gpmc-onenand.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429
  1. /*
  2. * linux/arch/arm/mach-omap2/gpmc-onenand.c
  3. *
  4. * Copyright (C) 2006 - 2009 Nokia Corporation
  5. * Contacts: Juha Yrjola
  6. * Tony Lindgren
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/string.h>
  13. #include <linux/kernel.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/mtd/onenand_regs.h>
  16. #include <linux/io.h>
  17. #include <linux/platform_data/mtd-onenand-omap2.h>
  18. #include <asm/mach/flash.h>
  19. #include <plat/gpmc.h>
  20. #include "soc.h"
  21. #define ONENAND_IO_SIZE SZ_128K
  22. static struct omap_onenand_platform_data *gpmc_onenand_data;
  23. static struct resource gpmc_onenand_resource = {
  24. .flags = IORESOURCE_MEM,
  25. };
  26. static struct platform_device gpmc_onenand_device = {
  27. .name = "omap2-onenand",
  28. .id = -1,
  29. .num_resources = 1,
  30. .resource = &gpmc_onenand_resource,
  31. };
  32. static int omap2_onenand_set_async_mode(int cs, void __iomem *onenand_base)
  33. {
  34. struct gpmc_timings t;
  35. u32 reg;
  36. int err;
  37. const int t_cer = 15;
  38. const int t_avdp = 12;
  39. const int t_aavdh = 7;
  40. const int t_ce = 76;
  41. const int t_aa = 76;
  42. const int t_oe = 20;
  43. const int t_cez = 20; /* max of t_cez, t_oez */
  44. const int t_ds = 30;
  45. const int t_wpl = 40;
  46. const int t_wph = 30;
  47. /* Ensure sync read and sync write are disabled */
  48. reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
  49. reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
  50. writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
  51. memset(&t, 0, sizeof(t));
  52. t.sync_clk = 0;
  53. t.cs_on = 0;
  54. t.adv_on = 0;
  55. /* Read */
  56. t.adv_rd_off = gpmc_round_ns_to_ticks(max_t(int, t_avdp, t_cer));
  57. t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(t_aavdh);
  58. t.access = t.adv_on + gpmc_round_ns_to_ticks(t_aa);
  59. t.access = max_t(int, t.access, t.cs_on + gpmc_round_ns_to_ticks(t_ce));
  60. t.access = max_t(int, t.access, t.oe_on + gpmc_round_ns_to_ticks(t_oe));
  61. t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
  62. t.cs_rd_off = t.oe_off;
  63. t.rd_cycle = t.cs_rd_off + gpmc_round_ns_to_ticks(t_cez);
  64. /* Write */
  65. t.adv_wr_off = t.adv_rd_off;
  66. t.we_on = t.oe_on;
  67. if (cpu_is_omap34xx()) {
  68. t.wr_data_mux_bus = t.we_on;
  69. t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
  70. }
  71. t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
  72. t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
  73. t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
  74. /* Configure GPMC for asynchronous read */
  75. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
  76. GPMC_CONFIG1_DEVICESIZE_16 |
  77. GPMC_CONFIG1_MUXADDDATA);
  78. err = gpmc_cs_set_timings(cs, &t);
  79. if (err)
  80. return err;
  81. /* Ensure sync read and sync write are disabled */
  82. reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
  83. reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
  84. writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
  85. return 0;
  86. }
  87. static void set_onenand_cfg(void __iomem *onenand_base, int latency,
  88. int sync_read, int sync_write, int hf, int vhf)
  89. {
  90. u32 reg;
  91. reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
  92. reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9));
  93. reg |= (latency << ONENAND_SYS_CFG1_BRL_SHIFT) |
  94. ONENAND_SYS_CFG1_BL_16;
  95. if (sync_read)
  96. reg |= ONENAND_SYS_CFG1_SYNC_READ;
  97. else
  98. reg &= ~ONENAND_SYS_CFG1_SYNC_READ;
  99. if (sync_write)
  100. reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
  101. else
  102. reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE;
  103. if (hf)
  104. reg |= ONENAND_SYS_CFG1_HF;
  105. else
  106. reg &= ~ONENAND_SYS_CFG1_HF;
  107. if (vhf)
  108. reg |= ONENAND_SYS_CFG1_VHF;
  109. else
  110. reg &= ~ONENAND_SYS_CFG1_VHF;
  111. writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
  112. }
  113. static int omap2_onenand_get_freq(struct omap_onenand_platform_data *cfg,
  114. void __iomem *onenand_base, bool *clk_dep)
  115. {
  116. u16 ver = readw(onenand_base + ONENAND_REG_VERSION_ID);
  117. int freq = 0;
  118. if (cfg->get_freq) {
