i915_gem.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  41. bool write);
  42. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  43. uint64_t offset,
  44. uint64_t size);
  45. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  46. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  47. unsigned alignment,
  48. bool map_and_fenceable);
  49. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  50. struct drm_i915_fence_reg *reg);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev,
  52. struct drm_i915_gem_object *obj,
  53. struct drm_i915_gem_pwrite *args,
  54. struct drm_file *file);
  55. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  56. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  57. struct shrink_control *sc);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. static int
  72. i915_gem_wait_for_error(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. if (atomic_read(&dev_priv->mm.wedged)) {
  84. /* GPU is hung, bump the completion count to account for
  85. * the token we just consumed so that we never hit zero and
  86. * end up waiting upon a subsequent completion event that
  87. * will never happen.
  88. */
  89. spin_lock_irqsave(&x->wait.lock, flags);
  90. x->done++;
  91. spin_unlock_irqrestore(&x->wait.lock, flags);
  92. }
  93. return 0;
  94. }
  95. int i915_mutex_lock_interruptible(struct drm_device *dev)
  96. {
  97. int ret;
  98. ret = i915_gem_wait_for_error(dev);
  99. if (ret)
  100. return ret;
  101. ret = mutex_lock_interruptible(&dev->struct_mutex);
  102. if (ret)
  103. return ret;
  104. WARN_ON(i915_verify_lists(dev));
  105. return 0;
  106. }
  107. static inline bool
  108. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  109. {
  110. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  111. }
  112. void i915_gem_do_init(struct drm_device *dev,
  113. unsigned long start,
  114. unsigned long mappable_end,
  115. unsigned long end)
  116. {
  117. drm_i915_private_t *dev_priv = dev->dev_private;
  118. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  119. dev_priv->mm.gtt_start = start;
  120. dev_priv->mm.gtt_mappable_end = mappable_end;
  121. dev_priv->mm.gtt_end = end;
  122. dev_priv->mm.gtt_total = end - start;
  123. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  124. /* Take over this portion of the GTT */
  125. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  126. }
  127. int
  128. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_gem_init *args = data;
  132. if (args->gtt_start >= args->gtt_end ||
  133. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  134. return -EINVAL;
  135. mutex_lock(&dev->struct_mutex);
  136. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  137. mutex_unlock(&dev->struct_mutex);
  138. return 0;
  139. }
  140. int
  141. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  142. struct drm_file *file)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. struct drm_i915_gem_get_aperture *args = data;
  146. struct drm_i915_gem_object *obj;
  147. size_t pinned;
  148. if (!(dev->driver->driver_features & DRIVER_GEM))
  149. return -ENODEV;
  150. pinned = 0;
  151. mutex_lock(&dev->struct_mutex);
  152. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  153. pinned += obj->gtt_space->size;
  154. mutex_unlock(&dev->struct_mutex);
  155. args->aper_size = dev_priv->mm.gtt_total;
  156. args->aper_available_size = args->aper_size - pinned;
  157. return 0;
  158. }
  159. static int
  160. i915_gem_create(struct drm_file *file,
  161. struct drm_device *dev,
  162. uint64_t size,
  163. uint32_t *handle_p)
  164. {
  165. struct drm_i915_gem_object *obj;
  166. int ret;
  167. u32 handle;
  168. size = roundup(size, PAGE_SIZE);
  169. if (size == 0)
  170. return -EINVAL;
  171. /* Allocate the new object */
  172. obj = i915_gem_alloc_object(dev, size);
  173. if (obj == NULL)
  174. return -ENOMEM;
  175. ret = drm_gem_handle_create(file, &obj->base, &handle);
  176. if (ret) {
  177. drm_gem_object_release(&obj->base);
  178. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  179. kfree(obj);
  180. return ret;
  181. }
  182. /* drop reference from allocate - handle holds it now */
  183. drm_gem_object_unreference(&obj->base);
  184. trace_i915_gem_object_create(obj);
  185. *handle_p = handle;
  186. return 0;
  187. }
  188. int
  189. i915_gem_dumb_create(struct drm_file *file,
  190. struct drm_device *dev,
  191. struct drm_mode_create_dumb *args)
  192. {
  193. /* have to work out size/pitch and return them */
  194. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  195. args->size = args->pitch * args->height;
  196. return i915_gem_create(file, dev,
  197. args->size, &args->handle);
  198. }
  199. int i915_gem_dumb_destroy(struct drm_file *file,
  200. struct drm_device *dev,
  201. uint32_t handle)
  202. {
  203. return drm_gem_handle_delete(file, handle);
  204. }
  205. /**
  206. * Creates a new mm object and returns a handle to it.
  207. */
  208. int
  209. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  210. struct drm_file *file)
  211. {
  212. struct drm_i915_gem_create *args = data;
  213. return i915_gem_create(file, dev,
  214. args->size, &args->handle);
  215. }
  216. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  217. {
  218. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  219. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  220. obj->tiling_mode != I915_TILING_NONE;
  221. }
  222. static inline void
  223. slow_shmem_copy(struct page *dst_page,
  224. int dst_offset,
  225. struct page *src_page,
  226. int src_offset,
  227. int length)
  228. {
  229. char *dst_vaddr, *src_vaddr;
  230. dst_vaddr = kmap(dst_page);
  231. src_vaddr = kmap(src_page);
  232. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  233. kunmap(src_page);
  234. kunmap(dst_page);
  235. }
  236. static inline void
  237. slow_shmem_bit17_copy(struct page *gpu_page,
  238. int gpu_offset,
  239. struct page *cpu_page,
  240. int cpu_offset,
  241. int length,
  242. int is_read)
  243. {
  244. char *gpu_vaddr, *cpu_vaddr;
  245. /* Use the unswizzled path if this page isn't affected. */
  246. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  247. if (is_read)
  248. return slow_shmem_copy(cpu_page, cpu_offset,
  249. gpu_page, gpu_offset, length);
  250. else
  251. return slow_shmem_copy(gpu_page, gpu_offset,
  252. cpu_page, cpu_offset, length);
  253. }
  254. gpu_vaddr = kmap(gpu_page);
  255. cpu_vaddr = kmap(cpu_page);
  256. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  257. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  258. */
  259. while (length > 0) {
  260. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  261. int this_length = min(cacheline_end - gpu_offset, length);
  262. int swizzled_gpu_offset = gpu_offset ^ 64;
  263. if (is_read) {
  264. memcpy(cpu_vaddr + cpu_offset,
  265. gpu_vaddr + swizzled_gpu_offset,
  266. this_length);
  267. } else {
  268. memcpy(gpu_vaddr + swizzled_gpu_offset,
  269. cpu_vaddr + cpu_offset,
  270. this_length);
  271. }
  272. cpu_offset += this_length;
  273. gpu_offset += this_length;
  274. length -= this_length;
  275. }
  276. kunmap(cpu_page);
  277. kunmap(gpu_page);
  278. }
  279. /**
  280. * This is the fast shmem pread path, which attempts to copy_from_user directly
  281. * from the backing pages of the object to the user's address space. On a
  282. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  283. */
  284. static int
  285. i915_gem_shmem_pread_fast(struct drm_device *dev,
  286. struct drm_i915_gem_object *obj,
  287. struct drm_i915_gem_pread *args,
  288. struct drm_file *file)
  289. {
  290. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  291. ssize_t remain;
  292. loff_t offset;
  293. char __user *user_data;
  294. int page_offset, page_length;
  295. user_data = (char __user *) (uintptr_t) args->data_ptr;
  296. remain = args->size;
  297. offset = args->offset;
  298. while (remain > 0) {
  299. struct page *page;
  300. char *vaddr;
  301. int ret;
  302. /* Operation in this page
  303. *
  304. * page_offset = offset within page
  305. * page_length = bytes to copy for this page
  306. */
  307. page_offset = offset_in_page(offset);
  308. page_length = remain;
  309. if ((page_offset + remain) > PAGE_SIZE)
  310. page_length = PAGE_SIZE - page_offset;
  311. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  312. if (IS_ERR(page))
  313. return PTR_ERR(page);
  314. vaddr = kmap_atomic(page);
  315. ret = __copy_to_user_inatomic(user_data,
  316. vaddr + page_offset,
  317. page_length);
  318. kunmap_atomic(vaddr);
  319. mark_page_accessed(page);
  320. page_cache_release(page);
  321. if (ret)
  322. return -EFAULT;
  323. remain -= page_length;
  324. user_data += page_length;
  325. offset += page_length;
  326. }
  327. return 0;
  328. }
  329. /**
  330. * This is the fallback shmem pread path, which allocates temporary storage
  331. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  332. * can copy out of the object's backing pages while holding the struct mutex
  333. * and not take page faults.
  334. */
  335. static int
  336. i915_gem_shmem_pread_slow(struct drm_device *dev,
  337. struct drm_i915_gem_object *obj,
  338. struct drm_i915_gem_pread *args,
  339. struct drm_file *file)
  340. {
  341. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  342. struct mm_struct *mm = current->mm;
  343. struct page **user_pages;
  344. ssize_t remain;
  345. loff_t offset, pinned_pages, i;
  346. loff_t first_data_page, last_data_page, num_pages;
  347. int shmem_page_offset;
  348. int data_page_index, data_page_offset;
  349. int page_length;
  350. int ret;
  351. uint64_t data_ptr = args->data_ptr;
  352. int do_bit17_swizzling;
  353. remain = args->size;
  354. /* Pin the user pages containing the data. We can't fault while
  355. * holding the struct mutex, yet we want to hold it while
  356. * dereferencing the user data.
  357. */
  358. first_data_page = data_ptr / PAGE_SIZE;
  359. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  360. num_pages = last_data_page - first_data_page + 1;
  361. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  362. if (user_pages == NULL)
  363. return -ENOMEM;
  364. mutex_unlock(&dev->struct_mutex);
  365. down_read(&mm->mmap_sem);
  366. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  367. num_pages, 1, 0, user_pages, NULL);
  368. up_read(&mm->mmap_sem);
  369. mutex_lock(&dev->struct_mutex);
  370. if (pinned_pages < num_pages) {
  371. ret = -EFAULT;
  372. goto out;
  373. }
  374. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  375. args->offset,
  376. args->size);
  377. if (ret)
  378. goto out;
  379. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  380. offset = args->offset;
  381. while (remain > 0) {
  382. struct page *page;
  383. /* Operation in this page
  384. *
  385. * shmem_page_offset = offset within page in shmem file
  386. * data_page_index = page number in get_user_pages return
  387. * data_page_offset = offset with data_page_index page.
  388. * page_length = bytes to copy for this page
  389. */
  390. shmem_page_offset = offset_in_page(offset);
  391. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  392. data_page_offset = offset_in_page(data_ptr);
  393. page_length = remain;
  394. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  395. page_length = PAGE_SIZE - shmem_page_offset;
  396. if ((data_page_offset + page_length) > PAGE_SIZE)
  397. page_length = PAGE_SIZE - data_page_offset;
  398. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  399. if (IS_ERR(page)) {
  400. ret = PTR_ERR(page);
  401. goto out;
  402. }
  403. if (do_bit17_swizzling) {
  404. slow_shmem_bit17_copy(page,
  405. shmem_page_offset,
  406. user_pages[data_page_index],
  407. data_page_offset,
  408. page_length,
  409. 1);
  410. } else {
  411. slow_shmem_copy(user_pages[data_page_index],
  412. data_page_offset,
  413. page,
  414. shmem_page_offset,
  415. page_length);
  416. }
  417. mark_page_accessed(page);
  418. page_cache_release(page);
  419. remain -= page_length;
  420. data_ptr += page_length;
  421. offset += page_length;
  422. }
  423. out:
  424. for (i = 0; i < pinned_pages; i++) {
  425. SetPageDirty(user_pages[i]);
  426. mark_page_accessed(user_pages[i]);
  427. page_cache_release(user_pages[i]);
  428. }
  429. drm_free_large(user_pages);
  430. return ret;
  431. }
  432. /**
  433. * Reads data from the object referenced by handle.
  434. *
  435. * On error, the contents of *data are undefined.
