core.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509
  1. /*
  2. * Core driver for the pin control subsystem
  3. *
  4. * Copyright (C) 2011-2012 ST-Ericsson SA
  5. * Written on behalf of Linaro for ST-Ericsson
  6. * Based on bits of regulator core, gpio core and clk core
  7. *
  8. * Author: Linus Walleij <linus.walleij@linaro.org>
  9. *
  10. * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  11. *
  12. * License terms: GNU General Public License (GPL) version 2
  13. */
  14. #define pr_fmt(fmt) "pinctrl core: " fmt
  15. #include <linux/kernel.h>
  16. #include <linux/export.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/slab.h>
  20. #include <linux/err.h>
  21. #include <linux/list.h>
  22. #include <linux/sysfs.h>
  23. #include <linux/debugfs.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/pinctrl/consumer.h>
  26. #include <linux/pinctrl/pinctrl.h>
  27. #include <linux/pinctrl/machine.h>
  28. #include "core.h"
  29. #include "devicetree.h"
  30. #include "pinmux.h"
  31. #include "pinconf.h"
  32. /**
  33. * struct pinctrl_maps - a list item containing part of the mapping table
  34. * @node: mapping table list node
  35. * @maps: array of mapping table entries
  36. * @num_maps: the number of entries in @maps
  37. */
  38. struct pinctrl_maps {
  39. struct list_head node;
  40. struct pinctrl_map const *maps;
  41. unsigned num_maps;
  42. };
  43. static bool pinctrl_dummy_state;
  44. /* Mutex taken by all entry points */
  45. DEFINE_MUTEX(pinctrl_mutex);
  46. /* Global list of pin control devices (struct pinctrl_dev) */
  47. LIST_HEAD(pinctrldev_list);
  48. /* List of pin controller handles (struct pinctrl) */
  49. static LIST_HEAD(pinctrl_list);
  50. /* List of pinctrl maps (struct pinctrl_maps) */
  51. static LIST_HEAD(pinctrl_maps);
  52. #define for_each_maps(_maps_node_, _i_, _map_) \
  53. list_for_each_entry(_maps_node_, &pinctrl_maps, node) \
  54. for (_i_ = 0, _map_ = &_maps_node_->maps[_i_]; \
  55. _i_ < _maps_node_->num_maps; \
  56. _i_++, _map_ = &_maps_node_->maps[_i_])
  57. /**
  58. * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  59. *
  60. * Usually this function is called by platforms without pinctrl driver support
  61. * but run with some shared drivers using pinctrl APIs.
  62. * After calling this function, the pinctrl core will return successfully
  63. * with creating a dummy state for the driver to keep going smoothly.
  64. */
  65. void pinctrl_provide_dummies(void)
  66. {
  67. pinctrl_dummy_state = true;
  68. }
  69. const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  70. {
  71. /* We're not allowed to register devices without name */
  72. return pctldev->desc->name;
  73. }
  74. EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  75. void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  76. {
  77. return pctldev->driver_data;
  78. }
  79. EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  80. /**
  81. * get_pinctrl_dev_from_devname() - look up pin controller device
  82. * @devname: the name of a device instance, as returned by dev_name()
  83. *
  84. * Looks up a pin control device matching a certain device name or pure device
  85. * pointer, the pure device pointer will take precedence.
  86. */
  87. struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
  88. {
  89. struct pinctrl_dev *pctldev = NULL;
  90. bool found = false;
  91. if (!devname)
  92. return NULL;
  93. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  94. if (!strcmp(dev_name(pctldev->dev), devname)) {
  95. /* Matched on device name */
  96. found = true;
  97. break;
  98. }
  99. }
  100. return found ? pctldev : NULL;
  101. }
  102. /**
  103. * pin_get_from_name() - look up a pin number from a name
  104. * @pctldev: the pin control device to lookup the pin on
  105. * @name: the name of the pin to look up
  106. */
  107. int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
  108. {
  109. unsigned i, pin;
  110. /* The pin number can be retrived from the pin controller descriptor */
  111. for (i = 0; i < pctldev->desc->npins; i++) {
  112. struct pin_desc *desc;
  113. pin = pctldev->desc->pins[i].number;
  114. desc = pin_desc_get(pctldev, pin);
  115. /* Pin space may be sparse */
  116. if (desc == NULL)
  117. continue;
  118. if (desc->name && !strcmp(name, desc->name))
  119. return pin;
  120. }
  121. return -EINVAL;
  122. }
  123. /**
  124. * pin_get_name_from_id() - look up a pin name from a pin id
  125. * @pctldev: the pin control device to lookup the pin on
  126. * @name: the name of the pin to look up
  127. */
  128. const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
  129. {
  130. const struct pin_desc *desc;
  131. desc = pin_desc_get(pctldev, pin);
  132. if (desc == NULL) {
  133. dev_err(pctldev->dev, "failed to get pin(%d) name\n",
  134. pin);
  135. return NULL;
  136. }
  137. return desc->name;
  138. }
  139. /**
  140. * pin_is_valid() - check if pin exists on controller
  141. * @pctldev: the pin control device to check the pin on
  142. * @pin: pin to check, use the local pin controller index number
  143. *
  144. * This tells us whether a certain pin exist on a certain pin controller or
  145. * not. Pin lists may be sparse, so some pins may not exist.
