vmem.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. /*
  2. * Copyright IBM Corp. 2006
  3. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  4. */
  5. #include <linux/bootmem.h>
  6. #include <linux/pfn.h>
  7. #include <linux/mm.h>
  8. #include <linux/module.h>
  9. #include <linux/list.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/slab.h>
  12. #include <asm/pgalloc.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/setup.h>
  15. #include <asm/tlbflush.h>
  16. #include <asm/sections.h>
  17. static DEFINE_MUTEX(vmem_mutex);
  18. struct memory_segment {
  19. struct list_head list;
  20. unsigned long start;
  21. unsigned long size;
  22. };
  23. static LIST_HEAD(mem_segs);
  24. static void __ref *vmem_alloc_pages(unsigned int order)
  25. {
  26. if (slab_is_available())
  27. return (void *)__get_free_pages(GFP_KERNEL, order);
  28. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  29. }
  30. static inline pud_t *vmem_pud_alloc(void)
  31. {
  32. pud_t *pud = NULL;
  33. #ifdef CONFIG_64BIT
  34. pud = vmem_alloc_pages(2);
  35. if (!pud)
  36. return NULL;
  37. clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
  38. #endif
  39. return pud;
  40. }
  41. static inline pmd_t *vmem_pmd_alloc(void)
  42. {
  43. pmd_t *pmd = NULL;
  44. #ifdef CONFIG_64BIT
  45. pmd = vmem_alloc_pages(2);
  46. if (!pmd)
  47. return NULL;
  48. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
  49. #endif
  50. return pmd;
  51. }
  52. static pte_t __ref *vmem_pte_alloc(unsigned long address)
  53. {
  54. pte_t *pte;
  55. if (slab_is_available())
  56. pte = (pte_t *) page_table_alloc(&init_mm, address);
  57. else
  58. pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
  59. if (!pte)
  60. return NULL;
  61. clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
  62. PTRS_PER_PTE * sizeof(pte_t));
  63. return pte;
  64. }
  65. /*
  66. * Add a physical memory range to the 1:1 mapping.
  67. */
  68. static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
  69. {
  70. unsigned long end = start + size;
  71. unsigned long address = start;
  72. pgd_t *pg_dir;
  73. pud_t *pu_dir;
  74. pmd_t *pm_dir;
  75. pte_t *pt_dir;
  76. pte_t pte;
  77. int ret = -ENOMEM;
  78. while (address < end) {
  79. pg_dir = pgd_offset_k(address);
  80. if (pgd_none(*pg_dir)) {
  81. pu_dir = vmem_pud_alloc();
  82. if (!pu_dir)
  83. goto out;
  84. pgd_populate(&init_mm, pg_dir, pu_dir);
  85. }
  86. pu_dir = pud_offset(pg_dir, address);
  87. if (pud_none(*pu_dir)) {
  88. pm_dir = vmem_pmd_alloc();
  89. if (!pm_dir)
  90. goto out;
  91. pud_populate(&init_mm, pu_dir, pm_dir);
  92. }
  93. pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
  94. pm_dir = pmd_offset(pu_dir, address);
  95. #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
  96. if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
  97. !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
  98. pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
  99. pmd_val(*pm_dir) = pte_val(pte);
  100. address += PMD_SIZE;
  101. continue;
  102. }
  103. #endif
  104. if (pmd_none(*pm_dir)) {
  105. pt_dir = vmem_pte_alloc(address);
  106. if (!pt_dir)
  107. goto out;
  108. pmd_populate(&init_mm, pm_dir, pt_dir);
  109. }
  110. pt_dir = pte_offset_kernel(pm_dir, address);
  111. *pt_dir = pte;
  112. address += PAGE_SIZE;
  113. }
  114. ret = 0;
  115. out:
  116. flush_tlb_kernel_range(start, end);
  117. return ret;
  118. }
  119. /*
  120. * Remove a physical memory range from the 1:1 mapping.
  121. * Currently only invalidates page table entries.