  436. */
  437. int
  438. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  439. struct drm_file *file)
  440. {
  441. struct drm_i915_gem_pread *args = data;
  442. struct drm_i915_gem_object *obj;
  443. int ret = 0;
  444. if (args->size == 0)
  445. return 0;
  446. if (!access_ok(VERIFY_WRITE,
  447. (char __user *)(uintptr_t)args->data_ptr,
  448. args->size))
  449. return -EFAULT;
  450. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  451. args->size);
  452. if (ret)
  453. return -EFAULT;
  454. ret = i915_mutex_lock_interruptible(dev);
  455. if (ret)
  456. return ret;
  457. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  458. if (&obj->base == NULL) {
  459. ret = -ENOENT;
  460. goto unlock;
  461. }
  462. /* Bounds check source. */
  463. if (args->offset > obj->base.size ||
  464. args->size > obj->base.size - args->offset) {
  465. ret = -EINVAL;
  466. goto out;
  467. }
  468. trace_i915_gem_object_pread(obj, args->offset, args->size);
  469. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  470. args->offset,
  471. args->size);
  472. if (ret)
  473. goto out;
  474. ret = -EFAULT;
  475. if (!i915_gem_object_needs_bit17_swizzle(obj))
  476. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  477. if (ret == -EFAULT)
  478. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  479. out:
  480. drm_gem_object_unreference(&obj->base);
  481. unlock:
  482. mutex_unlock(&dev->struct_mutex);
  483. return ret;
  484. }
  485. /* This is the fast write path which cannot handle
  486. * page faults in the source data
  487. */
  488. static inline int
  489. fast_user_write(struct io_mapping *mapping,
  490. loff_t page_base, int page_offset,
  491. char __user *user_data,
  492. int length)
  493. {
  494. char *vaddr_atomic;
  495. unsigned long unwritten;
  496. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  497. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  498. user_data, length);
  499. io_mapping_unmap_atomic(vaddr_atomic);
  500. return unwritten;
  501. }
  502. /* Here's the write path which can sleep for
  503. * page faults
  504. */
  505. static inline void
  506. slow_kernel_write(struct io_mapping *mapping,
  507. loff_t gtt_base, int gtt_offset,
  508. struct page *user_page, int user_offset,
  509. int length)
  510. {
  511. char __iomem *dst_vaddr;
  512. char *src_vaddr;
  513. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  514. src_vaddr = kmap(user_page);
  515. memcpy_toio(dst_vaddr + gtt_offset,
  516. src_vaddr + user_offset,
  517. length);
  518. kunmap(user_page);
  519. io_mapping_unmap(dst_vaddr);
  520. }
  521. /**
  522. * This is the fast pwrite path, where we copy the data directly from the
  523. * user into the GTT, uncached.
  524. */
  525. static int
  526. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  527. struct drm_i915_gem_object *obj,
  528. struct drm_i915_gem_pwrite *args,
  529. struct drm_file *file)
  530. {
  531. drm_i915_private_t *dev_priv = dev->dev_private;
  532. ssize_t remain;
  533. loff_t offset, page_base;
  534. char __user *user_data;
  535. int page_offset, page_length;
  536. user_data = (char __user *) (uintptr_t) args->data_ptr;
  537. remain = args->size;
  538. offset = obj->gtt_offset + args->offset;
  539. while (remain > 0) {
  540. /* Operation in this page
  541. *
  542. * page_base = page offset within aperture
  543. * page_offset = offset within page
  544. * page_length = bytes to copy for this page
  545. */
  546. page_base = offset & PAGE_MASK;
  547. page_offset = offset_in_page(offset);
  548. page_length = remain;
  549. if ((page_offset + remain) > PAGE_SIZE)
  550. page_length = PAGE_SIZE - page_offset;
  551. /* If we get a fault while copying data, then (presumably) our
  552. * source page isn't available. Return the error and we'll
  553. * retry in the slow path.
  554. */
  555. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  556. page_offset, user_data, page_length))
  557. return -EFAULT;
  558. remain -= page_length;
  559. user_data += page_length;
  560. offset += page_length;
  561. }
  562. return 0;
  563. }
  564. /**
  565. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  566. * the memory and maps it using kmap_atomic for copying.
  567. *
  568. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  569. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  570. */
  571. static int
  572. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  573. struct drm_i915_gem_object *obj,
  574. struct drm_i915_gem_pwrite *args,
  575. struct drm_file *file)
  576. {
  577. drm_i915_private_t *dev_priv = dev->dev_private;
  578. ssize_t remain;
  579. loff_t gtt_page_base, offset;
  580. loff_t first_data_page, last_data_page, num_pages;
  581. loff_t pinned_pages, i;
  582. struct page **user_pages;
  583. struct mm_struct *mm = current->mm;
  584. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  585. int ret;
  586. uint64_t data_ptr = args->data_ptr;
  587. remain = args->size;
  588. /* Pin the user pages containing the data. We can't fault while
  589. * holding the struct mutex, and all of the pwrite implementations
  590. * want to hold it while dereferencing the user data.
  591. */
  592. first_data_page = data_ptr / PAGE_SIZE;
  593. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  594. num_pages = last_data_page - first_data_page + 1;
  595. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  596. if (user_pages == NULL)
  597. return -ENOMEM;
  598. mutex_unlock(&dev->struct_mutex);
  599. down_read(&mm->mmap_sem);
  600. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  601. num_pages, 0, 0, user_pages, NULL);
  602. up_read(&mm->mmap_sem);
  603. mutex_lock(&dev->struct_mutex);
  604. if (pinned_pages < num_pages) {
  605. ret = -EFAULT;
  606. goto out_unpin_pages;
  607. }
  608. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  609. if (ret)
  610. goto out_unpin_pages;
  611. ret = i915_gem_object_put_fence(obj);
  612. if (ret)
  613. goto out_unpin_pages;
  614. offset = obj->gtt_offset + args->offset;
  615. while (remain > 0) {
  616. /* Operation in this page
  617. *
  618. * gtt_page_base = page offset within aperture
  619. * gtt_page_offset = offset within page in aperture
  620. * data_page_index = page number in get_user_pages return
  621. * data_page_offset = offset with data_page_index page.
  622. * page_length = bytes to copy for this page
  623. */
  624. gtt_page_base = offset & PAGE_MASK;
  625. gtt_page_offset = offset_in_page(offset);
  626. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  627. data_page_offset = offset_in_page(data_ptr);
  628. page_length = remain;
  629. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  630. page_length = PAGE_SIZE - gtt_page_offset;
  631. if ((data_page_offset + page_length) > PAGE_SIZE)
  632. page_length = PAGE_SIZE - data_page_offset;
  633. slow_kernel_write(dev_priv->mm.gtt_mapping,
  634. gtt_page_base, gtt_page_offset,
  635. user_pages[data_page_index],
  636. data_page_offset,
  637. page_length);
  638. remain -= page_length;
  639. offset += page_length;
  640. data_ptr += page_length;
  641. }
  642. out_unpin_pages:
  643. for (i = 0; i < pinned_pages; i++)
  644. page_cache_release(user_pages[i]);
  645. drm_free_large(user_pages);
  646. return ret;
  647. }
  648. /**
  649. * This is the fast shmem pwrite path, which attempts to directly
  650. * copy_from_user into the kmapped pages backing the object.
  651. */
  652. static int
  653. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  654. struct drm_i915_gem_object *obj,
  655. struct drm_i915_gem_pwrite *args,
  656. struct drm_file *file)
  657. {
  658. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  659. ssize_t remain;
  660. loff_t offset;
  661. char __user *user_data;
  662. int page_offset, page_length;
  663. user_data = (char __user *) (uintptr_t) args->data_ptr;
  664. remain = args->size;
  665. offset = args->offset;
  666. obj->dirty = 1;
  667. while (remain > 0) {
  668. struct page *page;
  669. char *vaddr;
  670. int ret;
  671. /* Operation in this page
  672. *
  673. * page_offset = offset within page
  674. * page_length = bytes to copy for this page
  675. */
  676. page_offset = offset_in_page(offset);
  677. page_length = remain;
  678. if ((page_offset + remain) > PAGE_SIZE)
  679. page_length = PAGE_SIZE - page_offset;
  680. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  681. if (IS_ERR(page))
  682. return PTR_ERR(page);
  683. vaddr = kmap_atomic(page);
  684. ret = __copy_from_user_inatomic(vaddr + page_offset,
  685. user_data,
  686. page_length);
  687. kunmap_atomic(vaddr);
  688. set_page_dirty(page);
  689. mark_page_accessed(page);
  690. page_cache_release(page);
  691. /* If we get a fault while copying data, then (presumably) our
  692. * source page isn't available. Return the error and we'll
  693. * retry in the slow path.
  694. */
  695. if (ret)
  696. return -EFAULT;
  697. remain -= page_length;
  698. user_data += page_length;
  699. offset += page_length;
  700. }
  701. return 0;
  702. }
  703. /**
  704. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  705. * the memory and maps it using kmap_atomic for copying.
  706. *
  707. * This avoids taking mmap_sem for faulting on the user's address while the
  708. * struct_mutex is held.
  709. */
  710. static int
  711. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  712. struct drm_i915_gem_object *obj,
  713. struct drm_i915_gem_pwrite *args,
  714. struct drm_file *file)
  715. {
  716. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  717. struct mm_struct *mm = current->mm;
  718. struct page **user_pages;
  719. ssize_t remain;
  720. loff_t offset, pinned_pages, i;
  721. loff_t first_data_page, last_data_page, num_pages;
  722. int shmem_page_offset;
  723. int data_page_index, data_page_offset;
  724. int page_length;
  725. int ret;
  726. uint64_t data_ptr = args->data_ptr;
  727. int do_bit17_swizzling;
  728. remain = args->size;
  729. /* Pin the user pages containing the data. We can't fault while
  730. * holding the struct mutex, and all of the pwrite implementations
  731. * want to hold it while dereferencing the user data.
  732. */
  733. first_data_page = data_ptr / PAGE_SIZE;
  734. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  735. num_pages = last_data_page - first_data_page + 1;
  736. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  737. if (user_pages == NULL)
  738. return -ENOMEM;
  739. mutex_unlock(&dev->struct_mutex);
  740. down_read(&mm->mmap_sem);
  741. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  742. num_pages, 0, 0, user_pages, NULL);
  743. up_read(&mm->mmap_sem);
  744. mutex_lock(&dev->struct_mutex);
  745. if (pinned_pages < num_pages) {
  746. ret = -EFAULT;
  747. goto out;
  748. }
  749. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  750. if (ret)
  751. goto out;
  752. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  753. offset = args->offset;
  754. obj->dirty = 1;
  755. while (remain > 0) {
  756. struct page *page;
  757. /* Operation in this page
  758. *
  759. * shmem_page_offset = offset within page in shmem file
  760. * data_page_index = page number in get_user_pages return
  761. * data_page_offset = offset with data_page_index page.
  762. * page_length = bytes to copy for this page
  763. */
  764. shmem_page_offset = offset_in_page(offset);
  765. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  766. data_page_offset = offset_in_page(data_ptr);
  767. page_length = remain;
  768. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  769. page_length = PAGE_SIZE - shmem_page_offset;
  770. if ((data_page_offset + page_length) > PAGE_SIZE)
  771. page_length = PAGE_SIZE - data_page_offset;
  772. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  773. if (IS_ERR(page)) {
  774. ret = PTR_ERR(page);
  775. goto out;
  776. }
  777. if (do_bit17_swizzling) {
  778. slow_shmem_bit17_copy(page,
  779. shmem_page_offset,
  780. user_pages[data_page_index],
  781. data_page_offset,
  782. page_length,
  783. 0);
  784. } else {
  785. slow_shmem_copy(page,
  786. shmem_page_offset,
  787. user_pages[data_page_index],
  788. data_page_offset,
  789. page_length);
  790. }
  791. set_page_dirty(page);
  792. mark_page_accessed(page);
  793. page_cache_release(page);
  794. remain -= page_length;
  795. data_ptr += page_length;
  796. offset += page_length;
  797. }
  798. out:
  799. for (i = 0; i < pinned_pages; i++)
  800. page_cache_release(user_pages[i]);
  801. drm_free_large(user_pages);
  802. return ret;
  803. }
  804. /**
  805. * Writes data to the object referenced by handle.
  806. *
  807. * On error, the contents of the buffer that were to be modified are undefined.
  808. */
  809. int
  810. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  811. struct drm_file *file)
  812. {
  813. struct drm_i915_gem_pwrite *args = data;
  814. struct drm_i915_gem_object *obj;
  815. int ret;
  816. if (args->size == 0)
  817. return 0;
  818. if (!access_ok(VERIFY_READ,
  819. (char __user *)(uintptr_t)args->data_ptr,
  820. args->size))
  821. return -EFAULT;
  822. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  823. args->size);
  824. if (ret)
  825. return -EFAULT;
  826. ret = i915_mutex_lock_interruptible(dev);
  827. if (ret)
  828. return ret;
  829. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  830. if (&obj->base == NULL) {
  831. ret = -ENOENT;
  832. goto unlock;
  833. }
  834. /* Bounds check destination. */
  835. if (args->offset > obj->base.size ||
  836. args->size > obj->base.size - args->offset) {
  837. ret = -EINVAL;
  838. goto out;
  839. }
  840. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  841. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  842. * it would end up going through the fenced access, and we'll get
  843. * different detiling behavior between reading and writing.
