bpf_jit_comp.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703
  1. /* bpf_jit_comp.c : BPF JIT compiler
  2. *
  3. * Copyright (C) 2011 Eric Dumazet (eric.dumazet@gmail.com)
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; version 2
  8. * of the License.
  9. */
  10. #include <linux/moduleloader.h>
  11. #include <asm/cacheflush.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/filter.h>
  14. /*
  15. * Conventions :
  16. * EAX : BPF A accumulator
  17. * EBX : BPF X accumulator
  18. * RDI : pointer to skb (first argument given to JIT function)
  19. * RBP : frame pointer (even if CONFIG_FRAME_POINTER=n)
  20. * ECX,EDX,ESI : scratch registers
  21. * r9d : skb->len - skb->data_len (headlen)
  22. * r8 : skb->data
  23. * -8(RBP) : saved RBX value
  24. * -16(RBP)..-80(RBP) : BPF_MEMWORDS values
  25. */
  26. int bpf_jit_enable __read_mostly;
  27. /*
  28. * assembly code in arch/x86/net/bpf_jit.S
  29. */
  30. extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
  31. extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
  32. extern u8 sk_load_byte_positive_offset[], sk_load_byte_msh_positive_offset[];
  33. extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
  34. extern u8 sk_load_byte_negative_offset[], sk_load_byte_msh_negative_offset[];
  35. static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  36. {
  37. if (len == 1)
  38. *ptr = bytes;
  39. else if (len == 2)
  40. *(u16 *)ptr = bytes;
  41. else {
  42. *(u32 *)ptr = bytes;
  43. barrier();
  44. }
  45. return ptr + len;
  46. }
  47. #define EMIT(bytes, len) do { prog = emit_code(prog, bytes, len); } while (0)
  48. #define EMIT1(b1) EMIT(b1, 1)
  49. #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
  50. #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  51. #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
  52. #define EMIT1_off32(b1, off) do { EMIT1(b1); EMIT(off, 4);} while (0)
  53. #define CLEAR_A() EMIT2(0x31, 0xc0) /* xor %eax,%eax */
  54. #define CLEAR_X() EMIT2(0x31, 0xdb) /* xor %ebx,%ebx */
  55. static inline bool is_imm8(int value)
  56. {
  57. return value <= 127 && value >= -128;
  58. }
  59. static inline bool is_near(int offset)
  60. {
  61. return offset <= 127 && offset >= -128;
  62. }
  63. #define EMIT_JMP(offset) \
  64. do { \
  65. if (offset) { \
  66. if (is_near(offset)) \
  67. EMIT2(0xeb, offset); /* jmp .+off8 */ \
  68. else \
  69. EMIT1_off32(0xe9, offset); /* jmp .+off32 */ \
  70. } \
  71. } while (0)
  72. /* list of x86 cond jumps opcodes (. + s8)
  73. * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  74. */
  75. #define X86_JB 0x72
  76. #define X86_JAE 0x73
  77. #define X86_JE 0x74
  78. #define X86_JNE 0x75
  79. #define X86_JBE 0x76
  80. #define X86_JA 0x77
  81. #define EMIT_COND_JMP(op, offset) \
  82. do { \
  83. if (is_near(offset)) \
  84. EMIT2(op, offset); /* jxx .+off8 */ \
  85. else { \
  86. EMIT2(0x0f, op + 0x10); \
  87. EMIT(offset, 4); /* jxx .+off32 */ \
  88. } \
  89. } while (0)
  90. #define COND_SEL(CODE, TOP, FOP) \
  91. case CODE: \
  92. t_op = TOP; \
  93. f_op = FOP; \
  94. goto cond_branch
  95. #define SEEN_DATAREF 1 /* might call external helpers */
