flow.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340
  1. /*
  2. * Copyright (c) 2007-2011 Nicira, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of version 2 of the GNU General Public
  6. * License as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16. * 02110-1301, USA
  17. */
  18. #include "flow.h"
  19. #include "datapath.h"
  20. #include <linux/uaccess.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/etherdevice.h>
  23. #include <linux/if_ether.h>
  24. #include <linux/if_vlan.h>
  25. #include <net/llc_pdu.h>
  26. #include <linux/kernel.h>
  27. #include <linux/jhash.h>
  28. #include <linux/jiffies.h>
  29. #include <linux/llc.h>
  30. #include <linux/module.h>
  31. #include <linux/in.h>
  32. #include <linux/rcupdate.h>
  33. #include <linux/if_arp.h>
  34. #include <linux/ip.h>
  35. #include <linux/ipv6.h>
  36. #include <linux/tcp.h>
  37. #include <linux/udp.h>
  38. #include <linux/icmp.h>
  39. #include <linux/icmpv6.h>
  40. #include <linux/rculist.h>
  41. #include <net/ip.h>
  42. #include <net/ipv6.h>
  43. #include <net/ndisc.h>
  44. static struct kmem_cache *flow_cache;
  45. static int check_header(struct sk_buff *skb, int len)
  46. {
  47. if (unlikely(skb->len < len))
  48. return -EINVAL;
  49. if (unlikely(!pskb_may_pull(skb, len)))
  50. return -ENOMEM;
  51. return 0;
  52. }
  53. static bool arphdr_ok(struct sk_buff *skb)
  54. {
  55. return pskb_may_pull(skb, skb_network_offset(skb) +
  56. sizeof(struct arp_eth_header));
  57. }
  58. static int check_iphdr(struct sk_buff *skb)
  59. {
  60. unsigned int nh_ofs = skb_network_offset(skb);
  61. unsigned int ip_len;
  62. int err;
  63. err = check_header(skb, nh_ofs + sizeof(struct iphdr));
  64. if (unlikely(err))
  65. return err;
  66. ip_len = ip_hdrlen(skb);
  67. if (unlikely(ip_len < sizeof(struct iphdr) ||
  68. skb->len < nh_ofs + ip_len))
  69. return -EINVAL;
  70. skb_set_transport_header(skb, nh_ofs + ip_len);
  71. return 0;
  72. }
  73. static bool tcphdr_ok(struct sk_buff *skb)
  74. {
  75. int th_ofs = skb_transport_offset(skb);
  76. int tcp_len;
  77. if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
  78. return false;
  79. tcp_len = tcp_hdrlen(skb);
  80. if (unlikely(tcp_len < sizeof(struct tcphdr) ||
  81. skb->len < th_ofs + tcp_len))
  82. return false;
  83. return true;
  84. }
  85. static bool udphdr_ok(struct sk_buff *skb)
  86. {
  87. return pskb_may_pull(skb, skb_transport_offset(skb) +
  88. sizeof(struct udphdr));
  89. }
  90. static bool icmphdr_ok(struct sk_buff *skb)
  91. {
  92. return pskb_may_pull(skb, skb_transport_offset(skb) +
  93. sizeof(struct icmphdr));
  94. }
  95. u64 ovs_flow_used_time(unsigned long flow_jiffies)
  96. {
  97. struct timespec cur_ts;
  98. u64 cur_ms, idle_ms;
  99. ktime_get_ts(&cur_ts);
  100. idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
  101. cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
  102. cur_ts.tv_nsec / NSEC_PER_MSEC;
  103. return cur_ms - idle_ms;
  104. }
  105. #define SW_FLOW_KEY_OFFSET(field) \
  106. (offsetof(struct sw_flow_key, field) + \
  107. FIELD_SIZEOF(struct sw_flow_key, field))
  108. static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
  109. int *key_lenp)
  110. {
  111. unsigned int nh_ofs = skb_network_offset(skb);
  112. unsigned int nh_len;
  113. int payload_ofs;
  114. struct ipv6hdr *nh;
  115. uint8_t nexthdr;
  116. __be16 frag_off;
  117. int err;
  118. *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
  119. err = check_header(skb, nh_ofs + sizeof(*nh));
  120. if (unlikely(err))
  121. return err;
  122. nh = ipv6_hdr(skb);
  123. nexthdr = nh->nexthdr;
  124. payload_ofs = (u8 *)(nh + 1) - skb->data;
  125. key->ip.proto = NEXTHDR_NONE;
  126. key->ip.tos = ipv6_get_dsfield(nh);
  127. key->ip.ttl = nh->hop_limit;
  128. key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
  129. key->ipv6.addr.src = nh->saddr;
  130. key->ipv6.addr.dst = nh->daddr;
  131. payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
  132. if (unlikely(payload_ofs < 0))
  133. return -EINVAL;
  134. if (frag_off) {
  135. if (frag_off & htons(~0x7))
  136. key->ip.frag = OVS_FRAG_TYPE_LATER;
  137. else
  138. key->ip.frag = OVS_FRAG_TYPE_FIRST;
  139. }
  140. nh_len = payload_ofs - nh_ofs;
  141. skb_set_transport_header(skb, nh_ofs + nh_len);
  142. key->ip.proto = nexthdr;
  143. return nh_len;
  144. }
  145. static bool icmp6hdr_ok(struct sk_buff *skb)
  146. {