  119. struct onenand_freq_info fi;
  120. fi.maf_id = readw(onenand_base + ONENAND_REG_MANUFACTURER_ID);
  121. fi.dev_id = readw(onenand_base + ONENAND_REG_DEVICE_ID);
  122. fi.ver_id = ver;
  123. freq = cfg->get_freq(&fi, clk_dep);
  124. if (freq)
  125. return freq;
  126. }
  127. switch ((ver >> 4) & 0xf) {
  128. case 0:
  129. freq = 40;
  130. break;
  131. case 1:
  132. freq = 54;
  133. break;
  134. case 2:
  135. freq = 66;
  136. break;
  137. case 3:
  138. freq = 83;
  139. break;
  140. case 4:
  141. freq = 104;
  142. break;
  143. default:
  144. freq = 54;
  145. break;
  146. }
  147. return freq;
  148. }
  149. static int omap2_onenand_set_sync_mode(struct omap_onenand_platform_data *cfg,
  150. void __iomem *onenand_base,
  151. int *freq_ptr)
  152. {
  153. struct gpmc_timings t;
  154. const int t_cer = 15;
  155. const int t_avdp = 12;
  156. const int t_cez = 20; /* max of t_cez, t_oez */
  157. const int t_ds = 30;
  158. const int t_wpl = 40;
  159. const int t_wph = 30;
  160. int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
  161. int div, fclk_offset_ns, fclk_offset, gpmc_clk_ns, latency;
  162. int first_time = 0, hf = 0, vhf = 0, sync_read = 0, sync_write = 0;
  163. int err, ticks_cez;
  164. int cs = cfg->cs, freq = *freq_ptr;
  165. u32 reg;
  166. bool clk_dep = false;
  167. if (cfg->flags & ONENAND_SYNC_READ) {
  168. sync_read = 1;
  169. } else if (cfg->flags & ONENAND_SYNC_READWRITE) {
  170. sync_read = 1;
  171. sync_write = 1;
  172. } else
  173. return omap2_onenand_set_async_mode(cs, onenand_base);
  174. if (!freq) {
  175. /* Very first call freq is not known */
  176. err = omap2_onenand_set_async_mode(cs, onenand_base);
  177. if (err)
  178. return err;
  179. freq = omap2_onenand_get_freq(cfg, onenand_base, &clk_dep);
  180. first_time = 1;
  181. }
  182. switch (freq) {
  183. case 104:
  184. min_gpmc_clk_period = 9600; /* 104 MHz */
  185. t_ces = 3;
  186. t_avds = 4;
  187. t_avdh = 2;
  188. t_ach = 3;
  189. t_aavdh = 6;
  190. t_rdyo = 6;
  191. break;
  192. case 83:
  193. min_gpmc_clk_period = 12000; /* 83 MHz */
  194. t_ces = 5;
  195. t_avds = 4;
  196. t_avdh = 2;
  197. t_ach = 6;
  198. t_aavdh = 6;
  199. t_rdyo = 9;
  200. break;
  201. case 66:
  202. min_gpmc_clk_period = 15000; /* 66 MHz */
  203. t_ces = 6;
  204. t_avds = 5;
  205. t_avdh = 2;
  206. t_ach = 6;
  207. t_aavdh = 6;
  208. t_rdyo = 11;
  209. break;
  210. default:
  211. min_gpmc_clk_period = 18500; /* 54 MHz */
  212. t_ces = 7;
  213. t_avds = 7;
  214. t_avdh = 7;
  215. t_ach = 9;
  216. t_aavdh = 7;
  217. t_rdyo = 15;
  218. sync_write = 0;
  219. break;
  220. }
  221. div = gpmc_cs_calc_divider(cs, min_gpmc_clk_period);
  222. gpmc_clk_ns = gpmc_ticks_to_ns(div);
  223. if (gpmc_clk_ns < 15) /* >66Mhz */
  224. hf = 1;
  225. if (gpmc_clk_ns < 12) /* >83Mhz */
  226. vhf = 1;
  227. if (vhf)
  228. latency = 8;
  229. else if (hf)
  230. latency = 6;
  231. else if (gpmc_clk_ns >= 25) /* 40 MHz*/
  232. latency = 3;
  233. else
  234. latency = 4;
  235. if (clk_dep) {
  236. if (gpmc_clk_ns < 12) { /* >83Mhz */
  237. t_ces = 3;
  238. t_avds = 4;
  239. } else if (gpmc_clk_ns < 15) { /* >66Mhz */
  240. t_ces = 5;
  241. t_avds = 4;
  242. } else if (gpmc_clk_ns < 25) { /* >40Mhz */
  243. t_ces = 6;
  244. t_avds = 5;
  245. } else {
  246. t_ces = 7;
  247. t_avds = 7;
  248. }
  249. }
  250. if (first_time)
  251. set_onenand_cfg(onenand_base, latency,
  252. sync_read, sync_write, hf, vhf);
  253. if (div == 1) {
  254. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
  255. reg |= (1 << 7);
  256. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
  257. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
  258. reg |= (1 << 7);
  259. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
  260. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
  261. reg |= (1 << 7);
  262. reg |= (1 << 23);
  263. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
  264. } else {
  265. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
  266. reg &= ~(1 << 7);
  267. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
  268. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
  269. reg &= ~(1 << 7);
  270. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
  271. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