  96. #define SEEN_XREG 2 /* ebx is used */
  97. #define SEEN_MEM 4 /* use mem[] for temporary storage */
  98. static inline void bpf_flush_icache(void *start, void *end)
  99. {
  100. mm_segment_t old_fs = get_fs();
  101. set_fs(KERNEL_DS);
  102. smp_wmb();
  103. flush_icache_range((unsigned long)start, (unsigned long)end);
  104. set_fs(old_fs);
  105. }
  106. #define CHOOSE_LOAD_FUNC(K, func) \
  107. ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
  108. void bpf_jit_compile(struct sk_filter *fp)
  109. {
  110. u8 temp[64];
  111. u8 *prog;
  112. unsigned int proglen, oldproglen = 0;
  113. int ilen, i;
  114. int t_offset, f_offset;
  115. u8 t_op, f_op, seen = 0, pass;
  116. u8 *image = NULL;
  117. u8 *func;
  118. int pc_ret0 = -1; /* bpf index of first RET #0 instruction (if any) */
  119. unsigned int cleanup_addr; /* epilogue code offset */
  120. unsigned int *addrs;
  121. const struct sock_filter *filter = fp->insns;
  122. int flen = fp->len;
  123. if (!bpf_jit_enable)
  124. return;
  125. addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
  126. if (addrs == NULL)
  127. return;
  128. /* Before first pass, make a rough estimation of addrs[]
  129. * each bpf instruction is translated to less than 64 bytes
  130. */
  131. for (proglen = 0, i = 0; i < flen; i++) {
  132. proglen += 64;
  133. addrs[i] = proglen;
  134. }
  135. cleanup_addr = proglen; /* epilogue address */
  136. for (pass = 0; pass < 10; pass++) {
  137. u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
  138. /* no prologue/epilogue for trivial filters (RET something) */
  139. proglen = 0;
  140. prog = temp;
  141. if (seen_or_pass0) {
  142. EMIT4(0x55, 0x48, 0x89, 0xe5); /* push %rbp; mov %rsp,%rbp */
  143. EMIT4(0x48, 0x83, 0xec, 96); /* subq $96,%rsp */
  144. /* note : must save %rbx in case bpf_error is hit */
  145. if (seen_or_pass0 & (SEEN_XREG | SEEN_DATAREF))
  146. EMIT4(0x48, 0x89, 0x5d, 0xf8); /* mov %rbx, -8(%rbp) */
  147. if (seen_or_pass0 & SEEN_XREG)
  148. CLEAR_X(); /* make sure we dont leek kernel memory */
  149. /*
  150. * If this filter needs to access skb data,
  151. * loads r9 and r8 with :
  152. * r9 = skb->len - skb->data_len
  153. * r8 = skb->data
  154. */
  155. if (seen_or_pass0 & SEEN_DATAREF) {
  156. if (offsetof(struct sk_buff, len) <= 127)
  157. /* mov off8(%rdi),%r9d */
  158. EMIT4(0x44, 0x8b, 0x4f, offsetof(struct sk_buff, len));
  159. else {
  160. /* mov off32(%rdi),%r9d */
  161. EMIT3(0x44, 0x8b, 0x8f);
  162. EMIT(offsetof(struct sk_buff, len), 4);
  163. }
  164. if (is_imm8(offsetof(struct sk_buff, data_len)))
  165. /* sub off8(%rdi),%r9d */
  166. EMIT4(0x44, 0x2b, 0x4f, offsetof(struct sk_buff, data_len));
  167. else {
  168. EMIT3(0x44, 0x2b, 0x8f);
  169. EMIT(offsetof(struct sk_buff, data_len), 4);
  170. }
  171. if (is_imm8(offsetof(struct sk_buff, data)))
  172. /* mov off8(%rdi),%r8 */
  173. EMIT4(0x4c, 0x8b, 0x47, offsetof(struct sk_buff, data));
  174. else {
  175. /* mov off32(%rdi),%r8 */
  176. EMIT3(0x4c, 0x8b, 0x87);
  177. EMIT(offsetof(struct sk_buff, data), 4);
  178. }
  179. }
  180. }
  181. switch (filter[0].code) {
