perf_event.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/kernel.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/uaccess.h>
  17. #include <asm/irq_regs.h>
  18. #include <asm/pmu.h>
  19. #include <asm/stacktrace.h>
  20. static int
  21. armpmu_map_cache_event(const unsigned (*cache_map)
  22. [PERF_COUNT_HW_CACHE_MAX]
  23. [PERF_COUNT_HW_CACHE_OP_MAX]
  24. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  25. u64 config)
  26. {
  27. unsigned int cache_type, cache_op, cache_result, ret;
  28. cache_type = (config >> 0) & 0xff;
  29. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  30. return -EINVAL;
  31. cache_op = (config >> 8) & 0xff;
  32. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  33. return -EINVAL;
  34. cache_result = (config >> 16) & 0xff;
  35. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  36. return -EINVAL;
  37. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  38. if (ret == CACHE_OP_UNSUPPORTED)
  39. return -ENOENT;
  40. return ret;
  41. }
  42. static int
  43. armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  44. {
  45. int mapping = (*event_map)[config];
  46. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  47. }
  48. static int
  49. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  50. {
  51. return (int)(config & raw_event_mask);
  52. }
  53. int
  54. armpmu_map_event(struct perf_event *event,
  55. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  56. const unsigned (*cache_map)
  57. [PERF_COUNT_HW_CACHE_MAX]
  58. [PERF_COUNT_HW_CACHE_OP_MAX]
  59. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  60. u32 raw_event_mask)
  61. {
  62. u64 config = event->attr.config;
  63. switch (event->attr.type) {
  64. case PERF_TYPE_HARDWARE:
  65. return armpmu_map_hw_event(event_map, config);
  66. case PERF_TYPE_HW_CACHE:
  67. return armpmu_map_cache_event(cache_map, config);
  68. case PERF_TYPE_RAW:
  69. return armpmu_map_raw_event(raw_event_mask, config);
  70. }
  71. return -ENOENT;
  72. }
  73. int
  74. armpmu_event_set_period(struct perf_event *event,
  75. struct hw_perf_event *hwc,
  76. int idx)
  77. {
  78. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  79. s64 left = local64_read(&hwc->period_left);
  80. s64 period = hwc->sample_period;
  81. int ret = 0;
  82. if (unlikely(left <= -period)) {
  83. left = period;
  84. local64_set(&hwc->period_left, left);
  85. hwc->last_period = period;
  86. ret = 1;
  87. }
  88. if (unlikely(left <= 0)) {
  89. left += period;
  90. local64_set(&hwc->period_left, left);
  91. hwc->last_period = period;
  92. ret = 1;
  93. }
  94. if (left > (s64)armpmu->max_period)
  95. left = armpmu->max_period;
  96. local64_set(&hwc->prev_count, (u64)-left);
  97. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  98. perf_event_update_userpage(event);
  99. return ret;
  100. }
  101. u64
  102. armpmu_event_update(struct perf_event *event,
  103. struct hw_perf_event *hwc,
  104. int idx)
  105. {
  106. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  107. u64 delta, prev_raw_count, new_raw_count;
  108. again:
  109. prev_raw_count = local64_read(&hwc->prev_count);
  110. new_raw_count = armpmu->read_counter(idx);
  111. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  112. new_raw_count) != prev_raw_count)
  113. goto again;
  114. delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
  115. local64_add(delta, &event->count);
  116. local64_sub(delta, &hwc->period_left);
  117. return new_raw_count;
  118. }
  119. static void
  120. armpmu_read(struct perf_event *event)
  121. {
  122. struct hw_perf_event *hwc = &event->hw;
  123. /* Don't read disabled counters! */
  124. if (hwc->idx < 0)
  125. return;
  126. armpmu_event_update(event, hwc, hwc->idx);
  127. }
  128. static void
  129. armpmu_stop(struct perf_event *event, int flags)
  130. {
  131. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  132. struct hw_perf_event *hwc = &event->hw;
  133. /*
  134. * ARM pmu always has to update the counter, so ignore
  135. * PERF_EF_UPDATE, see comments in armpmu_start().