  272. reg &= ~(1 << 7);
  273. reg &= ~(1 << 23);
  274. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
  275. }
  276. /* Set synchronous read timings */
  277. memset(&t, 0, sizeof(t));
  278. t.sync_clk = min_gpmc_clk_period;
  279. t.cs_on = 0;
  280. t.adv_on = 0;
  281. fclk_offset_ns = gpmc_round_ns_to_ticks(max_t(int, t_ces, t_avds));
  282. fclk_offset = gpmc_ns_to_ticks(fclk_offset_ns);
  283. t.page_burst_access = gpmc_clk_ns;
  284. /* Read */
  285. t.adv_rd_off = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_avdh));
  286. t.oe_on = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_ach));
  287. /* Force at least 1 clk between AVD High to OE Low */
  288. if (t.oe_on <= t.adv_rd_off)
  289. t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(1);
  290. t.access = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div);
  291. t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
  292. t.cs_rd_off = t.oe_off;
  293. ticks_cez = ((gpmc_ns_to_ticks(t_cez) + div - 1) / div) * div;
  294. t.rd_cycle = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div +
  295. ticks_cez);
  296. /* Write */
  297. if (sync_write) {
  298. t.adv_wr_off = t.adv_rd_off;
  299. t.we_on = 0;
  300. t.we_off = t.cs_rd_off;
  301. t.cs_wr_off = t.cs_rd_off;
  302. t.wr_cycle = t.rd_cycle;
  303. if (cpu_is_omap34xx()) {
  304. t.wr_data_mux_bus = gpmc_ticks_to_ns(fclk_offset +
  305. gpmc_ps_to_ticks(min_gpmc_clk_period +
  306. t_rdyo * 1000));
  307. t.wr_access = t.access;
  308. }
  309. } else {
  310. t.adv_wr_off = gpmc_round_ns_to_ticks(max_t(int,
  311. t_avdp, t_cer));
  312. t.we_on = t.adv_wr_off + gpmc_round_ns_to_ticks(t_aavdh);
  313. t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
  314. t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
  315. t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
  316. if (cpu_is_omap34xx()) {
  317. t.wr_data_mux_bus = t.we_on;
  318. t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
  319. }
  320. }
  321. /* Configure GPMC for synchronous read */
  322. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
  323. GPMC_CONFIG1_WRAPBURST_SUPP |
  324. GPMC_CONFIG1_READMULTIPLE_SUPP |
  325. (sync_read ? GPMC_CONFIG1_READTYPE_SYNC : 0) |
  326. (sync_write ? GPMC_CONFIG1_WRITEMULTIPLE_SUPP : 0) |
  327. (sync_write ? GPMC_CONFIG1_WRITETYPE_SYNC : 0) |
  328. GPMC_CONFIG1_CLKACTIVATIONTIME(fclk_offset) |
  329. GPMC_CONFIG1_PAGE_LEN(2) |
  330. (cpu_is_omap34xx() ? 0 :
  331. (GPMC_CONFIG1_WAIT_READ_MON |
  332. GPMC_CONFIG1_WAIT_PIN_SEL(0))) |
  333. GPMC_CONFIG1_DEVICESIZE_16 |
  334. GPMC_CONFIG1_DEVICETYPE_NOR |
  335. GPMC_CONFIG1_MUXADDDATA);
  336. err = gpmc_cs_set_timings(cs, &t);
  337. if (err)
  338. return err;
  339. set_onenand_cfg(onenand_base, latency, sync_read, sync_write, hf, vhf);
  340. *freq_ptr = freq;
  341. return 0;
  342. }
  343. static int gpmc_onenand_setup(void __iomem *onenand_base, int *freq_ptr)
  344. {
  345. struct device *dev = &gpmc_onenand_device.dev;
  346. /* Set sync timings in GPMC */
  347. if (omap2_onenand_set_sync_mode(gpmc_onenand_data, onenand_base,
  348. freq_ptr) < 0) {
  349. dev_err(dev, "Unable to set synchronous mode\n");
  350. return -EINVAL;
  351. }
  352. return 0;
  353. }
  354. void __init gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data)
  355. {
  356. int err;
  357. gpmc_onenand_data = _onenand_data;
  358. gpmc_onenand_data->onenand_setup = gpmc_onenand_setup;
  359. gpmc_onenand_device.dev.platform_data = gpmc_onenand_data;
  360. if (cpu_is_omap24xx() &&
  361. (gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) {
  362. printk(KERN_ERR "Onenand using only SYNC_READ on 24xx\n");
  363. gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE;
  364. gpmc_onenand_data->flags |= ONENAND_SYNC_READ;
  365. }
  366. err = gpmc_cs_request(gpmc_onenand_data->cs, ONENAND_IO_SIZE,
  367. (unsigned long *)&gpmc_onenand_resource.start);
  368. if (err < 0) {
  369. pr_err("%s: Cannot request GPMC CS\n", __func__);
  370. return;
  371. }
  372. gpmc_onenand_resource.end = gpmc_onenand_resource.start +
  373. ONENAND_IO_SIZE - 1;
  374. if (platform_device_register(&gpmc_onenand_device) < 0) {
  375. pr_err("%s: Unable to register OneNAND device\n", __func__);
  376. gpmc_cs_free(gpmc_onenand_data->cs);
  377. return;
  378. }
  379. }