  147. return pskb_may_pull(skb, skb_transport_offset(skb) +
  148. sizeof(struct icmp6hdr));
  149. }
  150. #define TCP_FLAGS_OFFSET 13
  151. #define TCP_FLAG_MASK 0x3f
  152. void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
  153. {
  154. u8 tcp_flags = 0;
  155. if ((flow->key.eth.type == htons(ETH_P_IP) ||
  156. flow->key.eth.type == htons(ETH_P_IPV6)) &&
  157. flow->key.ip.proto == IPPROTO_TCP &&
  158. likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
  159. u8 *tcp = (u8 *)tcp_hdr(skb);
  160. tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
  161. }
  162. spin_lock(&flow->lock);
  163. flow->used = jiffies;
  164. flow->packet_count++;
  165. flow->byte_count += skb->len;
  166. flow->tcp_flags |= tcp_flags;
  167. spin_unlock(&flow->lock);
  168. }
  169. struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
  170. {
  171. int actions_len = nla_len(actions);
  172. struct sw_flow_actions *sfa;
  173. if (actions_len > MAX_ACTIONS_BUFSIZE)
  174. return ERR_PTR(-EINVAL);
  175. sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
  176. if (!sfa)
  177. return ERR_PTR(-ENOMEM);
  178. sfa->actions_len = actions_len;
  179. memcpy(sfa->actions, nla_data(actions), actions_len);
  180. return sfa;
  181. }
  182. struct sw_flow *ovs_flow_alloc(void)
  183. {
  184. struct sw_flow *flow;
  185. flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
  186. if (!flow)
  187. return ERR_PTR(-ENOMEM);
  188. spin_lock_init(&flow->lock);
  189. flow->sf_acts = NULL;
  190. return flow;
  191. }
  192. static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
  193. {
  194. hash = jhash_1word(hash, table->hash_seed);
  195. return flex_array_get(table->buckets,
  196. (hash & (table->n_buckets - 1)));
  197. }
  198. static struct flex_array *alloc_buckets(unsigned int n_buckets)
  199. {
  200. struct flex_array *buckets;
  201. int i, err;
  202. buckets = flex_array_alloc(sizeof(struct hlist_head *),
  203. n_buckets, GFP_KERNEL);
  204. if (!buckets)
  205. return NULL;
  206. err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
  207. if (err) {
  208. flex_array_free(buckets);
  209. return NULL;
  210. }
  211. for (i = 0; i < n_buckets; i++)
  212. INIT_HLIST_HEAD((struct hlist_head *)
  213. flex_array_get(buckets, i));
  214. return buckets;
  215. }
  216. static void free_buckets(struct flex_array *buckets)
  217. {
  218. flex_array_free(buckets);
  219. }
  220. struct flow_table *ovs_flow_tbl_alloc(int new_size)
  221. {
  222. struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
  223. if (!table)
  224. return NULL;
  225. table->buckets = alloc_buckets(new_size);
  226. if (!table->buckets) {
  227. kfree(table);
  228. return NULL;
  229. }
  230. table->n_buckets = new_size;
  231. table->count = 0;
  232. table->node_ver = 0;
  233. table->keep_flows = false;
  234. get_random_bytes(&table->hash_seed, sizeof(u32));
  235. return table;
  236. }
  237. void ovs_flow_tbl_destroy(struct flow_table *table)
  238. {
  239. int i;
  240. if (!table)
  241. return;
  242. if (table->keep_flows)
  243. goto skip_flows;
  244. for (i = 0; i < table->n_buckets; i++) {
  245. struct sw_flow *flow;
  246. struct hlist_head *head = flex_array_get(table->buckets, i);
  247. struct hlist_node *node, *n;
  248. int ver = table->node_ver;
  249. hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
  250. hlist_del_rcu(&flow->hash_node[ver]);
  251. ovs_flow_free(flow);
  252. }
  253. }
  254. skip_flows:
  255. free_buckets(table->buckets);
  256. kfree(table);
  257. }
  258. static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
  259. {
  260. struct flow_table *table = container_of(rcu, struct flow_table, rcu);
  261. ovs_flow_tbl_destroy(table);
  262. }
  263. void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
  264. {
  265. if (!table)
  266. return;
  267. call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
  268. }
  269. struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
  270. {
  271. struct sw_flow *flow;
  272. struct hlist_head *head;
  273. struct hlist_node *n;
  274. int ver;
  275. int i;
  276. ver = table->node_ver;
  277. while (*bucket < table->n_buckets) {
  278. i = 0;
  279. head = flex_array_get(table->buckets, *bucket);
  280. hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
  281. if (i < *last) {
  282. i++;
  283. continue;
  284. }
  285. *last = i + 1;
  286. return flow;
  287. }
  288. (*bucket)++;
  289. *last = 0;
  290. }
  291. return NULL;
  292. }
