spi.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067
  1. /*
  2. * spi.c - SPI init/core code
  3. *
  4. * Copyright (C) 2005 David Brownell
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/cache.h>
  24. #include <linux/mutex.h>
  25. #include <linux/of_device.h>
  26. #include <linux/slab.h>
  27. #include <linux/mod_devicetable.h>
  28. #include <linux/spi/spi.h>
  29. #include <linux/of_spi.h>
  30. static void spidev_release(struct device *dev)
  31. {
  32. struct spi_device *spi = to_spi_device(dev);
  33. /* spi masters may cleanup for released devices */
  34. if (spi->master->cleanup)
  35. spi->master->cleanup(spi);
  36. spi_master_put(spi->master);
  37. kfree(spi);
  38. }
  39. static ssize_t
  40. modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  41. {
  42. const struct spi_device *spi = to_spi_device(dev);
  43. return sprintf(buf, "%s\n", spi->modalias);
  44. }
  45. static struct device_attribute spi_dev_attrs[] = {
  46. __ATTR_RO(modalias),
  47. __ATTR_NULL,
  48. };
  49. /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  50. * and the sysfs version makes coldplug work too.
  51. */
  52. static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  53. const struct spi_device *sdev)
  54. {
  55. while (id->name[0]) {
  56. if (!strcmp(sdev->modalias, id->name))
  57. return id;
  58. id++;
  59. }
  60. return NULL;
  61. }
  62. const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  63. {
  64. const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  65. return spi_match_id(sdrv->id_table, sdev);
  66. }
  67. EXPORT_SYMBOL_GPL(spi_get_device_id);
  68. static int spi_match_device(struct device *dev, struct device_driver *drv)
  69. {
  70. const struct spi_device *spi = to_spi_device(dev);
  71. const struct spi_driver *sdrv = to_spi_driver(drv);
  72. /* Attempt an OF style match */
  73. if (of_driver_match_device(dev, drv))
  74. return 1;
  75. if (sdrv->id_table)
  76. return !!spi_match_id(sdrv->id_table, spi);
  77. return strcmp(spi->modalias, drv->name) == 0;
  78. }
  79. static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  80. {
  81. const struct spi_device *spi = to_spi_device(dev);
  82. add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
  83. return 0;
  84. }
  85. #ifdef CONFIG_PM
  86. static int spi_suspend(struct device *dev, pm_message_t message)
  87. {
  88. int value = 0;
  89. struct spi_driver *drv = to_spi_driver(dev->driver);
  90. /* suspend will stop irqs and dma; no more i/o */
  91. if (drv) {
  92. if (drv->suspend)
  93. value = drv->suspend(to_spi_device(dev), message);
  94. else
  95. dev_dbg(dev, "... can't suspend\n");
  96. }
  97. return value;
  98. }
  99. static int spi_resume(struct device *dev)
  100. {
  101. int value = 0;
  102. struct spi_driver *drv = to_spi_driver(dev->driver);
  103. /* resume may restart the i/o queue */
  104. if (drv) {
  105. if (drv->resume)
  106. value = drv->resume(to_spi_device(dev));
  107. else
  108. dev_dbg(dev, "... can't resume\n");
  109. }
  110. return value;
  111. }
  112. #else
  113. #define spi_suspend NULL
  114. #define spi_resume NULL
  115. #endif
  116. struct bus_type spi_bus_type = {
  117. .name = "spi",
  118. .dev_attrs = spi_dev_attrs,
  119. .match = spi_match_device,
  120. .uevent = spi_uevent,
  121. .suspend = spi_suspend,
  122. .resume = spi_resume,
  123. };
  124. EXPORT_SYMBOL_GPL(spi_bus_type);
  125. static int spi_drv_probe(struct device *dev)
  126. {
  127. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  128. return sdrv->probe(to_spi_device(dev));
  129. }
  130. static int spi_drv_remove(struct device *dev)
  131. {
  132. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  133. return sdrv->remove(to_spi_device(dev));
  134. }
  135. static void spi_drv_shutdown(struct device *dev)
  136. {
  137. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  138. sdrv->shutdown(to_spi_device(dev));
  139. }
  140. /**
  141. * spi_register_driver - register a SPI driver
  142. * @sdrv: the driver to register
  143. * Context: can sleep
  144. */
  145. int spi_register_driver(struct spi_driver *sdrv)
  146. {
  147. sdrv->driver.bus = &spi_bus_type;
  148. if (sdrv->probe)
  149. sdrv->driver.probe = spi_drv_probe;
  150. if (sdrv->remove)
  151. sdrv->driver.remove = spi_drv_remove;
  152. if (sdrv->shutdown)
  153. sdrv->driver.shutdown = spi_drv_shutdown;
  154. return driver_register(&sdrv->driver);
  155. }
  156. EXPORT_SYMBOL_GPL(spi_register_driver);
  157. /*-------------------------------------------------------------------------*/
  158. /* SPI devices should normally not be created by SPI device drivers; that
  159. * would make them board-specific. Similarly with SPI master drivers.
