mmu-hash64.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556
  1. #ifndef _ASM_POWERPC_MMU_HASH64_H_
  2. #define _ASM_POWERPC_MMU_HASH64_H_
  3. /*
  4. * PowerPC64 memory management structures
  5. *
  6. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  7. * PPC64 rework.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #include <asm/asm-compat.h>
  15. #include <asm/page.h>
  16. /*
  17. * This is necessary to get the definition of PGTABLE_RANGE which we
  18. * need for various slices related matters. Note that this isn't the
  19. * complete pgtable.h but only a portion of it.
  20. */
  21. #include <asm/pgtable-ppc64.h>
  22. /*
  23. * Segment table
  24. */
  25. #define STE_ESID_V 0x80
  26. #define STE_ESID_KS 0x20
  27. #define STE_ESID_KP 0x10
  28. #define STE_ESID_N 0x08
  29. #define STE_VSID_SHIFT 12
  30. /* Location of cpu0's segment table */
  31. #define STAB0_PAGE 0x8
  32. #define STAB0_OFFSET (STAB0_PAGE << 12)
  33. #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
  34. #ifndef __ASSEMBLY__
  35. extern char initial_stab[];
  36. #endif /* ! __ASSEMBLY */
  37. /*
  38. * SLB
  39. */
  40. #define SLB_NUM_BOLTED 3
  41. #define SLB_CACHE_ENTRIES 8
  42. #define SLB_MIN_SIZE 32
  43. /* Bits in the SLB ESID word */
  44. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  45. /* Bits in the SLB VSID word */
  46. #define SLB_VSID_SHIFT 12
  47. #define SLB_VSID_SHIFT_1T 24
  48. #define SLB_VSID_SSIZE_SHIFT 62
  49. #define SLB_VSID_B ASM_CONST(0xc000000000000000)
  50. #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
  51. #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
  52. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  53. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  54. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  55. #define SLB_VSID_L ASM_CONST(0x0000000000000100)
  56. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  57. #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
  58. #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
  59. #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
  60. #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
  61. #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
  62. #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
  63. #define SLB_VSID_KERNEL (SLB_VSID_KP)
  64. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  65. #define SLBIE_C (0x08000000)
  66. #define SLBIE_SSIZE_SHIFT 25
  67. /*
  68. * Hash table
  69. */
  70. #define HPTES_PER_GROUP 8
  71. #define HPTE_V_SSIZE_SHIFT 62
  72. #define HPTE_V_AVPN_SHIFT 7
  73. #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
  74. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  75. #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
  76. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  77. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  78. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  79. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  80. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  81. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  82. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  83. #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
  84. #define HPTE_R_RPN_SHIFT 12
  85. #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
  86. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  87. #define HPTE_R_N ASM_CONST(0x0000000000000004)
  88. #define HPTE_R_G ASM_CONST(0x0000000000000008)
  89. #define HPTE_R_M ASM_CONST(0x0000000000000010)
  90. #define HPTE_R_I ASM_CONST(0x0000000000000020)
  91. #define HPTE_R_W ASM_CONST(0x0000000000000040)
  92. #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
  93. #define HPTE_R_C ASM_CONST(0x0000000000000080)
  94. #define HPTE_R_R ASM_CONST(0x0000000000000100)
  95. #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
  96. #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
  97. #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
  98. /* Values for PP (assumes Ks=0, Kp=1) */
  99. #define PP_RWXX 0 /* Supervisor read/write, User none */
  100. #define PP_RWRX 1 /* Supervisor read/write, User read */
  101. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  102. #define PP_RXRX 3 /* Supervisor read, User read */
  103. #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
  104. #ifndef __ASSEMBLY__
  105. struct hash_pte {
  106. unsigned long v;
  107. unsigned long r;
  108. };
  109. extern struct hash_pte *htab_address;
  110. extern unsigned long htab_size_bytes;
  111. extern unsigned long htab_hash_mask;
  112. /*
  113. * Page size definition
  114. *
  115. * shift : is the "PAGE_SHIFT" value for that page size
  116. * sllp : is a bit mask with the value of SLB L || LP to be or'ed
  117. * directly to a slbmte "vsid" value
  118. * penc : is the HPTE encoding mask for the "LP" field:
  119. *
  120. */
  121. struct mmu_psize_def
  122. {
  123. unsigned int shift; /* number of bits */
  124. unsigned int penc; /* HPTE encoding */
  125. unsigned int tlbiel; /* tlbiel supported for that page size */
  126. unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
  127. unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
  128. };
  129. #endif /* __ASSEMBLY__ */
  130. /*
  131. * Segment sizes.