  146. */
  147. bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
  148. {
  149. struct pin_desc *pindesc;
  150. if (pin < 0)
  151. return false;
  152. mutex_lock(&pinctrl_mutex);
  153. pindesc = pin_desc_get(pctldev, pin);
  154. mutex_unlock(&pinctrl_mutex);
  155. return pindesc != NULL;
  156. }
  157. EXPORT_SYMBOL_GPL(pin_is_valid);
  158. /* Deletes a range of pin descriptors */
  159. static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
  160. const struct pinctrl_pin_desc *pins,
  161. unsigned num_pins)
  162. {
  163. int i;
  164. for (i = 0; i < num_pins; i++) {
  165. struct pin_desc *pindesc;
  166. pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
  167. pins[i].number);
  168. if (pindesc != NULL) {
  169. radix_tree_delete(&pctldev->pin_desc_tree,
  170. pins[i].number);
  171. if (pindesc->dynamic_name)
  172. kfree(pindesc->name);
  173. }
  174. kfree(pindesc);
  175. }
  176. }
  177. static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
  178. unsigned number, const char *name)
  179. {
  180. struct pin_desc *pindesc;
  181. pindesc = pin_desc_get(pctldev, number);
  182. if (pindesc != NULL) {
  183. pr_err("pin %d already registered on %s\n", number,
  184. pctldev->desc->name);
  185. return -EINVAL;
  186. }
  187. pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
  188. if (pindesc == NULL) {
  189. dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
  190. return -ENOMEM;
  191. }
  192. /* Set owner */
  193. pindesc->pctldev = pctldev;
  194. /* Copy basic pin info */
  195. if (name) {
  196. pindesc->name = name;
  197. } else {
  198. pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
  199. if (pindesc->name == NULL) {
  200. kfree(pindesc);
  201. return -ENOMEM;
  202. }
  203. pindesc->dynamic_name = true;
  204. }
  205. radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
  206. pr_debug("registered pin %d (%s) on %s\n",
  207. number, pindesc->name, pctldev->desc->name);
  208. return 0;
  209. }
  210. static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
  211. struct pinctrl_pin_desc const *pins,
  212. unsigned num_descs)
  213. {
  214. unsigned i;
  215. int ret = 0;
  216. for (i = 0; i < num_descs; i++) {
  217. ret = pinctrl_register_one_pin(pctldev,
  218. pins[i].number, pins[i].name);
  219. if (ret)
  220. return ret;
  221. }
  222. return 0;
  223. }
  224. /**
  225. * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
  226. * @pctldev: pin controller device to check
  227. * @gpio: gpio pin to check taken from the global GPIO pin space
  228. *
  229. * Tries to match a GPIO pin number to the ranges handled by a certain pin
  230. * controller, return the range or NULL
  231. */
  232. static struct pinctrl_gpio_range *
  233. pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
  234. {
  235. struct pinctrl_gpio_range *range = NULL;
  236. /* Loop over the ranges */
  237. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  238. /* Check if we're in the valid range */
  239. if (gpio >= range->base &&
  240. gpio < range->base + range->npins) {
  241. return range;
  242. }
  243. }
  244. return NULL;
  245. }
  246. /**
  247. * pinctrl_get_device_gpio_range() - find device for GPIO range
  248. * @gpio: the pin to locate the pin controller for
  249. * @outdev: the pin control device if found
  250. * @outrange: the GPIO range if found
  251. *
  252. * Find the pin controller handling a certain GPIO pin from the pinspace of
  253. * the GPIO subsystem, return the device and the matching GPIO range. Returns
  254. * -EPROBE_DEFER if the GPIO range could not be found in any device since it
  255. * may still have not been registered.
  256. */
  257. static int pinctrl_get_device_gpio_range(unsigned gpio,
  258. struct pinctrl_dev **outdev,
  259. struct pinctrl_gpio_range **outrange)
  260. {
  261. struct pinctrl_dev *pctldev = NULL;
  262. /* Loop over the pin controllers */
  263. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  264. struct pinctrl_gpio_range *range;
  265. range = pinctrl_match_gpio_range(pctldev, gpio);
  266. if (range != NULL) {
  267. *outdev = pctldev;
  268. *outrange = range;
  269. return 0;
  270. }
  271. }
  272. return -EPROBE_DEFER;
  273. }
  274. /**
  275. * pinctrl_add_gpio_range() - register a GPIO range for a controller
  276. * @pctldev: pin controller device to add the range to
  277. * @range: the GPIO range to add
  278. *
  279. * This adds a range of GPIOs to be handled by a certain pin controller. Call
  280. * this to register handled ranges after registering your pin controller.
  281. */
  282. void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
  283. struct pinctrl_gpio_range *range)
  284. {
  285. mutex_lock(&pinctrl_mutex);
  286. list_add_tail(&range->node, &pctldev->gpio_ranges);
  287. mutex_unlock(&pinctrl_mutex);
  288. }
  289. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
  290. void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
  291. struct pinctrl_gpio_range *ranges,
  292. unsigned nranges)
  293. {
  294. int i;
  295. for (i = 0; i < nranges; i++)
  296. pinctrl_add_gpio_range(pctldev, &ranges[i]);
  297. }
  298. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
  299. /**
  300. * pinctrl_get_group_selector() - returns the group selector for a group
  301. * @pctldev: the pin controller handling the group
  302. * @pin_group: the pin group to look up
  303. */
  304. int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
  305. const char *pin_group)
  306. {
  307. const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
  308. unsigned ngroups = pctlops->get_groups_count(pctldev);
  309. unsigned group_selector = 0;
  310. while (group_selector < ngroups) {
  311. const char *gname = pctlops->get_group_name(pctldev,
  312. group_selector);
  313. if (!strcmp(gname, pin_group)) {
  314. dev_dbg(pctldev->dev,
  315. "found group selector %u for %s\n",
  316. group_selector,
  317. pin_group);
  318. return group_selector;
  319. }
  320. group_selector++;
  321. }
  322. dev_err(pctldev->dev, "does not have pin group %s\n",
  323. pin_group);
  324. return -EINVAL;
  325. }
  326. /**
  327. * pinctrl_request_gpio() - request a single pin to be used in as GPIO
  328. * @gpio: the GPIO pin number from the GPIO subsystem number space
  329. *
  330. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  331. * as part of their gpio_request() semantics, platforms and individual drivers
  332. * shall *NOT* request GPIO pins to be muxed in.
