pgtable.h 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472
  1. /*
  2. * S390 version
  3. * Copyright IBM Corp. 1999, 2000
  4. * Author(s): Hartmut Penner (hp@de.ibm.com)
  5. * Ulrich Weigand (weigand@de.ibm.com)
  6. * Martin Schwidefsky (schwidefsky@de.ibm.com)
  7. *
  8. * Derived from "include/asm-i386/pgtable.h"
  9. */
  10. #ifndef _ASM_S390_PGTABLE_H
  11. #define _ASM_S390_PGTABLE_H
  12. /*
  13. * The Linux memory management assumes a three-level page table setup. For
  14. * s390 31 bit we "fold" the mid level into the top-level page table, so
  15. * that we physically have the same two-level page table as the s390 mmu
  16. * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  17. * the hardware provides (region first and region second tables are not
  18. * used).
  19. *
  20. * The "pgd_xxx()" functions are trivial for a folded two-level
  21. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  22. * into the pgd entry)
  23. *
  24. * This file contains the functions and defines necessary to modify and use
  25. * the S390 page table tree.
  26. */
  27. #ifndef __ASSEMBLY__
  28. #include <linux/sched.h>
  29. #include <linux/mm_types.h>
  30. #include <asm/bug.h>
  31. #include <asm/page.h>
  32. extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  33. extern void paging_init(void);
  34. extern void vmem_map_init(void);
  35. extern void fault_init(void);
  36. /*
  37. * The S390 doesn't have any external MMU info: the kernel page
  38. * tables contain all the necessary information.
  39. */
  40. #define update_mmu_cache(vma, address, ptep) do { } while (0)
  41. #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  42. /*
  43. * ZERO_PAGE is a global shared page that is always zero; used
  44. * for zero-mapped memory areas etc..
  45. */
  46. extern unsigned long empty_zero_page;
  47. extern unsigned long zero_page_mask;
  48. #define ZERO_PAGE(vaddr) \
  49. (virt_to_page((void *)(empty_zero_page + \
  50. (((unsigned long)(vaddr)) &zero_page_mask))))
  51. #define is_zero_pfn is_zero_pfn
  52. static inline int is_zero_pfn(unsigned long pfn)
  53. {
  54. extern unsigned long zero_pfn;
  55. unsigned long offset_from_zero_pfn = pfn - zero_pfn;
  56. return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
  57. }
  58. #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
  59. #endif /* !__ASSEMBLY__ */
  60. /*
  61. * PMD_SHIFT determines the size of the area a second-level page
  62. * table can map
  63. * PGDIR_SHIFT determines what a third-level page table entry can map
  64. */
  65. #ifndef CONFIG_64BIT
  66. # define PMD_SHIFT 20
  67. # define PUD_SHIFT 20
  68. # define PGDIR_SHIFT 20
  69. #else /* CONFIG_64BIT */
  70. # define PMD_SHIFT 20
  71. # define PUD_SHIFT 31
  72. # define PGDIR_SHIFT 42
  73. #endif /* CONFIG_64BIT */
  74. #define PMD_SIZE (1UL << PMD_SHIFT)
  75. #define PMD_MASK (~(PMD_SIZE-1))
  76. #define PUD_SIZE (1UL << PUD_SHIFT)
  77. #define PUD_MASK (~(PUD_SIZE-1))
  78. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  79. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  80. /*
  81. * entries per page directory level: the S390 is two-level, so
  82. * we don't really have any PMD directory physically.
  83. * for S390 segment-table entries are combined to one PGD
  84. * that leads to 1024 pte per pgd
  85. */
  86. #define PTRS_PER_PTE 256
  87. #ifndef CONFIG_64BIT
  88. #define PTRS_PER_PMD 1
  89. #define PTRS_PER_PUD 1
  90. #else /* CONFIG_64BIT */
  91. #define PTRS_PER_PMD 2048
  92. #define PTRS_PER_PUD 2048
  93. #endif /* CONFIG_64BIT */
  94. #define PTRS_PER_PGD 2048
  95. #define FIRST_USER_ADDRESS 0
  96. #define pte_ERROR(e) \
  97. printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  98. #define pmd_ERROR(e) \
  99. printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  100. #define pud_ERROR(e) \
  101. printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  102. #define pgd_ERROR(e) \
  103. printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  104. #ifndef __ASSEMBLY__
  105. /*
  106. * The vmalloc and module area will always be on the topmost area of the kernel
  107. * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
  108. * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
  109. * modules will reside. That makes sure that inter module branches always
  110. * happen without trampolines and in addition the placement within a 2GB frame
  111. * is branch prediction unit friendly.