  136. */
  137. if (!(hwc->state & PERF_HES_STOPPED)) {
  138. armpmu->disable(hwc, hwc->idx);
  139. armpmu_event_update(event, hwc, hwc->idx);
  140. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  141. }
  142. }
  143. static void
  144. armpmu_start(struct perf_event *event, int flags)
  145. {
  146. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  147. struct hw_perf_event *hwc = &event->hw;
  148. /*
  149. * ARM pmu always has to reprogram the period, so ignore
  150. * PERF_EF_RELOAD, see the comment below.
  151. */
  152. if (flags & PERF_EF_RELOAD)
  153. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  154. hwc->state = 0;
  155. /*
  156. * Set the period again. Some counters can't be stopped, so when we
  157. * were stopped we simply disabled the IRQ source and the counter
  158. * may have been left counting. If we don't do this step then we may
  159. * get an interrupt too soon or *way* too late if the overflow has
  160. * happened since disabling.
  161. */
  162. armpmu_event_set_period(event, hwc, hwc->idx);
  163. armpmu->enable(hwc, hwc->idx);
  164. }
  165. static void
  166. armpmu_del(struct perf_event *event, int flags)
  167. {
  168. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  169. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  170. struct hw_perf_event *hwc = &event->hw;
  171. int idx = hwc->idx;
  172. WARN_ON(idx < 0);
  173. armpmu_stop(event, PERF_EF_UPDATE);
  174. hw_events->events[idx] = NULL;
  175. clear_bit(idx, hw_events->used_mask);
  176. perf_event_update_userpage(event);
  177. }
  178. static int
  179. armpmu_add(struct perf_event *event, int flags)
  180. {
  181. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  182. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  183. struct hw_perf_event *hwc = &event->hw;
  184. int idx;
  185. int err = 0;
  186. perf_pmu_disable(event->pmu);
  187. /* If we don't have a space for the counter then finish early. */
  188. idx = armpmu->get_event_idx(hw_events, hwc);
  189. if (idx < 0) {
  190. err = idx;
  191. goto out;
  192. }
  193. /*
  194. * If there is an event in the counter we are going to use then make
  195. * sure it is disabled.
  196. */
  197. event->hw.idx = idx;
  198. armpmu->disable(hwc, idx);
  199. hw_events->events[idx] = event;
  200. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  201. if (flags & PERF_EF_START)
  202. armpmu_start(event, PERF_EF_RELOAD);
  203. /* Propagate our changes to the userspace mapping. */
  204. perf_event_update_userpage(event);
  205. out:
  206. perf_pmu_enable(event->pmu);
  207. return err;
  208. }
  209. static int
  210. validate_event(struct pmu_hw_events *hw_events,
  211. struct perf_event *event)
  212. {
  213. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  214. struct hw_perf_event fake_event = event->hw;
  215. struct pmu *leader_pmu = event->group_leader->pmu;
  216. if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
  217. return 1;
  218. return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
  219. }
  220. static int
  221. validate_group(struct perf_event *event)
  222. {
  223. struct perf_event *sibling, *leader = event->group_leader;
  224. struct pmu_hw_events fake_pmu;
  225. DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
  226. /*
  227. * Initialise the fake PMU. We only need to populate the
  228. * used_mask for the purposes of validation.