  333. */
  334. int pinctrl_request_gpio(unsigned gpio)
  335. {
  336. struct pinctrl_dev *pctldev;
  337. struct pinctrl_gpio_range *range;
  338. int ret;
  339. int pin;
  340. mutex_lock(&pinctrl_mutex);
  341. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  342. if (ret) {
  343. mutex_unlock(&pinctrl_mutex);
  344. return ret;
  345. }
  346. /* Convert to the pin controllers number space */
  347. pin = gpio - range->base + range->pin_base;
  348. ret = pinmux_request_gpio(pctldev, range, pin, gpio);
  349. mutex_unlock(&pinctrl_mutex);
  350. return ret;
  351. }
  352. EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
  353. /**
  354. * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
  355. * @gpio: the GPIO pin number from the GPIO subsystem number space
  356. *
  357. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  358. * as part of their gpio_free() semantics, platforms and individual drivers
  359. * shall *NOT* request GPIO pins to be muxed out.
  360. */
  361. void pinctrl_free_gpio(unsigned gpio)
  362. {
  363. struct pinctrl_dev *pctldev;
  364. struct pinctrl_gpio_range *range;
  365. int ret;
  366. int pin;
  367. mutex_lock(&pinctrl_mutex);
  368. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  369. if (ret) {
  370. mutex_unlock(&pinctrl_mutex);
  371. return;
  372. }
  373. /* Convert to the pin controllers number space */
  374. pin = gpio - range->base + range->pin_base;
  375. pinmux_free_gpio(pctldev, pin, range);
  376. mutex_unlock(&pinctrl_mutex);
  377. }
  378. EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
  379. static int pinctrl_gpio_direction(unsigned gpio, bool input)
  380. {
  381. struct pinctrl_dev *pctldev;
  382. struct pinctrl_gpio_range *range;
  383. int ret;
  384. int pin;
  385. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  386. if (ret)
  387. return ret;
  388. /* Convert to the pin controllers number space */
  389. pin = gpio - range->base + range->pin_base;
  390. return pinmux_gpio_direction(pctldev, range, pin, input);
  391. }
  392. /**
  393. * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
  394. * @gpio: the GPIO pin number from the GPIO subsystem number space
  395. *
  396. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  397. * as part of their gpio_direction_input() semantics, platforms and individual
  398. * drivers shall *NOT* touch pin control GPIO calls.
  399. */
  400. int pinctrl_gpio_direction_input(unsigned gpio)
  401. {
  402. int ret;
  403. mutex_lock(&pinctrl_mutex);
  404. ret = pinctrl_gpio_direction(gpio, true);
  405. mutex_unlock(&pinctrl_mutex);
  406. return ret;
  407. }
  408. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
  409. /**
  410. * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
  411. * @gpio: the GPIO pin number from the GPIO subsystem number space
  412. *
  413. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  414. * as part of their gpio_direction_output() semantics, platforms and individual
  415. * drivers shall *NOT* touch pin control GPIO calls.
  416. */
  417. int pinctrl_gpio_direction_output(unsigned gpio)
  418. {
  419. int ret;
  420. mutex_lock(&pinctrl_mutex);
  421. ret = pinctrl_gpio_direction(gpio, false);
  422. mutex_unlock(&pinctrl_mutex);
  423. return ret;
  424. }
  425. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
  426. static struct pinctrl_state *find_state(struct pinctrl *p,
  427. const char *name)
  428. {
  429. struct pinctrl_state *state;
  430. list_for_each_entry(state, &p->states, node)
  431. if (!strcmp(state->name, name))
  432. return state;
  433. return NULL;
  434. }
  435. static struct pinctrl_state *create_state(struct pinctrl *p,
  436. const char *name)
  437. {
  438. struct pinctrl_state *state;
  439. state = kzalloc(sizeof(*state), GFP_KERNEL);
  440. if (state == NULL) {
  441. dev_err(p->dev,
  442. "failed to alloc struct pinctrl_state\n");
  443. return ERR_PTR(-ENOMEM);
  444. }
  445. state->name = name;
  446. INIT_LIST_HEAD(&state->settings);
  447. list_add_tail(&state->node, &p->states);
  448. return state;
  449. }
  450. static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
  451. {
  452. struct pinctrl_state *state;
  453. struct pinctrl_setting *setting;
  454. int ret;
  455. state = find_state(p, map->name);
  456. if (!state)
  457. state = create_state(p, map->name);
  458. if (IS_ERR(state))
  459. return PTR_ERR(state);
  460. if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
  461. return 0;
  462. setting = kzalloc(sizeof(*setting), GFP_KERNEL);
  463. if (setting == NULL) {
  464. dev_err(p->dev,
  465. "failed to alloc struct pinctrl_setting\n");
  466. return -ENOMEM;
  467. }
  468. setting->type = map->type;
  469. setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
  470. if (setting->pctldev == NULL) {
  471. dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
  472. map->ctrl_dev_name);
  473. kfree(setting);
  474. /*
  475. * OK let us guess that the driver is not there yet, and
  476. * let's defer obtaining this pinctrl handle to later...