  844. * pread/pwrite currently are reading and writing from the CPU
  845. * perspective, requiring manual detiling by the client.
  846. */
  847. if (obj->phys_obj)
  848. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  849. else if (obj->gtt_space &&
  850. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  851. ret = i915_gem_object_pin(obj, 0, true);
  852. if (ret)
  853. goto out;
  854. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  855. if (ret)
  856. goto out_unpin;
  857. ret = i915_gem_object_put_fence(obj);
  858. if (ret)
  859. goto out_unpin;
  860. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  861. if (ret == -EFAULT)
  862. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  863. out_unpin:
  864. i915_gem_object_unpin(obj);
  865. } else {
  866. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  867. if (ret)
  868. goto out;
  869. ret = -EFAULT;
  870. if (!i915_gem_object_needs_bit17_swizzle(obj))
  871. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  872. if (ret == -EFAULT)
  873. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  874. }
  875. out:
  876. drm_gem_object_unreference(&obj->base);
  877. unlock:
  878. mutex_unlock(&dev->struct_mutex);
  879. return ret;
  880. }
  881. /**
  882. * Called when user space prepares to use an object with the CPU, either
  883. * through the mmap ioctl's mapping or a GTT mapping.
  884. */
  885. int
  886. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  887. struct drm_file *file)
  888. {
  889. struct drm_i915_gem_set_domain *args = data;
  890. struct drm_i915_gem_object *obj;
  891. uint32_t read_domains = args->read_domains;
  892. uint32_t write_domain = args->write_domain;
  893. int ret;
  894. if (!(dev->driver->driver_features & DRIVER_GEM))
  895. return -ENODEV;
  896. /* Only handle setting domains to types used by the CPU. */
  897. if (write_domain & I915_GEM_GPU_DOMAINS)
  898. return -EINVAL;
  899. if (read_domains & I915_GEM_GPU_DOMAINS)
  900. return -EINVAL;
  901. /* Having something in the write domain implies it's in the read
  902. * domain, and only that read domain. Enforce that in the request.
  903. */
  904. if (write_domain != 0 && read_domains != write_domain)
  905. return -EINVAL;
  906. ret = i915_mutex_lock_interruptible(dev);
  907. if (ret)
  908. return ret;
  909. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  910. if (&obj->base == NULL) {
  911. ret = -ENOENT;
  912. goto unlock;
  913. }
  914. if (read_domains & I915_GEM_DOMAIN_GTT) {
  915. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  916. /* Silently promote "you're not bound, there was nothing to do"
  917. * to success, since the client was just asking us to
  918. * make sure everything was done.
  919. */
  920. if (ret == -EINVAL)
  921. ret = 0;
  922. } else {
  923. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  924. }
  925. drm_gem_object_unreference(&obj->base);
  926. unlock:
  927. mutex_unlock(&dev->struct_mutex);
  928. return ret;
  929. }
  930. /**
  931. * Called when user space has done writes to this buffer
  932. */
  933. int
  934. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  935. struct drm_file *file)
  936. {
  937. struct drm_i915_gem_sw_finish *args = data;
  938. struct drm_i915_gem_object *obj;
  939. int ret = 0;
  940. if (!(dev->driver->driver_features & DRIVER_GEM))
  941. return -ENODEV;
  942. ret = i915_mutex_lock_interruptible(dev);
  943. if (ret)
  944. return ret;
  945. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  946. if (&obj->base == NULL) {
  947. ret = -ENOENT;
  948. goto unlock;
  949. }
  950. /* Pinned buffers may be scanout, so flush the cache */
  951. if (obj->pin_count)
  952. i915_gem_object_flush_cpu_write_domain(obj);
  953. drm_gem_object_unreference(&obj->base);
  954. unlock:
  955. mutex_unlock(&dev->struct_mutex);
  956. return ret;
  957. }
  958. /**
  959. * Maps the contents of an object, returning the address it is mapped
  960. * into.
  961. *
  962. * While the mapping holds a reference on the contents of the object, it doesn't
  963. * imply a ref on the object itself.
  964. */
  965. int
  966. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  967. struct drm_file *file)
  968. {
  969. struct drm_i915_private *dev_priv = dev->dev_private;
  970. struct drm_i915_gem_mmap *args = data;
  971. struct drm_gem_object *obj;
  972. unsigned long addr;
  973. if (!(dev->driver->driver_features & DRIVER_GEM))
  974. return -ENODEV;
  975. obj = drm_gem_object_lookup(dev, file, args->handle);
  976. if (obj == NULL)
  977. return -ENOENT;
  978. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  979. drm_gem_object_unreference_unlocked(obj);
  980. return -E2BIG;
  981. }
  982. down_write(&current->mm->mmap_sem);
  983. addr = do_mmap(obj->filp, 0, args->size,
  984. PROT_READ | PROT_WRITE, MAP_SHARED,
  985. args->offset);
  986. up_write(&current->mm->mmap_sem);
  987. drm_gem_object_unreference_unlocked(obj);
  988. if (IS_ERR((void *)addr))
  989. return addr;
  990. args->addr_ptr = (uint64_t) addr;
  991. return 0;
  992. }
  993. /**
  994. * i915_gem_fault - fault a page into the GTT
  995. * vma: VMA in question
  996. * vmf: fault info
  997. *
  998. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  999. * from userspace. The fault handler takes care of binding the object to
  1000. * the GTT (if needed), allocating and programming a fence register (again,
  1001. * only if needed based on whether the old reg is still valid or the object
  1002. * is tiled) and inserting a new PTE into the faulting process.
  1003. *
  1004. * Note that the faulting process may involve evicting existing objects
  1005. * from the GTT and/or fence registers to make room. So performance may
  1006. * suffer if the GTT working set is large or there are few fence registers
  1007. * left.
  1008. */
  1009. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1010. {
  1011. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1012. struct drm_device *dev = obj->base.dev;
  1013. drm_i915_private_t *dev_priv = dev->dev_private;
  1014. pgoff_t page_offset;
  1015. unsigned long pfn;
  1016. int ret = 0;
  1017. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1018. /* We don't use vmf->pgoff since that has the fake offset */
  1019. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1020. PAGE_SHIFT;
  1021. ret = i915_mutex_lock_interruptible(dev);
  1022. if (ret)
  1023. goto out;
  1024. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1025. /* Now bind it into the GTT if needed */
  1026. if (!obj->map_and_fenceable) {
  1027. ret = i915_gem_object_unbind(obj);
  1028. if (ret)
  1029. goto unlock;
  1030. }
  1031. if (!obj->gtt_space) {
  1032. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1033. if (ret)
  1034. goto unlock;
  1035. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1036. if (ret)
  1037. goto unlock;
  1038. }
  1039. if (obj->tiling_mode == I915_TILING_NONE)
  1040. ret = i915_gem_object_put_fence(obj);
  1041. else
  1042. ret = i915_gem_object_get_fence(obj, NULL);
  1043. if (ret)
  1044. goto unlock;
  1045. if (i915_gem_object_is_inactive(obj))
  1046. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1047. obj->fault_mappable = true;
  1048. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1049. page_offset;
  1050. /* Finally, remap it using the new GTT offset */
  1051. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1052. unlock:
  1053. mutex_unlock(&dev->struct_mutex);
  1054. out:
  1055. switch (ret) {
  1056. case -EIO:
  1057. case -EAGAIN:
  1058. /* Give the error handler a chance to run and move the
  1059. * objects off the GPU active list. Next time we service the
  1060. * fault, we should be able to transition the page into the
  1061. * GTT without touching the GPU (and so avoid further
  1062. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1063. * with coherency, just lost writes.
  1064. */
  1065. set_need_resched();
  1066. case 0:
  1067. case -ERESTARTSYS:
  1068. case -EINTR:
  1069. return VM_FAULT_NOPAGE;
  1070. case -ENOMEM:
  1071. return VM_FAULT_OOM;
  1072. default:
  1073. return VM_FAULT_SIGBUS;
  1074. }
  1075. }
  1076. /**
  1077. * i915_gem_release_mmap - remove physical page mappings
  1078. * @obj: obj in question
  1079. *
  1080. * Preserve the reservation of the mmapping with the DRM core code, but
  1081. * relinquish ownership of the pages back to the system.
  1082. *
  1083. * It is vital that we remove the page mapping if we have mapped a tiled
  1084. * object through the GTT and then lose the fence register due to
  1085. * resource pressure. Similarly if the object has been moved out of the
  1086. * aperture, than pages mapped into userspace must be revoked. Removing the
  1087. * mapping will then trigger a page fault on the next user access, allowing
  1088. * fixup by i915_gem_fault().
  1089. */
  1090. void
  1091. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1092. {
  1093. if (!obj->fault_mappable)
  1094. return;
  1095. if (obj->base.dev->dev_mapping)
  1096. unmap_mapping_range(obj->base.dev->dev_mapping,
  1097. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1098. obj->base.size, 1);
  1099. obj->fault_mappable = false;
  1100. }
  1101. static uint32_t
  1102. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1103. {
  1104. uint32_t gtt_size;
  1105. if (INTEL_INFO(dev)->gen >= 4 ||
  1106. tiling_mode == I915_TILING_NONE)
  1107. return size;
  1108. /* Previous chips need a power-of-two fence region when tiling */
  1109. if (INTEL_INFO(dev)->gen == 3)
  1110. gtt_size = 1024*1024;
  1111. else
  1112. gtt_size = 512*1024;
  1113. while (gtt_size < size)
  1114. gtt_size <<= 1;
  1115. return gtt_size;
  1116. }
  1117. /**
  1118. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1119. * @obj: object to check
  1120. *
  1121. * Return the required GTT alignment for an object, taking into account
  1122. * potential fence register mapping.
  1123. */
  1124. static uint32_t
  1125. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1126. uint32_t size,
  1127. int tiling_mode)
  1128. {
  1129. /*
  1130. * Minimum alignment is 4k (GTT page size), but might be greater
  1131. * if a fence register is needed for the object.
  1132. */
  1133. if (INTEL_INFO(dev)->gen >= 4 ||
  1134. tiling_mode == I915_TILING_NONE)
  1135. return 4096;
  1136. /*
  1137. * Previous chips need to be aligned to the size of the smallest
  1138. * fence register that can contain the object.
  1139. */
  1140. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1141. }
  1142. /**
  1143. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1144. * unfenced object
  1145. * @dev: the device
  1146. * @size: size of the object
  1147. * @tiling_mode: tiling mode of the object
  1148. *
  1149. * Return the required GTT alignment for an object, only taking into account
  1150. * unfenced tiled surface requirements.
  1151. */
  1152. uint32_t
  1153. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1154. uint32_t size,
  1155. int tiling_mode)
  1156. {
  1157. /*
  1158. * Minimum alignment is 4k (GTT page size) for sane hw.
  1159. */
  1160. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1161. tiling_mode == I915_TILING_NONE)
  1162. return 4096;
  1163. /* Previous hardware however needs to be aligned to a power-of-two
  1164. * tile height. The simplest method for determining this is to reuse
  1165. * the power-of-tile object size.
  1166. */
  1167. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1168. }
  1169. int
  1170. i915_gem_mmap_gtt(struct drm_file *file,
  1171. struct drm_device *dev,
  1172. uint32_t handle,
  1173. uint64_t *offset)
  1174. {
  1175. struct drm_i915_private *dev_priv = dev->dev_private;
  1176. struct drm_i915_gem_object *obj;
  1177. int ret;
  1178. if (!(dev->driver->driver_features & DRIVER_GEM))
  1179. return -ENODEV;
  1180. ret = i915_mutex_lock_interruptible(dev);
  1181. if (ret)
  1182. return ret;
  1183. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1184. if (&obj->base == NULL) {
  1185. ret = -ENOENT;
  1186. goto unlock;
  1187. }
  1188. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1189. ret = -E2BIG;
  1190. goto out;
  1191. }
  1192. if (obj->madv != I915_MADV_WILLNEED) {
  1193. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1194. ret = -EINVAL;
  1195. goto out;
  1196. }
  1197. if (!obj->base.map_list.map) {
  1198. ret = drm_gem_create_mmap_offset(&obj->base);
  1199. if (ret)
  1200. goto out;
  1201. }
  1202. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1203. out:
  1204. drm_gem_object_unreference(&obj->base);
  1205. unlock:
  1206. mutex_unlock(&dev->struct_mutex);
  1207. return ret;
  1208. }
  1209. /**
  1210. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1211. * @dev: DRM device
  1212. * @data: GTT mapping ioctl data
  1213. * @file: GEM object info
  1214. *
  1215. * Simply returns the fake offset to userspace so it can mmap it.
  1216. * The mmap call will end up in drm_gem_mmap(), which will set things
  1217. * up so we can get faults in the handler above.