  182. case BPF_S_RET_K:
  183. case BPF_S_LD_W_LEN:
  184. case BPF_S_ANC_PROTOCOL:
  185. case BPF_S_ANC_IFINDEX:
  186. case BPF_S_ANC_MARK:
  187. case BPF_S_ANC_RXHASH:
  188. case BPF_S_ANC_CPU:
  189. case BPF_S_ANC_QUEUE:
  190. case BPF_S_LD_W_ABS:
  191. case BPF_S_LD_H_ABS:
  192. case BPF_S_LD_B_ABS:
  193. /* first instruction sets A register (or is RET 'constant') */
  194. break;
  195. default:
  196. /* make sure we dont leak kernel information to user */
  197. CLEAR_A(); /* A = 0 */
  198. }
  199. for (i = 0; i < flen; i++) {
  200. unsigned int K = filter[i].k;
  201. switch (filter[i].code) {
  202. case BPF_S_ALU_ADD_X: /* A += X; */
  203. seen |= SEEN_XREG;
  204. EMIT2(0x01, 0xd8); /* add %ebx,%eax */
  205. break;
  206. case BPF_S_ALU_ADD_K: /* A += K; */
  207. if (!K)
  208. break;
  209. if (is_imm8(K))
  210. EMIT3(0x83, 0xc0, K); /* add imm8,%eax */
  211. else
  212. EMIT1_off32(0x05, K); /* add imm32,%eax */
  213. break;
  214. case BPF_S_ALU_SUB_X: /* A -= X; */
  215. seen |= SEEN_XREG;
  216. EMIT2(0x29, 0xd8); /* sub %ebx,%eax */
  217. break;
  218. case BPF_S_ALU_SUB_K: /* A -= K */
  219. if (!K)
  220. break;
  221. if (is_imm8(K))
  222. EMIT3(0x83, 0xe8, K); /* sub imm8,%eax */
  223. else
  224. EMIT1_off32(0x2d, K); /* sub imm32,%eax */
  225. break;
  226. case BPF_S_ALU_MUL_X: /* A *= X; */
  227. seen |= SEEN_XREG;
  228. EMIT3(0x0f, 0xaf, 0xc3); /* imul %ebx,%eax */
  229. break;
  230. case BPF_S_ALU_MUL_K: /* A *= K */
  231. if (is_imm8(K))
  232. EMIT3(0x6b, 0xc0, K); /* imul imm8,%eax,%eax */
  233. else {
  234. EMIT2(0x69, 0xc0); /* imul imm32,%eax */
  235. EMIT(K, 4);
  236. }
  237. break;
  238. case BPF_S_ALU_DIV_X: /* A /= X; */
  239. seen |= SEEN_XREG;
  240. EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
  241. if (pc_ret0 > 0) {
  242. /* addrs[pc_ret0 - 1] is start address of target
  243. * (addrs[i] - 4) is the address following this jmp
  244. * ("xor %edx,%edx; div %ebx" being 4 bytes long)
  245. */
  246. EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
  247. (addrs[i] - 4));
  248. } else {
  249. EMIT_COND_JMP(X86_JNE, 2 + 5);
  250. CLEAR_A();
  251. EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 4)); /* jmp .+off32 */
  252. }
  253. EMIT4(0x31, 0xd2, 0xf7, 0xf3); /* xor %edx,%edx; div %ebx */
  254. break;
  255. case BPF_S_ALU_MOD_X: /* A %= X; */
  256. seen |= SEEN_XREG;
  257. EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
  258. if (pc_ret0 > 0) {
  259. /* addrs[pc_ret0 - 1] is start address of target
  260. * (addrs[i] - 6) is the address following this jmp
  261. * ("xor %edx,%edx; div %ebx;mov %edx,%eax" being 6 bytes long)
  262. */
  263. EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
  264. (addrs[i] - 6));
  265. } else {
  266. EMIT_COND_JMP(X86_JNE, 2 + 5);
  267. CLEAR_A();
  268. EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 6)); /* jmp .+off32 */
  269. }
  270. EMIT2(0x31, 0xd2); /* xor %edx,%edx */
  271. EMIT2(0xf7, 0xf3); /* div %ebx */
  272. EMIT2(0x89, 0xd0); /* mov %edx,%eax */
  273. break;
  274. case BPF_S_ALU_MOD_K: /* A %= K; */
  275. EMIT2(0x31, 0xd2); /* xor %edx,%edx */