  112. */
  113. extern unsigned long VMALLOC_START;
  114. extern unsigned long VMALLOC_END;
  115. extern struct page *vmemmap;
  116. #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  117. #ifdef CONFIG_64BIT
  118. extern unsigned long MODULES_VADDR;
  119. extern unsigned long MODULES_END;
  120. #define MODULES_VADDR MODULES_VADDR
  121. #define MODULES_END MODULES_END
  122. #define MODULES_LEN (1UL << 31)
  123. #endif
  124. /*
  125. * A 31 bit pagetable entry of S390 has following format:
  126. * | PFRA | | OS |
  127. * 0 0IP0
  128. * 00000000001111111111222222222233
  129. * 01234567890123456789012345678901
  130. *
  131. * I Page-Invalid Bit: Page is not available for address-translation
  132. * P Page-Protection Bit: Store access not possible for page
  133. *
  134. * A 31 bit segmenttable entry of S390 has following format:
  135. * | P-table origin | |PTL
  136. * 0 IC
  137. * 00000000001111111111222222222233
  138. * 01234567890123456789012345678901
  139. *
  140. * I Segment-Invalid Bit: Segment is not available for address-translation
  141. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  142. * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
  143. *
  144. * The 31 bit segmenttable origin of S390 has following format:
  145. *
  146. * |S-table origin | | STL |
  147. * X **GPS
  148. * 00000000001111111111222222222233
  149. * 01234567890123456789012345678901
  150. *
  151. * X Space-Switch event:
  152. * G Segment-Invalid Bit: *
  153. * P Private-Space Bit: Segment is not private (PoP 3-30)
  154. * S Storage-Alteration:
  155. * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
  156. *
  157. * A 64 bit pagetable entry of S390 has following format:
  158. * | PFRA |0IPC| OS |
  159. * 0000000000111111111122222222223333333333444444444455555555556666
  160. * 0123456789012345678901234567890123456789012345678901234567890123
  161. *
  162. * I Page-Invalid Bit: Page is not available for address-translation
  163. * P Page-Protection Bit: Store access not possible for page
  164. * C Change-bit override: HW is not required to set change bit
  165. *
  166. * A 64 bit segmenttable entry of S390 has following format:
  167. * | P-table origin | TT
  168. * 0000000000111111111122222222223333333333444444444455555555556666
  169. * 0123456789012345678901234567890123456789012345678901234567890123
  170. *
  171. * I Segment-Invalid Bit: Segment is not available for address-translation
  172. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  173. * P Page-Protection Bit: Store access not possible for page
  174. * TT Type 00
  175. *
  176. * A 64 bit region table entry of S390 has following format:
  177. * | S-table origin | TF TTTL
  178. * 0000000000111111111122222222223333333333444444444455555555556666
  179. * 0123456789012345678901234567890123456789012345678901234567890123
  180. *
  181. * I Segment-Invalid Bit: Segment is not available for address-translation
  182. * TT Type 01
  183. * TF
  184. * TL Table length
  185. *
  186. * The 64 bit regiontable origin of S390 has following format:
  187. * | region table origon | DTTL
  188. * 0000000000111111111122222222223333333333444444444455555555556666
  189. * 0123456789012345678901234567890123456789012345678901234567890123
  190. *
  191. * X Space-Switch event:
  192. * G Segment-Invalid Bit:
  193. * P Private-Space Bit:
  194. * S Storage-Alteration:
  195. * R Real space
  196. * TL Table-Length:
  197. *
  198. * A storage key has the following format:
  199. * | ACC |F|R|C|0|
  200. * 0 3 4 5 6 7
  201. * ACC: access key
  202. * F : fetch protection bit
  203. * R : referenced bit
  204. * C : changed bit
  205. */
  206. /* Hardware bits in the page table entry */
  207. #define _PAGE_CO 0x100 /* HW Change-bit override */
  208. #define _PAGE_RO 0x200 /* HW read-only bit */
  209. #define _PAGE_INVALID 0x400 /* HW invalid bit */
  210. /* Software bits in the page table entry */
  211. #define _PAGE_SWT 0x001 /* SW pte type bit t */
  212. #define _PAGE_SWX 0x002 /* SW pte type bit x */
  213. #define _PAGE_SWC 0x004 /* SW pte changed bit (for KVM) */
  214. #define _PAGE_SWR 0x008 /* SW pte referenced bit (for KVM) */
  215. #define _PAGE_SPECIAL 0x010 /* SW associated with special page */
  216. #define __HAVE_ARCH_PTE_SPECIAL
  217. /* Set of bits not changed in pte_modify */
  218. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_SWC | _PAGE_SWR)
  219. /* Six different types of pages. */
  220. #define _PAGE_TYPE_EMPTY 0x400
  221. #define _PAGE_TYPE_NONE 0x401
  222. #define _PAGE_TYPE_SWAP 0x403
  223. #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
  224. #define _PAGE_TYPE_RO 0x200
  225. #define _PAGE_TYPE_RW 0x000
  226. /*
  227. * Only four types for huge pages, using the invalid bit and protection bit
  228. * of a segment table entry.
  229. */
  230. #define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
  231. #define _HPAGE_TYPE_NONE 0x220
  232. #define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
  233. #define _HPAGE_TYPE_RW 0x000
  234. /*
  235. * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
  236. * pte_none and pte_file to find out the pte type WITHOUT holding the page
  237. * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
  238. * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
  239. * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
  240. * This change is done while holding the lock, but the intermediate step
  241. * of a previously valid pte with the hw invalid bit set can be observed by
  242. * handle_pte_fault. That makes it necessary that all valid pte types with
  243. * the hw invalid bit set must be distinguishable from the four pte types
  244. * empty, none, swap and file.