  477. */
  478. return -EPROBE_DEFER;
  479. }
  480. switch (map->type) {
  481. case PIN_MAP_TYPE_MUX_GROUP:
  482. ret = pinmux_map_to_setting(map, setting);
  483. break;
  484. case PIN_MAP_TYPE_CONFIGS_PIN:
  485. case PIN_MAP_TYPE_CONFIGS_GROUP:
  486. ret = pinconf_map_to_setting(map, setting);
  487. break;
  488. default:
  489. ret = -EINVAL;
  490. break;
  491. }
  492. if (ret < 0) {
  493. kfree(setting);
  494. return ret;
  495. }
  496. list_add_tail(&setting->node, &state->settings);
  497. return 0;
  498. }
  499. static struct pinctrl *find_pinctrl(struct device *dev)
  500. {
  501. struct pinctrl *p;
  502. list_for_each_entry(p, &pinctrl_list, node)
  503. if (p->dev == dev)
  504. return p;
  505. return NULL;
  506. }
  507. static void pinctrl_put_locked(struct pinctrl *p, bool inlist);
  508. static struct pinctrl *create_pinctrl(struct device *dev)
  509. {
  510. struct pinctrl *p;
  511. const char *devname;
  512. struct pinctrl_maps *maps_node;
  513. int i;
  514. struct pinctrl_map const *map;
  515. int ret;
  516. /*
  517. * create the state cookie holder struct pinctrl for each
  518. * mapping, this is what consumers will get when requesting
  519. * a pin control handle with pinctrl_get()
  520. */
  521. p = kzalloc(sizeof(*p), GFP_KERNEL);
  522. if (p == NULL) {
  523. dev_err(dev, "failed to alloc struct pinctrl\n");
  524. return ERR_PTR(-ENOMEM);
  525. }
  526. p->dev = dev;
  527. INIT_LIST_HEAD(&p->states);
  528. INIT_LIST_HEAD(&p->dt_maps);
  529. ret = pinctrl_dt_to_map(p);
  530. if (ret < 0) {
  531. kfree(p);
  532. return ERR_PTR(ret);
  533. }
  534. devname = dev_name(dev);
  535. /* Iterate over the pin control maps to locate the right ones */
  536. for_each_maps(maps_node, i, map) {
  537. /* Map must be for this device */
  538. if (strcmp(map->dev_name, devname))
  539. continue;
  540. ret = add_setting(p, map);
  541. if (ret < 0) {
  542. pinctrl_put_locked(p, false);
  543. return ERR_PTR(ret);
  544. }
  545. }
  546. /* Add the pinmux to the global list */
  547. list_add_tail(&p->node, &pinctrl_list);
  548. return p;
  549. }
  550. static struct pinctrl *pinctrl_get_locked(struct device *dev)
  551. {
  552. struct pinctrl *p;
  553. if (WARN_ON(!dev))
  554. return ERR_PTR(-EINVAL);
  555. p = find_pinctrl(dev);
  556. if (p != NULL)
  557. return ERR_PTR(-EBUSY);
  558. return create_pinctrl(dev);
  559. }
  560. /**
  561. * pinctrl_get() - retrieves the pinctrl handle for a device
  562. * @dev: the device to obtain the handle for
  563. */
  564. struct pinctrl *pinctrl_get(struct device *dev)
  565. {
  566. struct pinctrl *p;
  567. mutex_lock(&pinctrl_mutex);
  568. p = pinctrl_get_locked(dev);
  569. mutex_unlock(&pinctrl_mutex);
  570. return p;
  571. }
  572. EXPORT_SYMBOL_GPL(pinctrl_get);
  573. static void pinctrl_put_locked(struct pinctrl *p, bool inlist)
  574. {
  575. struct pinctrl_state *state, *n1;
  576. struct pinctrl_setting *setting, *n2;
  577. list_for_each_entry_safe(state, n1, &p->states, node) {
  578. list_for_each_entry_safe(setting, n2, &state->settings, node) {
  579. switch (setting->type) {
  580. case PIN_MAP_TYPE_MUX_GROUP:
  581. if (state == p->state)
  582. pinmux_disable_setting(setting);
  583. pinmux_free_setting(setting);
  584. break;
  585. case PIN_MAP_TYPE_CONFIGS_PIN:
  586. case PIN_MAP_TYPE_CONFIGS_GROUP:
  587. pinconf_free_setting(setting);
  588. break;
  589. default:
  590. break;
  591. }
  592. list_del(&setting->node);
  593. kfree(setting);
  594. }
  595. list_del(&state->node);
  596. kfree(state);
  597. }
  598. pinctrl_dt_free_maps(p);
  599. if (inlist)
  600. list_del(&p->node);
  601. kfree(p);
  602. }
  603. /**
  604. * pinctrl_put() - release a previously claimed pinctrl handle
  605. * @p: the pinctrl handle to release
  606. */
  607. void pinctrl_put(struct pinctrl *p)
  608. {
  609. mutex_lock(&pinctrl_mutex);
  610. pinctrl_put_locked(p, true);
  611. mutex_unlock(&pinctrl_mutex);
  612. }
  613. EXPORT_SYMBOL_GPL(pinctrl_put);
  614. static struct pinctrl_state *pinctrl_lookup_state_locked(struct pinctrl *p,
  615. const char *name)
  616. {
  617. struct pinctrl_state *state;
  618. state = find_state(p, name);
  619. if (!state) {
  620. if (pinctrl_dummy_state) {
  621. /* create dummy state */
  622. dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
  623. name);
  624. state = create_state(p, name);
  625. } else
  626. state = ERR_PTR(-ENODEV);
  627. }
  628. return state;
  629. }
  630. /**
  631. * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
  632. * @p: the pinctrl handle to retrieve the state from
  633. * @name: the state name to retrieve
  634. */
  635. struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char *name)
  636. {
  637. struct pinctrl_state *s;
  638. mutex_lock(&pinctrl_mutex);
  639. s = pinctrl_lookup_state_locked(p, name);
  640. mutex_unlock(&pinctrl_mutex);
  641. return s;
  642. }
  643. EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
  644. static int pinctrl_select_state_locked(struct pinctrl *p,
  645. struct pinctrl_state *state)
  646. {
  647. struct pinctrl_setting *setting, *setting2;
  648. int ret;
  649. if (p->state == state)
  650. return 0;
  651. if (p->state) {
  652. /*
  653. * The set of groups with a mux configuration in the old state
  654. * may not be identical to the set of groups with a mux setting
  655. * in the new state. While this might be unusual, it's entirely
  656. * possible for the "user"-supplied mapping table to be written
  657. * that way. For each group that was configured in the old state
  658. * but not in the new state, this code puts that group into a
  659. * safe/disabled state.