  276. EMIT1(0xb9);EMIT(K, 4); /* mov imm32,%ecx */
  277. EMIT2(0xf7, 0xf1); /* div %ecx */
  278. EMIT2(0x89, 0xd0); /* mov %edx,%eax */
  279. break;
  280. case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
  281. EMIT3(0x48, 0x69, 0xc0); /* imul imm32,%rax,%rax */
  282. EMIT(K, 4);
  283. EMIT4(0x48, 0xc1, 0xe8, 0x20); /* shr $0x20,%rax */
  284. break;
  285. case BPF_S_ALU_AND_X:
  286. seen |= SEEN_XREG;
  287. EMIT2(0x21, 0xd8); /* and %ebx,%eax */
  288. break;
  289. case BPF_S_ALU_AND_K:
  290. if (K >= 0xFFFFFF00) {
  291. EMIT2(0x24, K & 0xFF); /* and imm8,%al */
  292. } else if (K >= 0xFFFF0000) {
  293. EMIT2(0x66, 0x25); /* and imm16,%ax */
  294. EMIT(K, 2);
  295. } else {
  296. EMIT1_off32(0x25, K); /* and imm32,%eax */
  297. }
  298. break;
  299. case BPF_S_ALU_OR_X:
  300. seen |= SEEN_XREG;
  301. EMIT2(0x09, 0xd8); /* or %ebx,%eax */
  302. break;
  303. case BPF_S_ALU_OR_K:
  304. if (is_imm8(K))
  305. EMIT3(0x83, 0xc8, K); /* or imm8,%eax */
  306. else
  307. EMIT1_off32(0x0d, K); /* or imm32,%eax */
  308. break;
  309. case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
  310. case BPF_S_ALU_XOR_X:
  311. seen |= SEEN_XREG;
  312. EMIT2(0x31, 0xd8); /* xor %ebx,%eax */
  313. break;
  314. case BPF_S_ALU_XOR_K: /* A ^= K; */
  315. if (K == 0)
  316. break;
  317. if (is_imm8(K))
  318. EMIT3(0x83, 0xf0, K); /* xor imm8,%eax */
  319. else
  320. EMIT1_off32(0x35, K); /* xor imm32,%eax */
  321. break;
  322. case BPF_S_ALU_LSH_X: /* A <<= X; */
  323. seen |= SEEN_XREG;
  324. EMIT4(0x89, 0xd9, 0xd3, 0xe0); /* mov %ebx,%ecx; shl %cl,%eax */
  325. break;
  326. case BPF_S_ALU_LSH_K:
  327. if (K == 0)
  328. break;
  329. else if (K == 1)
  330. EMIT2(0xd1, 0xe0); /* shl %eax */
  331. else
  332. EMIT3(0xc1, 0xe0, K);
  333. break;
  334. case BPF_S_ALU_RSH_X: /* A >>= X; */
  335. seen |= SEEN_XREG;
  336. EMIT4(0x89, 0xd9, 0xd3, 0xe8); /* mov %ebx,%ecx; shr %cl,%eax */
  337. break;
  338. case BPF_S_ALU_RSH_K: /* A >>= K; */
  339. if (K == 0)
  340. break;
  341. else if (K == 1)
  342. EMIT2(0xd1, 0xe8); /* shr %eax */
  343. else
  344. EMIT3(0xc1, 0xe8, K);
  345. break;
  346. case BPF_S_ALU_NEG:
  347. EMIT2(0xf7, 0xd8); /* neg %eax */
  348. break;
  349. case BPF_S_RET_K:
  350. if (!K) {
  351. if (pc_ret0 == -1)
  352. pc_ret0 = i;
  353. CLEAR_A();
  354. } else {
  355. EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
  356. }
  357. /* fallinto */
  358. case BPF_S_RET_A:
  359. if (seen_or_pass0) {
  360. if (i != flen - 1) {
  361. EMIT_JMP(cleanup_addr - addrs[i]);
  362. break;
  363. }
  364. if (seen_or_pass0 & SEEN_XREG)
  365. EMIT4(0x48, 0x8b, 0x5d, 0xf8); /* mov -8(%rbp),%rbx */
  366. EMIT1(0xc9); /* leaveq */
  367. }
  368. EMIT1(0xc3); /* ret */
  369. break;
  370. case BPF_S_MISC_TAX: /* X = A */
  371. seen |= SEEN_XREG;
  372. EMIT2(0x89, 0xc3); /* mov %eax,%ebx */
  373. break;
  374. case BPF_S_MISC_TXA: /* A = X */
  375. seen |= SEEN_XREG;
  376. EMIT2(0x89, 0xd8); /* mov %ebx,%eax */
  377. break;
  378. case BPF_S_LD_IMM: /* A = K */
  379. if (!K)
  380. CLEAR_A();
  381. else
  382. EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
  383. break;
