info->super_copy));
  1670. /*
  1671. * if we don't copy this out to the super_copy, it won't get remembered
  1672. * for the next commit
  1673. */
  1674. memcpy(&info->super_copy->super_roots,
  1675. &info->super_for_commit->super_roots,
  1676. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1677. }
  1678. /*
  1679. * this copies info out of the root backup array and back into
  1680. * the in-memory super block. It is meant to help iterate through
  1681. * the array, so you send it the number of backups you've already
  1682. * tried and the last backup index you used.
  1683. *
  1684. * this returns -1 when it has tried all the backups
  1685. */
  1686. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1687. struct btrfs_super_block *super,
  1688. int *num_backups_tried, int *backup_index)
  1689. {
  1690. struct btrfs_root_backup *root_backup;
  1691. int newest = *backup_index;
  1692. if (*num_backups_tried == 0) {
  1693. u64 gen = btrfs_super_generation(super);
  1694. newest = find_newest_super_backup(info, gen);
  1695. if (newest == -1)
  1696. return -1;
  1697. *backup_index = newest;
  1698. *num_backups_tried = 1;
  1699. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1700. /* we've tried all the backups, all done */
  1701. return -1;
  1702. } else {
  1703. /* jump to the next oldest backup */
  1704. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1705. BTRFS_NUM_BACKUP_ROOTS;
  1706. *backup_index = newest;
  1707. *num_backups_tried += 1;
  1708. }
  1709. root_backup = super->super_roots + newest;
  1710. btrfs_set_super_generation(super,
  1711. btrfs_backup_tree_root_gen(root_backup));
  1712. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1713. btrfs_set_super_root_level(super,
  1714. btrfs_backup_tree_root_level(root_backup));
  1715. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1716. /*
  1717. * fixme: the total bytes and num_devices need to match or we should
  1718. * need a fsck
  1719. */
  1720. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1721. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1722. return 0;
  1723. }
  1724. /* helper to cleanup workers */
  1725. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1726. {
  1727. btrfs_stop_workers(&fs_info->generic_worker);
  1728. btrfs_stop_workers(&fs_info->fixup_workers);
  1729. btrfs_stop_workers(&fs_info->delalloc_workers);
  1730. btrfs_stop_workers(&fs_info->workers);
  1731. btrfs_stop_workers(&fs_info->endio_workers);
  1732. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1733. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1734. btrfs_stop_workers(&fs_info->rmw_workers);
  1735. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1736. btrfs_stop_workers(&fs_info->endio_write_workers);
  1737. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1738. btrfs_stop_workers(&fs_info->submit_workers);
  1739. btrfs_stop_workers(&fs_info->delayed_workers);
  1740. btrfs_stop_workers(&fs_info->caching_workers);
  1741. btrfs_stop_workers(&fs_info->readahead_workers);
  1742. btrfs_stop_workers(&fs_info->flush_workers);
  1743. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1744. }
  1745. /* helper to cleanup tree roots */
  1746. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1747. {
  1748. free_extent_buffer(info->tree_root->node);
  1749. free_extent_buffer(info->tree_root->commit_root);
  1750. info->tree_root->node = NULL;
  1751. info->tree_root->commit_root = NULL;
  1752. if (info->dev_root) {
  1753. free_extent_buffer(info->dev_root->node);
  1754. free_extent_buffer(info->dev_root->commit_root);
  1755. info->dev_root->node = NULL;
  1756. info->dev_root->commit_root = NULL;
  1757. }
  1758. if (info->extent_root) {
  1759. free_extent_buffer(info->extent_root->node);
  1760. free_extent_buffer(info->extent_root->commit_root);
  1761. info->extent_root->node = NULL;
  1762. info->extent_root->commit_root = NULL;
  1763. }
  1764. if (info->csum_root) {
  1765. free_extent_buffer(info->csum_root->node);
  1766. free_extent_buffer(info->csum_root->commit_root);
  1767. info->csum_root->node = NULL;
  1768. info->csum_root->commit_root = NULL;
  1769. }
  1770. if (info->quota_root) {
  1771. free_extent_buffer(info->quota_root->node);
  1772. free_extent_buffer(info->quota_root->commit_root);
  1773. info->quota_root->node = NULL;
  1774. info->quota_root->commit_root = NULL;
  1775. }
  1776. if (chunk_root) {
  1777. free_extent_buffer(info->chunk_root->node);
  1778. free_extent_buffer(info->chunk_root->commit_root);
  1779. info->chunk_root->node = NULL;
  1780. info->chunk_root->commit_root = NULL;
  1781. }
  1782. }
  1783. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1784. {
  1785. int ret;
  1786. struct btrfs_root *gang[8];
  1787. int i;
  1788. while (!list_empty(&fs_info->dead_roots)) {
  1789. gang[0] = list_entry(fs_info->dead_roots.next,
  1790. struct btrfs_root, root_list);
  1791. list_del(&gang[0]->root_list);
  1792. if (gang[0]->in_radix) {
  1793. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1794. } else {
  1795. free_extent_buffer(gang[0]->node);
  1796. free_extent_buffer(gang[0]->commit_root);
  1797. btrfs_put_fs_root(gang[0]);
  1798. }
  1799. }
  1800. while (1) {
  1801. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1802. (void **)gang, 0,
  1803. ARRAY_SIZE(gang));
  1804. if (!ret)
  1805. break;
  1806. for (i = 0; i < ret; i++)
  1807. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1808. }
  1809. }
  1810. int open_ctree(struct super_block *sb,
  1811. struct btrfs_fs_devices *fs_devices,
  1812. char *options)
  1813. {
  1814. u32 sectorsize;
  1815. u32 nodesize;
  1816. u32 leafsize;
  1817. u32 blocksize;
  1818. u32 stripesize;
  1819. u64 generation;
  1820. u64 features;
  1821. struct btrfs_key location;
  1822. struct buffer_head *bh;
  1823. struct btrfs_super_block *disk_super;
  1824. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1825. struct btrfs_root *tree_root;
  1826. struct btrfs_root *extent_root;
  1827. struct btrfs_root *csum_root;
  1828. struct btrfs_root *chunk_root;
  1829. struct btrfs_root *dev_root;
  1830. struct btrfs_root *quota_root;
  1831. struct btrfs_root *log_tree_root;
  1832. int ret;
  1833. int err = -EINVAL;
  1834. int num_backups_tried = 0;
  1835. int backup_index = 0;
  1836. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1837. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1838. if (!tree_root || !chunk_root) {
  1839. err = -ENOMEM;
  1840. goto fail;
  1841. }
  1842. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1843. if (ret) {
  1844. err = ret;
  1845. goto fail;
  1846. }
  1847. ret = setup_bdi(fs_info, &fs_info->bdi);
  1848. if (ret) {
  1849. err = ret;
  1850. goto fail_srcu;
  1851. }
  1852. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1853. if (ret) {
  1854. err = ret;
  1855. goto fail_bdi;
  1856. }
  1857. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1858. (1 + ilog2(nr_cpu_ids));
  1859. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1860. if (ret) {
  1861. err = ret;
  1862. goto fail_dirty_metadata_bytes;
  1863. }
  1864. fs_info->btree_inode = new_inode(sb);
  1865. if (!fs_info->btree_inode) {
  1866. err = -ENOMEM;
  1867. goto fail_delalloc_bytes;
  1868. }
  1869. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1870. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1871. INIT_LIST_HEAD(&fs_info->trans_list);
  1872. INIT_LIST_HEAD(&fs_info->dead_roots);
  1873. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1874. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1875. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1876. spin_lock_init(&fs_info->delalloc_root_lock);
  1877. spin_lock_init(&fs_info->trans_lock);
  1878. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1879. spin_lock_init(&fs_info->delayed_iput_lock);
  1880. spin_lock_init(&fs_info->defrag_inodes_lock);
  1881. spin_lock_init(&fs_info->free_chunk_lock);
  1882. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1883. spin_lock_init(&fs_info->super_lock);
  1884. rwlock_init(&fs_info->tree_mod_log_lock);
  1885. mutex_init(&fs_info->reloc_mutex);
  1886. seqlock_init(&fs_info->profiles_lock);
  1887. init_completion(&fs_info->kobj_unregister);
  1888. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1889. INIT_LIST_HEAD(&fs_info->space_info);
  1890. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1891. btrfs_mapping_init(&fs_info->mapping_tree);
  1892. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1893. BTRFS_BLOCK_RSV_GLOBAL);
  1894. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1895. BTRFS_BLOCK_RSV_DELALLOC);
  1896. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1897. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1898. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1899. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1900. BTRFS_BLOCK_RSV_DELOPS);
  1901. atomic_set(&fs_info->nr_async_submits, 0);
  1902. atomic_set(&fs_info->async_delalloc_pages, 0);
  1903. atomic_set(&fs_info->async_submit_draining, 0);
  1904. atomic_set(&fs_info->nr_async_bios, 0);
  1905. atomic_set(&fs_info->defrag_running, 0);
  1906. atomic64_set(&fs_info->tree_mod_seq, 0);
  1907. fs_info->sb = sb;
  1908. fs_info->max_inline = 8192 * 1024;
  1909. fs_info->metadata_ratio = 0;
  1910. fs_info->defrag_inodes = RB_ROOT;
  1911. fs_info->trans_no_join = 0;