  660. */
  661. list_for_each_entry(setting, &p->state->settings, node) {
  662. bool found = false;
  663. if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
  664. continue;
  665. list_for_each_entry(setting2, &state->settings, node) {
  666. if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
  667. continue;
  668. if (setting2->data.mux.group ==
  669. setting->data.mux.group) {
  670. found = true;
  671. break;
  672. }
  673. }
  674. if (!found)
  675. pinmux_disable_setting(setting);
  676. }
  677. }
  678. p->state = state;
  679. /* Apply all the settings for the new state */
  680. list_for_each_entry(setting, &state->settings, node) {
  681. switch (setting->type) {
  682. case PIN_MAP_TYPE_MUX_GROUP:
  683. ret = pinmux_enable_setting(setting);
  684. break;
  685. case PIN_MAP_TYPE_CONFIGS_PIN:
  686. case PIN_MAP_TYPE_CONFIGS_GROUP:
  687. ret = pinconf_apply_setting(setting);
  688. break;
  689. default:
  690. ret = -EINVAL;
  691. break;
  692. }
  693. if (ret < 0) {
  694. /* FIXME: Difficult to return to prev state */
  695. return ret;
  696. }
  697. }
  698. return 0;
  699. }
  700. /**
  701. * pinctrl_select() - select/activate/program a pinctrl state to HW
  702. * @p: the pinctrl handle for the device that requests configuratio
  703. * @state: the state handle to select/activate/program
  704. */
  705. int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
  706. {
  707. int ret;
  708. mutex_lock(&pinctrl_mutex);
  709. ret = pinctrl_select_state_locked(p, state);
  710. mutex_unlock(&pinctrl_mutex);
  711. return ret;
  712. }
  713. EXPORT_SYMBOL_GPL(pinctrl_select_state);
  714. static void devm_pinctrl_release(struct device *dev, void *res)
  715. {
  716. pinctrl_put(*(struct pinctrl **)res);
  717. }
  718. /**
  719. * struct devm_pinctrl_get() - Resource managed pinctrl_get()
  720. * @dev: the device to obtain the handle for
  721. *
  722. * If there is a need to explicitly destroy the returned struct pinctrl,
  723. * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
  724. */
  725. struct pinctrl *devm_pinctrl_get(struct device *dev)
  726. {
  727. struct pinctrl **ptr, *p;
  728. ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
  729. if (!ptr)
  730. return ERR_PTR(-ENOMEM);
  731. p = pinctrl_get(dev);
  732. if (!IS_ERR(p)) {
  733. *ptr = p;
  734. devres_add(dev, ptr);
  735. } else {
  736. devres_free(ptr);
  737. }
  738. return p;
  739. }
  740. EXPORT_SYMBOL_GPL(devm_pinctrl_get);
  741. static int devm_pinctrl_match(struct device *dev, void *res, void *data)
  742. {
  743. struct pinctrl **p = res;
  744. return *p == data;
  745. }
  746. /**
  747. * devm_pinctrl_put() - Resource managed pinctrl_put()
  748. * @p: the pinctrl handle to release
  749. *
  750. * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
  751. * this function will not need to be called and the resource management
  752. * code will ensure that the resource is freed.
  753. */
  754. void devm_pinctrl_put(struct pinctrl *p)
  755. {
  756. WARN_ON(devres_destroy(p->dev, devm_pinctrl_release,
  757. devm_pinctrl_match, p));
  758. pinctrl_put(p);
  759. }
  760. EXPORT_SYMBOL_GPL(devm_pinctrl_put);
  761. int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
  762. bool dup, bool locked)
  763. {
  764. int i, ret;
  765. struct pinctrl_maps *maps_node;
  766. pr_debug("add %d pinmux maps\n", num_maps);
  767. /* First sanity check the new mapping */
  768. for (i = 0; i < num_maps; i++) {
  769. if (!maps[i].dev_name) {
  770. pr_err("failed to register map %s (%d): no device given\n",
  771. maps[i].name, i);
  772. return -EINVAL;
  773. }
  774. if (!maps[i].name) {
  775. pr_err("failed to register map %d: no map name given\n",
  776. i);
  777. return -EINVAL;
  778. }
  779. if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
  780. !maps[i].ctrl_dev_name) {
  781. pr_err("failed to register map %s (%d): no pin control device given\n",
  782. maps[i].name, i);
  783. return -EINVAL;
  784. }
  785. switch (maps[i].type) {
  786. case PIN_MAP_TYPE_DUMMY_STATE:
  787. break;
  788. case PIN_MAP_TYPE_MUX_GROUP:
  789. ret = pinmux_validate_map(&maps[i], i);
  790. if (ret < 0)
  791. return ret;
  792. break;
  793. case PIN_MAP_TYPE_CONFIGS_PIN:
  794. case PIN_MAP_TYPE_CONFIGS_GROUP:
  795. ret = pinconf_validate_map(&maps[i], i);
  796. if (ret < 0)
  797. return ret;
  798. break;
  799. default:
  800. pr_err("failed to register map %s (%d): invalid type given\n",
  801. maps[i].name, i);
  802. return -EINVAL;
  803. }
  804. }
  805. maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
  806. if (!maps_node) {
  807. pr_err("failed to alloc struct pinctrl_maps\n");
  808. return -ENOMEM;
  809. }
  810. maps_node->num_maps = num_maps;
  811. if (dup) {
  812. maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
  813. GFP_KERNEL);
  814. if (!maps_node->maps) {
  815. pr_err("failed to duplicate mapping table\n");
  816. kfree(maps_node);
  817. return -ENOMEM;
  818. }
  819. } else {
  820. maps_node->maps = maps;
  821. }
  822. if (!locked)
  823. mutex_lock(&pinctrl_mutex);
  824. list_add_tail(&maps_node->node, &pinctrl_maps);
  825. if (!locked)
  826. mutex_unlock(&pinctrl_mutex);
  827. return 0;
  828. }
  829. /**
  830. * pinctrl_register_mappings() - register a set of pin controller mappings
  831. * @maps: the pincontrol mappings table to register. This should probably be
  832. * marked with __initdata so it can be discarded after boot. This
  833. * function will perform a shallow copy for the mapping entries.