  245. *
  246. * irxt ipte irxt
  247. * _PAGE_TYPE_EMPTY 1000 -> 1000
  248. * _PAGE_TYPE_NONE 1001 -> 1001
  249. * _PAGE_TYPE_SWAP 1011 -> 1011
  250. * _PAGE_TYPE_FILE 11?1 -> 11?1
  251. * _PAGE_TYPE_RO 0100 -> 1100
  252. * _PAGE_TYPE_RW 0000 -> 1000
  253. *
  254. * pte_none is true for bits combinations 1000, 1010, 1100, 1110
  255. * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
  256. * pte_file is true for bits combinations 1101, 1111
  257. * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
  258. */
  259. #ifndef CONFIG_64BIT
  260. /* Bits in the segment table address-space-control-element */
  261. #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
  262. #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
  263. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  264. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  265. #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
  266. /* Bits in the segment table entry */
  267. #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
  268. #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
  269. #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
  270. #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
  271. #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
  272. #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
  273. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
  274. /* Page status table bits for virtualization */
  275. #define RCP_ACC_BITS 0xf0000000UL
  276. #define RCP_FP_BIT 0x08000000UL
  277. #define RCP_PCL_BIT 0x00800000UL
  278. #define RCP_HR_BIT 0x00400000UL
  279. #define RCP_HC_BIT 0x00200000UL
  280. #define RCP_GR_BIT 0x00040000UL
  281. #define RCP_GC_BIT 0x00020000UL
  282. /* User dirty / referenced bit for KVM's migration feature */
  283. #define KVM_UR_BIT 0x00008000UL
  284. #define KVM_UC_BIT 0x00004000UL
  285. #else /* CONFIG_64BIT */
  286. /* Bits in the segment/region table address-space-control-element */
  287. #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
  288. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  289. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  290. #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
  291. #define _ASCE_REAL_SPACE 0x20 /* real space control */
  292. #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
  293. #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
  294. #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
  295. #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
  296. #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
  297. #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
  298. /* Bits in the region table entry */
  299. #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
  300. #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
  301. #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
  302. #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
  303. #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
  304. #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
  305. #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
  306. #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
  307. #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
  308. #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
  309. #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
  310. #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
  311. #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
  312. /* Bits in the segment table entry */
  313. #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
  314. #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
  315. #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
  316. #define _SEGMENT_ENTRY (0)
  317. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
  318. #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
  319. #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
  320. #define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */
  321. #define _SEGMENT_ENTRY_SPLIT (1UL << _SEGMENT_ENTRY_SPLIT_BIT)
  322. /* Set of bits not changed in pmd_modify */
  323. #define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
  324. | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
  325. /* Page status table bits for virtualization */
  326. #define RCP_ACC_BITS 0xf000000000000000UL
  327. #define RCP_FP_BIT 0x0800000000000000UL
  328. #define RCP_PCL_BIT 0x0080000000000000UL
  329. #define RCP_HR_BIT 0x0040000000000000UL
  330. #define RCP_HC_BIT 0x0020000000000000UL
  331. #define RCP_GR_BIT 0x0004000000000000UL
  332. #define RCP_GC_BIT 0x0002000000000000UL
  333. /* User dirty / referenced bit for KVM's migration feature */
  334. #define KVM_UR_BIT 0x0000800000000000UL
  335. #define KVM_UC_BIT 0x0000400000000000UL
  336. #endif /* CONFIG_64BIT */
  337. /*
  338. * A user page table pointer has the space-switch-event bit, the
  339. * private-space-control bit and the storage-alteration-event-control
  340. * bit set. A kernel page table pointer doesn't need them.
  341. */
  342. #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
  343. _ASCE_ALT_EVENT)
  344. /*
  345. * Page protection definitions.
  346. */
  347. #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
  348. #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
  349. #define PAGE_RW __pgprot(_PAGE_TYPE_RW)
  350. #define PAGE_KERNEL PAGE_RW
  351. #define PAGE_COPY PAGE_RO
  352. /*
  353. * On s390 the page table entry has an invalid bit and a read-only bit.
  354. * Read permission implies execute permission and write permission
  355. * implies read permission.
  356. */
  357. /*xwr*/
  358. #define __P000 PAGE_NONE
  359. #define __P001 PAGE_RO
  360. #define __P010 PAGE_RO
  361. #define __P011 PAGE_RO
  362. #define __P100 PAGE_RO
  363. #define __P101 PAGE_RO
  364. #define __P110 PAGE_RO
  365. #define __P111 PAGE_RO
  366. #define __S000 PAGE_NONE
  367. #define __S001 PAGE_RO
  368. #define __S010 PAGE_RW
  369. #define __S011 PAGE_RW
  370. #define __S100 PAGE_RO
  371. #define __S101 PAGE_RO
  372. #define __S110 PAGE_RW
  373. #define __S111 PAGE_RW
  374. static inline int mm_exclusive(struct mm_struct *mm)
  375. {
  376. return likely(mm == current->active_mm &&
  377. atomic_read(&mm->context.attach_count) <= 1);
  378. }
  379. static inline int mm_has_pgste(struct mm_struct *mm)
  380. {
  381. #ifdef CONFIG_PGSTE
  382. if (unlikely(mm->context.has_pgste))
  383. return 1;
  384. #endif
  385. return 0;
  386. }
  387. /*
  388. * pgd/pmd/pte query functions
  389. */
  390. #ifndef CONFIG_64BIT
  391. static inline int pgd_present(pgd_t pgd) { return 1; }
  392. static inline int pgd_none(pgd_t pgd) { return 0; }
  393. static inline int pgd_bad(pgd_t pgd) { return 0; }
  394. static inline int pud_present(pud_t pud) { return 1; }
  395. static inline int pud_none(pud_t pud) { return 0; }
  396. static inline int pud_bad(pud_t pud) { return 0; }
  397. #else /* CONFIG_64BIT */
  398. static inline int pgd_present(pgd_t pgd)
  399. {
  400. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  401. return 1;
  402. return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
  403. }
  404. static inline int pgd_none(pgd_t pgd)
  405. {
  406. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  407. return 0;
  408. return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
  409. }
  410. static inline int pgd_bad(pgd_t pgd)
  411. {
  412. /*
  413. * With dynamic page table levels the pgd can be a region table
  414. * entry or a segment table entry. Check for the bit that are
  415. * invalid for either table entry.
  416. */
  417. unsigned long mask =
  418. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
  419. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  420. return (pgd_val(pgd) & mask) != 0;
  421. }
  422. static inline int pud_present(pud_t pud)
  423. {
  424. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  425. return 1;
  426. return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
  427. }
  428. static inline int pud_none(pud_t pud)
  429. {
  430. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  431. return 0;
  432. return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
  433. }
  434. static inline int pud_bad(pud_t pud)
  435. {
  436. /*
  437. * With dynamic page table levels the pud can be a region table
  438. * entry or a segment table entry. Check for the bit that are
  439. * invalid for either table entry.
