memblock.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318
  1. #include <linux/kernel.h>
  2. #include <linux/types.h>
  3. #include <linux/init.h>
  4. #include <linux/bitops.h>
  5. #include <linux/memblock.h>
  6. #include <linux/bootmem.h>
  7. #include <linux/mm.h>
  8. #include <linux/range.h>
  9. /* Check for already reserved areas */
  10. bool __init memblock_x86_check_reserved_size(u64 *addrp, u64 *sizep, u64 align)
  11. {
  12. struct memblock_region *r;
  13. u64 addr = *addrp, last;
  14. u64 size = *sizep;
  15. bool changed = false;
  16. again:
  17. last = addr + size;
  18. for_each_memblock(reserved, r) {
  19. if (last > r->base && addr < r->base) {
  20. size = r->base - addr;
  21. changed = true;
  22. goto again;
  23. }
  24. if (last > (r->base + r->size) && addr < (r->base + r->size)) {
  25. addr = round_up(r->base + r->size, align);
  26. size = last - addr;
  27. changed = true;
  28. goto again;
  29. }
  30. if (last <= (r->base + r->size) && addr >= r->base) {
  31. *sizep = 0;
  32. return false;
  33. }
  34. }
  35. if (changed) {
  36. *addrp = addr;
  37. *sizep = size;
  38. }
  39. return changed;
  40. }
  41. /*
  42. * Find next free range after start, and size is returned in *sizep
  43. */
  44. u64 __init memblock_x86_find_in_range_size(u64 start, u64 *sizep, u64 align)
  45. {
  46. struct memblock_region *r;
  47. for_each_memblock(memory, r) {
  48. u64 ei_start = r->base;
  49. u64 ei_last = ei_start + r->size;
  50. u64 addr;
  51. addr = round_up(ei_start, align);
  52. if (addr < start)
  53. addr = round_up(start, align);
  54. if (addr >= ei_last)
  55. continue;
  56. *sizep = ei_last - addr;
  57. while (memblock_x86_check_reserved_size(&addr, sizep, align))
  58. ;
  59. if (*sizep)
  60. return addr;
  61. }
  62. return 0;
  63. }
  64. static __init struct range *find_range_array(int count)
  65. {
  66. u64 end, size, mem;
  67. struct range *range;
  68. size = sizeof(struct range) * count;
  69. end = memblock.current_limit;
  70. mem = memblock_find_in_range(0, end, size, sizeof(struct range));
  71. if (!mem)
  72. panic("can not find more space for range array");
  73. /*
  74. * This range is tempoaray, so don't reserve it, it will not be
  75. * overlapped because We will not alloccate new buffer before
  76. * We discard this one
  77. */
  78. range = __va(mem);
  79. memset(range, 0, size);
  80. return range;
  81. }
  82. static void __init memblock_x86_subtract_reserved(struct range *range, int az)
  83. {
  84. u64 final_start, final_end;
  85. struct memblock_region *r;
  86. /* Take out region array itself at first*/
  87. memblock_free_reserved_regions();
  88. memblock_dbg("Subtract (%ld early reservations)\n", memblock.reserved.cnt);
  89. for_each_memblock(reserved, r) {
  90. memblock_dbg(" [%010llx-%010llx]\n", (u64)r->base, (u64)r->base + r->size - 1);
  91. final_start = PFN_DOWN(r->base);
  92. final_end = PFN_UP(r->base + r->size);
  93. if (final_start >= final_end)
  94. continue;
  95. subtract_range(range, az, final_start, final_end);
  96. }
  97. /* Put region array back ? */
  98. memblock_reserve_reserved_regions();
  99. }
  100. static int __init count_early_node_map(int nodeid)
  101. {
  102. int i, cnt = 0;
  103. for_each_mem_pfn_range(i, nodeid, NULL, NULL, NULL)
  104. cnt++;
  105. return cnt;
  106. }
  107. int __init __get_free_all_memory_range(struct range **rangep, int nodeid,
  108. unsigned long start_pfn, unsigned long end_pfn)
  109. {
  110. int count;
  111. struct range *range;
  112. int nr_range;
  113. count = (memblock.reserved.cnt + count_early_node_map(nodeid)) * 2;
  114. range = find_range_array(count);
  115. nr_range = 0;
  116. /*
  117. * Use early_node_map[] and memblock.reserved.region to get range array
  118. * at first
  119. */
  120. nr_range = add_from_early_node_map(range, count, nr_range, nodeid);
  121. subtract_range(range, count, 0, start_pfn);
  122. subtract_range(range, count, end_pfn, -1ULL);
  123. memblock_x86_subtract_reserved(range, count);
  124. nr_range = clean_sort_range(range, count);
  125. *rangep = range;
  126. return nr_range;
  127. }
  128. int __init get_free_all_memory_range(struct range **rangep, int nodeid)
  129. {
  130. unsigned long end_pfn = -1UL;
  131. #ifdef CONFIG_X86_32
  132. end_pfn = max_low_pfn;
  133. #endif
  134. return __get_free_all_memory_range(rangep, nodeid, 0, end_pfn);
  135. }
  136. static u64 __init __memblock_x86_memory_in_range(u64 addr, u64 limit, bool get_free)
  137. {
  138. int i, count;
  139. struct range *range;
  140. int nr_range;
  141. u64 final_start, final_end;