  1912. fs_info->free_chunk_space = 0;
  1913. fs_info->tree_mod_log = RB_ROOT;
  1914. /* readahead state */
  1915. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1916. spin_lock_init(&fs_info->reada_lock);
  1917. fs_info->thread_pool_size = min_t(unsigned long,
  1918. num_online_cpus() + 2, 8);
  1919. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1920. spin_lock_init(&fs_info->ordered_extent_lock);
  1921. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1922. GFP_NOFS);
  1923. if (!fs_info->delayed_root) {
  1924. err = -ENOMEM;
  1925. goto fail_iput;
  1926. }
  1927. btrfs_init_delayed_root(fs_info->delayed_root);
  1928. mutex_init(&fs_info->scrub_lock);
  1929. atomic_set(&fs_info->scrubs_running, 0);
  1930. atomic_set(&fs_info->scrub_pause_req, 0);
  1931. atomic_set(&fs_info->scrubs_paused, 0);
  1932. atomic_set(&fs_info->scrub_cancel_req, 0);
  1933. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1934. init_rwsem(&fs_info->scrub_super_lock);
  1935. fs_info->scrub_workers_refcnt = 0;
  1936. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1937. fs_info->check_integrity_print_mask = 0;
  1938. #endif
  1939. spin_lock_init(&fs_info->balance_lock);
  1940. mutex_init(&fs_info->balance_mutex);
  1941. atomic_set(&fs_info->balance_running, 0);
  1942. atomic_set(&fs_info->balance_pause_req, 0);
  1943. atomic_set(&fs_info->balance_cancel_req, 0);
  1944. fs_info->balance_ctl = NULL;
  1945. init_waitqueue_head(&fs_info->balance_wait_q);
  1946. sb->s_blocksize = 4096;
  1947. sb->s_blocksize_bits = blksize_bits(4096);
  1948. sb->s_bdi = &fs_info->bdi;
  1949. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1950. set_nlink(fs_info->btree_inode, 1);
  1951. /*
  1952. * we set the i_size on the btree inode to the max possible int.
  1953. * the real end of the address space is determined by all of
  1954. * the devices in the system
  1955. */
  1956. fs_info->btree_inode->i_size = OFFSET_MAX;
  1957. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1958. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1959. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1960. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1961. fs_info->btree_inode->i_mapping);
  1962. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1963. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1964. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1965. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1966. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1967. sizeof(struct btrfs_key));
  1968. set_bit(BTRFS_INODE_DUMMY,
  1969. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1970. insert_inode_hash(fs_info->btree_inode);
  1971. spin_lock_init(&fs_info->block_group_cache_lock);
  1972. fs_info->block_group_cache_tree = RB_ROOT;
  1973. fs_info->first_logical_byte = (u64)-1;
  1974. extent_io_tree_init(&fs_info->freed_extents[0],
  1975. fs_info->btree_inode->i_mapping);
  1976. extent_io_tree_init(&fs_info->freed_extents[1],
  1977. fs_info->btree_inode->i_mapping);
  1978. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1979. fs_info->do_barriers = 1;
  1980. mutex_init(&fs_info->ordered_operations_mutex);
  1981. mutex_init(&fs_info->tree_log_mutex);
  1982. mutex_init(&fs_info->chunk_mutex);
  1983. mutex_init(&fs_info->transaction_kthread_mutex);
  1984. mutex_init(&fs_info->cleaner_mutex);
  1985. mutex_init(&fs_info->volume_mutex);
  1986. init_rwsem(&fs_info->extent_commit_sem);
  1987. init_rwsem(&fs_info->cleanup_work_sem);
  1988. init_rwsem(&fs_info->subvol_sem);
  1989. fs_info->dev_replace.lock_owner = 0;
  1990. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1991. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1992. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1993. mutex_init(&fs_info->dev_replace.lock);
  1994. spin_lock_init(&fs_info->qgroup_lock);
  1995. mutex_init(&fs_info->qgroup_ioctl_lock);
  1996. fs_info->qgroup_tree = RB_ROOT;
  1997. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1998. fs_info->qgroup_seq = 1;
  1999. fs_info->quota_enabled = 0;
  2000. fs_info->pending_quota_state = 0;
  2001. fs_info->qgroup_ulist = NULL;
  2002. mutex_init(&fs_info->qgroup_rescan_lock);
  2003. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2004. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2005. init_waitqueue_head(&fs_info->transaction_throttle);
  2006. init_waitqueue_head(&fs_info->transaction_wait);
  2007. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2008. init_waitqueue_head(&fs_info->async_submit_wait);
  2009. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2010. if (ret) {
  2011. err = ret;
  2012. goto fail_alloc;
  2013. }
  2014. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2015. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2016. invalidate_bdev(fs_devices->latest_bdev);
  2017. /*
  2018. * Read super block and check the signature bytes only
  2019. */
  2020. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2021. if (!bh) {
  2022. err = -EINVAL;
  2023. goto fail_alloc;
  2024. }
  2025. /*
  2026. * We want to check superblock checksum, the type is stored inside.
  2027. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2028. */
  2029. if (btrfs_check_super_csum(bh->b_data)) {
  2030. printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
  2031. err = -EINVAL;
  2032. goto fail_alloc;
  2033. }
  2034. /*
  2035. * super_copy is zeroed at allocation time and we never touch the
  2036. * following bytes up to INFO_SIZE, the checksum is calculated from
  2037. * the whole block of INFO_SIZE
  2038. */
  2039. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2040. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2041. sizeof(*fs_info->super_for_commit));
  2042. brelse(bh);
  2043. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2044. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2045. if (ret) {
  2046. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2047. err = -EINVAL;
  2048. goto fail_alloc;
  2049. }
  2050. disk_super = fs_info->super_copy;
  2051. if (!btrfs_super_root(disk_super))
  2052. goto fail_alloc;
  2053. /* check FS state, whether FS is broken. */
  2054. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2055. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2056. /*
  2057. * run through our array of backup supers and setup
  2058. * our ring pointer to the oldest one
  2059. */
  2060. generation = btrfs_super_generation(disk_super);
  2061. find_oldest_super_backup(fs_info, generation);
  2062. /*
  2063. * In the long term, we'll store the compression type in the super
  2064. * block, and it'll be used for per file compression control.
  2065. */
  2066. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2067. ret = btrfs_parse_options(tree_root, options);
  2068. if (ret) {
  2069. err = ret;
  2070. goto fail_alloc;
  2071. }
  2072. features = btrfs_super_incompat_flags(disk_super) &
  2073. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2074. if (features) {
  2075. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2076. "unsupported optional features (%Lx).\n",
  2077. (unsigned long long)features);
  2078. err = -EINVAL;
  2079. goto fail_alloc;
  2080. }
  2081. if (btrfs_super_leafsize(disk_super) !=
  2082. btrfs_super_nodesize(disk_super)) {
  2083. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2084. "blocksizes don't match. node %d leaf %d\n",
  2085. btrfs_super_nodesize(disk_super),
  2086. btrfs_super_leafsize(disk_super));
  2087. err = -EINVAL;
  2088. goto fail_alloc;
  2089. }
  2090. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2091. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2092. "blocksize (%d) was too large\n",
  2093. btrfs_super_leafsize(disk_super));
  2094. err = -EINVAL;
  2095. goto fail_alloc;
  2096. }
  2097. features = btrfs_super_incompat_flags(disk_super);
  2098. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2099. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2100. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2101. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2102. printk(KERN_ERR "btrfs: has skinny extents\n");
  2103. /*
  2104. * flag our filesystem as having big metadata blocks if
  2105. * they are bigger than the page size
  2106. */
  2107. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2108. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2109. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2110. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2111. }
  2112. nodesize = btrfs_super_nodesize(disk_super);
  2113. leafsize = btrfs_super_leafsize(disk_super);
  2114. sectorsize = btrfs_super_sectorsize(disk_super);
  2115. stripesize = btrfs_super_stripesize(disk_super);
  2116. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2117. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2118. /*
  2119. * mixed block groups end up with duplicate but slightly offset
  2120. * extent buffers for the same range. It leads to corruptions
  2121. */
  2122. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2123. (sectorsize != leafsize)) {
  2124. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2125. "are not allowed for mixed block groups on %s\n",
  2126. sb->s_id);
  2127. goto fail_alloc;
  2128. }
  2129. /*
  2130. * Needn't use the lock because there is no other task which will
  2131. * update the flag.