  160. * Device registration normally goes into like arch/.../mach.../board-YYY.c
  161. * with other readonly (flashable) information about mainboard devices.
  162. */
  163. struct boardinfo {
  164. struct list_head list;
  165. struct spi_board_info board_info;
  166. };
  167. static LIST_HEAD(board_list);
  168. static LIST_HEAD(spi_master_list);
  169. /*
  170. * Used to protect add/del opertion for board_info list and
  171. * spi_master list, and their matching process
  172. */
  173. static DEFINE_MUTEX(board_lock);
  174. /**
  175. * spi_alloc_device - Allocate a new SPI device
  176. * @master: Controller to which device is connected
  177. * Context: can sleep
  178. *
  179. * Allows a driver to allocate and initialize a spi_device without
  180. * registering it immediately. This allows a driver to directly
  181. * fill the spi_device with device parameters before calling
  182. * spi_add_device() on it.
  183. *
  184. * Caller is responsible to call spi_add_device() on the returned
  185. * spi_device structure to add it to the SPI master. If the caller
  186. * needs to discard the spi_device without adding it, then it should
  187. * call spi_dev_put() on it.
  188. *
  189. * Returns a pointer to the new device, or NULL.
  190. */
  191. struct spi_device *spi_alloc_device(struct spi_master *master)
  192. {
  193. struct spi_device *spi;
  194. struct device *dev = master->dev.parent;
  195. if (!spi_master_get(master))
  196. return NULL;
  197. spi = kzalloc(sizeof *spi, GFP_KERNEL);
  198. if (!spi) {
  199. dev_err(dev, "cannot alloc spi_device\n");
  200. spi_master_put(master);
  201. return NULL;
  202. }
  203. spi->master = master;
  204. spi->dev.parent = dev;
  205. spi->dev.bus = &spi_bus_type;
  206. spi->dev.release = spidev_release;
  207. device_initialize(&spi->dev);
  208. return spi;
  209. }
  210. EXPORT_SYMBOL_GPL(spi_alloc_device);
  211. /**
  212. * spi_add_device - Add spi_device allocated with spi_alloc_device
  213. * @spi: spi_device to register
  214. *
  215. * Companion function to spi_alloc_device. Devices allocated with
  216. * spi_alloc_device can be added onto the spi bus with this function.
  217. *
  218. * Returns 0 on success; negative errno on failure
  219. */
  220. int spi_add_device(struct spi_device *spi)
  221. {
  222. static DEFINE_MUTEX(spi_add_lock);
  223. struct device *dev = spi->master->dev.parent;
  224. struct device *d;
  225. int status;
  226. /* Chipselects are numbered 0..max; validate. */
  227. if (spi->chip_select >= spi->master->num_chipselect) {
  228. dev_err(dev, "cs%d >= max %d\n",
  229. spi->chip_select,
  230. spi->master->num_chipselect);
  231. return -EINVAL;
  232. }
  233. /* Set the bus ID string */
  234. dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
  235. spi->chip_select);
  236. /* We need to make sure there's no other device with this
  237. * chipselect **BEFORE** we call setup(), else we'll trash
  238. * its configuration. Lock against concurrent add() calls.
  239. */
  240. mutex_lock(&spi_add_lock);
  241. d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
  242. if (d != NULL) {
  243. dev_err(dev, "chipselect %d already in use\n",
  244. spi->chip_select);
  245. put_device(d);
  246. status = -EBUSY;
  247. goto done;
  248. }
  249. /* Drivers may modify this initial i/o setup, but will
  250. * normally rely on the device being setup. Devices
  251. * using SPI_CS_HIGH can't coexist well otherwise...