  384. case BPF_S_LDX_IMM: /* X = K */
  385. seen |= SEEN_XREG;
  386. if (!K)
  387. CLEAR_X();
  388. else
  389. EMIT1_off32(0xbb, K); /* mov $imm32,%ebx */
  390. break;
  391. case BPF_S_LD_MEM: /* A = mem[K] : mov off8(%rbp),%eax */
  392. seen |= SEEN_MEM;
  393. EMIT3(0x8b, 0x45, 0xf0 - K*4);
  394. break;
  395. case BPF_S_LDX_MEM: /* X = mem[K] : mov off8(%rbp),%ebx */
  396. seen |= SEEN_XREG | SEEN_MEM;
  397. EMIT3(0x8b, 0x5d, 0xf0 - K*4);
  398. break;
  399. case BPF_S_ST: /* mem[K] = A : mov %eax,off8(%rbp) */
  400. seen |= SEEN_MEM;
  401. EMIT3(0x89, 0x45, 0xf0 - K*4);
  402. break;
  403. case BPF_S_STX: /* mem[K] = X : mov %ebx,off8(%rbp) */
  404. seen |= SEEN_XREG | SEEN_MEM;
  405. EMIT3(0x89, 0x5d, 0xf0 - K*4);
  406. break;
  407. case BPF_S_LD_W_LEN: /* A = skb->len; */
  408. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
  409. if (is_imm8(offsetof(struct sk_buff, len)))
  410. /* mov off8(%rdi),%eax */
  411. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, len));
  412. else {
  413. EMIT2(0x8b, 0x87);
  414. EMIT(offsetof(struct sk_buff, len), 4);
  415. }
  416. break;
  417. case BPF_S_LDX_W_LEN: /* X = skb->len; */
  418. seen |= SEEN_XREG;
  419. if (is_imm8(offsetof(struct sk_buff, len)))
  420. /* mov off8(%rdi),%ebx */
  421. EMIT3(0x8b, 0x5f, offsetof(struct sk_buff, len));
  422. else {
  423. EMIT2(0x8b, 0x9f);
  424. EMIT(offsetof(struct sk_buff, len), 4);
  425. }
  426. break;
  427. case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
  428. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
  429. if (is_imm8(offsetof(struct sk_buff, protocol))) {
  430. /* movzwl off8(%rdi),%eax */
  431. EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, protocol));
  432. } else {
  433. EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
  434. EMIT(offsetof(struct sk_buff, protocol), 4);
  435. }
  436. EMIT2(0x86, 0xc4); /* ntohs() : xchg %al,%ah */
  437. break;
  438. case BPF_S_ANC_IFINDEX:
  439. if (is_imm8(offsetof(struct sk_buff, dev))) {
  440. /* movq off8(%rdi),%rax */
  441. EMIT4(0x48, 0x8b, 0x47, offsetof(struct sk_buff, dev));
  442. } else {
  443. EMIT3(0x48, 0x8b, 0x87); /* movq off32(%rdi),%rax */
  444. EMIT(offsetof(struct sk_buff, dev), 4);
  445. }
  446. EMIT3(0x48, 0x85, 0xc0); /* test %rax,%rax */
  447. EMIT_COND_JMP(X86_JE, cleanup_addr - (addrs[i] - 6));
  448. BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
  449. EMIT2(0x8b, 0x80); /* mov off32(%rax),%eax */
  450. EMIT(offsetof(struct net_device, ifindex), 4);
  451. break;
  452. case BPF_S_ANC_MARK:
  453. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
  454. if (is_imm8(offsetof(struct sk_buff, mark))) {
  455. /* mov off8(%rdi),%eax */
  456. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, mark));
  457. } else {
  458. EMIT2(0x8b, 0x87);
  459. EMIT(offsetof(struct sk_buff, mark), 4);
  460. }
  461. break;
  462. case BPF_S_ANC_RXHASH:
  463. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
  464. if (is_imm8(offsetof(struct sk_buff, rxhash))) {
  465. /* mov off8(%rdi),%eax */
  466. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, rxhash));
  467. } else {
  468. EMIT2(0x8b, 0x87);