  2132. */
  2133. btrfs_set_super_incompat_flags(disk_super, features);
  2134. features = btrfs_super_compat_ro_flags(disk_super) &
  2135. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2136. if (!(sb->s_flags & MS_RDONLY) && features) {
  2137. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2138. "unsupported option features (%Lx).\n",
  2139. (unsigned long long)features);
  2140. err = -EINVAL;
  2141. goto fail_alloc;
  2142. }
  2143. btrfs_init_workers(&fs_info->generic_worker,
  2144. "genwork", 1, NULL);
  2145. btrfs_init_workers(&fs_info->workers, "worker",
  2146. fs_info->thread_pool_size,
  2147. &fs_info->generic_worker);
  2148. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2149. fs_info->thread_pool_size,
  2150. &fs_info->generic_worker);
  2151. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2152. fs_info->thread_pool_size,
  2153. &fs_info->generic_worker);
  2154. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2155. min_t(u64, fs_devices->num_devices,
  2156. fs_info->thread_pool_size),
  2157. &fs_info->generic_worker);
  2158. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2159. 2, &fs_info->generic_worker);
  2160. /* a higher idle thresh on the submit workers makes it much more
  2161. * likely that bios will be send down in a sane order to the
  2162. * devices
  2163. */
  2164. fs_info->submit_workers.idle_thresh = 64;
  2165. fs_info->workers.idle_thresh = 16;
  2166. fs_info->workers.ordered = 1;
  2167. fs_info->delalloc_workers.idle_thresh = 2;
  2168. fs_info->delalloc_workers.ordered = 1;
  2169. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2170. &fs_info->generic_worker);
  2171. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2172. fs_info->thread_pool_size,
  2173. &fs_info->generic_worker);
  2174. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2175. fs_info->thread_pool_size,
  2176. &fs_info->generic_worker);
  2177. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2178. "endio-meta-write", fs_info->thread_pool_size,
  2179. &fs_info->generic_worker);
  2180. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2181. "endio-raid56", fs_info->thread_pool_size,
  2182. &fs_info->generic_worker);
  2183. btrfs_init_workers(&fs_info->rmw_workers,
  2184. "rmw", fs_info->thread_pool_size,
  2185. &fs_info->generic_worker);
  2186. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2187. fs_info->thread_pool_size,
  2188. &fs_info->generic_worker);
  2189. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2190. 1, &fs_info->generic_worker);
  2191. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2192. fs_info->thread_pool_size,
  2193. &fs_info->generic_worker);
  2194. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2195. fs_info->thread_pool_size,
  2196. &fs_info->generic_worker);
  2197. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2198. &fs_info->generic_worker);
  2199. /*
  2200. * endios are largely parallel and should have a very
  2201. * low idle thresh
  2202. */
  2203. fs_info->endio_workers.idle_thresh = 4;
  2204. fs_info->endio_meta_workers.idle_thresh = 4;
  2205. fs_info->endio_raid56_workers.idle_thresh = 4;
  2206. fs_info->rmw_workers.idle_thresh = 2;
  2207. fs_info->endio_write_workers.idle_thresh = 2;
  2208. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2209. fs_info->readahead_workers.idle_thresh = 2;
  2210. /*
  2211. * btrfs_start_workers can really only fail because of ENOMEM so just
  2212. * return -ENOMEM if any of these fail.
  2213. */
  2214. ret = btrfs_start_workers(&fs_info->workers);
  2215. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2216. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2217. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2218. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2219. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2220. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2221. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2222. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2223. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2224. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2225. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2226. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2227. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2228. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2229. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2230. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2231. if (ret) {
  2232. err = -ENOMEM;
  2233. goto fail_sb_buffer;
  2234. }
  2235. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2236. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2237. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2238. tree_root->nodesize = nodesize;
  2239. tree_root->leafsize = leafsize;
  2240. tree_root->sectorsize = sectorsize;
  2241. tree_root->stripesize = stripesize;
  2242. sb->s_blocksize = sectorsize;
  2243. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2244. if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2245. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2246. goto fail_sb_buffer;
  2247. }
  2248. if (sectorsize != PAGE_SIZE) {
  2249. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2250. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2251. goto fail_sb_buffer;
  2252. }
  2253. mutex_lock(&fs_info->chunk_mutex);
  2254. ret = btrfs_read_sys_array(tree_root);
  2255. mutex_unlock(&fs_info->chunk_mutex);
  2256. if (ret) {
  2257. printk(KERN_WARNING "btrfs: failed to read the system "
  2258. "array on %s\n", sb->s_id);
  2259. goto fail_sb_buffer;
  2260. }
  2261. blocksize = btrfs_level_size(tree_root,
  2262. btrfs_super_chunk_root_level(disk_super));
  2263. generation = btrfs_super_chunk_root_generation(disk_super);
  2264. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2265. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2266. chunk_root->node = read_tree_block(chunk_root,
  2267. btrfs_super_chunk_root(disk_super),
  2268. blocksize, generation);
  2269. if (!chunk_root->node ||
  2270. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2271. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2272. sb->s_id);
  2273. goto fail_tree_roots;
  2274. }
  2275. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2276. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2277. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2278. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2279. BTRFS_UUID_SIZE);
  2280. ret = btrfs_read_chunk_tree(chunk_root);
  2281. if (ret) {
  2282. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2283. sb->s_id);
  2284. goto fail_tree_roots;
  2285. }
  2286. /*
  2287. * keep the device that is marked to be the target device for the
  2288. * dev_replace procedure
  2289. */
  2290. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2291. if (!fs_devices->latest_bdev) {
  2292. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2293. sb->s_id);
  2294. goto fail_tree_roots;
  2295. }
  2296. retry_root_backup:
  2297. blocksize = btrfs_level_size(tree_root,
  2298. btrfs_super_root_level(disk_super));
  2299. generation = btrfs_super_generation(disk_super);
  2300. tree_root->node = read_tree_block(tree_root,
  2301. btrfs_super_root(disk_super),
  2302. blocksize, generation);
  2303. if (!tree_root->node ||
  2304. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2305. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2306. sb->s_id);
  2307. goto recovery_tree_root;
  2308. }
  2309. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2310. tree_root->commit_root = btrfs_root_node(tree_root);
  2311. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2312. location.type = BTRFS_ROOT_ITEM_KEY;
  2313. location.offset = 0;
  2314. extent_root = btrfs_read_tree_root(tree_root, &location);
  2315. if (IS_ERR(extent_root)) {
  2316. ret = PTR_ERR(extent_root);
  2317. goto recovery_tree_root;
  2318. }
  2319. extent_root->track_dirty = 1;
  2320. fs_info->extent_root = extent_root;
  2321. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2322. dev_root = btrfs_read_tree_root(tree_root, &location);
  2323. if (IS_ERR(dev_root)) {
  2324. ret = PTR_ERR(dev_root);
  2325. goto recovery_tree_root;
  2326. }
  2327. dev_root->track_dirty = 1;
  2328. fs_info->dev_root = dev_root;
  2329. btrfs_init_devices_late(fs_info);
  2330. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2331. csum_root = btrfs_read_tree_root(tree_root, &location);
  2332. if (IS_ERR(csum_root)) {
  2333. ret = PTR_ERR(csum_root);
  2334. goto recovery_tree_root;
  2335. }
  2336. csum_root->track_dirty = 1;
  2337. fs_info->csum_root = csum_root;
  2338. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2339. quota_root = btrfs_read_tree_root(tree_root, &location);