  252. */
  253. status = spi_setup(spi);
  254. if (status < 0) {
  255. dev_err(dev, "can't setup %s, status %d\n",
  256. dev_name(&spi->dev), status);
  257. goto done;
  258. }
  259. /* Device may be bound to an active driver when this returns */
  260. status = device_add(&spi->dev);
  261. if (status < 0)
  262. dev_err(dev, "can't add %s, status %d\n",
  263. dev_name(&spi->dev), status);
  264. else
  265. dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
  266. done:
  267. mutex_unlock(&spi_add_lock);
  268. return status;
  269. }
  270. EXPORT_SYMBOL_GPL(spi_add_device);
  271. /**
  272. * spi_new_device - instantiate one new SPI device
  273. * @master: Controller to which device is connected
  274. * @chip: Describes the SPI device
  275. * Context: can sleep
  276. *
  277. * On typical mainboards, this is purely internal; and it's not needed
  278. * after board init creates the hard-wired devices. Some development
  279. * platforms may not be able to use spi_register_board_info though, and
  280. * this is exported so that for example a USB or parport based adapter
  281. * driver could add devices (which it would learn about out-of-band).
  282. *
  283. * Returns the new device, or NULL.
  284. */
  285. struct spi_device *spi_new_device(struct spi_master *master,
  286. struct spi_board_info *chip)
  287. {
  288. struct spi_device *proxy;
  289. int status;
  290. /* NOTE: caller did any chip->bus_num checks necessary.
  291. *
  292. * Also, unless we change the return value convention to use
  293. * error-or-pointer (not NULL-or-pointer), troubleshootability
  294. * suggests syslogged diagnostics are best here (ugh).
  295. */
  296. proxy = spi_alloc_device(master);
  297. if (!proxy)
  298. return NULL;
  299. WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
  300. proxy->chip_select = chip->chip_select;
  301. proxy->max_speed_hz = chip->max_speed_hz;
  302. proxy->mode = chip->mode;
  303. proxy->irq = chip->irq;
  304. strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
  305. proxy->dev.platform_data = (void *) chip->platform_data;
  306. proxy->controller_data = chip->controller_data;
  307. proxy->controller_state = NULL;
  308. status = spi_add_device(proxy);
  309. if (status < 0) {
  310. spi_dev_put(proxy);
  311. return NULL;
  312. }
  313. return proxy;
  314. }
  315. EXPORT_SYMBOL_GPL(spi_new_device);
  316. static void spi_match_master_to_boardinfo(struct spi_master *master,
  317. struct spi_board_info *bi)
  318. {
  319. struct spi_device *dev;
  320. if (master->bus_num != bi->bus_num)
  321. return;
  322. dev = spi_new_device(master, bi);
  323. if (!dev)
  324. dev_err(master->dev.parent, "can't create new device for %s\n",
  325. bi->modalias);
  326. }
  327. /**
  328. * spi_register_board_info - register SPI devices for a given board
  329. * @info: array of chip descriptors
  330. * @n: how many descriptors are provided
  331. * Context: can sleep
  332. *
  333. * Board-specific early init code calls this (probably during arch_initcall)
  334. * with segments of the SPI device table. Any device nodes are created later,
  335. * after the relevant parent SPI controller (bus_num) is defined. We keep
  336. * this table of devices forever, so that reloading a controller driver will
  337. * not make Linux forget about these hard-wired devices.
  338. *
  339. * Other code can also call this, e.g. a particular add-on board might provide
  340. * SPI devices through its expansion connector, so code initializing that board
  341. * would naturally declare its SPI devices.
  342. *
  343. * The board info passed can safely be __initdata ... but be careful of
  344. * any embedded pointers (platform_data, etc), they're copied as-is.