  834. * @num_maps: the number of maps in the mapping table
  835. */
  836. int pinctrl_register_mappings(struct pinctrl_map const *maps,
  837. unsigned num_maps)
  838. {
  839. return pinctrl_register_map(maps, num_maps, true, false);
  840. }
  841. void pinctrl_unregister_map(struct pinctrl_map const *map)
  842. {
  843. struct pinctrl_maps *maps_node;
  844. list_for_each_entry(maps_node, &pinctrl_maps, node) {
  845. if (maps_node->maps == map) {
  846. list_del(&maps_node->node);
  847. return;
  848. }
  849. }
  850. }
  851. #ifdef CONFIG_DEBUG_FS
  852. static int pinctrl_pins_show(struct seq_file *s, void *what)
  853. {
  854. struct pinctrl_dev *pctldev = s->private;
  855. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  856. unsigned i, pin;
  857. seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
  858. mutex_lock(&pinctrl_mutex);
  859. /* The pin number can be retrived from the pin controller descriptor */
  860. for (i = 0; i < pctldev->desc->npins; i++) {
  861. struct pin_desc *desc;
  862. pin = pctldev->desc->pins[i].number;
  863. desc = pin_desc_get(pctldev, pin);
  864. /* Pin space may be sparse */
  865. if (desc == NULL)
  866. continue;
  867. seq_printf(s, "pin %d (%s) ", pin,
  868. desc->name ? desc->name : "unnamed");
  869. /* Driver-specific info per pin */
  870. if (ops->pin_dbg_show)
  871. ops->pin_dbg_show(pctldev, s, pin);
  872. seq_puts(s, "\n");
  873. }
  874. mutex_unlock(&pinctrl_mutex);
  875. return 0;
  876. }
  877. static int pinctrl_groups_show(struct seq_file *s, void *what)
  878. {
  879. struct pinctrl_dev *pctldev = s->private;
  880. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  881. unsigned ngroups, selector = 0;
  882. ngroups = ops->get_groups_count(pctldev);
  883. mutex_lock(&pinctrl_mutex);
  884. seq_puts(s, "registered pin groups:\n");
  885. while (selector < ngroups) {
  886. const unsigned *pins;
  887. unsigned num_pins;
  888. const char *gname = ops->get_group_name(pctldev, selector);
  889. const char *pname;
  890. int ret;
  891. int i;
  892. ret = ops->get_group_pins(pctldev, selector,
  893. &pins, &num_pins);
  894. if (ret)
  895. seq_printf(s, "%s [ERROR GETTING PINS]\n",
  896. gname);
  897. else {
  898. seq_printf(s, "group: %s\n", gname);
  899. for (i = 0; i < num_pins; i++) {
  900. pname = pin_get_name(pctldev, pins[i]);
  901. if (WARN_ON(!pname))
  902. return -EINVAL;
  903. seq_printf(s, "pin %d (%s)\n", pins[i], pname);
  904. }
  905. seq_puts(s, "\n");
  906. }
  907. selector++;
  908. }
  909. mutex_unlock(&pinctrl_mutex);
  910. return 0;
  911. }
  912. static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
  913. {
  914. struct pinctrl_dev *pctldev = s->private;
  915. struct pinctrl_gpio_range *range = NULL;
  916. seq_puts(s, "GPIO ranges handled:\n");
  917. mutex_lock(&pinctrl_mutex);
  918. /* Loop over the ranges */
  919. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  920. seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
  921. range->id, range->name,
  922. range->base, (range->base + range->npins - 1),
  923. range->pin_base,
  924. (range->pin_base + range->npins - 1));
  925. }
  926. mutex_unlock(&pinctrl_mutex);
  927. return 0;
  928. }
  929. static int pinctrl_devices_show(struct seq_file *s, void *what)
  930. {
  931. struct pinctrl_dev *pctldev;
  932. seq_puts(s, "name [pinmux] [pinconf]\n");
  933. mutex_lock(&pinctrl_mutex);
  934. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  935. seq_printf(s, "%s ", pctldev->desc->name);
  936. if (pctldev->desc->pmxops)
  937. seq_puts(s, "yes ");
  938. else
  939. seq_puts(s, "no ");
  940. if (pctldev->desc->confops)
  941. seq_puts(s, "yes");
  942. else
  943. seq_puts(s, "no");
  944. seq_puts(s, "\n");
  945. }
  946. mutex_unlock(&pinctrl_mutex);
  947. return 0;
  948. }
  949. static inline const char *map_type(enum pinctrl_map_type type)
  950. {
  951. static const char * const names[] = {
  952. "INVALID",
  953. "DUMMY_STATE",
  954. "MUX_GROUP",
  955. "CONFIGS_PIN",
  956. "CONFIGS_GROUP",
  957. };
  958. if (type >= ARRAY_SIZE(names))
  959. return "UNKNOWN";
  960. return names[type];
  961. }
  962. static int pinctrl_maps_show(struct seq_file *s, void *what)
  963. {
  964. struct pinctrl_maps *maps_node;
  965. int i;
  966. struct pinctrl_map const *map;
  967. seq_puts(s, "Pinctrl maps:\n");
  968. mutex_lock(&pinctrl_mutex);
  969. for_each_maps(maps_node, i, map) {
  970. seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
  971. map->dev_name, map->name, map_type(map->type),
  972. map->type);
  973. if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
  974. seq_printf(s, "controlling device %s\n",
  975. map->ctrl_dev_name);
  976. switch (map->type) {
  977. case PIN_MAP_TYPE_MUX_GROUP:
  978. pinmux_show_map(s, map);
  979. break;
  980. case PIN_MAP_TYPE_CONFIGS_PIN:
  981. case PIN_MAP_TYPE_CONFIGS_GROUP:
  982. pinconf_show_map(s, map);
  983. break;
  984. default:
  985. break;
  986. }
  987. seq_printf(s, "\n");
  988. }
  989. mutex_unlock(&pinctrl_mutex);
  990. return 0;
  991. }
  992. static int pinctrl_show(struct seq_file *s, void *what)
  993. {
  994. struct pinctrl *p;
  995. struct pinctrl_state *state;
  996. struct pinctrl_setting *setting;
  997. seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
  998. mutex_lock(&pinctrl_mutex);
  999. list_for_each_entry(p, &pinctrl_list, node) {
  1000. seq_printf(s, "device: %s current state: %s\n",
  1001. dev_name(p->dev),
  1002. p->state ? p->state->name : "none");
  1003. list_for_each_entry(state, &p->states, node) {
  1004. seq_printf(s, " state: %s\n", state->name);
  1005. list_for_each_entry(setting, &state->settings, node) {
  1006. struct pinctrl_dev *pctldev = setting->pctldev;
  1007. seq_printf(s, " type: %s controller %s ",
  1008. map_type(setting->type),
  1009. pinctrl_dev_get_name(pctldev));
  1010. switch (setting->type) {
  1011. case PIN_MAP_TYPE_MUX_GROUP:
  1012. pinmux_show_setting(s, setting);
  1013. break;
  1014. case PIN_MAP_TYPE_CONFIGS_PIN:
  1015. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1016. pinconf_show_setting(s, setting);
  1017. break;
  1018. default:
  1019. break;
  1020. }
  1021. }
  1022. }
  1023. }
  1024. mutex_unlock(&pinctrl_mutex);
  1025. return 0;
  1026. }
  1027. static int pinctrl_pins_open(struct inode *inode, struct file *file)
  1028. {
  1029. return single_open(file, pinctrl_pins_show, inode->i_private);
  1030. }
  1031. static int pinctrl_groups_open(struct inode *inode, struct file *file)
  1032. {
  1033. return single_open(file, pinctrl_groups_show, inode->i_private);
  1034. }
  1035. static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
  1036. {
  1037. return single_open(file, pinctrl_gpioranges_show, inode->i_private);
  1038. }
  1039. static int pinctrl_devices_open(struct inode *inode, struct file *file)
  1040. {
  1041. return single_open(file, pinctrl_devices_show, NULL);
  1042. }
  1043. static int pinctrl_maps_open(struct inode *inode, struct file *file)
  1044. {
  1045. return single_open(file, pinctrl_maps_show, NULL);
  1046. }
  1047. static int pinctrl_open(struct inode *inode, struct file *file)
  1048. {
  1049. return single_open(file, pinctrl_show, NULL);
  1050. }
  1051. static const struct file_operations pinctrl_pins_ops = {
  1052. .open = pinctrl_pins_open,
  1053. .read = seq_read,
  1054. .llseek = seq_lseek,
  1055. .release = single_release,
  1056. };
  1057. static const struct file_operations pinctrl_groups_ops = {
  1058. .open = pinctrl_groups_open,
  1059. .read = seq_read,
  1060. .llseek = seq_lseek,
  1061. .release = single_release,
  1062. };
  1063. static const struct file_operations pinctrl_gpioranges_ops = {
  1064. .open = pinctrl_gpioranges_open,
  1065. .read = seq_read,
  1066. .llseek = seq_lseek,
  1067. .release = single_release,
  1068. };
  1069. static const struct file_operations pinctrl_devices_ops = {
  1070. .open = pinctrl_devices_open,
  1071. .read = seq_read,
  1072. .llseek = seq_lseek,
  1073. .release = single_release,
  1074. };
  1075. static const struct file_operations pinctrl_maps_ops = {
  1076. .open = pinctrl_maps_open,
  1077. .read = seq_read,
  1078. .llseek = seq_lseek,
  1079. .release = single_release,
  1080. };
  1081. static const struct file_operations pinctrl_ops = {
  1082. .open = pinctrl_open,
  1083. .read = seq_read,
  1084. .llseek = seq_lseek,
  1085. .release = single_release,
  1086. };
  1087. static struct dentry *debugfs_root;
  1088. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1089. {
  1090. struct dentry *device_root;
  1091. device_root = debugfs_create_dir(dev_name(pctldev->dev),
  1092. debugfs_root);
  1093. pctldev->device_root = device_root;
  1094. if (IS_ERR(device_root) || !device_root) {
  1095. pr_warn("failed to create debugfs directory for %s\n",
  1096. dev_name(pctldev->dev));
  1097. return;
  1098. }
  1099. debugfs_create_file("pins", S_IFREG | S_IRUGO,
  1100. device_root, pctldev, &pinctrl_pins_ops);
  1101. debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
  1102. device_root, pctldev, &pinctrl_groups_ops);
  1103. debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
  1104. device_root, pctldev, &pinctrl_gpioranges_ops);
  1105. pinmux_init_device_debugfs(device_root, pctldev);
  1106. pinconf_init_device_debugfs(device_root, pctldev);
  1107. }
  1108. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1109. {
  1110. debugfs_remove_recursive(pctldev->device_root);
  1111. }
  1112. static void pinctrl_init_debugfs(void)
  1113. {
  1114. debugfs_root = debugfs_create_dir("pinctrl", NULL);
  1115. if (IS_ERR(debugfs_root) || !debugfs_root) {
  1116. pr_warn("failed to create debugfs directory\n");
  1117. debugfs_root = NULL;
  1118. return;
  1119. }