  440. */
  441. unsigned long mask =
  442. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
  443. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  444. return (pud_val(pud) & mask) != 0;
  445. }
  446. #endif /* CONFIG_64BIT */
  447. static inline int pmd_present(pmd_t pmd)
  448. {
  449. return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
  450. }
  451. static inline int pmd_none(pmd_t pmd)
  452. {
  453. return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
  454. }
  455. static inline int pmd_large(pmd_t pmd)
  456. {
  457. #ifdef CONFIG_64BIT
  458. return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE);
  459. #else
  460. return 0;
  461. #endif
  462. }
  463. static inline int pmd_bad(pmd_t pmd)
  464. {
  465. unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
  466. return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
  467. }
  468. #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
  469. extern void pmdp_splitting_flush(struct vm_area_struct *vma,
  470. unsigned long addr, pmd_t *pmdp);
  471. #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  472. extern int pmdp_set_access_flags(struct vm_area_struct *vma,
  473. unsigned long address, pmd_t *pmdp,
  474. pmd_t entry, int dirty);
  475. #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
  476. extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
  477. unsigned long address, pmd_t *pmdp);
  478. #define __HAVE_ARCH_PMD_WRITE
  479. static inline int pmd_write(pmd_t pmd)
  480. {
  481. return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0;
  482. }
  483. static inline int pmd_young(pmd_t pmd)
  484. {
  485. return 0;
  486. }
  487. static inline int pte_none(pte_t pte)
  488. {
  489. return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
  490. }
  491. static inline int pte_present(pte_t pte)
  492. {
  493. unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
  494. return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
  495. (!(pte_val(pte) & _PAGE_INVALID) &&
  496. !(pte_val(pte) & _PAGE_SWT));
  497. }
  498. static inline int pte_file(pte_t pte)
  499. {
  500. unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
  501. return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
  502. }
  503. static inline int pte_special(pte_t pte)
  504. {
  505. return (pte_val(pte) & _PAGE_SPECIAL);
  506. }
  507. #define __HAVE_ARCH_PTE_SAME
  508. static inline int pte_same(pte_t a, pte_t b)
  509. {
  510. return pte_val(a) == pte_val(b);
  511. }
  512. static inline pgste_t pgste_get_lock(pte_t *ptep)
  513. {
  514. unsigned long new = 0;
  515. #ifdef CONFIG_PGSTE
  516. unsigned long old;
  517. preempt_disable();
  518. asm(
  519. " lg %0,%2\n"
  520. "0: lgr %1,%0\n"
  521. " nihh %0,0xff7f\n" /* clear RCP_PCL_BIT in old */
  522. " oihh %1,0x0080\n" /* set RCP_PCL_BIT in new */
  523. " csg %0,%1,%2\n"
  524. " jl 0b\n"
  525. : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
  526. : "Q" (ptep[PTRS_PER_PTE]) : "cc");
  527. #endif
  528. return __pgste(new);
  529. }
  530. static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
  531. {
  532. #ifdef CONFIG_PGSTE
  533. asm(
  534. " nihh %1,0xff7f\n" /* clear RCP_PCL_BIT */
  535. " stg %1,%0\n"
  536. : "=Q" (ptep[PTRS_PER_PTE])
  537. : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) : "cc");
  538. preempt_enable();
  539. #endif
  540. }
  541. static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
  542. {
  543. #ifdef CONFIG_PGSTE
  544. unsigned long address, bits;
  545. unsigned char skey;
  546. if (!pte_present(*ptep))
  547. return pgste;
  548. address = pte_val(*ptep) & PAGE_MASK;
  549. skey = page_get_storage_key(address);
  550. bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
  551. /* Clear page changed & referenced bit in the storage key */
  552. if (bits & _PAGE_CHANGED)
  553. page_set_storage_key(address, skey ^ bits, 1);
  554. else if (bits)
  555. page_reset_referenced(address);
  556. /* Transfer page changed & referenced bit to guest bits in pgste */
  557. pgste_val(pgste) |= bits << 48; /* RCP_GR_BIT & RCP_GC_BIT */
  558. /* Get host changed & referenced bits from pgste */
  559. bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52;
  560. /* Clear host bits in pgste. */
  561. pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT);
  562. pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT);
  563. /* Copy page access key and fetch protection bit to pgste */
  564. pgste_val(pgste) |=
  565. (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
  566. /* Transfer changed and referenced to kvm user bits */
  567. pgste_val(pgste) |= bits << 45; /* KVM_UR_BIT & KVM_UC_BIT */
  568. /* Transfer changed & referenced to pte sofware bits */
  569. pte_val(*ptep) |= bits << 1; /* _PAGE_SWR & _PAGE_SWC */
  570. #endif
  571. return pgste;
  572. }
  573. static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
  574. {
  575. #ifdef CONFIG_PGSTE
  576. int young;
  577. if (!pte_present(*ptep))
  578. return pgste;
  579. young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
  580. /* Transfer page referenced bit to pte software bit (host view) */
  581. if (young || (pgste_val(pgste) & RCP_HR_BIT))
  582. pte_val(*ptep) |= _PAGE_SWR;
  583. /* Clear host referenced bit in pgste. */
  584. pgste_val(pgste) &= ~RCP_HR_BIT;
  585. /* Transfer page referenced bit to guest bit in pgste */
  586. pgste_val(pgste) |= (unsigned long) young << 50; /* set RCP_GR_BIT */
  587. #endif
  588. return pgste;
  589. }
  590. static inline void pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
  591. {
  592. #ifdef CONFIG_PGSTE
  593. unsigned long address;
  594. unsigned long okey, nkey;
  595. if (!pte_present(entry))
  596. return;
  597. address = pte_val(entry) & PAGE_MASK;
  598. okey = nkey = page_get_storage_key(address);
  599. nkey &= ~(_PAGE_ACC_BITS | _PAGE_FP_BIT);
  600. /* Set page access key and fetch protection bit from pgste */
  601. nkey |= (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56;
  602. if (okey != nkey)
  603. page_set_storage_key(address, nkey, 1);
  604. #endif
  605. }
  606. /**
  607. * struct gmap_struct - guest address space
  608. * @mm: pointer to the parent mm_struct
  609. * @table: pointer to the page directory
  610. * @asce: address space control element for gmap page table
  611. * @crst_list: list of all crst tables used in the guest address space
  612. */
  613. struct gmap {
  614. struct list_head list;
  615. struct mm_struct *mm;
  616. unsigned long *table;
  617. unsigned long asce;
  618. struct list_head crst_list;
  619. };
  620. /**
  621. * struct gmap_rmap - reverse mapping for segment table entries
  622. * @next: pointer to the next gmap_rmap structure in the list
  623. * @entry: pointer to a segment table entry
  624. */
  625. struct gmap_rmap {
  626. struct list_head list;
  627. unsigned long *entry;
  628. };
  629. /**
  630. * struct gmap_pgtable - gmap information attached to a page table
  631. * @vmaddr: address of the 1MB segment in the process virtual memory
  632. * @mapper: list of segment table entries maping a page table
  633. */
  634. struct gmap_pgtable {
  635. unsigned long vmaddr;
  636. struct list_head mapper;
  637. };
  638. struct gmap *gmap_alloc(struct mm_struct *mm);
  639. void gmap_free(struct gmap *gmap);
  640. void gmap_enable(struct gmap *gmap);
  641. void gmap_disable(struct gmap *gmap);
  642. int gmap_map_segment(struct gmap *gmap, unsigned long from,
  643. unsigned long to, unsigned long length);
  644. int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
  645. unsigned long __gmap_fault(unsigned long address, struct gmap *);
  646. unsigned long gmap_fault(unsigned long address, struct gmap *);
  647. void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
  648. /*
  649. * Certain architectures need to do special things when PTEs
  650. * within a page table are directly modified. Thus, the following
  651. * hook is made available.