  345. */
  346. int __init
  347. spi_register_board_info(struct spi_board_info const *info, unsigned n)
  348. {
  349. struct boardinfo *bi;
  350. int i;
  351. bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
  352. if (!bi)
  353. return -ENOMEM;
  354. for (i = 0; i < n; i++, bi++, info++) {
  355. struct spi_master *master;
  356. memcpy(&bi->board_info, info, sizeof(*info));
  357. mutex_lock(&board_lock);
  358. list_add_tail(&bi->list, &board_list);
  359. list_for_each_entry(master, &spi_master_list, list)
  360. spi_match_master_to_boardinfo(master, &bi->board_info);
  361. mutex_unlock(&board_lock);
  362. }
  363. return 0;
  364. }
  365. /*-------------------------------------------------------------------------*/
  366. static void spi_master_release(struct device *dev)
  367. {
  368. struct spi_master *master;
  369. master = container_of(dev, struct spi_master, dev);
  370. kfree(master);
  371. }
  372. static struct class spi_master_class = {
  373. .name = "spi_master",
  374. .owner = THIS_MODULE,
  375. .dev_release = spi_master_release,
  376. };
  377. /**
  378. * spi_alloc_master - allocate SPI master controller
  379. * @dev: the controller, possibly using the platform_bus
  380. * @size: how much zeroed driver-private data to allocate; the pointer to this
  381. * memory is in the driver_data field of the returned device,
  382. * accessible with spi_master_get_devdata().
  383. * Context: can sleep
  384. *
  385. * This call is used only by SPI master controller drivers, which are the
  386. * only ones directly touching chip registers. It's how they allocate
  387. * an spi_master structure, prior to calling spi_register_master().
  388. *
  389. * This must be called from context that can sleep. It returns the SPI
  390. * master structure on success, else NULL.
  391. *
  392. * The caller is responsible for assigning the bus number and initializing
  393. * the master's methods before calling spi_register_master(); and (after errors
  394. * adding the device) calling spi_master_put() to prevent a memory leak.
  395. */
  396. struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
  397. {
  398. struct spi_master *master;
  399. if (!dev)
  400. return NULL;
  401. master = kzalloc(size + sizeof *master, GFP_KERNEL);
  402. if (!master)
  403. return NULL;
  404. device_initialize(&master->dev);
  405. master->dev.class = &spi_master_class;
  406. master->dev.parent = get_device(dev);
  407. spi_master_set_devdata(master, &master[1]);
  408. return master;
  409. }
  410. EXPORT_SYMBOL_GPL(spi_alloc_master);
  411. /**
  412. * spi_register_master - register SPI master controller
  413. * @master: initialized master, originally from spi_alloc_master()
  414. * Context: can sleep
  415. *
  416. * SPI master controllers connect to their drivers using some non-SPI bus,
  417. * such as the platform bus. The final stage of probe() in that code
  418. * includes calling spi_register_master() to hook up to this SPI bus glue.
  419. *
  420. * SPI controllers use board specific (often SOC specific) bus numbers,
  421. * and board-specific addressing for SPI devices combines those numbers
  422. * with chip select numbers. Since SPI does not directly support dynamic
  423. * device identification, boards need configuration tables telling which
  424. * chip is at which address.
  425. *
  426. * This must be called from context that can sleep. It returns zero on
  427. * success, else a negative error code (dropping the master's refcount).
  428. * After a successful return, the caller is responsible for calling
  429. * spi_unregister_master().
  430. */
  431. int spi_register_master(struct spi_master *master)
  432. {
  433. static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
  434. struct device *dev = master->dev.parent;
  435. struct boardinfo *bi;
  436. int status = -ENODEV;
  437. int dynamic = 0;
  438. if (!dev)
  439. return -ENODEV;
  440. /* even if it's just one always-selected device, there must
  441. * be at least one chipselect
  442. */
  443. if (master->num_chipselect == 0)
  444. return -EINVAL;
  445. /* convention: dynamically assigned bus IDs count down from the max */
  446. if (master->bus_num < 0) {
  447. /* FIXME switch to an IDR based scheme, something like
  448. * I2C now uses, so we can't run out of "dynamic" IDs
  449. */
  450. master->bus_num = atomic_dec_return(&dyn_bus_id);
  451. dynamic = 1;
  452. }
  453. spin_lock_init(&master->bus_lock_spinlock);
  454. mutex_init(&master->bus_lock_mutex);
  455. master->bus_lock_flag = 0;
  456. /* register the device, then userspace will see it.
  457. * registration fails if the bus ID is in use.