  1218. *
  1219. * The fault handler will take care of binding the object into the GTT
  1220. * (since it may have been evicted to make room for something), allocating
  1221. * a fence register, and mapping the appropriate aperture address into
  1222. * userspace.
  1223. */
  1224. int
  1225. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1226. struct drm_file *file)
  1227. {
  1228. struct drm_i915_gem_mmap_gtt *args = data;
  1229. if (!(dev->driver->driver_features & DRIVER_GEM))
  1230. return -ENODEV;
  1231. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1232. }
  1233. static int
  1234. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1235. gfp_t gfpmask)
  1236. {
  1237. int page_count, i;
  1238. struct address_space *mapping;
  1239. struct inode *inode;
  1240. struct page *page;
  1241. /* Get the list of pages out of our struct file. They'll be pinned
  1242. * at this point until we release them.
  1243. */
  1244. page_count = obj->base.size / PAGE_SIZE;
  1245. BUG_ON(obj->pages != NULL);
  1246. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1247. if (obj->pages == NULL)
  1248. return -ENOMEM;
  1249. inode = obj->base.filp->f_path.dentry->d_inode;
  1250. mapping = inode->i_mapping;
  1251. gfpmask |= mapping_gfp_mask(mapping);
  1252. for (i = 0; i < page_count; i++) {
  1253. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1254. if (IS_ERR(page))
  1255. goto err_pages;
  1256. obj->pages[i] = page;
  1257. }
  1258. if (i915_gem_object_needs_bit17_swizzle(obj))
  1259. i915_gem_object_do_bit_17_swizzle(obj);
  1260. return 0;
  1261. err_pages:
  1262. while (i--)
  1263. page_cache_release(obj->pages[i]);
  1264. drm_free_large(obj->pages);
  1265. obj->pages = NULL;
  1266. return PTR_ERR(page);
  1267. }
  1268. static void
  1269. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1270. {
  1271. int page_count = obj->base.size / PAGE_SIZE;
  1272. int i;
  1273. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1274. if (i915_gem_object_needs_bit17_swizzle(obj))
  1275. i915_gem_object_save_bit_17_swizzle(obj);
  1276. if (obj->madv == I915_MADV_DONTNEED)
  1277. obj->dirty = 0;
  1278. for (i = 0; i < page_count; i++) {
  1279. if (obj->dirty)
  1280. set_page_dirty(obj->pages[i]);
  1281. if (obj->madv == I915_MADV_WILLNEED)
  1282. mark_page_accessed(obj->pages[i]);
  1283. page_cache_release(obj->pages[i]);
  1284. }
  1285. obj->dirty = 0;
  1286. drm_free_large(obj->pages);
  1287. obj->pages = NULL;
  1288. }
  1289. void
  1290. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1291. struct intel_ring_buffer *ring,
  1292. u32 seqno)
  1293. {
  1294. struct drm_device *dev = obj->base.dev;
  1295. struct drm_i915_private *dev_priv = dev->dev_private;
  1296. BUG_ON(ring == NULL);
  1297. obj->ring = ring;
  1298. /* Add a reference if we're newly entering the active list. */
  1299. if (!obj->active) {
  1300. drm_gem_object_reference(&obj->base);
  1301. obj->active = 1;
  1302. }
  1303. /* Move from whatever list we were on to the tail of execution. */
  1304. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1305. list_move_tail(&obj->ring_list, &ring->active_list);
  1306. obj->last_rendering_seqno = seqno;
  1307. if (obj->fenced_gpu_access) {
  1308. struct drm_i915_fence_reg *reg;
  1309. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1310. obj->last_fenced_seqno = seqno;
  1311. obj->last_fenced_ring = ring;
  1312. reg = &dev_priv->fence_regs[obj->fence_reg];
  1313. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1314. }
  1315. }
  1316. static void
  1317. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1318. {
  1319. list_del_init(&obj->ring_list);
  1320. obj->last_rendering_seqno = 0;
  1321. }
  1322. static void
  1323. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1324. {
  1325. struct drm_device *dev = obj->base.dev;
  1326. drm_i915_private_t *dev_priv = dev->dev_private;
  1327. BUG_ON(!obj->active);
  1328. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1329. i915_gem_object_move_off_active(obj);
  1330. }
  1331. static void
  1332. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1333. {
  1334. struct drm_device *dev = obj->base.dev;
  1335. struct drm_i915_private *dev_priv = dev->dev_private;
  1336. if (obj->pin_count != 0)
  1337. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1338. else
  1339. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1340. BUG_ON(!list_empty(&obj->gpu_write_list));
  1341. BUG_ON(!obj->active);
  1342. obj->ring = NULL;
  1343. i915_gem_object_move_off_active(obj);
  1344. obj->fenced_gpu_access = false;
  1345. obj->active = 0;
  1346. obj->pending_gpu_write = false;
  1347. drm_gem_object_unreference(&obj->base);
  1348. WARN_ON(i915_verify_lists(dev));
  1349. }
  1350. /* Immediately discard the backing storage */
  1351. static void
  1352. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1353. {
  1354. struct inode *inode;
  1355. /* Our goal here is to return as much of the memory as
  1356. * is possible back to the system as we are called from OOM.
  1357. * To do this we must instruct the shmfs to drop all of its
  1358. * backing pages, *now*.
  1359. */
  1360. inode = obj->base.filp->f_path.dentry->d_inode;
  1361. shmem_truncate_range(inode, 0, (loff_t)-1);
  1362. obj->madv = __I915_MADV_PURGED;
  1363. }
  1364. static inline int
  1365. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1366. {
  1367. return obj->madv == I915_MADV_DONTNEED;
  1368. }
  1369. static void
  1370. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1371. uint32_t flush_domains)
  1372. {
  1373. struct drm_i915_gem_object *obj, *next;
  1374. list_for_each_entry_safe(obj, next,
  1375. &ring->gpu_write_list,
  1376. gpu_write_list) {
  1377. if (obj->base.write_domain & flush_domains) {
  1378. uint32_t old_write_domain = obj->base.write_domain;
  1379. obj->base.write_domain = 0;
  1380. list_del_init(&obj->gpu_write_list);
  1381. i915_gem_object_move_to_active(obj, ring,
  1382. i915_gem_next_request_seqno(ring));
  1383. trace_i915_gem_object_change_domain(obj,
  1384. obj->base.read_domains,
  1385. old_write_domain);
  1386. }
  1387. }
  1388. }
  1389. int
  1390. i915_add_request(struct intel_ring_buffer *ring,
  1391. struct drm_file *file,
  1392. struct drm_i915_gem_request *request)
  1393. {
  1394. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1395. uint32_t seqno;
  1396. int was_empty;
  1397. int ret;
  1398. BUG_ON(request == NULL);
  1399. ret = ring->add_request(ring, &seqno);
  1400. if (ret)
  1401. return ret;
  1402. trace_i915_gem_request_add(ring, seqno);
  1403. request->seqno = seqno;
  1404. request->ring = ring;
  1405. request->emitted_jiffies = jiffies;
  1406. was_empty = list_empty(&ring->request_list);
  1407. list_add_tail(&request->list, &ring->request_list);
  1408. if (file) {
  1409. struct drm_i915_file_private *file_priv = file->driver_priv;
  1410. spin_lock(&file_priv->mm.lock);
  1411. request->file_priv = file_priv;
  1412. list_add_tail(&request->client_list,
  1413. &file_priv->mm.request_list);
  1414. spin_unlock(&file_priv->mm.lock);
  1415. }
  1416. ring->outstanding_lazy_request = false;
  1417. if (!dev_priv->mm.suspended) {
  1418. if (i915_enable_hangcheck) {
  1419. mod_timer(&dev_priv->hangcheck_timer,
  1420. jiffies +
  1421. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1422. }
  1423. if (was_empty)
  1424. queue_delayed_work(dev_priv->wq,
  1425. &dev_priv->mm.retire_work, HZ);
  1426. }
  1427. return 0;
  1428. }
  1429. static inline void
  1430. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1431. {
  1432. struct drm_i915_file_private *file_priv = request->file_priv;
  1433. if (!file_priv)
  1434. return;
  1435. spin_lock(&file_priv->mm.lock);
  1436. if (request->file_priv) {
  1437. list_del(&request->client_list);
  1438. request->file_priv = NULL;
  1439. }
  1440. spin_unlock(&file_priv->mm.lock);
  1441. }
  1442. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1443. struct intel_ring_buffer *ring)
  1444. {
  1445. while (!list_empty(&ring->request_list)) {
  1446. struct drm_i915_gem_request *request;
  1447. request = list_first_entry(&ring->request_list,
  1448. struct drm_i915_gem_request,
  1449. list);
  1450. list_del(&request->list);
  1451. i915_gem_request_remove_from_client(request);
  1452. kfree(request);
  1453. }
  1454. while (!list_empty(&ring->active_list)) {
  1455. struct drm_i915_gem_object *obj;
  1456. obj = list_first_entry(&ring->active_list,
  1457. struct drm_i915_gem_object,
  1458. ring_list);
  1459. obj->base.write_domain = 0;
  1460. list_del_init(&obj->gpu_write_list);
  1461. i915_gem_object_move_to_inactive(obj);
  1462. }
  1463. }
  1464. static void i915_gem_reset_fences(struct drm_device *dev)
  1465. {
  1466. struct drm_i915_private *dev_priv = dev->dev_private;
  1467. int i;
  1468. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1469. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1470. struct drm_i915_gem_object *obj = reg->obj;
  1471. if (!obj)
  1472. continue;
  1473. if (obj->tiling_mode)
  1474. i915_gem_release_mmap(obj);
  1475. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1476. reg->obj->fenced_gpu_access = false;
  1477. reg->obj->last_fenced_seqno = 0;
  1478. reg->obj->last_fenced_ring = NULL;
  1479. i915_gem_clear_fence_reg(dev, reg);
  1480. }
  1481. }
  1482. void i915_gem_reset(struct drm_device *dev)
  1483. {
  1484. struct drm_i915_private *dev_priv = dev->dev_private;
  1485. struct drm_i915_gem_object *obj;
  1486. int i;
  1487. for (i = 0; i < I915_NUM_RINGS; i++)
  1488. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1489. /* Remove anything from the flushing lists. The GPU cache is likely
  1490. * to be lost on reset along with the data, so simply move the
  1491. * lost bo to the inactive list.
  1492. */
  1493. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1494. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1495. struct drm_i915_gem_object,
  1496. mm_list);
  1497. obj->base.write_domain = 0;
  1498. list_del_init(&obj->gpu_write_list);
  1499. i915_gem_object_move_to_inactive(obj);
  1500. }
  1501. /* Move everything out of the GPU domains to ensure we do any
  1502. * necessary invalidation upon reuse.
  1503. */
  1504. list_for_each_entry(obj,
  1505. &dev_priv->mm.inactive_list,
  1506. mm_list)
  1507. {
  1508. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1509. }
  1510. /* The fence registers are invalidated so clear them out */
  1511. i915_gem_reset_fences(dev);
  1512. }
  1513. /**
  1514. * This function clears the request list as sequence numbers are passed.
  1515. */
  1516. static void
  1517. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1518. {
  1519. uint32_t seqno;
  1520. int i;
  1521. if (list_empty(&ring->request_list))
  1522. return;
  1523. WARN_ON(i915_verify_lists(ring->dev));
  1524. seqno = ring->get_seqno(ring);
  1525. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1526. if (seqno >= ring->sync_seqno[i])
  1527. ring->sync_seqno[i] = 0;
  1528. while (!list_empty(&ring->request_list)) {
  1529. struct drm_i915_gem_request *request;
  1530. request = list_first_entry(&ring->request_list,
  1531. struct drm_i915_gem_request,
  1532. list);
  1533. if (!i915_seqno_passed(seqno, request->seqno))
  1534. break;
  1535. trace_i915_gem_request_retire(ring, request->seqno);
  1536. list_del(&request->list);
  1537. i915_gem_request_remove_from_client(request);
  1538. kfree(request);
  1539. }
  1540. /* Move any buffers on the active list that are no longer referenced
  1541. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1542. */
  1543. while (!list_empty(&ring->active_list)) {
  1544. struct drm_i915_gem_object *obj;
  1545. obj = list_first_entry(&ring->active_list,
  1546. struct drm_i915_gem_object,
  1547. ring_list);
  1548. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1549. break;
  1550. if (obj->base.write_domain != 0)
  1551. i915_gem_object_move_to_flushing(obj);
  1552. else
  1553. i915_gem_object_move_to_inactive(obj);
  1554. }
  1555. if (unlikely(ring->trace_irq_seqno &&
  1556. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1557. ring->irq_put(ring);
  1558. ring->trace_irq_seqno = 0;
  1559. }
  1560. WARN_ON(i915_verify_lists(ring->dev));
  1561. }
  1562. void
  1563. i915_gem_retire_requests(struct drm_device *dev)
  1564. {
  1565. drm_i915_private_t *dev_priv = dev->dev_private;
  1566. int i;
  1567. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1568. struct drm_i915_gem_object *obj, *next;
  1569. /* We must be careful that during unbind() we do not
  1570. * accidentally infinitely recurse into retire requests.