  652. */
  653. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  654. pte_t *ptep, pte_t entry)
  655. {
  656. pgste_t pgste;
  657. if (mm_has_pgste(mm)) {
  658. pgste = pgste_get_lock(ptep);
  659. pgste_set_pte(ptep, pgste, entry);
  660. *ptep = entry;
  661. pgste_set_unlock(ptep, pgste);
  662. } else
  663. *ptep = entry;
  664. }
  665. /*
  666. * query functions pte_write/pte_dirty/pte_young only work if
  667. * pte_present() is true. Undefined behaviour if not..
  668. */
  669. static inline int pte_write(pte_t pte)
  670. {
  671. return (pte_val(pte) & _PAGE_RO) == 0;
  672. }
  673. static inline int pte_dirty(pte_t pte)
  674. {
  675. #ifdef CONFIG_PGSTE
  676. if (pte_val(pte) & _PAGE_SWC)
  677. return 1;
  678. #endif
  679. return 0;
  680. }
  681. static inline int pte_young(pte_t pte)
  682. {
  683. #ifdef CONFIG_PGSTE
  684. if (pte_val(pte) & _PAGE_SWR)
  685. return 1;
  686. #endif
  687. return 0;
  688. }
  689. /*
  690. * pgd/pmd/pte modification functions
  691. */
  692. static inline void pgd_clear(pgd_t *pgd)
  693. {
  694. #ifdef CONFIG_64BIT
  695. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  696. pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
  697. #endif
  698. }
  699. static inline void pud_clear(pud_t *pud)
  700. {
  701. #ifdef CONFIG_64BIT
  702. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  703. pud_val(*pud) = _REGION3_ENTRY_EMPTY;
  704. #endif
  705. }
  706. static inline void pmd_clear(pmd_t *pmdp)
  707. {
  708. pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
  709. }
  710. static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  711. {
  712. pte_val(*ptep) = _PAGE_TYPE_EMPTY;
  713. }
  714. /*
  715. * The following pte modification functions only work if
  716. * pte_present() is true. Undefined behaviour if not..
  717. */
  718. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  719. {
  720. pte_val(pte) &= _PAGE_CHG_MASK;
  721. pte_val(pte) |= pgprot_val(newprot);
  722. return pte;
  723. }
  724. static inline pte_t pte_wrprotect(pte_t pte)
  725. {
  726. /* Do not clobber _PAGE_TYPE_NONE pages! */
  727. if (!(pte_val(pte) & _PAGE_INVALID))
  728. pte_val(pte) |= _PAGE_RO;
  729. return pte;
  730. }
  731. static inline pte_t pte_mkwrite(pte_t pte)
  732. {
  733. pte_val(pte) &= ~_PAGE_RO;
  734. return pte;
  735. }
  736. static inline pte_t pte_mkclean(pte_t pte)
  737. {
  738. #ifdef CONFIG_PGSTE
  739. pte_val(pte) &= ~_PAGE_SWC;
  740. #endif
  741. return pte;
  742. }
  743. static inline pte_t pte_mkdirty(pte_t pte)
  744. {
  745. return pte;
  746. }
  747. static inline pte_t pte_mkold(pte_t pte)
  748. {
  749. #ifdef CONFIG_PGSTE
  750. pte_val(pte) &= ~_PAGE_SWR;
  751. #endif
  752. return pte;
  753. }
  754. static inline pte_t pte_mkyoung(pte_t pte)
  755. {
  756. return pte;
  757. }
  758. static inline pte_t pte_mkspecial(pte_t pte)
  759. {
  760. pte_val(pte) |= _PAGE_SPECIAL;
  761. return pte;
  762. }
  763. #ifdef CONFIG_HUGETLB_PAGE
  764. static inline pte_t pte_mkhuge(pte_t pte)
  765. {
  766. /*
  767. * PROT_NONE needs to be remapped from the pte type to the ste type.
  768. * The HW invalid bit is also different for pte and ste. The pte
  769. * invalid bit happens to be the same as the ste _SEGMENT_ENTRY_LARGE
  770. * bit, so we don't have to clear it.
  771. */
  772. if (pte_val(pte) & _PAGE_INVALID) {
  773. if (pte_val(pte) & _PAGE_SWT)
  774. pte_val(pte) |= _HPAGE_TYPE_NONE;
  775. pte_val(pte) |= _SEGMENT_ENTRY_INV;
  776. }
  777. /*
  778. * Clear SW pte bits SWT and SWX, there are no SW bits in a segment
  779. * table entry.
  780. */
  781. pte_val(pte) &= ~(_PAGE_SWT | _PAGE_SWX);
  782. /*
  783. * Also set the change-override bit because we don't need dirty bit
  784. * tracking for hugetlbfs pages.
  785. */
  786. pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
  787. return pte;
  788. }
  789. #endif
  790. /*
  791. * Get (and clear) the user dirty bit for a pte.