  1120. debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
  1121. debugfs_root, NULL, &pinctrl_devices_ops);
  1122. debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
  1123. debugfs_root, NULL, &pinctrl_maps_ops);
  1124. debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
  1125. debugfs_root, NULL, &pinctrl_ops);
  1126. }
  1127. #else /* CONFIG_DEBUG_FS */
  1128. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1129. {
  1130. }
  1131. static void pinctrl_init_debugfs(void)
  1132. {
  1133. }
  1134. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1135. {
  1136. }
  1137. #endif
  1138. static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
  1139. {
  1140. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1141. if (!ops ||
  1142. !ops->get_groups_count ||
  1143. !ops->get_group_name ||
  1144. !ops->get_group_pins)
  1145. return -EINVAL;
  1146. if (ops->dt_node_to_map && !ops->dt_free_map)
  1147. return -EINVAL;
  1148. return 0;
  1149. }
  1150. /**
  1151. * pinctrl_register() - register a pin controller device
  1152. * @pctldesc: descriptor for this pin controller
  1153. * @dev: parent device for this pin controller
  1154. * @driver_data: private pin controller data for this pin controller
  1155. */
  1156. struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
  1157. struct device *dev, void *driver_data)
  1158. {
  1159. struct pinctrl_dev *pctldev;
  1160. int ret;
  1161. if (!pctldesc)
  1162. return NULL;
  1163. if (!pctldesc->name)
  1164. return NULL;
  1165. pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
  1166. if (pctldev == NULL) {
  1167. dev_err(dev, "failed to alloc struct pinctrl_dev\n");
  1168. return NULL;
  1169. }
  1170. /* Initialize pin control device struct */
  1171. pctldev->owner = pctldesc->owner;
  1172. pctldev->desc = pctldesc;
  1173. pctldev->driver_data = driver_data;
  1174. INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
  1175. INIT_LIST_HEAD(&pctldev->gpio_ranges);
  1176. pctldev->dev = dev;
  1177. /* check core ops for sanity */
  1178. if (pinctrl_check_ops(pctldev)) {
  1179. dev_err(dev, "pinctrl ops lacks necessary functions\n");
  1180. goto out_err;
  1181. }
  1182. /* If we're implementing pinmuxing, check the ops for sanity */
  1183. if (pctldesc->pmxops) {
  1184. if (pinmux_check_ops(pctldev))
  1185. goto out_err;
  1186. }
  1187. /* If we're implementing pinconfig, check the ops for sanity */
  1188. if (pctldesc->confops) {
  1189. if (pinconf_check_ops(pctldev))
  1190. goto out_err;
  1191. }
  1192. /* Register all the pins */
  1193. dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
  1194. ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
  1195. if (ret) {
  1196. dev_err(dev, "error during pin registration\n");
  1197. pinctrl_free_pindescs(pctldev, pctldesc->pins,
  1198. pctldesc->npins);
  1199. goto out_err;
  1200. }
  1201. mutex_lock(&pinctrl_mutex);
  1202. list_add_tail(&pctldev->node, &pinctrldev_list);
  1203. pctldev->p = pinctrl_get_locked(pctldev->dev);
  1204. if (!IS_ERR(pctldev->p)) {
  1205. struct pinctrl_state *s =
  1206. pinctrl_lookup_state_locked(pctldev->p,
  1207. PINCTRL_STATE_DEFAULT);
  1208. if (IS_ERR(s)) {
  1209. dev_dbg(dev, "failed to lookup the default state\n");
  1210. } else {
  1211. if (pinctrl_select_state_locked(pctldev->p, s))
  1212. dev_err(dev,
  1213. "failed to select default state\n");
  1214. }
  1215. }
  1216. mutex_unlock(&pinctrl_mutex);
  1217. pinctrl_init_device_debugfs(pctldev);
  1218. return pctldev;
  1219. out_err:
  1220. kfree(pctldev);
  1221. return NULL;
  1222. }
  1223. EXPORT_SYMBOL_GPL(pinctrl_register);
  1224. /**
  1225. * pinctrl_unregister() - unregister pinmux
  1226. * @pctldev: pin controller to unregister
  1227. *
  1228. * Called by pinmux drivers to unregister a pinmux.
  1229. */
  1230. void pinctrl_unregister(struct pinctrl_dev *pctldev)
  1231. {
  1232. struct pinctrl_gpio_range *range, *n;
  1233. if (pctldev == NULL)
  1234. return;
  1235. pinctrl_remove_device_debugfs(pctldev);
  1236. mutex_lock(&pinctrl_mutex);
  1237. if (!IS_ERR(pctldev->p))
  1238. pinctrl_put_locked(pctldev->p, true);
  1239. /* TODO: check that no pinmuxes are still active? */
  1240. list_del(&pctldev->node);
  1241. /* Destroy descriptor tree */
  1242. pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
  1243. pctldev->desc->npins);
  1244. /* remove gpio ranges map */
  1245. list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
  1246. list_del(&range->node);
  1247. kfree(pctldev);
  1248. mutex_unlock(&pinctrl_mutex);
  1249. }
  1250. EXPORT_SYMBOL_GPL(pinctrl_unregister);
  1251. static int __init pinctrl_init(void)
  1252. {
  1253. pr_info("initialized pinctrl subsystem\n");
  1254. pinctrl_init_debugfs();
  1255. return 0;
  1256. }
  1257. /* init early since many drivers really need to initialized pinmux early */
  1258. core_initcall(pinctrl_init);