  1571. * Currently:
  1572. * retire -> free -> unbind -> wait -> retire_ring
  1573. */
  1574. list_for_each_entry_safe(obj, next,
  1575. &dev_priv->mm.deferred_free_list,
  1576. mm_list)
  1577. i915_gem_free_object_tail(obj);
  1578. }
  1579. for (i = 0; i < I915_NUM_RINGS; i++)
  1580. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1581. }
  1582. static void
  1583. i915_gem_retire_work_handler(struct work_struct *work)
  1584. {
  1585. drm_i915_private_t *dev_priv;
  1586. struct drm_device *dev;
  1587. bool idle;
  1588. int i;
  1589. dev_priv = container_of(work, drm_i915_private_t,
  1590. mm.retire_work.work);
  1591. dev = dev_priv->dev;
  1592. /* Come back later if the device is busy... */
  1593. if (!mutex_trylock(&dev->struct_mutex)) {
  1594. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1595. return;
  1596. }
  1597. i915_gem_retire_requests(dev);
  1598. /* Send a periodic flush down the ring so we don't hold onto GEM
  1599. * objects indefinitely.
  1600. */
  1601. idle = true;
  1602. for (i = 0; i < I915_NUM_RINGS; i++) {
  1603. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1604. if (!list_empty(&ring->gpu_write_list)) {
  1605. struct drm_i915_gem_request *request;
  1606. int ret;
  1607. ret = i915_gem_flush_ring(ring,
  1608. 0, I915_GEM_GPU_DOMAINS);
  1609. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1610. if (ret || request == NULL ||
  1611. i915_add_request(ring, NULL, request))
  1612. kfree(request);
  1613. }
  1614. idle &= list_empty(&ring->request_list);
  1615. }
  1616. if (!dev_priv->mm.suspended && !idle)
  1617. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1618. mutex_unlock(&dev->struct_mutex);
  1619. }
  1620. /**
  1621. * Waits for a sequence number to be signaled, and cleans up the
  1622. * request and object lists appropriately for that event.
  1623. */
  1624. int
  1625. i915_wait_request(struct intel_ring_buffer *ring,
  1626. uint32_t seqno)
  1627. {
  1628. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1629. u32 ier;
  1630. int ret = 0;
  1631. BUG_ON(seqno == 0);
  1632. if (atomic_read(&dev_priv->mm.wedged)) {
  1633. struct completion *x = &dev_priv->error_completion;
  1634. bool recovery_complete;
  1635. unsigned long flags;
  1636. /* Give the error handler a chance to run. */
  1637. spin_lock_irqsave(&x->wait.lock, flags);
  1638. recovery_complete = x->done > 0;
  1639. spin_unlock_irqrestore(&x->wait.lock, flags);
  1640. return recovery_complete ? -EIO : -EAGAIN;
  1641. }
  1642. if (seqno == ring->outstanding_lazy_request) {
  1643. struct drm_i915_gem_request *request;
  1644. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1645. if (request == NULL)
  1646. return -ENOMEM;
  1647. ret = i915_add_request(ring, NULL, request);
  1648. if (ret) {
  1649. kfree(request);
  1650. return ret;
  1651. }
  1652. seqno = request->seqno;
  1653. }
  1654. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1655. if (HAS_PCH_SPLIT(ring->dev))
  1656. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1657. else
  1658. ier = I915_READ(IER);
  1659. if (!ier) {
  1660. DRM_ERROR("something (likely vbetool) disabled "
  1661. "interrupts, re-enabling\n");
  1662. ring->dev->driver->irq_preinstall(ring->dev);
  1663. ring->dev->driver->irq_postinstall(ring->dev);
  1664. }
  1665. trace_i915_gem_request_wait_begin(ring, seqno);
  1666. ring->waiting_seqno = seqno;
  1667. if (ring->irq_get(ring)) {
  1668. if (dev_priv->mm.interruptible)
  1669. ret = wait_event_interruptible(ring->irq_queue,
  1670. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1671. || atomic_read(&dev_priv->mm.wedged));
  1672. else
  1673. wait_event(ring->irq_queue,
  1674. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1675. || atomic_read(&dev_priv->mm.wedged));
  1676. ring->irq_put(ring);
  1677. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1678. seqno) ||
  1679. atomic_read(&dev_priv->mm.wedged), 3000))
  1680. ret = -EBUSY;
  1681. ring->waiting_seqno = 0;
  1682. trace_i915_gem_request_wait_end(ring, seqno);
  1683. }
  1684. if (atomic_read(&dev_priv->mm.wedged))
  1685. ret = -EAGAIN;
  1686. if (ret && ret != -ERESTARTSYS)
  1687. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1688. __func__, ret, seqno, ring->get_seqno(ring),
  1689. dev_priv->next_seqno);
  1690. /* Directly dispatch request retiring. While we have the work queue
  1691. * to handle this, the waiter on a request often wants an associated
  1692. * buffer to have made it to the inactive list, and we would need
  1693. * a separate wait queue to handle that.
  1694. *
  1695. * To avoid a recursion with the ilk VT-d workaround (that calls
  1696. * gpu_idle when unbinding objects with interruptible==false) don't
  1697. * retire requests in that case (because it might call unbind if the
  1698. * active list holds the last reference to the object).
  1699. */
  1700. if (ret == 0 && dev_priv->mm.interruptible)
  1701. i915_gem_retire_requests_ring(ring);
  1702. return ret;
  1703. }
  1704. /**
  1705. * Ensures that all rendering to the object has completed and the object is
  1706. * safe to unbind from the GTT or access from the CPU.
  1707. */
  1708. int
  1709. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1710. {
  1711. int ret;
  1712. /* This function only exists to support waiting for existing rendering,
  1713. * not for emitting required flushes.
  1714. */
  1715. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1716. /* If there is rendering queued on the buffer being evicted, wait for
  1717. * it.
  1718. */
  1719. if (obj->active) {
  1720. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1721. if (ret)
  1722. return ret;
  1723. }
  1724. return 0;
  1725. }
  1726. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1727. {
  1728. u32 old_write_domain, old_read_domains;
  1729. /* Act a barrier for all accesses through the GTT */
  1730. mb();
  1731. /* Force a pagefault for domain tracking on next user access */
  1732. i915_gem_release_mmap(obj);
  1733. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1734. return;
  1735. old_read_domains = obj->base.read_domains;
  1736. old_write_domain = obj->base.write_domain;
  1737. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1738. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1739. trace_i915_gem_object_change_domain(obj,
  1740. old_read_domains,
  1741. old_write_domain);
  1742. }
  1743. /**
  1744. * Unbinds an object from the GTT aperture.
  1745. */
  1746. int
  1747. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1748. {
  1749. int ret = 0;
  1750. if (obj->gtt_space == NULL)
  1751. return 0;
  1752. if (obj->pin_count != 0) {
  1753. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1754. return -EINVAL;
  1755. }
  1756. ret = i915_gem_object_finish_gpu(obj);
  1757. if (ret == -ERESTARTSYS)
  1758. return ret;
  1759. /* Continue on if we fail due to EIO, the GPU is hung so we
  1760. * should be safe and we need to cleanup or else we might
  1761. * cause memory corruption through use-after-free.
  1762. */
  1763. i915_gem_object_finish_gtt(obj);
  1764. /* Move the object to the CPU domain to ensure that
  1765. * any possible CPU writes while it's not in the GTT
  1766. * are flushed when we go to remap it.
  1767. */
  1768. if (ret == 0)
  1769. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1770. if (ret == -ERESTARTSYS)
  1771. return ret;
  1772. if (ret) {
  1773. /* In the event of a disaster, abandon all caches and
  1774. * hope for the best.
  1775. */
  1776. i915_gem_clflush_object(obj);
  1777. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1778. }
  1779. /* release the fence reg _after_ flushing */
  1780. ret = i915_gem_object_put_fence(obj);
  1781. if (ret == -ERESTARTSYS)
  1782. return ret;
  1783. trace_i915_gem_object_unbind(obj);
  1784. i915_gem_gtt_unbind_object(obj);
  1785. i915_gem_object_put_pages_gtt(obj);
  1786. list_del_init(&obj->gtt_list);
  1787. list_del_init(&obj->mm_list);
  1788. /* Avoid an unnecessary call to unbind on rebind. */
  1789. obj->map_and_fenceable = true;
  1790. drm_mm_put_block(obj->gtt_space);
  1791. obj->gtt_space = NULL;
  1792. obj->gtt_offset = 0;
  1793. if (i915_gem_object_is_purgeable(obj))
  1794. i915_gem_object_truncate(obj);
  1795. return ret;
  1796. }
  1797. int
  1798. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1799. uint32_t invalidate_domains,
  1800. uint32_t flush_domains)
  1801. {
  1802. int ret;
  1803. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1804. return 0;
  1805. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1806. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1807. if (ret)
  1808. return ret;
  1809. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1810. i915_gem_process_flushing_list(ring, flush_domains);
  1811. return 0;
  1812. }
  1813. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1814. {
  1815. int ret;
  1816. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1817. return 0;
  1818. if (!list_empty(&ring->gpu_write_list)) {
  1819. ret = i915_gem_flush_ring(ring,
  1820. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1821. if (ret)
  1822. return ret;
  1823. }
  1824. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1825. }
  1826. int
  1827. i915_gpu_idle(struct drm_device *dev)
  1828. {
  1829. drm_i915_private_t *dev_priv = dev->dev_private;
  1830. int ret, i;
  1831. /* Flush everything onto the inactive list. */
  1832. for (i = 0; i < I915_NUM_RINGS; i++) {
  1833. ret = i915_ring_idle(&dev_priv->ring[i]);
  1834. if (ret)
  1835. return ret;
  1836. }
  1837. return 0;
  1838. }
  1839. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1840. struct intel_ring_buffer *pipelined)
  1841. {
  1842. struct drm_device *dev = obj->base.dev;
  1843. drm_i915_private_t *dev_priv = dev->dev_private;
  1844. u32 size = obj->gtt_space->size;
  1845. int regnum = obj->fence_reg;
  1846. uint64_t val;
  1847. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1848. 0xfffff000) << 32;
  1849. val |= obj->gtt_offset & 0xfffff000;
  1850. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1851. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1852. if (obj->tiling_mode == I915_TILING_Y)
  1853. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1854. val |= I965_FENCE_REG_VALID;
  1855. if (pipelined) {
  1856. int ret = intel_ring_begin(pipelined, 6);
  1857. if (ret)
  1858. return ret;
  1859. intel_ring_emit(pipelined, MI_NOOP);
  1860. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1861. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1862. intel_ring_emit(pipelined, (u32)val);
  1863. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1864. intel_ring_emit(pipelined, (u32)(val >> 32));
  1865. intel_ring_advance(pipelined);
  1866. } else
  1867. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1868. return 0;
  1869. }
  1870. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1871. struct intel_ring_buffer *pipelined)
  1872. {
  1873. struct drm_device *dev = obj->base.dev;
  1874. drm_i915_private_t *dev_priv = dev->dev_private;
  1875. u32 size = obj->gtt_space->size;
  1876. int regnum = obj->fence_reg;
  1877. uint64_t val;
  1878. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1879. 0xfffff000) << 32;
  1880. val |= obj->gtt_offset & 0xfffff000;
  1881. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1882. if (obj->tiling_mode == I915_TILING_Y)
  1883. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1884. val |= I965_FENCE_REG_VALID;
  1885. if (pipelined) {
  1886. int ret = intel_ring_begin(pipelined, 6);
  1887. if (ret)
  1888. return ret;
  1889. intel_ring_emit(pipelined, MI_NOOP);
  1890. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1891. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1892. intel_ring_emit(pipelined, (u32)val);
  1893. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1894. intel_ring_emit(pipelined, (u32)(val >> 32));
  1895. intel_ring_advance(pipelined);
  1896. } else
  1897. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1898. return 0;
  1899. }
  1900. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1901. struct intel_ring_buffer *pipelined)
  1902. {
  1903. struct drm_device *dev = obj->base.dev;
  1904. drm_i915_private_t *dev_priv = dev->dev_private;
  1905. u32 size = obj->gtt_space->size;
  1906. u32 fence_reg, val, pitch_val;
  1907. int tile_width;
  1908. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1909. (size & -size) != size ||
  1910. (obj->gtt_offset & (size - 1)),
  1911. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1912. obj->gtt_offset, obj->map_and_fenceable, size))
  1913. return -EINVAL;
  1914. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1915. tile_width = 128;
  1916. else
  1917. tile_width = 512;
  1918. /* Note: pitch better be a power of two tile widths */
  1919. pitch_val = obj->stride / tile_width;
  1920. pitch_val = ffs(pitch_val) - 1;
  1921. val = obj->gtt_offset;
  1922. if (obj->tiling_mode == I915_TILING_Y)
  1923. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1924. val |= I915_FENCE_SIZE_BITS(size);
  1925. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1926. val |= I830_FENCE_REG_VALID;
  1927. fence_reg = obj->fence_reg;
  1928. if (fence_reg < 8)
  1929. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1930. else
  1931. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1932. if (pipelined) {
  1933. int ret = intel_ring_begin(pipelined, 4);
  1934. if (ret)
  1935. return ret;
  1936. intel_ring_emit(pipelined, MI_NOOP);
  1937. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1938. intel_ring_emit(pipelined, fence_reg);
  1939. intel_ring_emit(pipelined, val);
  1940. intel_ring_advance(pipelined);
  1941. } else
  1942. I915_WRITE(fence_reg, val);
  1943. return 0;
  1944. }
  1945. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1946. struct intel_ring_buffer *pipelined)
  1947. {
  1948. struct drm_device *dev = obj->base.dev;
  1949. drm_i915_private_t *dev_priv = dev->dev_private;
  1950. u32 size = obj->gtt_space->size;
  1951. int regnum = obj->fence_reg;
  1952. uint32_t val;
  1953. uint32_t pitch_val;
  1954. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1955. (size & -size) != size ||
  1956. (obj->gtt_offset & (size - 1)),
  1957. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1958. obj->gtt_offset, size))
  1959. return -EINVAL;
  1960. pitch_val = obj->stride / 128;
  1961. pitch_val = ffs(pitch_val) - 1;
  1962. val = obj->gtt_offset;
  1963. if (obj->tiling_mode == I915_TILING_Y)
  1964. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1965. val |= I830_FENCE_SIZE_BITS(size);
  1966. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1967. val |= I830_FENCE_REG_VALID;
  1968. if (pipelined) {
  1969. int ret = intel_ring_begin(pipelined, 4);
  1970. if (ret)
  1971. return ret;
  1972. intel_ring_emit(pipelined, MI_NOOP);
  1973. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1974. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1975. intel_ring_emit(pipelined, val);
  1976. intel_ring_advance(pipelined);
  1977. } else
  1978. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1979. return 0;
  1980. }
  1981. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1982. {
  1983. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1984. }
  1985. static int
  1986. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1987. struct intel_ring_buffer *pipelined)
  1988. {
  1989. int ret;
  1990. if (obj->fenced_gpu_access) {
  1991. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1992. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1993. 0, obj->base.write_domain);
  1994. if (ret)
  1995. return ret;
  1996. }
  1997. obj->fenced_gpu_access = false;
  1998. }
  1999. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2000. if (!ring_passed_seqno(obj->last_fenced_ring,
  2001. obj->last_fenced_seqno)) {
  2002. ret = i915_wait_request(obj->last_fenced_ring,
  2003. obj->last_fenced_seqno);
  2004. if (ret)
  2005. return ret;
  2006. }
  2007. obj->last_fenced_seqno = 0;
  2008. obj->last_fenced_ring = NULL;
  2009. }
  2010. /* Ensure that all CPU reads are completed before installing a fence
  2011. * and all writes before removing the fence.