  792. */
  793. static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
  794. pte_t *ptep)
  795. {
  796. pgste_t pgste;
  797. int dirty = 0;
  798. if (mm_has_pgste(mm)) {
  799. pgste = pgste_get_lock(ptep);
  800. pgste = pgste_update_all(ptep, pgste);
  801. dirty = !!(pgste_val(pgste) & KVM_UC_BIT);
  802. pgste_val(pgste) &= ~KVM_UC_BIT;
  803. pgste_set_unlock(ptep, pgste);
  804. return dirty;
  805. }
  806. return dirty;
  807. }
  808. /*
  809. * Get (and clear) the user referenced bit for a pte.
  810. */
  811. static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
  812. pte_t *ptep)
  813. {
  814. pgste_t pgste;
  815. int young = 0;
  816. if (mm_has_pgste(mm)) {
  817. pgste = pgste_get_lock(ptep);
  818. pgste = pgste_update_young(ptep, pgste);
  819. young = !!(pgste_val(pgste) & KVM_UR_BIT);
  820. pgste_val(pgste) &= ~KVM_UR_BIT;
  821. pgste_set_unlock(ptep, pgste);
  822. }
  823. return young;
  824. }
  825. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  826. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  827. unsigned long addr, pte_t *ptep)
  828. {
  829. pgste_t pgste;
  830. pte_t pte;
  831. if (mm_has_pgste(vma->vm_mm)) {
  832. pgste = pgste_get_lock(ptep);
  833. pgste = pgste_update_young(ptep, pgste);
  834. pte = *ptep;
  835. *ptep = pte_mkold(pte);
  836. pgste_set_unlock(ptep, pgste);
  837. return pte_young(pte);
  838. }
  839. return 0;
  840. }
  841. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  842. static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
  843. unsigned long address, pte_t *ptep)
  844. {
  845. /* No need to flush TLB
  846. * On s390 reference bits are in storage key and never in TLB
  847. * With virtualization we handle the reference bit, without we
  848. * we can simply return */
  849. return ptep_test_and_clear_young(vma, address, ptep);
  850. }
  851. static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
  852. {
  853. if (!(pte_val(*ptep) & _PAGE_INVALID)) {
  854. #ifndef CONFIG_64BIT
  855. /* pto must point to the start of the segment table */
  856. pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
  857. #else
  858. /* ipte in zarch mode can do the math */
  859. pte_t *pto = ptep;
  860. #endif
  861. asm volatile(
  862. " ipte %2,%3"
  863. : "=m" (*ptep) : "m" (*ptep),
  864. "a" (pto), "a" (address));
  865. }
  866. }
  867. /*
  868. * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
  869. * both clear the TLB for the unmapped pte. The reason is that
  870. * ptep_get_and_clear is used in common code (e.g. change_pte_range)
  871. * to modify an active pte. The sequence is
  872. * 1) ptep_get_and_clear
  873. * 2) set_pte_at
  874. * 3) flush_tlb_range
  875. * On s390 the tlb needs to get flushed with the modification of the pte
  876. * if the pte is active. The only way how this can be implemented is to
  877. * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
  878. * is a nop.
  879. */
  880. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  881. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  882. unsigned long address, pte_t *ptep)
  883. {
  884. pgste_t pgste;
  885. pte_t pte;
  886. mm->context.flush_mm = 1;
  887. if (mm_has_pgste(mm))
  888. pgste = pgste_get_lock(ptep);
  889. pte = *ptep;
  890. if (!mm_exclusive(mm))
  891. __ptep_ipte(address, ptep);
  892. pte_val(*ptep) = _PAGE_TYPE_EMPTY;
  893. if (mm_has_pgste(mm)) {
  894. pgste = pgste_update_all(&pte, pgste);
  895. pgste_set_unlock(ptep, pgste);
  896. }
  897. return pte;
  898. }
  899. #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
  900. static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
  901. unsigned long address,
  902. pte_t *ptep)
  903. {
  904. pte_t pte;
  905. mm->context.flush_mm = 1;
  906. if (mm_has_pgste(mm))
  907. pgste_get_lock(ptep);
  908. pte = *ptep;
  909. if (!mm_exclusive(mm))
  910. __ptep_ipte(address, ptep);
  911. return pte;
  912. }
  913. static inline void ptep_modify_prot_commit(struct mm_struct *mm,
  914. unsigned long address,
  915. pte_t *ptep, pte_t pte)
  916. {
  917. *ptep = pte;
  918. if (mm_has_pgste(mm))
  919. pgste_set_unlock(ptep, *(pgste_t *)(ptep + PTRS_PER_PTE));
  920. }
  921. #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
  922. static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
  923. unsigned long address, pte_t *ptep)
  924. {
  925. pgste_t pgste;
  926. pte_t pte;
  927. if (mm_has_pgste(vma->vm_mm))
  928. pgste = pgste_get_lock(ptep);
  929. pte = *ptep;
  930. __ptep_ipte(address, ptep);
  931. pte_val(*ptep) = _PAGE_TYPE_EMPTY;
  932. if (mm_has_pgste(vma->vm_mm)) {
  933. pgste = pgste_update_all(&pte, pgste);
  934. pgste_set_unlock(ptep, pgste);
  935. }
  936. return pte;
  937. }
  938. /*
  939. * The batched pte unmap code uses ptep_get_and_clear_full to clear the
  940. * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
  941. * tlbs of an mm if it can guarantee that the ptes of the mm_struct
  942. * cannot be accessed while the batched unmap is running. In this case
  943. * full==1 and a simple pte_clear is enough. See tlb.h.