  2340. if (!IS_ERR(quota_root)) {
  2341. quota_root->track_dirty = 1;
  2342. fs_info->quota_enabled = 1;
  2343. fs_info->pending_quota_state = 1;
  2344. fs_info->quota_root = quota_root;
  2345. }
  2346. fs_info->generation = generation;
  2347. fs_info->last_trans_committed = generation;
  2348. ret = btrfs_recover_balance(fs_info);
  2349. if (ret) {
  2350. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2351. goto fail_block_groups;
  2352. }
  2353. ret = btrfs_init_dev_stats(fs_info);
  2354. if (ret) {
  2355. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2356. ret);
  2357. goto fail_block_groups;
  2358. }
  2359. ret = btrfs_init_dev_replace(fs_info);
  2360. if (ret) {
  2361. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2362. goto fail_block_groups;
  2363. }
  2364. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2365. ret = btrfs_init_space_info(fs_info);
  2366. if (ret) {
  2367. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2368. goto fail_block_groups;
  2369. }
  2370. ret = btrfs_read_block_groups(extent_root);
  2371. if (ret) {
  2372. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2373. goto fail_block_groups;
  2374. }
  2375. fs_info->num_tolerated_disk_barrier_failures =
  2376. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2377. if (fs_info->fs_devices->missing_devices >
  2378. fs_info->num_tolerated_disk_barrier_failures &&
  2379. !(sb->s_flags & MS_RDONLY)) {
  2380. printk(KERN_WARNING
  2381. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2382. goto fail_block_groups;
  2383. }
  2384. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2385. "btrfs-cleaner");
  2386. if (IS_ERR(fs_info->cleaner_kthread))
  2387. goto fail_block_groups;
  2388. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2389. tree_root,
  2390. "btrfs-transaction");
  2391. if (IS_ERR(fs_info->transaction_kthread))
  2392. goto fail_cleaner;
  2393. if (!btrfs_test_opt(tree_root, SSD) &&
  2394. !btrfs_test_opt(tree_root, NOSSD) &&
  2395. !fs_info->fs_devices->rotating) {
  2396. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2397. "mode\n");
  2398. btrfs_set_opt(fs_info->mount_opt, SSD);
  2399. }
  2400. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2401. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2402. ret = btrfsic_mount(tree_root, fs_devices,
  2403. btrfs_test_opt(tree_root,
  2404. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2405. 1 : 0,
  2406. fs_info->check_integrity_print_mask);
  2407. if (ret)
  2408. printk(KERN_WARNING "btrfs: failed to initialize"
  2409. " integrity check module %s\n", sb->s_id);
  2410. }
  2411. #endif
  2412. ret = btrfs_read_qgroup_config(fs_info);
  2413. if (ret)
  2414. goto fail_trans_kthread;
  2415. /* do not make disk changes in broken FS */
  2416. if (btrfs_super_log_root(disk_super) != 0) {
  2417. u64 bytenr = btrfs_super_log_root(disk_super);
  2418. if (fs_devices->rw_devices == 0) {
  2419. printk(KERN_WARNING "Btrfs log replay required "
  2420. "on RO media\n");
  2421. err = -EIO;
  2422. goto fail_qgroup;
  2423. }
  2424. blocksize =
  2425. btrfs_level_size(tree_root,
  2426. btrfs_super_log_root_level(disk_super));
  2427. log_tree_root = btrfs_alloc_root(fs_info);
  2428. if (!log_tree_root) {
  2429. err = -ENOMEM;
  2430. goto fail_qgroup;
  2431. }
  2432. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2433. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2434. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2435. blocksize,
  2436. generation + 1);
  2437. if (!log_tree_root->node ||
  2438. !extent_buffer_uptodate(log_tree_root->node)) {
  2439. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2440. free_extent_buffer(log_tree_root->node);
  2441. kfree(log_tree_root);
  2442. goto fail_trans_kthread;
  2443. }
  2444. /* returns with log_tree_root freed on success */
  2445. ret = btrfs_recover_log_trees(log_tree_root);
  2446. if (ret) {
  2447. btrfs_error(tree_root->fs_info, ret,
  2448. "Failed to recover log tree");
  2449. free_extent_buffer(log_tree_root->node);
  2450. kfree(log_tree_root);
  2451. goto fail_trans_kthread;
  2452. }
  2453. if (sb->s_flags & MS_RDONLY) {
  2454. ret = btrfs_commit_super(tree_root);
  2455. if (ret)
  2456. goto fail_trans_kthread;
  2457. }
  2458. }
  2459. ret = btrfs_find_orphan_roots(tree_root);
  2460. if (ret)
  2461. goto fail_trans_kthread;
  2462. if (!(sb->s_flags & MS_RDONLY)) {
  2463. ret = btrfs_cleanup_fs_roots(fs_info);
  2464. if (ret)
  2465. goto fail_trans_kthread;
  2466. ret = btrfs_recover_relocation(tree_root);
  2467. if (ret < 0) {
  2468. printk(KERN_WARNING
  2469. "btrfs: failed to recover relocation\n");
  2470. err = -EINVAL;
  2471. goto fail_qgroup;
  2472. }
  2473. }
  2474. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2475. location.type = BTRFS_ROOT_ITEM_KEY;
  2476. location.offset = 0;
  2477. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2478. if (IS_ERR(fs_info->fs_root)) {
  2479. err = PTR_ERR(fs_info->fs_root);
  2480. goto fail_qgroup;
  2481. }
  2482. if (sb->s_flags & MS_RDONLY)
  2483. return 0;
  2484. down_read(&fs_info->cleanup_work_sem);
  2485. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2486. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2487. up_read(&fs_info->cleanup_work_sem);
  2488. close_ctree(tree_root);
  2489. return ret;
  2490. }
  2491. up_read(&fs_info->cleanup_work_sem);
  2492. ret = btrfs_resume_balance_async(fs_info);
  2493. if (ret) {
  2494. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2495. close_ctree(tree_root);
  2496. return ret;
  2497. }
  2498. ret = btrfs_resume_dev_replace_async(fs_info);
  2499. if (ret) {
  2500. pr_warn("btrfs: failed to resume dev_replace\n");
  2501. close_ctree(tree_root);
  2502. return ret;
  2503. }
  2504. return 0;
  2505. fail_qgroup:
  2506. btrfs_free_qgroup_config(fs_info);
  2507. fail_trans_kthread:
  2508. kthread_stop(fs_info->transaction_kthread);
  2509. btrfs_cleanup_transaction(fs_info->tree_root);
  2510. del_fs_roots(fs_info);
  2511. fail_cleaner:
  2512. kthread_stop(fs_info->cleaner_kthread);
  2513. /*
  2514. * make sure we're done with the btree inode before we stop our
  2515. * kthreads
  2516. */
  2517. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2518. fail_block_groups:
  2519. btrfs_put_block_group_cache(fs_info);
  2520. btrfs_free_block_groups(fs_info);
  2521. fail_tree_roots:
  2522. free_root_pointers(fs_info, 1);
  2523. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2524. fail_sb_buffer:
  2525. btrfs_stop_all_workers(fs_info);
  2526. fail_alloc:
  2527. fail_iput:
  2528. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2529. iput(fs_info->btree_inode);
  2530. fail_delalloc_bytes:
  2531. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2532. fail_dirty_metadata_bytes:
  2533. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2534. fail_bdi:
  2535. bdi_destroy(&fs_info->bdi);
  2536. fail_srcu:
  2537. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2538. fail:
  2539. btrfs_free_stripe_hash_table(fs_info);
  2540. btrfs_close_devices(fs_info->fs_devices);
  2541. return err;
  2542. recovery_tree_root:
  2543. if (!btrfs_test_opt(tree_root, RECOVERY))
  2544. goto fail_tree_roots;
  2545. free_root_pointers(fs_info, 0);
  2546. /* don't use the log in recovery mode, it won't be valid */
  2547. btrfs_set_super_log_root(disk_super, 0);
  2548. /* we can't trust the free space cache either */
  2549. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2550. ret = next_root_backup(fs_info, fs_info->super_copy,
  2551. &num_backups_tried, &backup_index);
  2552. if (ret == -1)
  2553. goto fail_block_groups;
  2554. goto retry_root_backup;
  2555. }
  2556. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2557. {
  2558. if (uptodate) {
  2559. set_buffer_uptodate(bh);
  2560. } else {
  2561. struct btrfs_device *device = (struct btrfs_device *)
  2562. bh->b_private;
  2563. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2564. "I/O error on %s\n",
  2565. rcu_str_deref(device->name));
  2566. /* note, we dont' set_buffer_write_io_error because we have
  2567. * our own ways of dealing with the IO errors
  2568. */
  2569. clear_buffer_uptodate(bh);
  2570. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2571. }
  2572. unlock_buffer(bh);
  2573. put_bh(bh);
  2574. }
  2575. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2576. {
  2577. struct buffer_head *bh;
  2578. struct buffer_head *latest = NULL;
  2579. struct btrfs_super_block *super;
  2580. int i;
  2581. u64 transid = 0;
  2582. u64 bytenr;
  2583. /* we would like to check all the supers, but that would make
  2584. * a btrfs mount succeed after a mkfs from a different FS.