  2012. */
  2013. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2014. mb();
  2015. return 0;
  2016. }
  2017. int
  2018. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2019. {
  2020. int ret;
  2021. if (obj->tiling_mode)
  2022. i915_gem_release_mmap(obj);
  2023. ret = i915_gem_object_flush_fence(obj, NULL);
  2024. if (ret)
  2025. return ret;
  2026. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2027. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2028. i915_gem_clear_fence_reg(obj->base.dev,
  2029. &dev_priv->fence_regs[obj->fence_reg]);
  2030. obj->fence_reg = I915_FENCE_REG_NONE;
  2031. }
  2032. return 0;
  2033. }
  2034. static struct drm_i915_fence_reg *
  2035. i915_find_fence_reg(struct drm_device *dev,
  2036. struct intel_ring_buffer *pipelined)
  2037. {
  2038. struct drm_i915_private *dev_priv = dev->dev_private;
  2039. struct drm_i915_fence_reg *reg, *first, *avail;
  2040. int i;
  2041. /* First try to find a free reg */
  2042. avail = NULL;
  2043. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2044. reg = &dev_priv->fence_regs[i];
  2045. if (!reg->obj)
  2046. return reg;
  2047. if (!reg->obj->pin_count)
  2048. avail = reg;
  2049. }
  2050. if (avail == NULL)
  2051. return NULL;
  2052. /* None available, try to steal one or wait for a user to finish */
  2053. avail = first = NULL;
  2054. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2055. if (reg->obj->pin_count)
  2056. continue;
  2057. if (first == NULL)
  2058. first = reg;
  2059. if (!pipelined ||
  2060. !reg->obj->last_fenced_ring ||
  2061. reg->obj->last_fenced_ring == pipelined) {
  2062. avail = reg;
  2063. break;
  2064. }
  2065. }
  2066. if (avail == NULL)
  2067. avail = first;
  2068. return avail;
  2069. }
  2070. /**
  2071. * i915_gem_object_get_fence - set up a fence reg for an object
  2072. * @obj: object to map through a fence reg
  2073. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2074. * @interruptible: must we wait uninterruptibly for the register to retire?
  2075. *
  2076. * When mapping objects through the GTT, userspace wants to be able to write
  2077. * to them without having to worry about swizzling if the object is tiled.
  2078. *
  2079. * This function walks the fence regs looking for a free one for @obj,
  2080. * stealing one if it can't find any.
  2081. *
  2082. * It then sets up the reg based on the object's properties: address, pitch
  2083. * and tiling format.
  2084. */
  2085. int
  2086. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2087. struct intel_ring_buffer *pipelined)
  2088. {
  2089. struct drm_device *dev = obj->base.dev;
  2090. struct drm_i915_private *dev_priv = dev->dev_private;
  2091. struct drm_i915_fence_reg *reg;
  2092. int ret;
  2093. /* XXX disable pipelining. There are bugs. Shocking. */
  2094. pipelined = NULL;
  2095. /* Just update our place in the LRU if our fence is getting reused. */
  2096. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2097. reg = &dev_priv->fence_regs[obj->fence_reg];
  2098. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2099. if (obj->tiling_changed) {
  2100. ret = i915_gem_object_flush_fence(obj, pipelined);
  2101. if (ret)
  2102. return ret;
  2103. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2104. pipelined = NULL;
  2105. if (pipelined) {
  2106. reg->setup_seqno =
  2107. i915_gem_next_request_seqno(pipelined);
  2108. obj->last_fenced_seqno = reg->setup_seqno;
  2109. obj->last_fenced_ring = pipelined;
  2110. }
  2111. goto update;
  2112. }
  2113. if (!pipelined) {
  2114. if (reg->setup_seqno) {
  2115. if (!ring_passed_seqno(obj->last_fenced_ring,
  2116. reg->setup_seqno)) {
  2117. ret = i915_wait_request(obj->last_fenced_ring,
  2118. reg->setup_seqno);
  2119. if (ret)
  2120. return ret;
  2121. }
  2122. reg->setup_seqno = 0;
  2123. }
  2124. } else if (obj->last_fenced_ring &&
  2125. obj->last_fenced_ring != pipelined) {
  2126. ret = i915_gem_object_flush_fence(obj, pipelined);
  2127. if (ret)
  2128. return ret;
  2129. }
  2130. return 0;
  2131. }
  2132. reg = i915_find_fence_reg(dev, pipelined);
  2133. if (reg == NULL)
  2134. return -ENOSPC;
  2135. ret = i915_gem_object_flush_fence(obj, pipelined);
  2136. if (ret)
  2137. return ret;
  2138. if (reg->obj) {
  2139. struct drm_i915_gem_object *old = reg->obj;
  2140. drm_gem_object_reference(&old->base);
  2141. if (old->tiling_mode)
  2142. i915_gem_release_mmap(old);
  2143. ret = i915_gem_object_flush_fence(old, pipelined);
  2144. if (ret) {
  2145. drm_gem_object_unreference(&old->base);
  2146. return ret;
  2147. }
  2148. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2149. pipelined = NULL;
  2150. old->fence_reg = I915_FENCE_REG_NONE;
  2151. old->last_fenced_ring = pipelined;
  2152. old->last_fenced_seqno =
  2153. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2154. drm_gem_object_unreference(&old->base);
  2155. } else if (obj->last_fenced_seqno == 0)
  2156. pipelined = NULL;
  2157. reg->obj = obj;
  2158. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2159. obj->fence_reg = reg - dev_priv->fence_regs;
  2160. obj->last_fenced_ring = pipelined;
  2161. reg->setup_seqno =
  2162. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2163. obj->last_fenced_seqno = reg->setup_seqno;
  2164. update:
  2165. obj->tiling_changed = false;
  2166. switch (INTEL_INFO(dev)->gen) {
  2167. case 7:
  2168. case 6:
  2169. ret = sandybridge_write_fence_reg(obj, pipelined);
  2170. break;
  2171. case 5:
  2172. case 4:
  2173. ret = i965_write_fence_reg(obj, pipelined);
  2174. break;
  2175. case 3:
  2176. ret = i915_write_fence_reg(obj, pipelined);
  2177. break;
  2178. case 2:
  2179. ret = i830_write_fence_reg(obj, pipelined);
  2180. break;
  2181. }
  2182. return ret;
  2183. }
  2184. /**
  2185. * i915_gem_clear_fence_reg - clear out fence register info
  2186. * @obj: object to clear
  2187. *
  2188. * Zeroes out the fence register itself and clears out the associated
  2189. * data structures in dev_priv and obj.
  2190. */
  2191. static void
  2192. i915_gem_clear_fence_reg(struct drm_device *dev,
  2193. struct drm_i915_fence_reg *reg)
  2194. {
  2195. drm_i915_private_t *dev_priv = dev->dev_private;
  2196. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2197. switch (INTEL_INFO(dev)->gen) {
  2198. case 7:
  2199. case 6:
  2200. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2201. break;
  2202. case 5:
  2203. case 4:
  2204. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2205. break;
  2206. case 3:
  2207. if (fence_reg >= 8)
  2208. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2209. else
  2210. case 2:
  2211. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2212. I915_WRITE(fence_reg, 0);
  2213. break;
  2214. }
  2215. list_del_init(&reg->lru_list);
  2216. reg->obj = NULL;
  2217. reg->setup_seqno = 0;
  2218. }
  2219. /**
  2220. * Finds free space in the GTT aperture and binds the object there.
  2221. */
  2222. static int
  2223. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2224. unsigned alignment,
  2225. bool map_and_fenceable)
  2226. {
  2227. struct drm_device *dev = obj->base.dev;
  2228. drm_i915_private_t *dev_priv = dev->dev_private;
  2229. struct drm_mm_node *free_space;
  2230. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2231. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2232. bool mappable, fenceable;
  2233. int ret;
  2234. if (obj->madv != I915_MADV_WILLNEED) {
  2235. DRM_ERROR("Attempting to bind a purgeable object\n");
  2236. return -EINVAL;
  2237. }
  2238. fence_size = i915_gem_get_gtt_size(dev,
  2239. obj->base.size,
  2240. obj->tiling_mode);
  2241. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2242. obj->base.size,
  2243. obj->tiling_mode);
  2244. unfenced_alignment =
  2245. i915_gem_get_unfenced_gtt_alignment(dev,
  2246. obj->base.size,
  2247. obj->tiling_mode);
  2248. if (alignment == 0)
  2249. alignment = map_and_fenceable ? fence_alignment :
  2250. unfenced_alignment;
  2251. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2252. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2253. return -EINVAL;
  2254. }
  2255. size = map_and_fenceable ? fence_size : obj->base.size;
  2256. /* If the object is bigger than the entire aperture, reject it early
  2257. * before evicting everything in a vain attempt to find space.
  2258. */
  2259. if (obj->base.size >
  2260. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2261. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2262. return -E2BIG;
  2263. }
  2264. search_free:
  2265. if (map_and_fenceable)
  2266. free_space =
  2267. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2268. size, alignment, 0,
  2269. dev_priv->mm.gtt_mappable_end,
  2270. 0);
  2271. else
  2272. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2273. size, alignment, 0);
  2274. if (free_space != NULL) {
  2275. if (map_and_fenceable)
  2276. obj->gtt_space =
  2277. drm_mm_get_block_range_generic(free_space,
  2278. size, alignment, 0,
  2279. dev_priv->mm.gtt_mappable_end,
  2280. 0);
  2281. else
  2282. obj->gtt_space =
  2283. drm_mm_get_block(free_space, size, alignment);
  2284. }
  2285. if (obj->gtt_space == NULL) {
  2286. /* If the gtt is empty and we're still having trouble
  2287. * fitting our object in, we're out of memory.