  132. * These are the values used by hardware in the B field of
  133. * SLB entries and the first dword of MMU hashtable entries.
  134. * The B field is 2 bits; the values 2 and 3 are unused and reserved.
  135. */
  136. #define MMU_SEGSIZE_256M 0
  137. #define MMU_SEGSIZE_1T 1
  138. /*
  139. * encode page number shift.
  140. * in order to fit the 78 bit va in a 64 bit variable we shift the va by
  141. * 12 bits. This enable us to address upto 76 bit va.
  142. * For hpt hash from a va we can ignore the page size bits of va and for
  143. * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
  144. * we work in all cases including 4k page size.
  145. */
  146. #define VPN_SHIFT 12
  147. #ifndef __ASSEMBLY__
  148. static inline int segment_shift(int ssize)
  149. {
  150. if (ssize == MMU_SEGSIZE_256M)
  151. return SID_SHIFT;
  152. return SID_SHIFT_1T;
  153. }
  154. /*
  155. * The current system page and segment sizes
  156. */
  157. extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  158. extern int mmu_linear_psize;
  159. extern int mmu_virtual_psize;
  160. extern int mmu_vmalloc_psize;
  161. extern int mmu_vmemmap_psize;
  162. extern int mmu_io_psize;
  163. extern int mmu_kernel_ssize;
  164. extern int mmu_highuser_ssize;
  165. extern u16 mmu_slb_size;
  166. extern unsigned long tce_alloc_start, tce_alloc_end;
  167. /*
  168. * If the processor supports 64k normal pages but not 64k cache
  169. * inhibited pages, we have to be prepared to switch processes
  170. * to use 4k pages when they create cache-inhibited mappings.
  171. * If this is the case, mmu_ci_restrictions will be set to 1.
  172. */
  173. extern int mmu_ci_restrictions;
  174. /*
  175. * This computes the AVPN and B fields of the first dword of a HPTE,
  176. * for use when we want to match an existing PTE. The bottom 7 bits
  177. * of the returned value are zero.
  178. */
  179. static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
  180. int ssize)
  181. {
  182. unsigned long v;
  183. /*
  184. * The AVA field omits the low-order 23 bits of the 78 bits VA.