  229. */
  230. memset(fake_used_mask, 0, sizeof(fake_used_mask));
  231. fake_pmu.used_mask = fake_used_mask;
  232. if (!validate_event(&fake_pmu, leader))
  233. return -EINVAL;
  234. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  235. if (!validate_event(&fake_pmu, sibling))
  236. return -EINVAL;
  237. }
  238. if (!validate_event(&fake_pmu, event))
  239. return -EINVAL;
  240. return 0;
  241. }
  242. static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
  243. {
  244. struct arm_pmu *armpmu = (struct arm_pmu *) dev;
  245. struct platform_device *plat_device = armpmu->plat_device;
  246. struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
  247. if (plat && plat->handle_irq)
  248. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  249. else
  250. return armpmu->handle_irq(irq, dev);
  251. }
  252. static void
  253. armpmu_release_hardware(struct arm_pmu *armpmu)
  254. {
  255. armpmu->free_irq();
  256. pm_runtime_put_sync(&armpmu->plat_device->dev);
  257. }
  258. static int
  259. armpmu_reserve_hardware(struct arm_pmu *armpmu)
  260. {
  261. int err;
  262. struct platform_device *pmu_device = armpmu->plat_device;
  263. if (!pmu_device)
  264. return -ENODEV;
  265. pm_runtime_get_sync(&pmu_device->dev);
  266. err = armpmu->request_irq(armpmu_dispatch_irq);
  267. if (err) {
  268. armpmu_release_hardware(armpmu);
  269. return err;
  270. }
  271. return 0;
  272. }
  273. static void
  274. hw_perf_event_destroy(struct perf_event *event)
  275. {
  276. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  277. atomic_t *active_events = &armpmu->active_events;
  278. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  279. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  280. armpmu_release_hardware(armpmu);
  281. mutex_unlock(pmu_reserve_mutex);
  282. }
  283. }
  284. static int
  285. event_requires_mode_exclusion(struct perf_event_attr *attr)
  286. {
  287. return attr->exclude_idle || attr->exclude_user ||
  288. attr->exclude_kernel || attr->exclude_hv;
  289. }
  290. static int
  291. __hw_perf_event_init(struct perf_event *event)
  292. {
  293. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  294. struct hw_perf_event *hwc = &event->hw;
  295. int mapping, err;
  296. mapping = armpmu->map_event(event);
  297. if (mapping < 0) {
  298. pr_debug("event %x:%llx not supported\n", event->attr.type,
  299. event->attr.config);
  300. return mapping;
  301. }
  302. /*
  303. * We don't assign an index until we actually place the event onto
  304. * hardware. Use -1 to signify that we haven't decided where to put it
  305. * yet. For SMP systems, each core has it's own PMU so we can't do any
  306. * clever allocation or constraints checking at this point.
  307. */
  308. hwc->idx = -1;
  309. hwc->config_base = 0;
  310. hwc->config = 0;
  311. hwc->event_base = 0;
  312. /*
  313. * Check whether we need to exclude the counter from certain modes.
  314. */
  315. if ((!armpmu->set_event_filter ||
  316. armpmu->set_event_filter(hwc, &event->attr)) &&
  317. event_requires_mode_exclusion(&event->attr)) {
  318. pr_debug("ARM performance counters do not support "
  319. "mode exclusion\n");
  320. return -EOPNOTSUPP;
  321. }
  322. /*
  323. * Store the event encoding into the config_base field.
  324. */
  325. hwc->config_base |= (unsigned long)mapping;
  326. if (!hwc->sample_period) {
  327. /*
  328. * For non-sampling runs, limit the sample_period to half
  329. * of the counter width. That way, the new counter value
  330. * is far less likely to overtake the previous one unless
  331. * you have some serious IRQ latency issues.
  332. */
  333. hwc->sample_period = armpmu->max_period >> 1;
  334. hwc->last_period = hwc->sample_period;
  335. local64_set(&hwc->period_left, hwc->sample_period);
  336. }
  337. err = 0;
  338. if (event->group_leader != event) {
  339. err = validate_group(event);
  340. if (err)
  341. return -EINVAL;
  342. }
  343. return err;
  344. }
  345. static int armpmu_event_init(struct perf_event *event)
  346. {
  347. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  348. int err = 0;
  349. atomic_t *active_events = &armpmu->active_events;
  350. /* does not support taken branch sampling */
  351. if (has_branch_stack(event))
  352. return -EOPNOTSUPP;
  353. if (armpmu->map_event(event) == -ENOENT)
  354. return -ENOENT;
  355. event->destroy = hw_perf_event_destroy;
  356. if (!atomic_inc_not_zero(active_events)) {
  357. mutex_lock(&armpmu->reserve_mutex);