  458. */
  459. dev_set_name(&master->dev, "spi%u", master->bus_num);
  460. status = device_add(&master->dev);
  461. if (status < 0)
  462. goto done;
  463. dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
  464. dynamic ? " (dynamic)" : "");
  465. mutex_lock(&board_lock);
  466. list_add_tail(&master->list, &spi_master_list);
  467. list_for_each_entry(bi, &board_list, list)
  468. spi_match_master_to_boardinfo(master, &bi->board_info);
  469. mutex_unlock(&board_lock);
  470. status = 0;
  471. /* Register devices from the device tree */
  472. of_register_spi_devices(master);
  473. done:
  474. return status;
  475. }
  476. EXPORT_SYMBOL_GPL(spi_register_master);
  477. static int __unregister(struct device *dev, void *null)
  478. {
  479. spi_unregister_device(to_spi_device(dev));
  480. return 0;
  481. }
  482. /**
  483. * spi_unregister_master - unregister SPI master controller
  484. * @master: the master being unregistered
  485. * Context: can sleep
  486. *
  487. * This call is used only by SPI master controller drivers, which are the
  488. * only ones directly touching chip registers.
  489. *
  490. * This must be called from context that can sleep.
  491. */
  492. void spi_unregister_master(struct spi_master *master)
  493. {
  494. int dummy;
  495. mutex_lock(&board_lock);
  496. list_del(&master->list);
  497. mutex_unlock(&board_lock);
  498. dummy = device_for_each_child(master->dev.parent, &master->dev,
  499. __unregister);
  500. device_unregister(&master->dev);
  501. }
  502. EXPORT_SYMBOL_GPL(spi_unregister_master);
  503. static int __spi_master_match(struct device *dev, void *data)
  504. {
  505. struct spi_master *m;
  506. u16 *bus_num = data;
  507. m = container_of(dev, struct spi_master, dev);
  508. return m->bus_num == *bus_num;
  509. }
  510. /**
  511. * spi_busnum_to_master - look up master associated with bus_num
  512. * @bus_num: the master's bus number
  513. * Context: can sleep
  514. *
  515. * This call may be used with devices that are registered after
  516. * arch init time. It returns a refcounted pointer to the relevant
  517. * spi_master (which the caller must release), or NULL if there is
  518. * no such master registered.
  519. */
  520. struct spi_master *spi_busnum_to_master(u16 bus_num)
  521. {
  522. struct device *dev;
  523. struct spi_master *master = NULL;
  524. dev = class_find_device(&spi_master_class, NULL, &bus_num,
  525. __spi_master_match);
  526. if (dev)
  527. master = container_of(dev, struct spi_master, dev);
  528. /* reference got in class_find_device */
  529. return master;
  530. }
  531. EXPORT_SYMBOL_GPL(spi_busnum_to_master);
  532. /*-------------------------------------------------------------------------*/
  533. /* Core methods for SPI master protocol drivers. Some of the
  534. * other core methods are currently defined as inline functions.
  535. */
  536. /**
  537. * spi_setup - setup SPI mode and clock rate
  538. * @spi: the device whose settings are being modified
  539. * Context: can sleep, and no requests are queued to the device
  540. *
  541. * SPI protocol drivers may need to update the transfer mode if the
  542. * device doesn't work with its default. They may likewise need
  543. * to update clock rates or word sizes from initial values. This function
  544. * changes those settings, and must be called from a context that can sleep.
  545. * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
  546. * effect the next time the device is selected and data is transferred to
  547. * or from it. When this function returns, the spi device is deselected.
  548. *
  549. * Note that this call will fail if the protocol driver specifies an option
  550. * that the underlying controller or its driver does not support. For
  551. * example, not all hardware supports wire transfers using nine bit words,
  552. * LSB-first wire encoding, or active-high chipselects.
  553. */
  554. int spi_setup(struct spi_device *spi)
  555. {
  556. unsigned bad_bits;
  557. int status;
  558. /* help drivers fail *cleanly* when they need options
  559. * that aren't supported with their current master
  560. */
  561. bad_bits = spi->mode & ~spi->master->mode_bits;
  562. if (bad_bits) {
  563. dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
  564. bad_bits);
  565. return -EINVAL;
  566. }
  567. if (!spi->bits_per_word)
  568. spi->bits_per_word = 8;
  569. status = spi->master->setup(spi);
  570. dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
  571. "%u bits/w, %u Hz max --> %d\n",
  572. (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
  573. (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
  574. (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
  575. (spi->mode & SPI_3WIRE) ? "3wire, " : "",
  576. (spi->mode & SPI_LOOP) ? "loopback, " : "",
  577. spi->bits_per_word, spi->max_speed_hz,
  578. status);
  579. return status;
  580. }
  581. EXPORT_SYMBOL_GPL(spi_setup);
  582. static int __spi_async(struct spi_device *spi, struct spi_message *message)
  583. {
  584. struct spi_master *master = spi->master;
  585. /* Half-duplex links include original MicroWire, and ones with
  586. * only one data pin like SPI_3WIRE (switches direction) or where
  587. * either MOSI or MISO is missing. They can also be caused by
  588. * software limitations.