  293. static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
  294. {
  295. int old_ver;
  296. int i;
  297. old_ver = old->node_ver;
  298. new->node_ver = !old_ver;
  299. /* Insert in new table. */
  300. for (i = 0; i < old->n_buckets; i++) {
  301. struct sw_flow *flow;
  302. struct hlist_head *head;
  303. struct hlist_node *n;
  304. head = flex_array_get(old->buckets, i);
  305. hlist_for_each_entry(flow, n, head, hash_node[old_ver])
  306. ovs_flow_tbl_insert(new, flow);
  307. }
  308. old->keep_flows = true;
  309. }
  310. static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
  311. {
  312. struct flow_table *new_table;
  313. new_table = ovs_flow_tbl_alloc(n_buckets);
  314. if (!new_table)
  315. return ERR_PTR(-ENOMEM);
  316. flow_table_copy_flows(table, new_table);
  317. return new_table;
  318. }
  319. struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
  320. {
  321. return __flow_tbl_rehash(table, table->n_buckets);
  322. }
  323. struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
  324. {
  325. return __flow_tbl_rehash(table, table->n_buckets * 2);
  326. }
  327. void ovs_flow_free(struct sw_flow *flow)
  328. {
  329. if (unlikely(!flow))
  330. return;
  331. kfree((struct sf_flow_acts __force *)flow->sf_acts);
  332. kmem_cache_free(flow_cache, flow);
  333. }
  334. /* RCU callback used by ovs_flow_deferred_free. */
  335. static void rcu_free_flow_callback(struct rcu_head *rcu)
  336. {
  337. struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
  338. ovs_flow_free(flow);
  339. }
  340. /* Schedules 'flow' to be freed after the next RCU grace period.
  341. * The caller must hold rcu_read_lock for this to be sensible. */
  342. void ovs_flow_deferred_free(struct sw_flow *flow)
  343. {
  344. call_rcu(&flow->rcu, rcu_free_flow_callback);
  345. }
  346. /* Schedules 'sf_acts' to be freed after the next RCU grace period.
  347. * The caller must hold rcu_read_lock for this to be sensible. */
  348. void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
  349. {
  350. kfree_rcu(sf_acts, rcu);
  351. }
  352. static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
  353. {
  354. struct qtag_prefix {
  355. __be16 eth_type; /* ETH_P_8021Q */
  356. __be16 tci;
  357. };
  358. struct qtag_prefix *qp;
  359. if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
  360. return 0;
  361. if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
  362. sizeof(__be16))))
  363. return -ENOMEM;
  364. qp = (struct qtag_prefix *) skb->data;
  365. key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
  366. __skb_pull(skb, sizeof(struct qtag_prefix));
  367. return 0;
  368. }
  369. static __be16 parse_ethertype(struct sk_buff *skb)
  370. {
  371. struct llc_snap_hdr {
  372. u8 dsap; /* Always 0xAA */
  373. u8 ssap; /* Always 0xAA */
  374. u8 ctrl;
  375. u8 oui[3];
  376. __be16 ethertype;
  377. };
  378. struct llc_snap_hdr *llc;
  379. __be16 proto;
  380. proto = *(__be16 *) skb->data;
  381. __skb_pull(skb, sizeof(__be16));
  382. if (ntohs(proto) >= 1536)
  383. return proto;
  384. if (skb->len < sizeof(struct llc_snap_hdr))
  385. return htons(ETH_P_802_2);
  386. if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
  387. return htons(0);
  388. llc = (struct llc_snap_hdr *) skb->data;
  389. if (llc->dsap != LLC_SAP_SNAP ||
  390. llc->ssap != LLC_SAP_SNAP ||
  391. (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
  392. return htons(ETH_P_802_2);
  393. __skb_pull(skb, sizeof(struct llc_snap_hdr));
  394. return llc->ethertype;
  395. }
  396. static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
  397. int *key_lenp, int nh_len)
  398. {
  399. struct icmp6hdr *icmp = icmp6_hdr(skb);
  400. int error = 0;
  401. int key_len;
  402. /* The ICMPv6 type and code fields use the 16-bit transport port
  403. * fields, so we need to store them in 16-bit network byte order.
  404. */
  405. key->ipv6.tp.src = htons(icmp->icmp6_type);
  406. key->ipv6.tp.dst = htons(icmp->icmp6_code);
  407. key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
  408. if (icmp->icmp6_code == 0 &&
  409. (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
  410. icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
  411. int icmp_len = skb->len - skb_transport_offset(skb);
  412. struct nd_msg *nd;
  413. int offset;
  414. key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
  415. /* In order to process neighbor discovery options, we need the
  416. * entire packet.