  358. if (atomic_read(active_events) == 0)
  359. err = armpmu_reserve_hardware(armpmu);
  360. if (!err)
  361. atomic_inc(active_events);
  362. mutex_unlock(&armpmu->reserve_mutex);
  363. }
  364. if (err)
  365. return err;
  366. err = __hw_perf_event_init(event);
  367. if (err)
  368. hw_perf_event_destroy(event);
  369. return err;
  370. }
  371. static void armpmu_enable(struct pmu *pmu)
  372. {
  373. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  374. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  375. int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
  376. if (enabled)
  377. armpmu->start();
  378. }
  379. static void armpmu_disable(struct pmu *pmu)
  380. {
  381. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  382. armpmu->stop();
  383. }
  384. #ifdef CONFIG_PM_RUNTIME
  385. static int armpmu_runtime_resume(struct device *dev)
  386. {
  387. struct arm_pmu_platdata *plat = dev_get_platdata(dev);
  388. if (plat && plat->runtime_resume)
  389. return plat->runtime_resume(dev);
  390. return 0;
  391. }
  392. static int armpmu_runtime_suspend(struct device *dev)
  393. {
  394. struct arm_pmu_platdata *plat = dev_get_platdata(dev);
  395. if (plat && plat->runtime_suspend)
  396. return plat->runtime_suspend(dev);
  397. return 0;
  398. }
  399. #endif
  400. const struct dev_pm_ops armpmu_dev_pm_ops = {
  401. SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
  402. };
  403. static void __init armpmu_init(struct arm_pmu *armpmu)
  404. {
  405. atomic_set(&armpmu->active_events, 0);
  406. mutex_init(&armpmu->reserve_mutex);
  407. armpmu->pmu = (struct pmu) {
  408. .pmu_enable = armpmu_enable,
  409. .pmu_disable = armpmu_disable,
  410. .event_init = armpmu_event_init,
  411. .add = armpmu_add,
  412. .del = armpmu_del,
  413. .start = armpmu_start,
  414. .stop = armpmu_stop,
  415. .read = armpmu_read,
  416. };
  417. }
  418. int armpmu_register(struct arm_pmu *armpmu, char *name, int type)
  419. {
  420. armpmu_init(armpmu);
  421. pr_info("enabled with %s PMU driver, %d counters available\n",
  422. armpmu->name, armpmu->num_events);
  423. return perf_pmu_register(&armpmu->pmu, name, type);
  424. }
  425. /*
  426. * Callchain handling code.
  427. */
  428. /*
  429. * The registers we're interested in are at the end of the variable
  430. * length saved register structure. The fp points at the end of this
  431. * structure so the address of this struct is:
  432. * (struct frame_tail *)(xxx->fp)-1
  433. *
  434. * This code has been adapted from the ARM OProfile support.
  435. */
  436. struct frame_tail {
  437. struct frame_tail __user *fp;
  438. unsigned long sp;
  439. unsigned long lr;
  440. } __attribute__((packed));
  441. /*
  442. * Get the return address for a single stackframe and return a pointer to the
  443. * next frame tail.
  444. */
  445. static struct frame_tail __user *
  446. user_backtrace(struct frame_tail __user *tail,
  447. struct perf_callchain_entry *entry)
  448. {
  449. struct frame_tail buftail;
  450. /* Also check accessibility of one struct frame_tail beyond */
  451. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  452. return NULL;
  453. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  454. return NULL;
  455. perf_callchain_store(entry, buftail.lr);
  456. /*
  457. * Frame pointers should strictly progress back up the stack
  458. * (towards higher addresses).
  459. */
  460. if (tail + 1 >= buftail.fp)
  461. return NULL;
  462. return buftail.fp - 1;
  463. }
  464. void
  465. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  466. {
  467. struct frame_tail __user *tail;
  468. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  469. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  470. tail && !((unsigned long)tail & 0x3))
  471. tail = user_backtrace(tail, entry);
  472. }
  473. /*
  474. * Gets called by walk_stackframe() for every stackframe. This will be called
  475. * whist unwinding the stackframe and is like a subroutine return so we use
  476. * the PC.
  477. */
  478. static int
  479. callchain_trace(struct stackframe *fr,
  480. void *data)
  481. {
  482. struct perf_callchain_entry *entry = data;
  483. perf_callchain_store(entry, fr->pc);
  484. return 0;
  485. }
  486. void
  487. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  488. {
  489. struct stackframe fr;
  490. fr.fp = regs->ARM_fp;
  491. fr.sp = regs->ARM_sp;
  492. fr.lr = regs->ARM_lr;
  493. fr.pc = regs->ARM_pc;
  494. walk_stackframe(&fr, callchain_trace, entry);
  495. }