  2585. * So, we need to add a special mount option to scan for
  2586. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2587. */
  2588. for (i = 0; i < 1; i++) {
  2589. bytenr = btrfs_sb_offset(i);
  2590. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2591. break;
  2592. bh = __bread(bdev, bytenr / 4096, 4096);
  2593. if (!bh)
  2594. continue;
  2595. super = (struct btrfs_super_block *)bh->b_data;
  2596. if (btrfs_super_bytenr(super) != bytenr ||
  2597. super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2598. brelse(bh);
  2599. continue;
  2600. }
  2601. if (!latest || btrfs_super_generation(super) > transid) {
  2602. brelse(latest);
  2603. latest = bh;
  2604. transid = btrfs_super_generation(super);
  2605. } else {
  2606. brelse(bh);
  2607. }
  2608. }
  2609. return latest;
  2610. }
  2611. /*
  2612. * this should be called twice, once with wait == 0 and
  2613. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2614. * we write are pinned.
  2615. *
  2616. * They are released when wait == 1 is done.
  2617. * max_mirrors must be the same for both runs, and it indicates how
  2618. * many supers on this one device should be written.
  2619. *
  2620. * max_mirrors == 0 means to write them all.
  2621. */
  2622. static int write_dev_supers(struct btrfs_device *device,
  2623. struct btrfs_super_block *sb,
  2624. int do_barriers, int wait, int max_mirrors)
  2625. {
  2626. struct buffer_head *bh;
  2627. int i;
  2628. int ret;
  2629. int errors = 0;
  2630. u32 crc;
  2631. u64 bytenr;
  2632. if (max_mirrors == 0)
  2633. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2634. for (i = 0; i < max_mirrors; i++) {
  2635. bytenr = btrfs_sb_offset(i);
  2636. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2637. break;
  2638. if (wait) {
  2639. bh = __find_get_block(device->bdev, bytenr / 4096,
  2640. BTRFS_SUPER_INFO_SIZE);
  2641. if (!bh) {
  2642. errors++;
  2643. continue;
  2644. }
  2645. wait_on_buffer(bh);
  2646. if (!buffer_uptodate(bh))
  2647. errors++;
  2648. /* drop our reference */
  2649. brelse(bh);
  2650. /* drop the reference from the wait == 0 run */
  2651. brelse(bh);
  2652. continue;
  2653. } else {
  2654. btrfs_set_super_bytenr(sb, bytenr);
  2655. crc = ~(u32)0;
  2656. crc = btrfs_csum_data((char *)sb +
  2657. BTRFS_CSUM_SIZE, crc,
  2658. BTRFS_SUPER_INFO_SIZE -
  2659. BTRFS_CSUM_SIZE);
  2660. btrfs_csum_final(crc, sb->csum);
  2661. /*
  2662. * one reference for us, and we leave it for the
  2663. * caller
  2664. */
  2665. bh = __getblk(device->bdev, bytenr / 4096,
  2666. BTRFS_SUPER_INFO_SIZE);
  2667. if (!bh) {
  2668. printk(KERN_ERR "btrfs: couldn't get super "
  2669. "buffer head for bytenr %Lu\n", bytenr);
  2670. errors++;
  2671. continue;
  2672. }
  2673. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2674. /* one reference for submit_bh */
  2675. get_bh(bh);
  2676. set_buffer_uptodate(bh);
  2677. lock_buffer(bh);
  2678. bh->b_end_io = btrfs_end_buffer_write_sync;
  2679. bh->b_private = device;
  2680. }
  2681. /*
  2682. * we fua the first super. The others we allow
  2683. * to go down lazy.
  2684. */
  2685. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2686. if (ret)
  2687. errors++;
  2688. }
  2689. return errors < i ? 0 : -1;
  2690. }
  2691. /*
  2692. * endio for the write_dev_flush, this will wake anyone waiting
  2693. * for the barrier when it is done
  2694. */
  2695. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2696. {
  2697. if (err) {
  2698. if (err == -EOPNOTSUPP)
  2699. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2700. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2701. }
  2702. if (bio->bi_private)
  2703. complete(bio->bi_private);
  2704. bio_put(bio);
  2705. }
  2706. /*
  2707. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2708. * sent down. With wait == 1, it waits for the previous flush.
  2709. *
  2710. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2711. * capable
  2712. */
  2713. static int write_dev_flush(struct btrfs_device *device, int wait)
  2714. {
  2715. struct bio *bio;
  2716. int ret = 0;
  2717. if (device->nobarriers)
  2718. return 0;
  2719. if (wait) {
  2720. bio = device->flush_bio;
  2721. if (!bio)
  2722. return 0;
  2723. wait_for_completion(&device->flush_wait);
  2724. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2725. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2726. rcu_str_deref(device->name));
  2727. device->nobarriers = 1;
  2728. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2729. ret = -EIO;
  2730. btrfs_dev_stat_inc_and_print(device,
  2731. BTRFS_DEV_STAT_FLUSH_ERRS);
  2732. }
  2733. /* drop the reference from the wait == 0 run */
  2734. bio_put(bio);
  2735. device->flush_bio = NULL;
  2736. return ret;
  2737. }
  2738. /*
  2739. * one reference for us, and we leave it for the
  2740. * caller
  2741. */
  2742. device->flush_bio = NULL;
  2743. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2744. if (!bio)
  2745. return -ENOMEM;
  2746. bio->bi_end_io = btrfs_end_empty_barrier;
  2747. bio->bi_bdev = device->bdev;
  2748. init_completion(&device->flush_wait);
  2749. bio->bi_private = &device->flush_wait;
  2750. device->flush_bio = bio;
  2751. bio_get(bio);
  2752. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2753. return 0;
  2754. }
  2755. /*
  2756. * send an empty flush down to each device in parallel,
  2757. * then wait for them
  2758. */
  2759. static int barrier_all_devices(struct btrfs_fs_info *info)
  2760. {
  2761. struct list_head *head;
  2762. struct btrfs_device *dev;
  2763. int errors_send = 0;
  2764. int errors_wait = 0;
  2765. int ret;
  2766. /* send down all the barriers */
  2767. head = &info->fs_devices->devices;
  2768. list_for_each_entry_rcu(dev, head, dev_list) {
  2769. if (!dev->bdev) {
  2770. errors_send++;
  2771. continue;
  2772. }
  2773. if (!dev->in_fs_metadata || !dev->writeable)
  2774. continue;
  2775. ret = write_dev_flush(dev, 0);
  2776. if (ret)
  2777. errors_send++;
  2778. }
  2779. /* wait for all the barriers */
  2780. list_for_each_entry_rcu(dev, head, dev_list) {
  2781. if (!dev->bdev) {
  2782. errors_wait++;
  2783. continue;
  2784. }
  2785. if (!dev->in_fs_metadata || !dev->writeable)
  2786. continue;
  2787. ret = write_dev_flush(dev, 1);
  2788. if (ret)
  2789. errors_wait++;
  2790. }
  2791. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2792. errors_wait > info->num_tolerated_disk_barrier_failures)
  2793. return -EIO;
  2794. return 0;
  2795. }
  2796. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2797. struct btrfs_fs_info *fs_info)
  2798. {
  2799. struct btrfs_ioctl_space_info space;
  2800. struct btrfs_space_info *sinfo;
  2801. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2802. BTRFS_BLOCK_GROUP_SYSTEM,
  2803. BTRFS_BLOCK_GROUP_METADATA,
  2804. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2805. int num_types = 4;
  2806. int i;
  2807. int c;
  2808. int num_tolerated_disk_barrier_failures =
  2809. (int)fs_info->fs_devices->num_devices;
  2810. for (i = 0; i < num_types; i++) {
  2811. struct btrfs_space_info *tmp;
  2812. sinfo = NULL;
  2813. rcu_read_lock();
  2814. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2815. if (tmp->flags == types[i]) {
  2816. sinfo = tmp;
  2817. break;
  2818. }
  2819. }
  2820. rcu_read_unlock();
  2821. if (!sinfo)
  2822. continue;
  2823. down_read(&sinfo->groups_sem);
  2824. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2825. if (!list_empty(&sinfo->block_groups[c])) {
  2826. u64 flags;
  2827. btrfs_get_block_group_info(
  2828. &sinfo->block_groups[c], &space);
  2829. if (space.total_bytes == 0 ||
  2830. space.used_bytes == 0)
  2831. continue;
  2832. flags = space.flags;
  2833. /*
  2834. * return
  2835. * 0: if dup, single or RAID0 is configured for
  2836. * any of metadata, system or data, else
  2837. * 1: if RAID5 is configured, or if RAID1 or
  2838. * RAID10 is configured and only two mirrors
  2839. * are used, else
  2840. * 2: if RAID6 is configured, else
  2841. * num_mirrors - 1: if RAID1 or RAID10 is
  2842. * configured and more than
  2843. * 2 mirrors are used.