  142. u64 free_size;
  143. struct memblock_region *r;
  144. count = (memblock.reserved.cnt + memblock.memory.cnt) * 2;
  145. range = find_range_array(count);
  146. nr_range = 0;
  147. addr = PFN_UP(addr);
  148. limit = PFN_DOWN(limit);
  149. for_each_memblock(memory, r) {
  150. final_start = PFN_UP(r->base);
  151. final_end = PFN_DOWN(r->base + r->size);
  152. if (final_start >= final_end)
  153. continue;
  154. if (final_start >= limit || final_end <= addr)
  155. continue;
  156. nr_range = add_range(range, count, nr_range, final_start, final_end);
  157. }
  158. subtract_range(range, count, 0, addr);
  159. subtract_range(range, count, limit, -1ULL);
  160. /* Subtract memblock.reserved.region in range ? */
  161. if (!get_free)
  162. goto sort_and_count_them;
  163. for_each_memblock(reserved, r) {
  164. final_start = PFN_DOWN(r->base);
  165. final_end = PFN_UP(r->base + r->size);
  166. if (final_start >= final_end)
  167. continue;
  168. if (final_start >= limit || final_end <= addr)
  169. continue;
  170. subtract_range(range, count, final_start, final_end);
  171. }
  172. sort_and_count_them:
  173. nr_range = clean_sort_range(range, count);
  174. free_size = 0;
  175. for (i = 0; i < nr_range; i++)
  176. free_size += range[i].end - range[i].start;
  177. return free_size << PAGE_SHIFT;
  178. }
  179. u64 __init memblock_x86_free_memory_in_range(u64 addr, u64 limit)
  180. {
  181. return __memblock_x86_memory_in_range(addr, limit, true);
  182. }
  183. u64 __init memblock_x86_memory_in_range(u64 addr, u64 limit)
  184. {
  185. return __memblock_x86_memory_in_range(addr, limit, false);
  186. }
  187. void __init memblock_x86_reserve_range(u64 start, u64 end, char *name)
  188. {
  189. if (start == end)
  190. return;
  191. if (WARN_ONCE(start > end, "memblock_x86_reserve_range: wrong range [%#llx, %#llx)\n", start, end))
  192. return;
  193. memblock_dbg(" memblock_x86_reserve_range: [%#010llx-%#010llx] %16s\n", start, end - 1, name);
  194. memblock_reserve(start, end - start);
  195. }
  196. void __init memblock_x86_free_range(u64 start, u64 end)
  197. {
  198. if (start == end)
  199. return;
  200. if (WARN_ONCE(start > end, "memblock_x86_free_range: wrong range [%#llx, %#llx)\n", start, end))
  201. return;
  202. memblock_dbg(" memblock_x86_free_range: [%#010llx-%#010llx]\n", start, end - 1);
  203. memblock_free(start, end - start);
  204. }
  205. /*
  206. * Finds an active region in the address range from start_pfn to last_pfn and
  207. * returns its range in ei_startpfn and ei_endpfn for the memblock entry.
  208. */
  209. static int __init memblock_x86_find_active_region(const struct memblock_region *ei,
  210. unsigned long start_pfn,
  211. unsigned long last_pfn,
  212. unsigned long *ei_startpfn,
  213. unsigned long *ei_endpfn)
  214. {
  215. u64 align = PAGE_SIZE;
  216. *ei_startpfn = round_up(ei->base, align) >> PAGE_SHIFT;
  217. *ei_endpfn = round_down(ei->base + ei->size, align) >> PAGE_SHIFT;
  218. /* Skip map entries smaller than a page */
  219. if (*ei_startpfn >= *ei_endpfn)
  220. return 0;
  221. /* Skip if map is outside the node */
  222. if (*ei_endpfn <= start_pfn || *ei_startpfn >= last_pfn)
  223. return 0;
  224. /* Check for overlaps */
  225. if (*ei_startpfn < start_pfn)
  226. *ei_startpfn = start_pfn;
  227. if (*ei_endpfn > last_pfn)
  228. *ei_endpfn = last_pfn;
  229. return 1;
  230. }
  231. /* Walk the memblock.memory map and register active regions within a node */
  232. void __init memblock_x86_register_active_regions(int nid, unsigned long start_pfn,
  233. unsigned long last_pfn)
  234. {
  235. unsigned long ei_startpfn;
  236. unsigned long ei_endpfn;
  237. struct memblock_region *r;
  238. for_each_memblock(memory, r)
  239. if (memblock_x86_find_active_region(r, start_pfn, last_pfn,
  240. &ei_startpfn, &ei_endpfn))
  241. add_active_range(nid, ei_startpfn, ei_endpfn);
  242. }
  243. /*
  244. * Find the hole size (in bytes) in the memory range.
  245. * @start: starting address of the memory range to scan
  246. * @end: ending address of the memory range to scan
  247. */
  248. u64 __init memblock_x86_hole_size(u64 start, u64 end)
  249. {
  250. unsigned long start_pfn = start >> PAGE_SHIFT;
  251. unsigned long last_pfn = end >> PAGE_SHIFT;
  252. unsigned long ei_startpfn, ei_endpfn, ram = 0;
  253. struct memblock_region *r;
  254. for_each_memblock(memory, r)
  255. if (memblock_x86_find_active_region(r, start_pfn, last_pfn,
  256. &ei_startpfn, &ei_endpfn))
  257. ram += ei_endpfn - ei_startpfn;
  258. return end - start - ((u64)ram << PAGE_SHIFT);
  259. }