  589. */
  590. if ((master->flags & SPI_MASTER_HALF_DUPLEX)
  591. || (spi->mode & SPI_3WIRE)) {
  592. struct spi_transfer *xfer;
  593. unsigned flags = master->flags;
  594. list_for_each_entry(xfer, &message->transfers, transfer_list) {
  595. if (xfer->rx_buf && xfer->tx_buf)
  596. return -EINVAL;
  597. if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
  598. return -EINVAL;
  599. if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
  600. return -EINVAL;
  601. }
  602. }
  603. message->spi = spi;
  604. message->status = -EINPROGRESS;
  605. return master->transfer(spi, message);
  606. }
  607. /**
  608. * spi_async - asynchronous SPI transfer
  609. * @spi: device with which data will be exchanged
  610. * @message: describes the data transfers, including completion callback
  611. * Context: any (irqs may be blocked, etc)
  612. *
  613. * This call may be used in_irq and other contexts which can't sleep,
  614. * as well as from task contexts which can sleep.
  615. *
  616. * The completion callback is invoked in a context which can't sleep.
  617. * Before that invocation, the value of message->status is undefined.
  618. * When the callback is issued, message->status holds either zero (to
  619. * indicate complete success) or a negative error code. After that
  620. * callback returns, the driver which issued the transfer request may
  621. * deallocate the associated memory; it's no longer in use by any SPI
  622. * core or controller driver code.
  623. *
  624. * Note that although all messages to a spi_device are handled in
  625. * FIFO order, messages may go to different devices in other orders.
  626. * Some device might be higher priority, or have various "hard" access
  627. * time requirements, for example.
  628. *
  629. * On detection of any fault during the transfer, processing of
  630. * the entire message is aborted, and the device is deselected.
  631. * Until returning from the associated message completion callback,
  632. * no other spi_message queued to that device will be processed.
  633. * (This rule applies equally to all the synchronous transfer calls,
  634. * which are wrappers around this core asynchronous primitive.)
  635. */
  636. int spi_async(struct spi_device *spi, struct spi_message *message)
  637. {
  638. struct spi_master *master = spi->master;
  639. int ret;
  640. unsigned long flags;
  641. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  642. if (master->bus_lock_flag)
  643. ret = -EBUSY;
  644. else
  645. ret = __spi_async(spi, message);
  646. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  647. return ret;
  648. }
  649. EXPORT_SYMBOL_GPL(spi_async);
  650. /**
  651. * spi_async_locked - version of spi_async with exclusive bus usage
  652. * @spi: device with which data will be exchanged
  653. * @message: describes the data transfers, including completion callback
  654. * Context: any (irqs may be blocked, etc)
  655. *
  656. * This call may be used in_irq and other contexts which can't sleep,
  657. * as well as from task contexts which can sleep.
  658. *
  659. * The completion callback is invoked in a context which can't sleep.
  660. * Before that invocation, the value of message->status is undefined.
  661. * When the callback is issued, message->status holds either zero (to
  662. * indicate complete success) or a negative error code. After that
  663. * callback returns, the driver which issued the transfer request may
  664. * deallocate the associated memory; it's no longer in use by any SPI
  665. * core or controller driver code.
  666. *
  667. * Note that although all messages to a spi_device are handled in
  668. * FIFO order, messages may go to different devices in other orders.
  669. * Some device might be higher priority, or have various "hard" access
  670. * time requirements, for example.
  671. *
  672. * On detection of any fault during the transfer, processing of
  673. * the entire message is aborted, and the device is deselected.
  674. * Until returning from the associated message completion callback,
  675. * no other spi_message queued to that device will be processed.
  676. * (This rule applies equally to all the synchronous transfer calls,
  677. * which are wrappers around this core asynchronous primitive.)
  678. */
  679. int spi_async_locked(struct spi_device *spi, struct spi_message *message)
  680. {
  681. struct spi_master *master = spi->master;
  682. int ret;
  683. unsigned long flags;
  684. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  685. ret = __spi_async(spi, message);
  686. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  687. return ret;
  688. }
  689. EXPORT_SYMBOL_GPL(spi_async_locked);
  690. /*-------------------------------------------------------------------------*/
  691. /* Utility methods for SPI master protocol drivers, layered on
  692. * top of the core. Some other utility methods are defined as
  693. * inline functions.