  185. * These bits are not needed in the PTE, because the
  186. * low-order b of these bits are part of the byte offset
  187. * into the virtual page and, if b < 23, the high-order
  188. * 23-b of these bits are always used in selecting the
  189. * PTEGs to be searched
  190. */
  191. v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
  192. v <<= HPTE_V_AVPN_SHIFT;
  193. v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
  194. return v;
  195. }
  196. /*
  197. * This function sets the AVPN and L fields of the HPTE appropriately
  198. * for the page size
  199. */
  200. static inline unsigned long hpte_encode_v(unsigned long vpn,
  201. int psize, int ssize)
  202. {
  203. unsigned long v;
  204. v = hpte_encode_avpn(vpn, psize, ssize);
  205. if (psize != MMU_PAGE_4K)
  206. v |= HPTE_V_LARGE;
  207. return v;
  208. }
  209. /*
  210. * This function sets the ARPN, and LP fields of the HPTE appropriately
  211. * for the page size. We assume the pa is already "clean" that is properly
  212. * aligned for the requested page size
  213. */
  214. static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
  215. {
  216. unsigned long r;
  217. /* A 4K page needs no special encoding */
  218. if (psize == MMU_PAGE_4K)
  219. return pa & HPTE_R_RPN;
  220. else {
  221. unsigned int penc = mmu_psize_defs[psize].penc;
  222. unsigned int shift = mmu_psize_defs[psize].shift;
  223. return (pa & ~((1ul << shift) - 1)) | (penc << 12);
  224. }
  225. return r;
  226. }
  227. /*
  228. * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
  229. */
  230. static inline unsigned long hpt_vpn(unsigned long ea,
  231. unsigned long vsid, int ssize)
  232. {
  233. unsigned long mask;
  234. int s_shift = segment_shift(ssize);
  235. mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
  236. return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
  237. }
  238. /*
  239. * This hashes a virtual address
  240. */
  241. static inline unsigned long hpt_hash(unsigned long vpn,
  242. unsigned int shift, int ssize)
  243. {
  244. int mask;
  245. unsigned long hash, vsid;
  246. /* VPN_SHIFT can be atmost 12 */
  247. if (ssize == MMU_SEGSIZE_256M) {
  248. mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
  249. hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
  250. ((vpn & mask) >> (shift - VPN_SHIFT));
  251. } else {
  252. mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
  253. vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
  254. hash = vsid ^ (vsid << 25) ^
  255. ((vpn & mask) >> (shift - VPN_SHIFT)) ;
  256. }
  257. return hash & 0x7fffffffffUL;
  258. }
  259. extern int __hash_page_4K(unsigned long ea, unsigned long access,
  260. unsigned long vsid, pte_t *ptep, unsigned long trap,
  261. unsigned int local, int ssize, int subpage_prot);
  262. extern int __hash_page_64K(unsigned long ea, unsigned long access,
  263. unsigned long vsid, pte_t *ptep, unsigned long trap,
  264. unsigned int local, int ssize);
  265. struct mm_struct;
  266. unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
  267. extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
  268. int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
  269. pte_t *ptep, unsigned long trap, int local, int ssize,
  270. unsigned int shift, unsigned int mmu_psize);
  271. extern void hash_failure_debug(unsigned long ea, unsigned long access,
  272. unsigned long vsid, unsigned long trap,
  273. int ssize, int psize, unsigned long pte);
  274. extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  275. unsigned long pstart, unsigned long prot,
  276. int psize, int ssize);
  277. extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
  278. extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
  279. extern void hpte_init_native(void);
  280. extern void hpte_init_lpar(void);
  281. extern void hpte_init_beat(void);
  282. extern void hpte_init_beat_v3(void);
  283. extern void stabs_alloc(void);
  284. extern void slb_initialize(void);
  285. extern void slb_flush_and_rebolt(void);
  286. extern void stab_initialize(unsigned long stab);
  287. extern void slb_vmalloc_update(void);
  288. extern void slb_set_size(u16 size);
  289. #endif /* __ASSEMBLY__ */
  290. /*
  291. * VSID allocation (256MB segment)
  292. *
  293. * We first generate a 38-bit "proto-VSID". For kernel addresses this
  294. * is equal to the ESID | 1 << 37, for user addresses it is:
  295. * (context << USER_ESID_BITS) | (esid & ((1U << USER_ESID_BITS) - 1)
  296. *
  297. * This splits the proto-VSID into the below range
  298. * 0 - (2^(CONTEXT_BITS + USER_ESID_BITS) - 1) : User proto-VSID range
  299. * 2^(CONTEXT_BITS + USER_ESID_BITS) - 2^(VSID_BITS) : Kernel proto-VSID range
  300. *
  301. * We also have CONTEXT_BITS + USER_ESID_BITS = VSID_BITS - 1
  302. * That is, we assign half of the space to user processes and half
  303. * to the kernel.
  304. *
  305. * The proto-VSIDs are then scrambled into real VSIDs with the
  306. * multiplicative hash:
  307. *
  308. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  309. *
  310. * VSID_MULTIPLIER is prime, so in particular it is
  311. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  312. * Because the modulus is 2^n-1 we can compute it efficiently without
  313. * a divide or extra multiply (see below).