  2844. */
  2845. if (num_tolerated_disk_barrier_failures > 0 &&
  2846. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2847. BTRFS_BLOCK_GROUP_RAID0)) ||
  2848. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2849. == 0)))
  2850. num_tolerated_disk_barrier_failures = 0;
  2851. else if (num_tolerated_disk_barrier_failures > 1) {
  2852. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2853. BTRFS_BLOCK_GROUP_RAID5 |
  2854. BTRFS_BLOCK_GROUP_RAID10)) {
  2855. num_tolerated_disk_barrier_failures = 1;
  2856. } else if (flags &
  2857. BTRFS_BLOCK_GROUP_RAID6) {
  2858. num_tolerated_disk_barrier_failures = 2;
  2859. }
  2860. }
  2861. }
  2862. }
  2863. up_read(&sinfo->groups_sem);
  2864. }
  2865. return num_tolerated_disk_barrier_failures;
  2866. }
  2867. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2868. {
  2869. struct list_head *head;
  2870. struct btrfs_device *dev;
  2871. struct btrfs_super_block *sb;
  2872. struct btrfs_dev_item *dev_item;
  2873. int ret;
  2874. int do_barriers;
  2875. int max_errors;
  2876. int total_errors = 0;
  2877. u64 flags;
  2878. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2879. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2880. backup_super_roots(root->fs_info);
  2881. sb = root->fs_info->super_for_commit;
  2882. dev_item = &sb->dev_item;
  2883. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2884. head = &root->fs_info->fs_devices->devices;
  2885. if (do_barriers) {
  2886. ret = barrier_all_devices(root->fs_info);
  2887. if (ret) {
  2888. mutex_unlock(
  2889. &root->fs_info->fs_devices->device_list_mutex);
  2890. btrfs_error(root->fs_info, ret,
  2891. "errors while submitting device barriers.");
  2892. return ret;
  2893. }
  2894. }
  2895. list_for_each_entry_rcu(dev, head, dev_list) {
  2896. if (!dev->bdev) {
  2897. total_errors++;
  2898. continue;
  2899. }
  2900. if (!dev->in_fs_metadata || !dev->writeable)
  2901. continue;
  2902. btrfs_set_stack_device_generation(dev_item, 0);
  2903. btrfs_set_stack_device_type(dev_item, dev->type);
  2904. btrfs_set_stack_device_id(dev_item, dev->devid);
  2905. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2906. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2907. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2908. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2909. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2910. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2911. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2912. flags = btrfs_super_flags(sb);
  2913. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2914. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2915. if (ret)
  2916. total_errors++;
  2917. }
  2918. if (total_errors > max_errors) {
  2919. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2920. total_errors);
  2921. /* This shouldn't happen. FUA is masked off if unsupported */
  2922. BUG();
  2923. }
  2924. total_errors = 0;
  2925. list_for_each_entry_rcu(dev, head, dev_list) {
  2926. if (!dev->bdev)
  2927. continue;
  2928. if (!dev->in_fs_metadata || !dev->writeable)
  2929. continue;
  2930. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2931. if (ret)
  2932. total_errors++;
  2933. }
  2934. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2935. if (total_errors > max_errors) {
  2936. btrfs_error(root->fs_info, -EIO,
  2937. "%d errors while writing supers", total_errors);
  2938. return -EIO;
  2939. }
  2940. return 0;
  2941. }
  2942. int write_ctree_super(struct btrfs_trans_handle *trans,
  2943. struct btrfs_root *root, int max_mirrors)
  2944. {
  2945. int ret;
  2946. ret = write_all_supers(root, max_mirrors);
  2947. return ret;
  2948. }
  2949. /* Drop a fs root from the radix tree and free it. */
  2950. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  2951. struct btrfs_root *root)
  2952. {
  2953. spin_lock(&fs_info->fs_roots_radix_lock);
  2954. radix_tree_delete(&fs_info->fs_roots_radix,
  2955. (unsigned long)root->root_key.objectid);
  2956. spin_unlock(&fs_info->fs_roots_radix_lock);
  2957. if (btrfs_root_refs(&root->root_item) == 0)
  2958. synchronize_srcu(&fs_info->subvol_srcu);
  2959. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  2960. btrfs_free_log(NULL, root);
  2961. btrfs_free_log_root_tree(NULL, fs_info);
  2962. }
  2963. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2964. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2965. free_fs_root(root);
  2966. }
  2967. static void free_fs_root(struct btrfs_root *root)
  2968. {
  2969. iput(root->cache_inode);
  2970. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2971. if (root->anon_dev)
  2972. free_anon_bdev(root->anon_dev);
  2973. free_extent_buffer(root->node);
  2974. free_extent_buffer(root->commit_root);
  2975. kfree(root->free_ino_ctl);
  2976. kfree(root->free_ino_pinned);
  2977. kfree(root->name);
  2978. btrfs_put_fs_root(root);
  2979. }
  2980. void btrfs_free_fs_root(struct btrfs_root *root)
  2981. {
  2982. free_fs_root(root);
  2983. }
  2984. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2985. {
  2986. u64 root_objectid = 0;
  2987. struct btrfs_root *gang[8];
  2988. int i;
  2989. int ret;
  2990. while (1) {
  2991. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2992. (void **)gang, root_objectid,
  2993. ARRAY_SIZE(gang));
  2994. if (!ret)
  2995. break;
  2996. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2997. for (i = 0; i < ret; i++) {
  2998. int err;
  2999. root_objectid = gang[i]->root_key.objectid;
  3000. err = btrfs_orphan_cleanup(gang[i]);
  3001. if (err)
  3002. return err;
  3003. }
  3004. root_objectid++;
  3005. }
  3006. return 0;
  3007. }
  3008. int btrfs_commit_super(struct btrfs_root *root)
  3009. {
  3010. struct btrfs_trans_handle *trans;
  3011. int ret;
  3012. mutex_lock(&root->fs_info->cleaner_mutex);
  3013. btrfs_run_delayed_iputs(root);
  3014. mutex_unlock(&root->fs_info->cleaner_mutex);
  3015. wake_up_process(root->fs_info->cleaner_kthread);
  3016. /* wait until ongoing cleanup work done */
  3017. down_write(&root->fs_info->cleanup_work_sem);
  3018. up_write(&root->fs_info->cleanup_work_sem);
  3019. trans = btrfs_join_transaction(root);
  3020. if (IS_ERR(trans))
  3021. return PTR_ERR(trans);
  3022. ret = btrfs_commit_transaction(trans, root);
  3023. if (ret)
  3024. return ret;
  3025. /* run commit again to drop the original snapshot */
  3026. trans = btrfs_join_transaction(root);
  3027. if (IS_ERR(trans))
  3028. return PTR_ERR(trans);