  944. */
  945. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
  946. static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
  947. unsigned long address,
  948. pte_t *ptep, int full)
  949. {
  950. pgste_t pgste;
  951. pte_t pte;
  952. if (mm_has_pgste(mm))
  953. pgste = pgste_get_lock(ptep);
  954. pte = *ptep;
  955. if (!full)
  956. __ptep_ipte(address, ptep);
  957. pte_val(*ptep) = _PAGE_TYPE_EMPTY;
  958. if (mm_has_pgste(mm)) {
  959. pgste = pgste_update_all(&pte, pgste);
  960. pgste_set_unlock(ptep, pgste);
  961. }
  962. return pte;
  963. }
  964. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  965. static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
  966. unsigned long address, pte_t *ptep)
  967. {
  968. pgste_t pgste;
  969. pte_t pte = *ptep;
  970. if (pte_write(pte)) {
  971. mm->context.flush_mm = 1;
  972. if (mm_has_pgste(mm))
  973. pgste = pgste_get_lock(ptep);
  974. if (!mm_exclusive(mm))
  975. __ptep_ipte(address, ptep);
  976. *ptep = pte_wrprotect(pte);
  977. if (mm_has_pgste(mm))
  978. pgste_set_unlock(ptep, pgste);
  979. }
  980. return pte;
  981. }
  982. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  983. static inline int ptep_set_access_flags(struct vm_area_struct *vma,
  984. unsigned long address, pte_t *ptep,
  985. pte_t entry, int dirty)
  986. {
  987. pgste_t pgste;
  988. if (pte_same(*ptep, entry))
  989. return 0;
  990. if (mm_has_pgste(vma->vm_mm))
  991. pgste = pgste_get_lock(ptep);
  992. __ptep_ipte(address, ptep);
  993. *ptep = entry;
  994. if (mm_has_pgste(vma->vm_mm))
  995. pgste_set_unlock(ptep, pgste);
  996. return 1;
  997. }
  998. /*
  999. * Conversion functions: convert a page and protection to a page entry,
  1000. * and a page entry and page directory to the page they refer to.
  1001. */
  1002. static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
  1003. {
  1004. pte_t __pte;
  1005. pte_val(__pte) = physpage + pgprot_val(pgprot);
  1006. return __pte;
  1007. }
  1008. static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
  1009. {
  1010. unsigned long physpage = page_to_phys(page);
  1011. return mk_pte_phys(physpage, pgprot);
  1012. }
  1013. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  1014. #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
  1015. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  1016. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
  1017. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  1018. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  1019. #ifndef CONFIG_64BIT
  1020. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  1021. #define pud_deref(pmd) ({ BUG(); 0UL; })
  1022. #define pgd_deref(pmd) ({ BUG(); 0UL; })
  1023. #define pud_offset(pgd, address) ((pud_t *) pgd)
  1024. #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
  1025. #else /* CONFIG_64BIT */
  1026. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  1027. #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
  1028. #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
  1029. static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
  1030. {
  1031. pud_t *pud = (pud_t *) pgd;
  1032. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  1033. pud = (pud_t *) pgd_deref(*pgd);
  1034. return pud + pud_index(address);
  1035. }
  1036. static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
  1037. {
  1038. pmd_t *pmd = (pmd_t *) pud;
  1039. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  1040. pmd = (pmd_t *) pud_deref(*pud);
  1041. return pmd + pmd_index(address);
  1042. }
  1043. #endif /* CONFIG_64BIT */
  1044. #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
  1045. #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
  1046. #define pte_page(x) pfn_to_page(pte_pfn(x))
  1047. #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
  1048. /* Find an entry in the lowest level page table.. */
  1049. #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
  1050. #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
  1051. #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
  1052. #define pte_unmap(pte) do { } while (0)
  1053. static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
  1054. {
  1055. unsigned long sto = (unsigned long) pmdp -
  1056. pmd_index(address) * sizeof(pmd_t);
  1057. if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) {
  1058. asm volatile(
  1059. " .insn rrf,0xb98e0000,%2,%3,0,0"
  1060. : "=m" (*pmdp)
  1061. : "m" (*pmdp), "a" (sto),
  1062. "a" ((address & HPAGE_MASK))
  1063. : "cc"
  1064. );
  1065. }
  1066. }
  1067. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1068. #define __HAVE_ARCH_PGTABLE_DEPOSIT
  1069. extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
  1070. #define __HAVE_ARCH_PGTABLE_WITHDRAW
  1071. extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
  1072. static inline int pmd_trans_splitting(pmd_t pmd)
  1073. {
  1074. return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
  1075. }
  1076. static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  1077. pmd_t *pmdp, pmd_t entry)
  1078. {
  1079. *pmdp = entry;
  1080. }
  1081. static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
  1082. {
  1083. unsigned long pgprot_pmd = 0;
  1084. if (pgprot_val(pgprot) & _PAGE_INVALID) {
  1085. if (pgprot_val(pgprot) & _PAGE_SWT)
  1086. pgprot_pmd |= _HPAGE_TYPE_NONE;
  1087. pgprot_pmd |= _SEGMENT_ENTRY_INV;
  1088. }
  1089. if (pgprot_val(pgprot) & _PAGE_RO)
  1090. pgprot_pmd |= _SEGMENT_ENTRY_RO;
  1091. return pgprot_pmd;
  1092. }
  1093. static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  1094. {
  1095. pmd_val(pmd) &= _SEGMENT_CHG_MASK;
  1096. pmd_val(pmd) |= massage_pgprot_pmd(newprot);
  1097. return pmd;
  1098. }
  1099. static inline pmd_t pmd_mkhuge(pmd_t pmd)
  1100. {
  1101. pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
  1102. return pmd;
  1103. }
  1104. static inline pmd_t pmd_mkwrite(pmd_t pmd)
  1105. {
  1106. pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO;
  1107. return pmd;
  1108. }
  1109. static inline pmd_t pmd_wrprotect(pmd_t pmd)
  1110. {
  1111. pmd_val(pmd) |= _SEGMENT_ENTRY_RO;
  1112. return pmd;
  1113. }
  1114. static inline pmd_t pmd_mkdirty(pmd_t pmd)
  1115. {
  1116. /* No dirty bit in the segment table entry. */
  1117. return pmd;
  1118. }