  314. *
  315. * This scheme has several advantages over older methods:
  316. *
  317. * - We have VSIDs allocated for every kernel address
  318. * (i.e. everything above 0xC000000000000000), except the very top
  319. * segment, which simplifies several things.
  320. *
  321. * - We allow for USER_ESID_BITS significant bits of ESID and
  322. * CONTEXT_BITS bits of context for user addresses.
  323. * i.e. 64T (46 bits) of address space for up to half a million contexts.
  324. *
  325. * - The scramble function gives robust scattering in the hash
  326. * table (at least based on some initial results). The previous
  327. * method was more susceptible to pathological cases giving excessive
  328. * hash collisions.
  329. */
  330. /*
  331. * This should be computed such that protovosid * vsid_mulitplier
  332. * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
  333. */
  334. #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
  335. #define VSID_BITS_256M 38
  336. #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
  337. #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
  338. #define VSID_BITS_1T 26
  339. #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
  340. #define CONTEXT_BITS 19
  341. #define USER_ESID_BITS 18
  342. #define USER_ESID_BITS_1T 6
  343. #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
  344. /*
  345. * This macro generates asm code to compute the VSID scramble
  346. * function. Used in slb_allocate() and do_stab_bolted. The function
  347. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  348. *
  349. * rt = register continaing the proto-VSID and into which the
  350. * VSID will be stored
  351. * rx = scratch register (clobbered)
  352. *
  353. * - rt and rx must be different registers
  354. * - The answer will end up in the low VSID_BITS bits of rt. The higher
  355. * bits may contain other garbage, so you may need to mask the
  356. * result.
  357. */
  358. #define ASM_VSID_SCRAMBLE(rt, rx, size) \
  359. lis rx,VSID_MULTIPLIER_##size@h; \
  360. ori rx,rx,VSID_MULTIPLIER_##size@l; \
  361. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  362. \
  363. srdi rx,rt,VSID_BITS_##size; \
  364. clrldi rt,rt,(64-VSID_BITS_##size); \
  365. add rt,rt,rx; /* add high and low bits */ \
  366. /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  367. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  368. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  369. * the bit clear, r3 already has the answer we want, if it \
  370. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  371. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  372. addi rx,rt,1; \
  373. srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
  374. add rt,rt,rx
  375. /* 4 bits per slice and we have one slice per 1TB */
  376. #define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
  377. #ifndef __ASSEMBLY__
  378. #ifdef CONFIG_PPC_SUBPAGE_PROT
  379. /*
  380. * For the sub-page protection option, we extend the PGD with one of
  381. * these. Basically we have a 3-level tree, with the top level being
  382. * the protptrs array. To optimize speed and memory consumption when
  383. * only addresses < 4GB are being protected, pointers to the first
  384. * four pages of sub-page protection words are stored in the low_prot
  385. * array.
  386. * Each page of sub-page protection words protects 1GB (4 bytes
  387. * protects 64k). For the 3-level tree, each page of pointers then
  388. * protects 8TB.