  3029. ret = btrfs_commit_transaction(trans, root);
  3030. if (ret)
  3031. return ret;
  3032. ret = btrfs_write_and_wait_transaction(NULL, root);
  3033. if (ret) {
  3034. btrfs_error(root->fs_info, ret,
  3035. "Failed to sync btree inode to disk.");
  3036. return ret;
  3037. }
  3038. ret = write_ctree_super(NULL, root, 0);
  3039. return ret;
  3040. }
  3041. int close_ctree(struct btrfs_root *root)
  3042. {
  3043. struct btrfs_fs_info *fs_info = root->fs_info;
  3044. int ret;
  3045. fs_info->closing = 1;
  3046. smp_mb();
  3047. /* pause restriper - we want to resume on mount */
  3048. btrfs_pause_balance(fs_info);
  3049. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3050. btrfs_scrub_cancel(fs_info);
  3051. /* wait for any defraggers to finish */
  3052. wait_event(fs_info->transaction_wait,
  3053. (atomic_read(&fs_info->defrag_running) == 0));
  3054. /* clear out the rbtree of defraggable inodes */
  3055. btrfs_cleanup_defrag_inodes(fs_info);
  3056. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3057. ret = btrfs_commit_super(root);
  3058. if (ret)
  3059. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3060. }
  3061. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3062. btrfs_error_commit_super(root);
  3063. btrfs_put_block_group_cache(fs_info);
  3064. kthread_stop(fs_info->transaction_kthread);
  3065. kthread_stop(fs_info->cleaner_kthread);
  3066. fs_info->closing = 2;
  3067. smp_mb();
  3068. btrfs_free_qgroup_config(root->fs_info);
  3069. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3070. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3071. percpu_counter_sum(&fs_info->delalloc_bytes));
  3072. }
  3073. btrfs_free_block_groups(fs_info);
  3074. btrfs_stop_all_workers(fs_info);
  3075. del_fs_roots(fs_info);
  3076. free_root_pointers(fs_info, 1);
  3077. iput(fs_info->btree_inode);
  3078. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3079. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3080. btrfsic_unmount(root, fs_info->fs_devices);
  3081. #endif
  3082. btrfs_close_devices(fs_info->fs_devices);
  3083. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3084. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3085. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3086. bdi_destroy(&fs_info->bdi);
  3087. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3088. btrfs_free_stripe_hash_table(fs_info);
  3089. return 0;
  3090. }
  3091. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3092. int atomic)
  3093. {
  3094. int ret;
  3095. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3096. ret = extent_buffer_uptodate(buf);
  3097. if (!ret)
  3098. return ret;
  3099. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3100. parent_transid, atomic);
  3101. if (ret == -EAGAIN)
  3102. return ret;
  3103. return !ret;
  3104. }
  3105. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3106. {
  3107. return set_extent_buffer_uptodate(buf);
  3108. }
  3109. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3110. {
  3111. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3112. u64 transid = btrfs_header_generation(buf);
  3113. int was_dirty;
  3114. btrfs_assert_tree_locked(buf);
  3115. if (transid != root->fs_info->generation)
  3116. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3117. "found %llu running %llu\n",
  3118. (unsigned long long)buf->start,
  3119. (unsigned long long)transid,
  3120. (unsigned long long)root->fs_info->generation);
  3121. was_dirty = set_extent_buffer_dirty(buf);
  3122. if (!was_dirty)
  3123. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3124. buf->len,
  3125. root->fs_info->dirty_metadata_batch);
  3126. }
  3127. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3128. int flush_delayed)
  3129. {
  3130. /*
  3131. * looks as though older kernels can get into trouble with
  3132. * this code, they end up stuck in balance_dirty_pages forever
  3133. */
  3134. int ret;
  3135. if (current->flags & PF_MEMALLOC)
  3136. return;
  3137. if (flush_delayed)
  3138. btrfs_balance_delayed_items(root);
  3139. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3140. BTRFS_DIRTY_METADATA_THRESH);
  3141. if (ret > 0) {
  3142. balance_dirty_pages_ratelimited(
  3143. root->fs_info->btree_inode->i_mapping);
  3144. }
  3145. return;
  3146. }
  3147. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3148. {
  3149. __btrfs_btree_balance_dirty(root, 1);
  3150. }
  3151. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3152. {
  3153. __btrfs_btree_balance_dirty(root, 0);
  3154. }
  3155. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3156. {
  3157. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3158. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3159. }
  3160. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3161. int read_only)
  3162. {
  3163. /*
  3164. * Placeholder for checks
  3165. */
  3166. return 0;
  3167. }
  3168. static void btrfs_error_commit_super(struct btrfs_root *root)
  3169. {
  3170. mutex_lock(&root->fs_info->cleaner_mutex);
  3171. btrfs_run_delayed_iputs(root);
  3172. mutex_unlock(&root->fs_info->cleaner_mutex);
  3173. down_write(&root->fs_info->cleanup_work_sem);
  3174. up_write(&root->fs_info->cleanup_work_sem);
  3175. /* cleanup FS via transaction */
  3176. btrfs_cleanup_transaction(root);
  3177. }
  3178. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3179. struct btrfs_root *root)
  3180. {
  3181. struct btrfs_inode *btrfs_inode;
  3182. struct list_head splice;
  3183. INIT_LIST_HEAD(&splice);
  3184. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3185. spin_lock(&root->fs_info->ordered_extent_lock);
  3186. list_splice_init(&t->ordered_operations, &splice);
  3187. while (!list_empty(&splice)) {
  3188. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3189. ordered_operations);
  3190. list_del_init(&btrfs_inode->ordered_operations);
  3191. spin_unlock(&root->fs_info->ordered_extent_lock);
  3192. btrfs_invalidate_inodes(btrfs_inode->root);
  3193. spin_lock(&root->fs_info->ordered_extent_lock);
  3194. }
  3195. spin_unlock(&root->fs_info->ordered_extent_lock);
  3196. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3197. }
  3198. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3199. {
  3200. struct btrfs_ordered_extent *ordered;
  3201. spin_lock(&root->fs_info->ordered_extent_lock);
  3202. /*
  3203. * This will just short circuit the ordered completion stuff which will
  3204. * make sure the ordered extent gets properly cleaned up.