  122. */
  123. static void vmem_remove_range(unsigned long start, unsigned long size)
  124. {
  125. unsigned long end = start + size;
  126. unsigned long address = start;
  127. pgd_t *pg_dir;
  128. pud_t *pu_dir;
  129. pmd_t *pm_dir;
  130. pte_t *pt_dir;
  131. pte_t pte;
  132. pte_val(pte) = _PAGE_TYPE_EMPTY;
  133. while (address < end) {
  134. pg_dir = pgd_offset_k(address);
  135. if (pgd_none(*pg_dir)) {
  136. address += PGDIR_SIZE;
  137. continue;
  138. }
  139. pu_dir = pud_offset(pg_dir, address);
  140. if (pud_none(*pu_dir)) {
  141. address += PUD_SIZE;
  142. continue;
  143. }
  144. pm_dir = pmd_offset(pu_dir, address);
  145. if (pmd_none(*pm_dir)) {
  146. address += PMD_SIZE;
  147. continue;
  148. }
  149. if (pmd_large(*pm_dir)) {
  150. pmd_clear(pm_dir);
  151. address += PMD_SIZE;
  152. continue;
  153. }
  154. pt_dir = pte_offset_kernel(pm_dir, address);
  155. *pt_dir = pte;
  156. address += PAGE_SIZE;
  157. }
  158. flush_tlb_kernel_range(start, end);
  159. }
  160. /*
  161. * Add a backed mem_map array to the virtual mem_map array.
  162. */
  163. int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
  164. {
  165. unsigned long address, start_addr, end_addr;
  166. pgd_t *pg_dir;
  167. pud_t *pu_dir;
  168. pmd_t *pm_dir;
  169. pte_t *pt_dir;
  170. pte_t pte;
  171. int ret = -ENOMEM;
  172. start_addr = (unsigned long) start;
  173. end_addr = (unsigned long) (start + nr);
  174. for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
  175. pg_dir = pgd_offset_k(address);
  176. if (pgd_none(*pg_dir)) {
  177. pu_dir = vmem_pud_alloc();
  178. if (!pu_dir)
  179. goto out;
  180. pgd_populate(&init_mm, pg_dir, pu_dir);
  181. }
  182. pu_dir = pud_offset(pg_dir, address);
  183. if (pud_none(*pu_dir)) {
  184. pm_dir = vmem_pmd_alloc();
  185. if (!pm_dir)
  186. goto out;
  187. pud_populate(&init_mm, pu_dir, pm_dir);
  188. }
  189. pm_dir = pmd_offset(pu_dir, address);
  190. if (pmd_none(*pm_dir)) {
  191. pt_dir = vmem_pte_alloc(address);
  192. if (!pt_dir)
  193. goto out;
  194. pmd_populate(&init_mm, pm_dir, pt_dir);
  195. }
  196. pt_dir = pte_offset_kernel(pm_dir, address);
  197. if (pte_none(*pt_dir)) {
  198. unsigned long new_page;
  199. new_page =__pa(vmem_alloc_pages(0));
  200. if (!new_page)
  201. goto out;
  202. pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
  203. *pt_dir = pte;
  204. }
  205. }
  206. memset(start, 0, nr * sizeof(struct page));
  207. ret = 0;
  208. out:
  209. flush_tlb_kernel_range(start_addr, end_addr);
  210. return ret;
  211. }
  212. /*
  213. * Add memory segment to the segment list if it doesn't overlap with
  214. * an already present segment.
  215. */
  216. static int insert_memory_segment(struct memory_segment *seg)
  217. {
  218. struct memory_segment *tmp;
  219. if (seg->start + seg->size > VMEM_MAX_PHYS ||
  220. seg->start + seg->size < seg->start)
  221. return -ERANGE;
  222. list_for_each_entry(tmp, &mem_segs, list) {
  223. if (seg->start >= tmp->start + tmp->size)
  224. continue;
  225. if (seg->start + seg->size <= tmp->start)
  226. continue;
  227. return -ENOSPC;
  228. }
  229. list_add(&seg->list, &mem_segs);
  230. return 0;
  231. }
  232. /*
  233. * Remove memory segment from the segment list.