  469. EMIT(offsetof(struct sk_buff, rxhash), 4);
  470. }
  471. break;
  472. case BPF_S_ANC_QUEUE:
  473. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
  474. if (is_imm8(offsetof(struct sk_buff, queue_mapping))) {
  475. /* movzwl off8(%rdi),%eax */
  476. EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, queue_mapping));
  477. } else {
  478. EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
  479. EMIT(offsetof(struct sk_buff, queue_mapping), 4);
  480. }
  481. break;
  482. case BPF_S_ANC_CPU:
  483. #ifdef CONFIG_SMP
  484. EMIT4(0x65, 0x8b, 0x04, 0x25); /* mov %gs:off32,%eax */
  485. EMIT((u32)(unsigned long)&cpu_number, 4); /* A = smp_processor_id(); */
  486. #else
  487. CLEAR_A();
  488. #endif
  489. break;
  490. case BPF_S_LD_W_ABS:
  491. func = CHOOSE_LOAD_FUNC(K, sk_load_word);
  492. common_load: seen |= SEEN_DATAREF;
  493. t_offset = func - (image + addrs[i]);
  494. EMIT1_off32(0xbe, K); /* mov imm32,%esi */
  495. EMIT1_off32(0xe8, t_offset); /* call */
  496. break;
  497. case BPF_S_LD_H_ABS:
  498. func = CHOOSE_LOAD_FUNC(K, sk_load_half);
  499. goto common_load;
  500. case BPF_S_LD_B_ABS:
  501. func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
  502. goto common_load;
  503. case BPF_S_LDX_B_MSH:
  504. func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
  505. seen |= SEEN_DATAREF | SEEN_XREG;
  506. t_offset = func - (image + addrs[i]);
  507. EMIT1_off32(0xbe, K); /* mov imm32,%esi */
  508. EMIT1_off32(0xe8, t_offset); /* call sk_load_byte_msh */
  509. break;
  510. case BPF_S_LD_W_IND:
  511. func = sk_load_word;
  512. common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
  513. t_offset = func - (image + addrs[i]);
  514. if (K) {
  515. if (is_imm8(K)) {
  516. EMIT3(0x8d, 0x73, K); /* lea imm8(%rbx), %esi */
  517. } else {
  518. EMIT2(0x8d, 0xb3); /* lea imm32(%rbx),%esi */
  519. EMIT(K, 4);
  520. }
  521. } else {
  522. EMIT2(0x89,0xde); /* mov %ebx,%esi */
  523. }
  524. EMIT1_off32(0xe8, t_offset); /* call sk_load_xxx_ind */
  525. break;
  526. case BPF_S_LD_H_IND:
  527. func = sk_load_half;
  528. goto common_load_ind;
  529. case BPF_S_LD_B_IND:
  530. func = sk_load_byte;
  531. goto common_load_ind;
  532. case BPF_S_JMP_JA:
  533. t_offset = addrs[i + K] - addrs[i];
  534. EMIT_JMP(t_offset);
  535. break;
  536. COND_SEL(BPF_S_JMP_JGT_K, X86_JA, X86_JBE);
  537. COND_SEL(BPF_S_JMP_JGE_K, X86_JAE, X86_JB);
  538. COND_SEL(BPF_S_JMP_JEQ_K, X86_JE, X86_JNE);
  539. COND_SEL(BPF_S_JMP_JSET_K,X86_JNE, X86_JE);
  540. COND_SEL(BPF_S_JMP_JGT_X, X86_JA, X86_JBE);
  541. COND_SEL(BPF_S_JMP_JGE_X, X86_JAE, X86_JB);
  542. COND_SEL(BPF_S_JMP_JEQ_X, X86_JE, X86_JNE);
  543. COND_SEL(BPF_S_JMP_JSET_X,X86_JNE, X86_JE);
  544. cond_branch: f_offset = addrs[i + filter[i].jf] - addrs[i];
  545. t_offset = addrs[i + filter[i].jt] - addrs[i];
  546. /* same targets, can avoid doing the test :) */
  547. if (filter[i].jt == filter[i].jf) {
  548. EMIT_JMP(t_offset);
  549. break;
  550. }
  551. switch (filter[i].code) {
  552. case BPF_S_JMP_JGT_X:
  553. case BPF_S_JMP_JGE_X:
  554. case BPF_S_JMP_JEQ_X:
  555. seen |= SEEN_XREG;
  556. EMIT2(0x39, 0xd8); /* cmp %ebx,%eax */