  417. */
  418. if (unlikely(icmp_len < sizeof(*nd)))
  419. goto out;
  420. if (unlikely(skb_linearize(skb))) {
  421. error = -ENOMEM;
  422. goto out;
  423. }
  424. nd = (struct nd_msg *)skb_transport_header(skb);
  425. key->ipv6.nd.target = nd->target;
  426. key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
  427. icmp_len -= sizeof(*nd);
  428. offset = 0;
  429. while (icmp_len >= 8) {
  430. struct nd_opt_hdr *nd_opt =
  431. (struct nd_opt_hdr *)(nd->opt + offset);
  432. int opt_len = nd_opt->nd_opt_len * 8;
  433. if (unlikely(!opt_len || opt_len > icmp_len))
  434. goto invalid;
  435. /* Store the link layer address if the appropriate
  436. * option is provided. It is considered an error if
  437. * the same link layer option is specified twice.
  438. */
  439. if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
  440. && opt_len == 8) {
  441. if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
  442. goto invalid;
  443. memcpy(key->ipv6.nd.sll,
  444. &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
  445. } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
  446. && opt_len == 8) {
  447. if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
  448. goto invalid;
  449. memcpy(key->ipv6.nd.tll,
  450. &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
  451. }
  452. icmp_len -= opt_len;
  453. offset += opt_len;
  454. }
  455. }
  456. goto out;
  457. invalid:
  458. memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
  459. memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
  460. memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
  461. out:
  462. *key_lenp = key_len;
  463. return error;
  464. }
  465. /**
  466. * ovs_flow_extract - extracts a flow key from an Ethernet frame.
  467. * @skb: sk_buff that contains the frame, with skb->data pointing to the
  468. * Ethernet header
  469. * @in_port: port number on which @skb was received.
  470. * @key: output flow key
  471. * @key_lenp: length of output flow key
  472. *
  473. * The caller must ensure that skb->len >= ETH_HLEN.
  474. *
  475. * Returns 0 if successful, otherwise a negative errno value.
  476. *
  477. * Initializes @skb header pointers as follows:
  478. *
  479. * - skb->mac_header: the Ethernet header.
  480. *
  481. * - skb->network_header: just past the Ethernet header, or just past the
  482. * VLAN header, to the first byte of the Ethernet payload.
  483. *
  484. * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
  485. * on output, then just past the IP header, if one is present and
  486. * of a correct length, otherwise the same as skb->network_header.
  487. * For other key->dl_type values it is left untouched.
  488. */
  489. int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
  490. int *key_lenp)
  491. {
  492. int error = 0;
  493. int key_len = SW_FLOW_KEY_OFFSET(eth);
  494. struct ethhdr *eth;
  495. memset(key, 0, sizeof(*key));
  496. key->phy.priority = skb->priority;
  497. key->phy.in_port = in_port;
  498. skb_reset_mac_header(skb);
  499. /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
  500. * header in the linear data area.
  501. */
  502. eth = eth_hdr(skb);
  503. memcpy(key->eth.src, eth->h_source, ETH_ALEN);
  504. memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
  505. __skb_pull(skb, 2 * ETH_ALEN);
  506. if (vlan_tx_tag_present(skb))
  507. key->eth.tci = htons(skb->vlan_tci);
  508. else if (eth->h_proto == htons(ETH_P_8021Q))
  509. if (unlikely(parse_vlan(skb, key)))
  510. return -ENOMEM;
  511. key->eth.type = parse_ethertype(skb);
  512. if (unlikely(key->eth.type == htons(0)))
  513. return -ENOMEM;
  514. skb_reset_network_header(skb);
  515. __skb_push(skb, skb->data - skb_mac_header(skb));
  516. /* Network layer. */
  517. if (key->eth.type == htons(ETH_P_IP)) {
  518. struct iphdr *nh;
  519. __be16 offset;
  520. key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
  521. error = check_iphdr(skb);
  522. if (unlikely(error)) {
  523. if (error == -EINVAL) {
  524. skb->transport_header = skb->network_header;
  525. error = 0;
  526. }
  527. goto out;
  528. }
  529. nh = ip_hdr(skb);
  530. key->ipv4.addr.src = nh->saddr;
  531. key->ipv4.addr.dst = nh->daddr;
  532. key->ip.proto = nh->protocol;
  533. key->ip.tos = nh->tos;
  534. key->ip.ttl = nh->ttl;
  535. offset = nh->frag_off & htons(IP_OFFSET);
  536. if (offset) {
  537. key->ip.frag = OVS_FRAG_TYPE_LATER;
  538. goto out;
  539. }
  540. if (nh->frag_off & htons(IP_MF) ||
  541. skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
  542. key->ip.frag = OVS_FRAG_TYPE_FIRST;
  543. /* Transport layer. */
  544. if (key->ip.proto == IPPROTO_TCP) {
  545. key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
  546. if (tcphdr_ok(skb)) {
  547. struct tcphdr *tcp = tcp_hdr(skb);
  548. key->ipv4.tp.src = tcp->source;
  549. key->ipv4.tp.dst = tcp->dest;
  550. }
  551. } else if (key->ip.proto == IPPROTO_UDP) {
  552. key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
  553. if (udphdr_ok(skb)) {
  554. struct udphdr *udp = udp_hdr(skb);
  555. key->ipv4.tp.src = udp->source;
  556. key->ipv4.tp.dst = udp->dest;
  557. }
  558. } else if (key->ip.proto == IPPROTO_ICMP) {
  559. key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
  560. if (icmphdr_ok(skb)) {
  561. struct icmphdr *icmp = icmp_hdr(skb);
  562. /* The ICMP type and code fields use the 16-bit
  563. * transport port fields, so we need to store
  564. * them in 16-bit network byte order. */