  694. */
  695. static void spi_complete(void *arg)
  696. {
  697. complete(arg);
  698. }
  699. static int __spi_sync(struct spi_device *spi, struct spi_message *message,
  700. int bus_locked)
  701. {
  702. DECLARE_COMPLETION_ONSTACK(done);
  703. int status;
  704. struct spi_master *master = spi->master;
  705. message->complete = spi_complete;
  706. message->context = &done;
  707. if (!bus_locked)
  708. mutex_lock(&master->bus_lock_mutex);
  709. status = spi_async_locked(spi, message);
  710. if (!bus_locked)
  711. mutex_unlock(&master->bus_lock_mutex);
  712. if (status == 0) {
  713. wait_for_completion(&done);
  714. status = message->status;
  715. }
  716. message->context = NULL;
  717. return status;
  718. }
  719. /**
  720. * spi_sync - blocking/synchronous SPI data transfers
  721. * @spi: device with which data will be exchanged
  722. * @message: describes the data transfers
  723. * Context: can sleep
  724. *
  725. * This call may only be used from a context that may sleep. The sleep
  726. * is non-interruptible, and has no timeout. Low-overhead controller
  727. * drivers may DMA directly into and out of the message buffers.
  728. *
  729. * Note that the SPI device's chip select is active during the message,
  730. * and then is normally disabled between messages. Drivers for some
  731. * frequently-used devices may want to minimize costs of selecting a chip,
  732. * by leaving it selected in anticipation that the next message will go
  733. * to the same chip. (That may increase power usage.)
  734. *
  735. * Also, the caller is guaranteeing that the memory associated with the
  736. * message will not be freed before this call returns.
  737. *
  738. * It returns zero on success, else a negative error code.
  739. */
  740. int spi_sync(struct spi_device *spi, struct spi_message *message)
  741. {
  742. return __spi_sync(spi, message, 0);
  743. }
  744. EXPORT_SYMBOL_GPL(spi_sync);
  745. /**
  746. * spi_sync_locked - version of spi_sync with exclusive bus usage
  747. * @spi: device with which data will be exchanged
  748. * @message: describes the data transfers
  749. * Context: can sleep
  750. *
  751. * This call may only be used from a context that may sleep. The sleep
  752. * is non-interruptible, and has no timeout. Low-overhead controller
  753. * drivers may DMA directly into and out of the message buffers.
  754. *
  755. * This call should be used by drivers that require exclusive access to the
  756. * SPI bus. It has to be preceeded by a spi_bus_lock call. The SPI bus must
  757. * be released by a spi_bus_unlock call when the exclusive access is over.
  758. *
  759. * It returns zero on success, else a negative error code.
  760. */
  761. int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
  762. {
  763. return __spi_sync(spi, message, 1);
  764. }
  765. EXPORT_SYMBOL_GPL(spi_sync_locked);
  766. /**
  767. * spi_bus_lock - obtain a lock for exclusive SPI bus usage
  768. * @master: SPI bus master that should be locked for exclusive bus access
  769. * Context: can sleep
  770. *
  771. * This call may only be used from a context that may sleep. The sleep
  772. * is non-interruptible, and has no timeout.
  773. *
  774. * This call should be used by drivers that require exclusive access to the
  775. * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
  776. * exclusive access is over. Data transfer must be done by spi_sync_locked
  777. * and spi_async_locked calls when the SPI bus lock is held.
  778. *
  779. * It returns zero on success, else a negative error code.
  780. */
  781. int spi_bus_lock(struct spi_master *master)
  782. {
  783. unsigned long flags;
  784. mutex_lock(&master->bus_lock_mutex);
  785. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  786. master->bus_lock_flag = 1;
  787. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  788. /* mutex remains locked until spi_bus_unlock is called */
  789. return 0;
  790. }
  791. EXPORT_SYMBOL_GPL(spi_bus_lock);
  792. /**
  793. * spi_bus_unlock - release the lock for exclusive SPI bus usage
  794. * @master: SPI bus master that was locked for exclusive bus access
  795. * Context: can sleep
  796. *
  797. * This call may only be used from a context that may sleep. The sleep
  798. * is non-interruptible, and has no timeout.