  2288. */
  2289. ret = i915_gem_evict_something(dev, size, alignment,
  2290. map_and_fenceable);
  2291. if (ret)
  2292. return ret;
  2293. goto search_free;
  2294. }
  2295. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2296. if (ret) {
  2297. drm_mm_put_block(obj->gtt_space);
  2298. obj->gtt_space = NULL;
  2299. if (ret == -ENOMEM) {
  2300. /* first try to reclaim some memory by clearing the GTT */
  2301. ret = i915_gem_evict_everything(dev, false);
  2302. if (ret) {
  2303. /* now try to shrink everyone else */
  2304. if (gfpmask) {
  2305. gfpmask = 0;
  2306. goto search_free;
  2307. }
  2308. return -ENOMEM;
  2309. }
  2310. goto search_free;
  2311. }
  2312. return ret;
  2313. }
  2314. ret = i915_gem_gtt_bind_object(obj);
  2315. if (ret) {
  2316. i915_gem_object_put_pages_gtt(obj);
  2317. drm_mm_put_block(obj->gtt_space);
  2318. obj->gtt_space = NULL;
  2319. if (i915_gem_evict_everything(dev, false))
  2320. return ret;
  2321. goto search_free;
  2322. }
  2323. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2324. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2325. /* Assert that the object is not currently in any GPU domain. As it
  2326. * wasn't in the GTT, there shouldn't be any way it could have been in
  2327. * a GPU cache
  2328. */
  2329. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2330. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2331. obj->gtt_offset = obj->gtt_space->start;
  2332. fenceable =
  2333. obj->gtt_space->size == fence_size &&
  2334. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2335. mappable =
  2336. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2337. obj->map_and_fenceable = mappable && fenceable;
  2338. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2339. return 0;
  2340. }
  2341. void
  2342. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2343. {
  2344. /* If we don't have a page list set up, then we're not pinned
  2345. * to GPU, and we can ignore the cache flush because it'll happen
  2346. * again at bind time.
  2347. */
  2348. if (obj->pages == NULL)
  2349. return;
  2350. /* If the GPU is snooping the contents of the CPU cache,
  2351. * we do not need to manually clear the CPU cache lines. However,
  2352. * the caches are only snooped when the render cache is
  2353. * flushed/invalidated. As we always have to emit invalidations
  2354. * and flushes when moving into and out of the RENDER domain, correct
  2355. * snooping behaviour occurs naturally as the result of our domain
  2356. * tracking.
  2357. */
  2358. if (obj->cache_level != I915_CACHE_NONE)
  2359. return;
  2360. trace_i915_gem_object_clflush(obj);
  2361. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2362. }
  2363. /** Flushes any GPU write domain for the object if it's dirty. */
  2364. static int
  2365. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2366. {
  2367. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2368. return 0;
  2369. /* Queue the GPU write cache flushing we need. */
  2370. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2371. }
  2372. /** Flushes the GTT write domain for the object if it's dirty. */
  2373. static void
  2374. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2375. {
  2376. uint32_t old_write_domain;
  2377. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2378. return;
  2379. /* No actual flushing is required for the GTT write domain. Writes
  2380. * to it immediately go to main memory as far as we know, so there's
  2381. * no chipset flush. It also doesn't land in render cache.
  2382. *
  2383. * However, we do have to enforce the order so that all writes through
  2384. * the GTT land before any writes to the device, such as updates to
  2385. * the GATT itself.
  2386. */
  2387. wmb();
  2388. old_write_domain = obj->base.write_domain;
  2389. obj->base.write_domain = 0;
  2390. trace_i915_gem_object_change_domain(obj,
  2391. obj->base.read_domains,
  2392. old_write_domain);
  2393. }
  2394. /** Flushes the CPU write domain for the object if it's dirty. */
  2395. static void
  2396. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2397. {
  2398. uint32_t old_write_domain;
  2399. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2400. return;
  2401. i915_gem_clflush_object(obj);
  2402. intel_gtt_chipset_flush();
  2403. old_write_domain = obj->base.write_domain;
  2404. obj->base.write_domain = 0;
  2405. trace_i915_gem_object_change_domain(obj,
  2406. obj->base.read_domains,
  2407. old_write_domain);
  2408. }
  2409. /**
  2410. * Moves a single object to the GTT read, and possibly write domain.
  2411. *
  2412. * This function returns when the move is complete, including waiting on
  2413. * flushes to occur.
  2414. */
  2415. int
  2416. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2417. {
  2418. uint32_t old_write_domain, old_read_domains;
  2419. int ret;
  2420. /* Not valid to be called on unbound objects. */
  2421. if (obj->gtt_space == NULL)
  2422. return -EINVAL;
  2423. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2424. return 0;
  2425. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2426. if (ret)
  2427. return ret;
  2428. if (obj->pending_gpu_write || write) {
  2429. ret = i915_gem_object_wait_rendering(obj);
  2430. if (ret)
  2431. return ret;
  2432. }
  2433. i915_gem_object_flush_cpu_write_domain(obj);
  2434. old_write_domain = obj->base.write_domain;
  2435. old_read_domains = obj->base.read_domains;
  2436. /* It should now be out of any other write domains, and we can update
  2437. * the domain values for our changes.
  2438. */
  2439. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2440. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2441. if (write) {
  2442. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2443. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2444. obj->dirty = 1;
  2445. }
  2446. trace_i915_gem_object_change_domain(obj,
  2447. old_read_domains,
  2448. old_write_domain);
  2449. return 0;
  2450. }
  2451. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2452. enum i915_cache_level cache_level)
  2453. {
  2454. int ret;
  2455. if (obj->cache_level == cache_level)
  2456. return 0;
  2457. if (obj->pin_count) {
  2458. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2459. return -EBUSY;
  2460. }
  2461. if (obj->gtt_space) {
  2462. ret = i915_gem_object_finish_gpu(obj);
  2463. if (ret)
  2464. return ret;
  2465. i915_gem_object_finish_gtt(obj);
  2466. /* Before SandyBridge, you could not use tiling or fence
  2467. * registers with snooped memory, so relinquish any fences
  2468. * currently pointing to our region in the aperture.
  2469. */
  2470. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2471. ret = i915_gem_object_put_fence(obj);
  2472. if (ret)
  2473. return ret;
  2474. }
  2475. i915_gem_gtt_rebind_object(obj, cache_level);
  2476. }
  2477. if (cache_level == I915_CACHE_NONE) {
  2478. u32 old_read_domains, old_write_domain;
  2479. /* If we're coming from LLC cached, then we haven't
  2480. * actually been tracking whether the data is in the
  2481. * CPU cache or not, since we only allow one bit set
  2482. * in obj->write_domain and have been skipping the clflushes.
  2483. * Just set it to the CPU cache for now.
  2484. */
  2485. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2486. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2487. old_read_domains = obj->base.read_domains;
  2488. old_write_domain = obj->base.write_domain;
  2489. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2490. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2491. trace_i915_gem_object_change_domain(obj,
  2492. old_read_domains,
  2493. old_write_domain);
  2494. }
  2495. obj->cache_level = cache_level;
  2496. return 0;
  2497. }
  2498. /*
  2499. * Prepare buffer for display plane (scanout, cursors, etc).
  2500. * Can be called from an uninterruptible phase (modesetting) and allows
  2501. * any flushes to be pipelined (for pageflips).
  2502. *
  2503. * For the display plane, we want to be in the GTT but out of any write
  2504. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2505. * ability to pipeline the waits, pinning and any additional subtleties
  2506. * that may differentiate the display plane from ordinary buffers.
  2507. */
  2508. int
  2509. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2510. u32 alignment,
  2511. struct intel_ring_buffer *pipelined)
  2512. {
  2513. u32 old_read_domains, old_write_domain;
  2514. int ret;
  2515. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2516. if (ret)
  2517. return ret;
  2518. if (pipelined != obj->ring) {
  2519. ret = i915_gem_object_wait_rendering(obj);
  2520. if (ret == -ERESTARTSYS)
  2521. return ret;
  2522. }
  2523. /* The display engine is not coherent with the LLC cache on gen6. As
  2524. * a result, we make sure that the pinning that is about to occur is
  2525. * done with uncached PTEs. This is lowest common denominator for all
  2526. * chipsets.
  2527. *
  2528. * However for gen6+, we could do better by using the GFDT bit instead
  2529. * of uncaching, which would allow us to flush all the LLC-cached data
  2530. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2531. */
  2532. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2533. if (ret)
  2534. return ret;
  2535. /* As the user may map the buffer once pinned in the display plane
  2536. * (e.g. libkms for the bootup splash), we have to ensure that we
  2537. * always use map_and_fenceable for all scanout buffers.
  2538. */
  2539. ret = i915_gem_object_pin(obj, alignment, true);
  2540. if (ret)
  2541. return ret;
  2542. i915_gem_object_flush_cpu_write_domain(obj);
  2543. old_write_domain = obj->base.write_domain;
  2544. old_read_domains = obj->base.read_domains;
  2545. /* It should now be out of any other write domains, and we can update
  2546. * the domain values for our changes.
  2547. */
  2548. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2549. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2550. trace_i915_gem_object_change_domain(obj,
  2551. old_read_domains,
  2552. old_write_domain);
  2553. return 0;
  2554. }
  2555. int
  2556. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2557. {
  2558. int ret;
  2559. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2560. return 0;
  2561. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2562. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2563. if (ret)
  2564. return ret;
  2565. }
  2566. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2567. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2568. return i915_gem_object_wait_rendering(obj);
  2569. }
  2570. /**
  2571. * Moves a single object to the CPU read, and possibly write domain.
  2572. *
  2573. * This function returns when the move is complete, including waiting on
  2574. * flushes to occur.
  2575. */
  2576. static int
  2577. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2578. {
  2579. uint32_t old_write_domain, old_read_domains;
  2580. int ret;
  2581. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2582. return 0;
  2583. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2584. if (ret)
  2585. return ret;
  2586. ret = i915_gem_object_wait_rendering(obj);
  2587. if (ret)
  2588. return ret;
  2589. i915_gem_object_flush_gtt_write_domain(obj);
  2590. /* If we have a partially-valid cache of the object in the CPU,
  2591. * finish invalidating it and free the per-page flags.
  2592. */
  2593. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2594. old_write_domain = obj->base.write_domain;
  2595. old_read_domains = obj->base.read_domains;
  2596. /* Flush the CPU cache if it's still invalid. */
  2597. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2598. i915_gem_clflush_object(obj);
  2599. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2600. }
  2601. /* It should now be out of any other write domains, and we can update
  2602. * the domain values for our changes.
  2603. */
  2604. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2605. /* If we're writing through the CPU, then the GPU read domains will
  2606. * need to be invalidated at next use.
  2607. */
  2608. if (write) {
  2609. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2610. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2611. }
  2612. trace_i915_gem_object_change_domain(obj,
  2613. old_read_domains,
  2614. old_write_domain);
  2615. return 0;
  2616. }
  2617. /**
  2618. * Moves the object from a partially CPU read to a full one.
  2619. *
  2620. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2621. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2622. */
  2623. static void
  2624. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2625. {
  2626. if (!obj->page_cpu_valid)
  2627. return;
  2628. /* If we're partially in the CPU read domain, finish moving it in.
  2629. */
  2630. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2631. int i;
  2632. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2633. if (obj->page_cpu_valid[i])
  2634. continue;
  2635. drm_clflush_pages(obj->pages + i, 1);
  2636. }
  2637. }
  2638. /* Free the page_cpu_valid mappings which are now stale, whether
  2639. * or not we've got I915_GEM_DOMAIN_CPU.
  2640. */
  2641. kfree(obj->page_cpu_valid);
  2642. obj->page_cpu_valid = NULL;
  2643. }
  2644. /**
  2645. * Set the CPU read domain on a range of the object.
  2646. *
  2647. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2648. * not entirely valid. The page_cpu_valid member of the object flags which
  2649. * pages have been flushed, and will be respected by
  2650. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2651. * of the whole object.
  2652. *
  2653. * This function returns when the move is complete, including waiting on
  2654. * flushes to occur.