  3205. */
  3206. list_for_each_entry(ordered, &root->fs_info->ordered_extents,
  3207. root_extent_list)
  3208. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3209. spin_unlock(&root->fs_info->ordered_extent_lock);
  3210. }
  3211. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3212. struct btrfs_root *root)
  3213. {
  3214. struct rb_node *node;
  3215. struct btrfs_delayed_ref_root *delayed_refs;
  3216. struct btrfs_delayed_ref_node *ref;
  3217. int ret = 0;
  3218. delayed_refs = &trans->delayed_refs;
  3219. spin_lock(&delayed_refs->lock);
  3220. if (delayed_refs->num_entries == 0) {
  3221. spin_unlock(&delayed_refs->lock);
  3222. printk(KERN_INFO "delayed_refs has NO entry\n");
  3223. return ret;
  3224. }
  3225. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3226. struct btrfs_delayed_ref_head *head = NULL;
  3227. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3228. atomic_set(&ref->refs, 1);
  3229. if (btrfs_delayed_ref_is_head(ref)) {
  3230. head = btrfs_delayed_node_to_head(ref);
  3231. if (!mutex_trylock(&head->mutex)) {
  3232. atomic_inc(&ref->refs);
  3233. spin_unlock(&delayed_refs->lock);
  3234. /* Need to wait for the delayed ref to run */
  3235. mutex_lock(&head->mutex);
  3236. mutex_unlock(&head->mutex);
  3237. btrfs_put_delayed_ref(ref);
  3238. spin_lock(&delayed_refs->lock);
  3239. continue;
  3240. }
  3241. if (head->must_insert_reserved)
  3242. btrfs_pin_extent(root, ref->bytenr,
  3243. ref->num_bytes, 1);
  3244. btrfs_free_delayed_extent_op(head->extent_op);
  3245. delayed_refs->num_heads--;
  3246. if (list_empty(&head->cluster))
  3247. delayed_refs->num_heads_ready--;
  3248. list_del_init(&head->cluster);
  3249. }
  3250. ref->in_tree = 0;
  3251. rb_erase(&ref->rb_node, &delayed_refs->root);
  3252. delayed_refs->num_entries--;
  3253. if (head)
  3254. mutex_unlock(&head->mutex);
  3255. spin_unlock(&delayed_refs->lock);
  3256. btrfs_put_delayed_ref(ref);
  3257. cond_resched();
  3258. spin_lock(&delayed_refs->lock);
  3259. }
  3260. spin_unlock(&delayed_refs->lock);
  3261. return ret;
  3262. }
  3263. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3264. {
  3265. struct btrfs_pending_snapshot *snapshot;
  3266. struct list_head splice;
  3267. INIT_LIST_HEAD(&splice);
  3268. list_splice_init(&t->pending_snapshots, &splice);
  3269. while (!list_empty(&splice)) {
  3270. snapshot = list_entry(splice.next,
  3271. struct btrfs_pending_snapshot,
  3272. list);
  3273. snapshot->error = -ECANCELED;
  3274. list_del_init(&snapshot->list);
  3275. }
  3276. }
  3277. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3278. {
  3279. struct btrfs_inode *btrfs_inode;
  3280. struct list_head splice;
  3281. INIT_LIST_HEAD(&splice);
  3282. spin_lock(&root->delalloc_lock);
  3283. list_splice_init(&root->delalloc_inodes, &splice);
  3284. while (!list_empty(&splice)) {
  3285. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3286. delalloc_inodes);
  3287. list_del_init(&btrfs_inode->delalloc_inodes);
  3288. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3289. &btrfs_inode->runtime_flags);
  3290. spin_unlock(&root->delalloc_lock);
  3291. btrfs_invalidate_inodes(btrfs_inode->root);
  3292. spin_lock(&root->delalloc_lock);
  3293. }
  3294. spin_unlock(&root->delalloc_lock);
  3295. }
  3296. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3297. {
  3298. struct btrfs_root *root;
  3299. struct list_head splice;
  3300. INIT_LIST_HEAD(&splice);
  3301. spin_lock(&fs_info->delalloc_root_lock);
  3302. list_splice_init(&fs_info->delalloc_roots, &splice);
  3303. while (!list_empty(&splice)) {
  3304. root = list_first_entry(&splice, struct btrfs_root,
  3305. delalloc_root);
  3306. list_del_init(&root->delalloc_root);
  3307. root = btrfs_grab_fs_root(root);
  3308. BUG_ON(!root);
  3309. spin_unlock(&fs_info->delalloc_root_lock);
  3310. btrfs_destroy_delalloc_inodes(root);
  3311. btrfs_put_fs_root(root);
  3312. spin_lock(&fs_info->delalloc_root_lock);
  3313. }
  3314. spin_unlock(&fs_info->delalloc_root_lock);
  3315. }
  3316. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3317. struct extent_io_tree *dirty_pages,
  3318. int mark)
  3319. {
  3320. int ret;
  3321. struct extent_buffer *eb;
  3322. u64 start = 0;
  3323. u64 end;
  3324. while (1) {
  3325. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3326. mark, NULL);
  3327. if (ret)
  3328. break;
  3329. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3330. while (start <= end) {
  3331. eb = btrfs_find_tree_block(root, start,
  3332. root->leafsize);
  3333. start += root->leafsize;
  3334. if (!eb)
  3335. continue;
  3336. wait_on_extent_buffer_writeback(eb);
  3337. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3338. &eb->bflags))
  3339. clear_extent_buffer_dirty(eb);
  3340. free_extent_buffer_stale(eb);
  3341. }
  3342. }
  3343. return ret;
  3344. }
  3345. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3346. struct extent_io_tree *pinned_extents)
  3347. {
  3348. struct extent_io_tree *unpin;
  3349. u64 start;
  3350. u64 end;
  3351. int ret;
  3352. bool loop = true;
  3353. unpin = pinned_extents;
  3354. again:
  3355. while (1) {
  3356. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3357. EXTENT_DIRTY, NULL);
  3358. if (ret)
  3359. break;
  3360. /* opt_discard */
  3361. if (btrfs_test_opt(root, DISCARD))
  3362. ret = btrfs_error_discard_extent(root, start,
  3363. end + 1 - start,
  3364. NULL);
  3365. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3366. btrfs_error_unpin_extent_range(root, start, end);
  3367. cond_resched();
  3368. }
  3369. if (loop) {
  3370. if (unpin == &root->fs_info->freed_extents[0])
  3371. unpin = &root->fs_info->freed_extents[1];
  3372. else
  3373. unpin = &root->fs_info->freed_extents[0];
  3374. loop = false;
  3375. goto again;
  3376. }
  3377. return 0;
  3378. }
  3379. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3380. struct btrfs_root *root)
  3381. {
  3382. btrfs_destroy_delayed_refs(cur_trans, root);
  3383. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3384. cur_trans->dirty_pages.dirty_bytes);
  3385. /* FIXME: cleanup wait for commit */
  3386. cur_trans->in_commit = 1;
  3387. cur_trans->blocked = 1;
  3388. wake_up(&root->fs_info->transaction_blocked_wait);
  3389. btrfs_evict_pending_snapshots(cur_trans);
  3390. cur_trans->blocked = 0;
  3391. wake_up(&root->fs_info->transaction_wait);
  3392. cur_trans->commit_done = 1;
  3393. wake_up(&cur_trans->commit_wait);
  3394. btrfs_destroy_delayed_inodes(root);
  3395. btrfs_assert_delayed_root_empty(root);
  3396. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3397. EXTENT_DIRTY);
  3398. btrfs_destroy_pinned_extent(root,
  3399. root->fs_info->pinned_extents);
  3400. /*
  3401. memset(cur_trans, 0, sizeof(*cur_trans));
  3402. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3403. */
  3404. }
  3405. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3406. {
  3407. struct btrfs_transaction *t;
  3408. LIST_HEAD(list);
  3409. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3410. spin_lock(&root->fs_info->trans_lock);
  3411. list_splice_init(&root->fs_info->trans_list, &list);
  3412. root->fs_info->trans_no_join = 1;
  3413. spin_unlock(&root->fs_info->trans_lock);
  3414. while (!list_empty(&list)) {
  3415. t = list_entry(list.next, struct btrfs_transaction, list);
  3416. btrfs_destroy_ordered_operations(t, root);
  3417. btrfs_destroy_ordered_extents(root);
  3418. btrfs_destroy_delayed_refs(t, root);
  3419. /* FIXME: cleanup wait for commit */
  3420. t->in_commit = 1;
  3421. t->blocked = 1;
  3422. smp_mb();
  3423. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3424. wake_up(&root->fs_info->transaction_blocked_wait);
  3425. btrfs_evict_pending_snapshots(t);
  3426. t->blocked = 0;
  3427. smp_mb();
  3428. if (waitqueue_active(&root->fs_info->transaction_wait))
  3429. wake_up(&root->fs_info->transaction_wait);
  3430. t->commit_done = 1;
  3431. smp_mb();
  3432. if (waitqueue_active(&t->commit_wait))
  3433. wake_up(&t->commit_wait);
  3434. btrfs_destroy_delayed_inodes(root);
  3435. btrfs_assert_delayed_root_empty(root);
  3436. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3437. spin_lock(&root->fs_info->trans_lock);
  3438. root->fs_info->running_transaction = NULL;
  3439. spin_unlock(&root->fs_info->trans_lock);
  3440. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3441. EXTENT_DIRTY);
  3442. btrfs_destroy_pinned_extent(root,
  3443. root->fs_info->pinned_extents);
  3444. atomic_set(&t->use_count, 0);
  3445. list_del_init(&t->list);
  3446. memset(t, 0, sizeof(*t));
  3447. kmem_cache_free(btrfs_transaction_cachep, t);
  3448. }
  3449. spin_lock(&root->fs_info->trans_lock);
  3450. root->fs_info->trans_no_join = 0;
  3451. spin_unlock(&root->fs_info->trans_lock);
  3452. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3453. return 0;
  3454. }
  3455. static struct extent_io_ops btree_extent_io_ops = {
  3456. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3457. .readpage_io_failed_hook = btree_io_failed_hook,
  3458. .submit_bio_hook = btree_submit_bio_hook,
  3459. /* note we're sharing with inode.c for the merge bio hook */
  3460. .merge_bio_hook = btrfs_merge_bio_hook,
  3461. };