  565. key->ipv4.tp.src = htons(icmp->type);
  566. key->ipv4.tp.dst = htons(icmp->code);
  567. }
  568. }
  569. } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
  570. struct arp_eth_header *arp;
  571. arp = (struct arp_eth_header *)skb_network_header(skb);
  572. if (arp->ar_hrd == htons(ARPHRD_ETHER)
  573. && arp->ar_pro == htons(ETH_P_IP)
  574. && arp->ar_hln == ETH_ALEN
  575. && arp->ar_pln == 4) {
  576. /* We only match on the lower 8 bits of the opcode. */
  577. if (ntohs(arp->ar_op) <= 0xff)
  578. key->ip.proto = ntohs(arp->ar_op);
  579. if (key->ip.proto == ARPOP_REQUEST
  580. || key->ip.proto == ARPOP_REPLY) {
  581. memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
  582. memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
  583. memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
  584. memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
  585. key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
  586. }
  587. }
  588. } else if (key->eth.type == htons(ETH_P_IPV6)) {
  589. int nh_len; /* IPv6 Header + Extensions */
  590. nh_len = parse_ipv6hdr(skb, key, &key_len);
  591. if (unlikely(nh_len < 0)) {
  592. if (nh_len == -EINVAL)
  593. skb->transport_header = skb->network_header;
  594. else
  595. error = nh_len;
  596. goto out;
  597. }
  598. if (key->ip.frag == OVS_FRAG_TYPE_LATER)
  599. goto out;
  600. if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
  601. key->ip.frag = OVS_FRAG_TYPE_FIRST;
  602. /* Transport layer. */
  603. if (key->ip.proto == NEXTHDR_TCP) {
  604. key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
  605. if (tcphdr_ok(skb)) {
  606. struct tcphdr *tcp = tcp_hdr(skb);
  607. key->ipv6.tp.src = tcp->source;
  608. key->ipv6.tp.dst = tcp->dest;
  609. }
  610. } else if (key->ip.proto == NEXTHDR_UDP) {
  611. key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
  612. if (udphdr_ok(skb)) {
  613. struct udphdr *udp = udp_hdr(skb);
  614. key->ipv6.tp.src = udp->source;
  615. key->ipv6.tp.dst = udp->dest;
  616. }
  617. } else if (key->ip.proto == NEXTHDR_ICMP) {
  618. key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
  619. if (icmp6hdr_ok(skb)) {
  620. error = parse_icmpv6(skb, key, &key_len, nh_len);
  621. if (error < 0)
  622. goto out;
  623. }
  624. }
  625. }
  626. out:
  627. *key_lenp = key_len;
  628. return error;
  629. }
  630. u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
  631. {
  632. return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
  633. }
  634. struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
  635. struct sw_flow_key *key, int key_len)
  636. {
  637. struct sw_flow *flow;
  638. struct hlist_node *n;
  639. struct hlist_head *head;
  640. u32 hash;
  641. hash = ovs_flow_hash(key, key_len);
  642. head = find_bucket(table, hash);
  643. hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
  644. if (flow->hash == hash &&
  645. !memcmp(&flow->key, key, key_len)) {
  646. return flow;
  647. }
  648. }
  649. return NULL;
  650. }
  651. void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
  652. {
  653. struct hlist_head *head;
  654. head = find_bucket(table, flow->hash);
  655. hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
  656. table->count++;
  657. }
  658. void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
  659. {
  660. hlist_del_rcu(&flow->hash_node[table->node_ver]);
  661. table->count--;
  662. BUG_ON(table->count < 0);
  663. }
  664. /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
  665. const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
  666. [OVS_KEY_ATTR_ENCAP] = -1,
  667. [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
  668. [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
  669. [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
  670. [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
  671. [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
  672. [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
  673. [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
  674. [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
  675. [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
  676. [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
  677. [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
  678. [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
  679. [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
  680. };
  681. static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
  682. const struct nlattr *a[], u32 *attrs)
  683. {
  684. const struct ovs_key_icmp *icmp_key;
  685. const struct ovs_key_tcp *tcp_key;
  686. const struct ovs_key_udp *udp_key;
  687. switch (swkey->ip.proto) {
  688. case IPPROTO_TCP:
  689. if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
  690. return -EINVAL;
  691. *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
  692. *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
  693. tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
  694. swkey->ipv4.tp.src = tcp_key->tcp_src;
  695. swkey->ipv4.tp.dst = tcp_key->tcp_dst;
  696. break;
  697. case IPPROTO_UDP:
  698. if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
  699. return -EINVAL;
  700. *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
  701. *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
  702. udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
  703. swkey->ipv4.tp.src = udp_key->udp_src;
  704. swkey->ipv4.tp.dst = udp_key->udp_dst;
  705. break;