  799. *
  800. * This call releases an SPI bus lock previously obtained by an spi_bus_lock
  801. * call.
  802. *
  803. * It returns zero on success, else a negative error code.
  804. */
  805. int spi_bus_unlock(struct spi_master *master)
  806. {
  807. master->bus_lock_flag = 0;
  808. mutex_unlock(&master->bus_lock_mutex);
  809. return 0;
  810. }
  811. EXPORT_SYMBOL_GPL(spi_bus_unlock);
  812. /* portable code must never pass more than 32 bytes */
  813. #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
  814. static u8 *buf;
  815. /**
  816. * spi_write_then_read - SPI synchronous write followed by read
  817. * @spi: device with which data will be exchanged
  818. * @txbuf: data to be written (need not be dma-safe)
  819. * @n_tx: size of txbuf, in bytes
  820. * @rxbuf: buffer into which data will be read (need not be dma-safe)
  821. * @n_rx: size of rxbuf, in bytes
  822. * Context: can sleep
  823. *
  824. * This performs a half duplex MicroWire style transaction with the
  825. * device, sending txbuf and then reading rxbuf. The return value
  826. * is zero for success, else a negative errno status code.
  827. * This call may only be used from a context that may sleep.
  828. *
  829. * Parameters to this routine are always copied using a small buffer;
  830. * portable code should never use this for more than 32 bytes.
  831. * Performance-sensitive or bulk transfer code should instead use
  832. * spi_{async,sync}() calls with dma-safe buffers.
  833. */
  834. int spi_write_then_read(struct spi_device *spi,
  835. const u8 *txbuf, unsigned n_tx,
  836. u8 *rxbuf, unsigned n_rx)
  837. {
  838. static DEFINE_MUTEX(lock);
  839. int status;
  840. struct spi_message message;
  841. struct spi_transfer x[2];
  842. u8 *local_buf;
  843. /* Use preallocated DMA-safe buffer. We can't avoid copying here,
  844. * (as a pure convenience thing), but we can keep heap costs
  845. * out of the hot path ...
  846. */
  847. if ((n_tx + n_rx) > SPI_BUFSIZ)
  848. return -EINVAL;
  849. spi_message_init(&message);
  850. memset(x, 0, sizeof x);
  851. if (n_tx) {
  852. x[0].len = n_tx;
  853. spi_message_add_tail(&x[0], &message);
  854. }
  855. if (n_rx) {
  856. x[1].len = n_rx;
  857. spi_message_add_tail(&x[1], &message);
  858. }
  859. /* ... unless someone else is using the pre-allocated buffer */
  860. if (!mutex_trylock(&lock)) {
  861. local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  862. if (!local_buf)
  863. return -ENOMEM;
  864. } else
  865. local_buf = buf;
  866. memcpy(local_buf, txbuf, n_tx);
  867. x[0].tx_buf = local_buf;
  868. x[1].rx_buf = local_buf + n_tx;
  869. /* do the i/o */
  870. status = spi_sync(spi, &message);
  871. if (status == 0)
  872. memcpy(rxbuf, x[1].rx_buf, n_rx);
  873. if (x[0].tx_buf == buf)
  874. mutex_unlock(&lock);
  875. else
  876. kfree(local_buf);
  877. return status;
  878. }
  879. EXPORT_SYMBOL_GPL(spi_write_then_read);
  880. /*-------------------------------------------------------------------------*/
  881. static int __init spi_init(void)
  882. {
  883. int status;
  884. buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  885. if (!buf) {
  886. status = -ENOMEM;
  887. goto err0;
  888. }
  889. status = bus_register(&spi_bus_type);
  890. if (status < 0)
  891. goto err1;
  892. status = class_register(&spi_master_class);
  893. if (status < 0)
  894. goto err2;
  895. return 0;
  896. err2:
  897. bus_unregister(&spi_bus_type);
  898. err1:
  899. kfree(buf);
  900. buf = NULL;
  901. err0:
  902. return status;
  903. }
  904. /* board_info is normally registered in arch_initcall(),
  905. * but even essential drivers wait till later
  906. *
  907. * REVISIT only boardinfo really needs static linking. the rest (device and
  908. * driver registration) _could_ be dynamically linked (modular) ... costs
  909. * include needing to have boardinfo data structures be much more public.
  910. */
  911. postcore_initcall(spi_init);