  557. break;
  558. case BPF_S_JMP_JSET_X:
  559. seen |= SEEN_XREG;
  560. EMIT2(0x85, 0xd8); /* test %ebx,%eax */
  561. break;
  562. case BPF_S_JMP_JEQ_K:
  563. if (K == 0) {
  564. EMIT2(0x85, 0xc0); /* test %eax,%eax */
  565. break;
  566. }
  567. case BPF_S_JMP_JGT_K:
  568. case BPF_S_JMP_JGE_K:
  569. if (K <= 127)
  570. EMIT3(0x83, 0xf8, K); /* cmp imm8,%eax */
  571. else
  572. EMIT1_off32(0x3d, K); /* cmp imm32,%eax */
  573. break;
  574. case BPF_S_JMP_JSET_K:
  575. if (K <= 0xFF)
  576. EMIT2(0xa8, K); /* test imm8,%al */
  577. else if (!(K & 0xFFFF00FF))
  578. EMIT3(0xf6, 0xc4, K >> 8); /* test imm8,%ah */
  579. else if (K <= 0xFFFF) {
  580. EMIT2(0x66, 0xa9); /* test imm16,%ax */
  581. EMIT(K, 2);
  582. } else {
  583. EMIT1_off32(0xa9, K); /* test imm32,%eax */
  584. }
  585. break;
  586. }
  587. if (filter[i].jt != 0) {
  588. if (filter[i].jf && f_offset)
  589. t_offset += is_near(f_offset) ? 2 : 5;
  590. EMIT_COND_JMP(t_op, t_offset);
  591. if (filter[i].jf)
  592. EMIT_JMP(f_offset);
  593. break;
  594. }
  595. EMIT_COND_JMP(f_op, f_offset);
  596. break;
  597. default:
  598. /* hmm, too complex filter, give up with jit compiler */
  599. goto out;
  600. }
  601. ilen = prog - temp;
  602. if (image) {
  603. if (unlikely(proglen + ilen > oldproglen)) {
  604. pr_err("bpb_jit_compile fatal error\n");
  605. kfree(addrs);
  606. module_free(NULL, image);
  607. return;
  608. }
  609. memcpy(image + proglen, temp, ilen);
  610. }
  611. proglen += ilen;
  612. addrs[i] = proglen;
  613. prog = temp;
  614. }
  615. /* last bpf instruction is always a RET :
  616. * use it to give the cleanup instruction(s) addr
  617. */
  618. cleanup_addr = proglen - 1; /* ret */
  619. if (seen_or_pass0)
  620. cleanup_addr -= 1; /* leaveq */
  621. if (seen_or_pass0 & SEEN_XREG)
  622. cleanup_addr -= 4; /* mov -8(%rbp),%rbx */
  623. if (image) {
  624. if (proglen != oldproglen)
  625. pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", proglen, oldproglen);
  626. break;
  627. }
  628. if (proglen == oldproglen) {
  629. image = module_alloc(max_t(unsigned int,
  630. proglen,
  631. sizeof(struct work_struct)));
  632. if (!image)
  633. goto out;
  634. }
  635. oldproglen = proglen;
  636. }
  637. if (bpf_jit_enable > 1)
  638. pr_err("flen=%d proglen=%u pass=%d image=%p\n",
  639. flen, proglen, pass, image);
  640. if (image) {
  641. if (bpf_jit_enable > 1)
  642. print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
  643. 16, 1, image, proglen, false);
  644. bpf_flush_icache(image, image + proglen);
  645. fp->bpf_func = (void *)image;
  646. }
  647. out:
  648. kfree(addrs);
  649. return;
  650. }
  651. static void jit_free_defer(struct work_struct *arg)
  652. {
  653. module_free(NULL, arg);
  654. }
  655. /* run from softirq, we must use a work_struct to call
  656. * module_free() from process context
  657. */
  658. void bpf_jit_free(struct sk_filter *fp)
  659. {
  660. if (fp->bpf_func != sk_run_filter) {
  661. struct work_struct *work = (struct work_struct *)fp->bpf_func;
  662. INIT_WORK(work, jit_free_defer);
  663. schedule_work(work);
  664. }
  665. }