  706. case IPPROTO_ICMP:
  707. if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
  708. return -EINVAL;
  709. *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
  710. *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
  711. icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
  712. swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
  713. swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
  714. break;
  715. }
  716. return 0;
  717. }
  718. static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
  719. const struct nlattr *a[], u32 *attrs)
  720. {
  721. const struct ovs_key_icmpv6 *icmpv6_key;
  722. const struct ovs_key_tcp *tcp_key;
  723. const struct ovs_key_udp *udp_key;
  724. switch (swkey->ip.proto) {
  725. case IPPROTO_TCP:
  726. if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
  727. return -EINVAL;
  728. *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
  729. *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
  730. tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
  731. swkey->ipv6.tp.src = tcp_key->tcp_src;
  732. swkey->ipv6.tp.dst = tcp_key->tcp_dst;
  733. break;
  734. case IPPROTO_UDP:
  735. if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
  736. return -EINVAL;
  737. *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
  738. *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
  739. udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
  740. swkey->ipv6.tp.src = udp_key->udp_src;
  741. swkey->ipv6.tp.dst = udp_key->udp_dst;
  742. break;
  743. case IPPROTO_ICMPV6:
  744. if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
  745. return -EINVAL;
  746. *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
  747. *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
  748. icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
  749. swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
  750. swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
  751. if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
  752. swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
  753. const struct ovs_key_nd *nd_key;
  754. if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
  755. return -EINVAL;
  756. *attrs &= ~(1 << OVS_KEY_ATTR_ND);
  757. *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
  758. nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
  759. memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
  760. sizeof(swkey->ipv6.nd.target));
  761. memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
  762. memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
  763. }
  764. break;
  765. }
  766. return 0;
  767. }
  768. static int parse_flow_nlattrs(const struct nlattr *attr,
  769. const struct nlattr *a[], u32 *attrsp)
  770. {
  771. const struct nlattr *nla;
  772. u32 attrs;
  773. int rem;
  774. attrs = 0;
  775. nla_for_each_nested(nla, attr, rem) {
  776. u16 type = nla_type(nla);
  777. int expected_len;
  778. if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
  779. return -EINVAL;
  780. expected_len = ovs_key_lens[type];
  781. if (nla_len(nla) != expected_len && expected_len != -1)
  782. return -EINVAL;
  783. attrs |= 1 << type;
  784. a[type] = nla;
  785. }
  786. if (rem)
  787. return -EINVAL;
  788. *attrsp = attrs;
  789. return 0;
  790. }
  791. /**
  792. * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
  793. * @swkey: receives the extracted flow key.
  794. * @key_lenp: number of bytes used in @swkey.
  795. * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
  796. * sequence.
  797. */
  798. int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
  799. const struct nlattr *attr)
  800. {
  801. const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
  802. const struct ovs_key_ethernet *eth_key;
  803. int key_len;
  804. u32 attrs;
  805. int err;
  806. memset(swkey, 0, sizeof(struct sw_flow_key));
  807. key_len = SW_FLOW_KEY_OFFSET(eth);
  808. err = parse_flow_nlattrs(attr, a, &attrs);
  809. if (err)
  810. return err;
  811. /* Metadata attributes. */
  812. if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
  813. swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
  814. attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
  815. }
  816. if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
  817. u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
  818. if (in_port >= DP_MAX_PORTS)
  819. return -EINVAL;
  820. swkey->phy.in_port = in_port;
  821. attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
  822. } else {
  823. swkey->phy.in_port = DP_MAX_PORTS;
  824. }
  825. /* Data attributes. */
  826. if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
  827. return -EINVAL;
  828. attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
  829. eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
  830. memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
  831. memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
  832. if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
  833. nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
  834. const struct nlattr *encap;
  835. __be16 tci;
  836. if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
  837. (1 << OVS_KEY_ATTR_ETHERTYPE) |
  838. (1 << OVS_KEY_ATTR_ENCAP)))
  839. return -EINVAL;
  840. encap = a[OVS_KEY_ATTR_ENCAP];
  841. tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
  842. if (tci & htons(VLAN_TAG_PRESENT)) {
  843. swkey->eth.tci = tci;