  389. */
  390. struct subpage_prot_table {
  391. unsigned long maxaddr; /* only addresses < this are protected */
  392. unsigned int **protptrs[2];
  393. unsigned int *low_prot[4];
  394. };
  395. #define SBP_L1_BITS (PAGE_SHIFT - 2)
  396. #define SBP_L2_BITS (PAGE_SHIFT - 3)
  397. #define SBP_L1_COUNT (1 << SBP_L1_BITS)
  398. #define SBP_L2_COUNT (1 << SBP_L2_BITS)
  399. #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
  400. #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
  401. extern void subpage_prot_free(struct mm_struct *mm);
  402. extern void subpage_prot_init_new_context(struct mm_struct *mm);
  403. #else
  404. static inline void subpage_prot_free(struct mm_struct *mm) {}
  405. static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
  406. #endif /* CONFIG_PPC_SUBPAGE_PROT */
  407. typedef unsigned long mm_context_id_t;
  408. struct spinlock;
  409. typedef struct {
  410. mm_context_id_t id;
  411. u16 user_psize; /* page size index */
  412. #ifdef CONFIG_PPC_MM_SLICES
  413. u64 low_slices_psize; /* SLB page size encodings */
  414. unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
  415. #else
  416. u16 sllp; /* SLB page size encoding */
  417. #endif
  418. unsigned long vdso_base;
  419. #ifdef CONFIG_PPC_SUBPAGE_PROT
  420. struct subpage_prot_table spt;
  421. #endif /* CONFIG_PPC_SUBPAGE_PROT */
  422. #ifdef CONFIG_PPC_ICSWX
  423. struct spinlock *cop_lockp; /* guard acop and cop_pid */
  424. unsigned long acop; /* mask of enabled coprocessor types */
  425. unsigned int cop_pid; /* pid value used with coprocessors */
  426. #endif /* CONFIG_PPC_ICSWX */
  427. } mm_context_t;
  428. #if 0
  429. /*
  430. * The code below is equivalent to this function for arguments
  431. * < 2^VSID_BITS, which is all this should ever be called
  432. * with. However gcc is not clever enough to compute the
  433. * modulus (2^n-1) without a second multiply.
  434. */
  435. #define vsid_scramble(protovsid, size) \
  436. ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
  437. #else /* 1 */
  438. #define vsid_scramble(protovsid, size) \
  439. ({ \
  440. unsigned long x; \
  441. x = (protovsid) * VSID_MULTIPLIER_##size; \
  442. x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
  443. (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
  444. })
  445. #endif /* 1 */
  446. /*
  447. * This is only valid for addresses >= PAGE_OFFSET
  448. * The proto-VSID space is divided into two class
  449. * User: 0 to 2^(CONTEXT_BITS + USER_ESID_BITS) -1
  450. * kernel: 2^(CONTEXT_BITS + USER_ESID_BITS) to 2^(VSID_BITS) - 1
  451. *
  452. * With KERNEL_START at 0xc000000000000000, the proto vsid for
  453. * the kernel ends up with 0xc00000000 (36 bits). With 64TB
  454. * support we need to have kernel proto-VSID in the
  455. * [2^37 to 2^38 - 1] range due to the increased USER_ESID_BITS.
  456. */
  457. static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
  458. {
  459. unsigned long proto_vsid;
  460. /*
  461. * We need to make sure proto_vsid for the kernel is
  462. * >= 2^(CONTEXT_BITS + USER_ESID_BITS[_1T])
  463. */
  464. if (ssize == MMU_SEGSIZE_256M) {
  465. proto_vsid = ea >> SID_SHIFT;
  466. proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS));
  467. return vsid_scramble(proto_vsid, 256M);
  468. }
  469. proto_vsid = ea >> SID_SHIFT_1T;
  470. proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS_1T));
  471. return vsid_scramble(proto_vsid, 1T);
  472. }
  473. /* Returns the segment size indicator for a user address */
  474. static inline int user_segment_size(unsigned long addr)
  475. {
  476. /* Use 1T segments if possible for addresses >= 1T */
  477. if (addr >= (1UL << SID_SHIFT_1T))
  478. return mmu_highuser_ssize;
  479. return MMU_SEGSIZE_256M;
  480. }
  481. /* This is only valid for user addresses (which are below 2^44) */
  482. static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
  483. int ssize)
  484. {
  485. if (ssize == MMU_SEGSIZE_256M)
  486. return vsid_scramble((context << USER_ESID_BITS)
  487. | (ea >> SID_SHIFT), 256M);
  488. return vsid_scramble((context << USER_ESID_BITS_1T)
  489. | (ea >> SID_SHIFT_1T), 1T);
  490. }
  491. #endif /* __ASSEMBLY__ */
  492. #endif /* _ASM_POWERPC_MMU_HASH64_H_ */