  1119. static inline pmd_t pmd_mkold(pmd_t pmd)
  1120. {
  1121. /* No referenced bit in the segment table entry. */
  1122. return pmd;
  1123. }
  1124. static inline pmd_t pmd_mkyoung(pmd_t pmd)
  1125. {
  1126. /* No referenced bit in the segment table entry. */
  1127. return pmd;
  1128. }
  1129. #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  1130. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  1131. unsigned long address, pmd_t *pmdp)
  1132. {
  1133. unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK;
  1134. long tmp, rc;
  1135. int counter;
  1136. rc = 0;
  1137. if (MACHINE_HAS_RRBM) {
  1138. counter = PTRS_PER_PTE >> 6;
  1139. asm volatile(
  1140. "0: .insn rre,0xb9ae0000,%0,%3\n" /* rrbm */
  1141. " ogr %1,%0\n"
  1142. " la %3,0(%4,%3)\n"
  1143. " brct %2,0b\n"
  1144. : "=&d" (tmp), "+&d" (rc), "+d" (counter),
  1145. "+a" (pmd_addr)
  1146. : "a" (64 * 4096UL) : "cc");
  1147. rc = !!rc;
  1148. } else {
  1149. counter = PTRS_PER_PTE;
  1150. asm volatile(
  1151. "0: rrbe 0,%2\n"
  1152. " la %2,0(%3,%2)\n"
  1153. " brc 12,1f\n"
  1154. " lhi %0,1\n"
  1155. "1: brct %1,0b\n"
  1156. : "+d" (rc), "+d" (counter), "+a" (pmd_addr)
  1157. : "a" (4096UL) : "cc");
  1158. }
  1159. return rc;
  1160. }
  1161. #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
  1162. static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
  1163. unsigned long address, pmd_t *pmdp)
  1164. {
  1165. pmd_t pmd = *pmdp;
  1166. __pmd_idte(address, pmdp);
  1167. pmd_clear(pmdp);
  1168. return pmd;
  1169. }
  1170. #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
  1171. static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
  1172. unsigned long address, pmd_t *pmdp)
  1173. {
  1174. return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
  1175. }
  1176. #define __HAVE_ARCH_PMDP_INVALIDATE
  1177. static inline void pmdp_invalidate(struct vm_area_struct *vma,
  1178. unsigned long address, pmd_t *pmdp)
  1179. {
  1180. __pmd_idte(address, pmdp);
  1181. }
  1182. static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
  1183. {
  1184. pmd_t __pmd;
  1185. pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
  1186. return __pmd;
  1187. }
  1188. #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
  1189. #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
  1190. static inline int pmd_trans_huge(pmd_t pmd)
  1191. {
  1192. return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
  1193. }
  1194. static inline int has_transparent_hugepage(void)
  1195. {
  1196. return MACHINE_HAS_HPAGE ? 1 : 0;
  1197. }
  1198. static inline unsigned long pmd_pfn(pmd_t pmd)
  1199. {
  1200. if (pmd_trans_huge(pmd))
  1201. return pmd_val(pmd) >> HPAGE_SHIFT;
  1202. else
  1203. return pmd_val(pmd) >> PAGE_SHIFT;
  1204. }
  1205. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1206. /*
  1207. * 31 bit swap entry format:
  1208. * A page-table entry has some bits we have to treat in a special way.
  1209. * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
  1210. * exception will occur instead of a page translation exception. The
  1211. * specifiation exception has the bad habit not to store necessary
  1212. * information in the lowcore.
  1213. * Bit 21 and bit 22 are the page invalid bit and the page protection
  1214. * bit. We set both to indicate a swapped page.
  1215. * Bit 30 and 31 are used to distinguish the different page types. For
  1216. * a swapped page these bits need to be zero.
  1217. * This leaves the bits 1-19 and bits 24-29 to store type and offset.
  1218. * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
  1219. * plus 24 for the offset.
  1220. * 0| offset |0110|o|type |00|
  1221. * 0 0000000001111111111 2222 2 22222 33
  1222. * 0 1234567890123456789 0123 4 56789 01
  1223. *
  1224. * 64 bit swap entry format:
  1225. * A page-table entry has some bits we have to treat in a special way.
  1226. * Bits 52 and bit 55 have to be zero, otherwise an specification
  1227. * exception will occur instead of a page translation exception. The
  1228. * specifiation exception has the bad habit not to store necessary
  1229. * information in the lowcore.
  1230. * Bit 53 and bit 54 are the page invalid bit and the page protection
  1231. * bit. We set both to indicate a swapped page.
  1232. * Bit 62 and 63 are used to distinguish the different page types. For
  1233. * a swapped page these bits need to be zero.
  1234. * This leaves the bits 0-51 and bits 56-61 to store type and offset.
  1235. * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
  1236. * plus 56 for the offset.
  1237. * | offset |0110|o|type |00|
  1238. * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
  1239. * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
  1240. */
  1241. #ifndef CONFIG_64BIT
  1242. #define __SWP_OFFSET_MASK (~0UL >> 12)
  1243. #else
  1244. #define __SWP_OFFSET_MASK (~0UL >> 11)
  1245. #endif
  1246. static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
  1247. {
  1248. pte_t pte;
  1249. offset &= __SWP_OFFSET_MASK;
  1250. pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
  1251. ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
  1252. return pte;
  1253. }
  1254. #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
  1255. #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
  1256. #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
  1257. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  1258. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  1259. #ifndef CONFIG_64BIT
  1260. # define PTE_FILE_MAX_BITS 26
  1261. #else /* CONFIG_64BIT */
  1262. # define PTE_FILE_MAX_BITS 59
  1263. #endif /* CONFIG_64BIT */
  1264. #define pte_to_pgoff(__pte) \
  1265. ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
  1266. #define pgoff_to_pte(__off) \
  1267. ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
  1268. | _PAGE_TYPE_FILE })
  1269. #endif /* !__ASSEMBLY__ */
  1270. #define kern_addr_valid(addr) (1)
  1271. extern int vmem_add_mapping(unsigned long start, unsigned long size);
  1272. extern int vmem_remove_mapping(unsigned long start, unsigned long size);
  1273. extern int s390_enable_sie(void);
  1274. /*
  1275. * No page table caches to initialise
  1276. */
  1277. #define pgtable_cache_init() do { } while (0)
  1278. #include <asm-generic/pgtable.h>
  1279. #endif /* _S390_PAGE_H */