  844. err = parse_flow_nlattrs(encap, a, &attrs);
  845. if (err)
  846. return err;
  847. } else if (!tci) {
  848. /* Corner case for truncated 802.1Q header. */
  849. if (nla_len(encap))
  850. return -EINVAL;
  851. swkey->eth.type = htons(ETH_P_8021Q);
  852. *key_lenp = key_len;
  853. return 0;
  854. } else {
  855. return -EINVAL;
  856. }
  857. }
  858. if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
  859. swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
  860. if (ntohs(swkey->eth.type) < 1536)
  861. return -EINVAL;
  862. attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
  863. } else {
  864. swkey->eth.type = htons(ETH_P_802_2);
  865. }
  866. if (swkey->eth.type == htons(ETH_P_IP)) {
  867. const struct ovs_key_ipv4 *ipv4_key;
  868. if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
  869. return -EINVAL;
  870. attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
  871. key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
  872. ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
  873. if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
  874. return -EINVAL;
  875. swkey->ip.proto = ipv4_key->ipv4_proto;
  876. swkey->ip.tos = ipv4_key->ipv4_tos;
  877. swkey->ip.ttl = ipv4_key->ipv4_ttl;
  878. swkey->ip.frag = ipv4_key->ipv4_frag;
  879. swkey->ipv4.addr.src = ipv4_key->ipv4_src;
  880. swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
  881. if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
  882. err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
  883. if (err)
  884. return err;
  885. }
  886. } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
  887. const struct ovs_key_ipv6 *ipv6_key;
  888. if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
  889. return -EINVAL;
  890. attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
  891. key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
  892. ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
  893. if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
  894. return -EINVAL;
  895. swkey->ipv6.label = ipv6_key->ipv6_label;
  896. swkey->ip.proto = ipv6_key->ipv6_proto;
  897. swkey->ip.tos = ipv6_key->ipv6_tclass;
  898. swkey->ip.ttl = ipv6_key->ipv6_hlimit;
  899. swkey->ip.frag = ipv6_key->ipv6_frag;
  900. memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
  901. sizeof(swkey->ipv6.addr.src));
  902. memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
  903. sizeof(swkey->ipv6.addr.dst));
  904. if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
  905. err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
  906. if (err)
  907. return err;
  908. }
  909. } else if (swkey->eth.type == htons(ETH_P_ARP)) {
  910. const struct ovs_key_arp *arp_key;
  911. if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
  912. return -EINVAL;
  913. attrs &= ~(1 << OVS_KEY_ATTR_ARP);
  914. key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
  915. arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
  916. swkey->ipv4.addr.src = arp_key->arp_sip;
  917. swkey->ipv4.addr.dst = arp_key->arp_tip;
  918. if (arp_key->arp_op & htons(0xff00))
  919. return -EINVAL;
  920. swkey->ip.proto = ntohs(arp_key->arp_op);
  921. memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
  922. memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
  923. }
  924. if (attrs)
  925. return -EINVAL;
  926. *key_lenp = key_len;
  927. return 0;
  928. }
  929. /**
  930. * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
  931. * @in_port: receives the extracted input port.
  932. * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
  933. * sequence.
  934. *
  935. * This parses a series of Netlink attributes that form a flow key, which must
  936. * take the same form accepted by flow_from_nlattrs(), but only enough of it to
  937. * get the metadata, that is, the parts of the flow key that cannot be
  938. * extracted from the packet itself.
  939. */
  940. int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port,
  941. const struct nlattr *attr)
  942. {
  943. const struct nlattr *nla;
  944. int rem;
  945. *in_port = DP_MAX_PORTS;
  946. *priority = 0;
  947. nla_for_each_nested(nla, attr, rem) {
  948. int type = nla_type(nla);
  949. if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
  950. if (nla_len(nla) != ovs_key_lens[type])
  951. return -EINVAL;
  952. switch (type) {
  953. case OVS_KEY_ATTR_PRIORITY:
  954. *priority = nla_get_u32(nla);
  955. break;
  956. case OVS_KEY_ATTR_IN_PORT:
  957. if (nla_get_u32(nla) >= DP_MAX_PORTS)
  958. return -EINVAL;
  959. *in_port = nla_get_u32(nla);
  960. break;
  961. }
  962. }
  963. }
  964. if (rem)
  965. return -EINVAL;
  966. return 0;
  967. }
  968. int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
  969. {
  970. struct ovs_key_ethernet *eth_key;
  971. struct nlattr *nla, *encap;
  972. if (swkey->phy.priority &&
  973. nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority))
  974. goto nla_put_failure;
  975. if (swkey->phy.in_port != DP_MAX_PORTS &&
  976. nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port))
  977. goto nla_put_failure;
  978. nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
  979. if (!nla)
  980. goto nla_put_failure;
  981. eth_key = nla_data(nla);
  982. memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
  983. memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
  984. if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