  234. */
  235. static void remove_memory_segment(struct memory_segment *seg)
  236. {
  237. list_del(&seg->list);
  238. }
  239. static void __remove_shared_memory(struct memory_segment *seg)
  240. {
  241. remove_memory_segment(seg);
  242. vmem_remove_range(seg->start, seg->size);
  243. }
  244. int vmem_remove_mapping(unsigned long start, unsigned long size)
  245. {
  246. struct memory_segment *seg;
  247. int ret;
  248. mutex_lock(&vmem_mutex);
  249. ret = -ENOENT;
  250. list_for_each_entry(seg, &mem_segs, list) {
  251. if (seg->start == start && seg->size == size)
  252. break;
  253. }
  254. if (seg->start != start || seg->size != size)
  255. goto out;
  256. ret = 0;
  257. __remove_shared_memory(seg);
  258. kfree(seg);
  259. out:
  260. mutex_unlock(&vmem_mutex);
  261. return ret;
  262. }
  263. int vmem_add_mapping(unsigned long start, unsigned long size)
  264. {
  265. struct memory_segment *seg;
  266. int ret;
  267. mutex_lock(&vmem_mutex);
  268. ret = -ENOMEM;
  269. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  270. if (!seg)
  271. goto out;
  272. seg->start = start;
  273. seg->size = size;
  274. ret = insert_memory_segment(seg);
  275. if (ret)
  276. goto out_free;
  277. ret = vmem_add_mem(start, size, 0);
  278. if (ret)
  279. goto out_remove;
  280. goto out;
  281. out_remove:
  282. __remove_shared_memory(seg);
  283. out_free:
  284. kfree(seg);
  285. out:
  286. mutex_unlock(&vmem_mutex);
  287. return ret;
  288. }
  289. /*
  290. * map whole physical memory to virtual memory (identity mapping)
  291. * we reserve enough space in the vmalloc area for vmemmap to hotplug
  292. * additional memory segments.
  293. */
  294. void __init vmem_map_init(void)
  295. {
  296. unsigned long ro_start, ro_end;
  297. unsigned long start, end;
  298. int i;
  299. ro_start = PFN_ALIGN((unsigned long)&_stext);
  300. ro_end = (unsigned long)&_eshared & PAGE_MASK;
  301. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  302. if (memory_chunk[i].type == CHUNK_CRASHK ||
  303. memory_chunk[i].type == CHUNK_OLDMEM)
  304. continue;
  305. start = memory_chunk[i].addr;
  306. end = memory_chunk[i].addr + memory_chunk[i].size;
  307. if (start >= ro_end || end <= ro_start)
  308. vmem_add_mem(start, end - start, 0);
  309. else if (start >= ro_start && end <= ro_end)
  310. vmem_add_mem(start, end - start, 1);
  311. else if (start >= ro_start) {
  312. vmem_add_mem(start, ro_end - start, 1);
  313. vmem_add_mem(ro_end, end - ro_end, 0);
  314. } else if (end < ro_end) {
  315. vmem_add_mem(start, ro_start - start, 0);
  316. vmem_add_mem(ro_start, end - ro_start, 1);
  317. } else {
  318. vmem_add_mem(start, ro_start - start, 0);
  319. vmem_add_mem(ro_start, ro_end - ro_start, 1);
  320. vmem_add_mem(ro_end, end - ro_end, 0);
  321. }
  322. }
  323. }
  324. /*
  325. * Convert memory chunk array to a memory segment list so there is a single
  326. * list that contains both r/w memory and shared memory segments.
  327. */
  328. static int __init vmem_convert_memory_chunk(void)
  329. {
  330. struct memory_segment *seg;
  331. int i;
  332. mutex_lock(&vmem_mutex);
  333. for (i = 0; i < MEMORY_CHUNKS; i++) {
  334. if (!memory_chunk[i].size)
  335. continue;
  336. if (memory_chunk[i].type == CHUNK_CRASHK ||
  337. memory_chunk[i].type == CHUNK_OLDMEM)
  338. continue;
  339. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  340. if (!seg)
  341. panic("Out of memory...\n");
  342. seg->start = memory_chunk[i].addr;
  343. seg->size = memory_chunk[i].size;
  344. insert_memory_segment(seg);
  345. }
  346. mutex_unlock(&vmem_mutex);
  347. return 0;
  348. }
  349. core_initcall(vmem_convert_memory_chunk);