  985. if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) ||
  986. nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci))
  987. goto nla_put_failure;
  988. encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
  989. if (!swkey->eth.tci)
  990. goto unencap;
  991. } else {
  992. encap = NULL;
  993. }
  994. if (swkey->eth.type == htons(ETH_P_802_2))
  995. goto unencap;
  996. if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type))
  997. goto nla_put_failure;
  998. if (swkey->eth.type == htons(ETH_P_IP)) {
  999. struct ovs_key_ipv4 *ipv4_key;
  1000. nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
  1001. if (!nla)
  1002. goto nla_put_failure;
  1003. ipv4_key = nla_data(nla);
  1004. ipv4_key->ipv4_src = swkey->ipv4.addr.src;
  1005. ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
  1006. ipv4_key->ipv4_proto = swkey->ip.proto;
  1007. ipv4_key->ipv4_tos = swkey->ip.tos;
  1008. ipv4_key->ipv4_ttl = swkey->ip.ttl;
  1009. ipv4_key->ipv4_frag = swkey->ip.frag;
  1010. } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
  1011. struct ovs_key_ipv6 *ipv6_key;
  1012. nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
  1013. if (!nla)
  1014. goto nla_put_failure;
  1015. ipv6_key = nla_data(nla);
  1016. memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
  1017. sizeof(ipv6_key->ipv6_src));
  1018. memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
  1019. sizeof(ipv6_key->ipv6_dst));
  1020. ipv6_key->ipv6_label = swkey->ipv6.label;
  1021. ipv6_key->ipv6_proto = swkey->ip.proto;
  1022. ipv6_key->ipv6_tclass = swkey->ip.tos;
  1023. ipv6_key->ipv6_hlimit = swkey->ip.ttl;
  1024. ipv6_key->ipv6_frag = swkey->ip.frag;
  1025. } else if (swkey->eth.type == htons(ETH_P_ARP)) {
  1026. struct ovs_key_arp *arp_key;
  1027. nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
  1028. if (!nla)
  1029. goto nla_put_failure;
  1030. arp_key = nla_data(nla);
  1031. memset(arp_key, 0, sizeof(struct ovs_key_arp));
  1032. arp_key->arp_sip = swkey->ipv4.addr.src;
  1033. arp_key->arp_tip = swkey->ipv4.addr.dst;
  1034. arp_key->arp_op = htons(swkey->ip.proto);
  1035. memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
  1036. memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
  1037. }
  1038. if ((swkey->eth.type == htons(ETH_P_IP) ||
  1039. swkey->eth.type == htons(ETH_P_IPV6)) &&
  1040. swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
  1041. if (swkey->ip.proto == IPPROTO_TCP) {
  1042. struct ovs_key_tcp *tcp_key;
  1043. nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
  1044. if (!nla)
  1045. goto nla_put_failure;
  1046. tcp_key = nla_data(nla);
  1047. if (swkey->eth.type == htons(ETH_P_IP)) {
  1048. tcp_key->tcp_src = swkey->ipv4.tp.src;
  1049. tcp_key->tcp_dst = swkey->ipv4.tp.dst;
  1050. } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
  1051. tcp_key->tcp_src = swkey->ipv6.tp.src;
  1052. tcp_key->tcp_dst = swkey->ipv6.tp.dst;
  1053. }
  1054. } else if (swkey->ip.proto == IPPROTO_UDP) {
  1055. struct ovs_key_udp *udp_key;
  1056. nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
  1057. if (!nla)
  1058. goto nla_put_failure;
  1059. udp_key = nla_data(nla);
  1060. if (swkey->eth.type == htons(ETH_P_IP)) {
  1061. udp_key->udp_src = swkey->ipv4.tp.src;
  1062. udp_key->udp_dst = swkey->ipv4.tp.dst;
  1063. } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
  1064. udp_key->udp_src = swkey->ipv6.tp.src;
  1065. udp_key->udp_dst = swkey->ipv6.tp.dst;
  1066. }
  1067. } else if (swkey->eth.type == htons(ETH_P_IP) &&
  1068. swkey->ip.proto == IPPROTO_ICMP) {
  1069. struct ovs_key_icmp *icmp_key;
  1070. nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
  1071. if (!nla)
  1072. goto nla_put_failure;
  1073. icmp_key = nla_data(nla);
  1074. icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
  1075. icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
  1076. } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
  1077. swkey->ip.proto == IPPROTO_ICMPV6) {
  1078. struct ovs_key_icmpv6 *icmpv6_key;
  1079. nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
  1080. sizeof(*icmpv6_key));
  1081. if (!nla)
  1082. goto nla_put_failure;
  1083. icmpv6_key = nla_data(nla);
  1084. icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
  1085. icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
  1086. if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
  1087. icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
  1088. struct ovs_key_nd *nd_key;
  1089. nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
  1090. if (!nla)
  1091. goto nla_put_failure;
  1092. nd_key = nla_data(nla);
  1093. memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
  1094. sizeof(nd_key->nd_target));
  1095. memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
  1096. memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
  1097. }
  1098. }
  1099. }
  1100. unencap:
  1101. if (encap)
  1102. nla_nest_end(skb, encap);
  1103. return 0;
  1104. nla_put_failure:
  1105. return -EMSGSIZE;
  1106. }
  1107. /* Initializes the flow module.
  1108. * Returns zero if successful or a negative error code. */
  1109. int ovs_flow_init(void)
  1110. {
  1111. flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
  1112. 0, NULL);
  1113. if (flow_cache == NULL)
  1114. return -ENOMEM;
  1115. return 0;
  1116. }
  1117. /* Uninitializes the flow module. */
  1118. void ovs_flow_exit(void)
  1119. {
  1120. kmem_cache_destroy(flow_cache);
  1121. }