  2655. */
  2656. static int
  2657. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2658. uint64_t offset, uint64_t size)
  2659. {
  2660. uint32_t old_read_domains;
  2661. int i, ret;
  2662. if (offset == 0 && size == obj->base.size)
  2663. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2664. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2665. if (ret)
  2666. return ret;
  2667. ret = i915_gem_object_wait_rendering(obj);
  2668. if (ret)
  2669. return ret;
  2670. i915_gem_object_flush_gtt_write_domain(obj);
  2671. /* If we're already fully in the CPU read domain, we're done. */
  2672. if (obj->page_cpu_valid == NULL &&
  2673. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2674. return 0;
  2675. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2676. * newly adding I915_GEM_DOMAIN_CPU
  2677. */
  2678. if (obj->page_cpu_valid == NULL) {
  2679. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2680. GFP_KERNEL);
  2681. if (obj->page_cpu_valid == NULL)
  2682. return -ENOMEM;
  2683. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2684. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2685. /* Flush the cache on any pages that are still invalid from the CPU's
  2686. * perspective.
  2687. */
  2688. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2689. i++) {
  2690. if (obj->page_cpu_valid[i])
  2691. continue;
  2692. drm_clflush_pages(obj->pages + i, 1);
  2693. obj->page_cpu_valid[i] = 1;
  2694. }
  2695. /* It should now be out of any other write domains, and we can update
  2696. * the domain values for our changes.
  2697. */
  2698. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2699. old_read_domains = obj->base.read_domains;
  2700. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2701. trace_i915_gem_object_change_domain(obj,
  2702. old_read_domains,
  2703. obj->base.write_domain);
  2704. return 0;
  2705. }
  2706. /* Throttle our rendering by waiting until the ring has completed our requests
  2707. * emitted over 20 msec ago.
  2708. *
  2709. * Note that if we were to use the current jiffies each time around the loop,
  2710. * we wouldn't escape the function with any frames outstanding if the time to
  2711. * render a frame was over 20ms.
  2712. *
  2713. * This should get us reasonable parallelism between CPU and GPU but also
  2714. * relatively low latency when blocking on a particular request to finish.
  2715. */
  2716. static int
  2717. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2718. {
  2719. struct drm_i915_private *dev_priv = dev->dev_private;
  2720. struct drm_i915_file_private *file_priv = file->driver_priv;
  2721. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2722. struct drm_i915_gem_request *request;
  2723. struct intel_ring_buffer *ring = NULL;
  2724. u32 seqno = 0;
  2725. int ret;
  2726. if (atomic_read(&dev_priv->mm.wedged))
  2727. return -EIO;
  2728. spin_lock(&file_priv->mm.lock);
  2729. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2730. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2731. break;
  2732. ring = request->ring;
  2733. seqno = request->seqno;
  2734. }
  2735. spin_unlock(&file_priv->mm.lock);
  2736. if (seqno == 0)
  2737. return 0;
  2738. ret = 0;
  2739. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2740. /* And wait for the seqno passing without holding any locks and
  2741. * causing extra latency for others. This is safe as the irq
  2742. * generation is designed to be run atomically and so is
  2743. * lockless.
  2744. */
  2745. if (ring->irq_get(ring)) {
  2746. ret = wait_event_interruptible(ring->irq_queue,
  2747. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2748. || atomic_read(&dev_priv->mm.wedged));
  2749. ring->irq_put(ring);
  2750. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2751. ret = -EIO;
  2752. }
  2753. }
  2754. if (ret == 0)
  2755. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2756. return ret;
  2757. }
  2758. int
  2759. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2760. uint32_t alignment,
  2761. bool map_and_fenceable)
  2762. {
  2763. struct drm_device *dev = obj->base.dev;
  2764. struct drm_i915_private *dev_priv = dev->dev_private;
  2765. int ret;
  2766. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2767. WARN_ON(i915_verify_lists(dev));
  2768. if (obj->gtt_space != NULL) {
  2769. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2770. (map_and_fenceable && !obj->map_and_fenceable)) {
  2771. WARN(obj->pin_count,
  2772. "bo is already pinned with incorrect alignment:"
  2773. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2774. " obj->map_and_fenceable=%d\n",
  2775. obj->gtt_offset, alignment,
  2776. map_and_fenceable,
  2777. obj->map_and_fenceable);
  2778. ret = i915_gem_object_unbind(obj);
  2779. if (ret)
  2780. return ret;
  2781. }
  2782. }
  2783. if (obj->gtt_space == NULL) {
  2784. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2785. map_and_fenceable);
  2786. if (ret)
  2787. return ret;
  2788. }
  2789. if (obj->pin_count++ == 0) {
  2790. if (!obj->active)
  2791. list_move_tail(&obj->mm_list,
  2792. &dev_priv->mm.pinned_list);
  2793. }
  2794. obj->pin_mappable |= map_and_fenceable;
  2795. WARN_ON(i915_verify_lists(dev));
  2796. return 0;
  2797. }
  2798. void
  2799. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2800. {
  2801. struct drm_device *dev = obj->base.dev;
  2802. drm_i915_private_t *dev_priv = dev->dev_private;
  2803. WARN_ON(i915_verify_lists(dev));
  2804. BUG_ON(obj->pin_count == 0);
  2805. BUG_ON(obj->gtt_space == NULL);
  2806. if (--obj->pin_count == 0) {
  2807. if (!obj->active)
  2808. list_move_tail(&obj->mm_list,
  2809. &dev_priv->mm.inactive_list);
  2810. obj->pin_mappable = false;
  2811. }
  2812. WARN_ON(i915_verify_lists(dev));
  2813. }
  2814. int
  2815. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2816. struct drm_file *file)
  2817. {
  2818. struct drm_i915_gem_pin *args = data;
  2819. struct drm_i915_gem_object *obj;
  2820. int ret;
  2821. ret = i915_mutex_lock_interruptible(dev);
  2822. if (ret)
  2823. return ret;
  2824. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2825. if (&obj->base == NULL) {
  2826. ret = -ENOENT;
  2827. goto unlock;
  2828. }
  2829. if (obj->madv != I915_MADV_WILLNEED) {
  2830. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2831. ret = -EINVAL;
  2832. goto out;
  2833. }
  2834. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2835. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2836. args->handle);
  2837. ret = -EINVAL;
  2838. goto out;
  2839. }
  2840. obj->user_pin_count++;
  2841. obj->pin_filp = file;
  2842. if (obj->user_pin_count == 1) {
  2843. ret = i915_gem_object_pin(obj, args->alignment, true);
  2844. if (ret)
  2845. goto out;
  2846. }
  2847. /* XXX - flush the CPU caches for pinned objects
  2848. * as the X server doesn't manage domains yet
  2849. */
  2850. i915_gem_object_flush_cpu_write_domain(obj);
  2851. args->offset = obj->gtt_offset;
  2852. out:
  2853. drm_gem_object_unreference(&obj->base);
  2854. unlock:
  2855. mutex_unlock(&dev->struct_mutex);
  2856. return ret;
  2857. }
  2858. int
  2859. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2860. struct drm_file *file)
  2861. {
  2862. struct drm_i915_gem_pin *args = data;
  2863. struct drm_i915_gem_object *obj;
  2864. int ret;
  2865. ret = i915_mutex_lock_interruptible(dev);
  2866. if (ret)
  2867. return ret;
  2868. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2869. if (&obj->base == NULL) {
  2870. ret = -ENOENT;
  2871. goto unlock;
  2872. }
  2873. if (obj->pin_filp != file) {
  2874. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2875. args->handle);
  2876. ret = -EINVAL;
  2877. goto out;
  2878. }
  2879. obj->user_pin_count--;
  2880. if (obj->user_pin_count == 0) {
  2881. obj->pin_filp = NULL;
  2882. i915_gem_object_unpin(obj);
  2883. }
  2884. out:
  2885. drm_gem_object_unreference(&obj->base);
  2886. unlock:
  2887. mutex_unlock(&dev->struct_mutex);
  2888. return ret;
  2889. }
  2890. int
  2891. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2892. struct drm_file *file)
  2893. {
  2894. struct drm_i915_gem_busy *args = data;
  2895. struct drm_i915_gem_object *obj;
  2896. int ret;
  2897. ret = i915_mutex_lock_interruptible(dev);
  2898. if (ret)
  2899. return ret;
  2900. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2901. if (&obj->base == NULL) {
  2902. ret = -ENOENT;
  2903. goto unlock;
  2904. }
  2905. /* Count all active objects as busy, even if they are currently not used
  2906. * by the gpu. Users of this interface expect objects to eventually
  2907. * become non-busy without any further actions, therefore emit any
  2908. * necessary flushes here.
  2909. */
  2910. args->busy = obj->active;
  2911. if (args->busy) {
  2912. /* Unconditionally flush objects, even when the gpu still uses this
  2913. * object. Userspace calling this function indicates that it wants to
  2914. * use this buffer rather sooner than later, so issuing the required
  2915. * flush earlier is beneficial.
  2916. */
  2917. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2918. ret = i915_gem_flush_ring(obj->ring,
  2919. 0, obj->base.write_domain);
  2920. } else if (obj->ring->outstanding_lazy_request ==
  2921. obj->last_rendering_seqno) {
  2922. struct drm_i915_gem_request *request;
  2923. /* This ring is not being cleared by active usage,
  2924. * so emit a request to do so.
  2925. */
  2926. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2927. if (request) {
  2928. ret = i915_add_request(obj->ring, NULL, request);
  2929. if (ret)
  2930. kfree(request);
  2931. } else
  2932. ret = -ENOMEM;
  2933. }
  2934. /* Update the active list for the hardware's current position.
  2935. * Otherwise this only updates on a delayed timer or when irqs
  2936. * are actually unmasked, and our working set ends up being
  2937. * larger than required.
  2938. */
  2939. i915_gem_retire_requests_ring(obj->ring);
  2940. args->busy = obj->active;
  2941. }
  2942. drm_gem_object_unreference(&obj->base);
  2943. unlock:
  2944. mutex_unlock(&dev->struct_mutex);
  2945. return ret;
  2946. }
  2947. int
  2948. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2949. struct drm_file *file_priv)
  2950. {
  2951. return i915_gem_ring_throttle(dev, file_priv);
  2952. }
  2953. int
  2954. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2955. struct drm_file *file_priv)
  2956. {
  2957. struct drm_i915_gem_madvise *args = data;
  2958. struct drm_i915_gem_object *obj;
  2959. int ret;
  2960. switch (args->madv) {
  2961. case I915_MADV_DONTNEED:
  2962. case I915_MADV_WILLNEED:
  2963. break;
  2964. default:
  2965. return -EINVAL;
  2966. }
  2967. ret = i915_mutex_lock_interruptible(dev);
  2968. if (ret)
  2969. return ret;
  2970. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2971. if (&obj->base == NULL) {
  2972. ret = -ENOENT;
  2973. goto unlock;
  2974. }
  2975. if (obj->pin_count) {
  2976. ret = -EINVAL;
  2977. goto out;
  2978. }
  2979. if (obj->madv != __I915_MADV_PURGED)
  2980. obj->madv = args->madv;
  2981. /* if the object is no longer bound, discard its backing storage */
  2982. if (i915_gem_object_is_purgeable(obj) &&
  2983. obj->gtt_space == NULL)
  2984. i915_gem_object_truncate(obj);
  2985. args->retained = obj->madv != __I915_MADV_PURGED;
  2986. out:
  2987. drm_gem_object_unreference(&obj->base);
  2988. unlock:
  2989. mutex_unlock(&dev->struct_mutex);
  2990. return ret;
  2991. }
  2992. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2993. size_t size)
  2994. {
  2995. struct drm_i915_private *dev_priv = dev->dev_private;
  2996. struct drm_i915_gem_object *obj;
  2997. struct address_space *mapping;
  2998. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2999. if (obj == NULL)
  3000. return NULL;
  3001. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3002. kfree(obj);
  3003. return NULL;
  3004. }
  3005. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3006. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3007. i915_gem_info_add_obj(dev_priv, size);
  3008. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3009. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3010. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  3011. /* On Gen6, we can have the GPU use the LLC (the CPU
  3012. * cache) for about a 10% performance improvement
  3013. * compared to uncached. Graphics requests other than
  3014. * display scanout are coherent with the CPU in
  3015. * accessing this cache. This means in this mode we
  3016. * don't need to clflush on the CPU side, and on the
  3017. * GPU side we only need to flush internal caches to
  3018. * get data visible to the CPU.
  3019. *
  3020. * However, we maintain the display planes as UC, and so
  3021. * need to rebind when first used as such.
  3022. */
  3023. obj->cache_level = I915_CACHE_LLC;
  3024. } else
  3025. obj->cache_level = I915_CACHE_NONE;
  3026. obj->base.driver_private = NULL;
  3027. obj->fence_reg = I915_FENCE_REG_NONE;
  3028. INIT_LIST_HEAD(&obj->mm_list);
  3029. INIT_LIST_HEAD(&obj->gtt_list);
  3030. INIT_LIST_HEAD(&obj->ring_list);
  3031. INIT_LIST_HEAD(&obj->exec_list);
  3032. INIT_LIST_HEAD(&obj->gpu_write_list);
  3033. obj->madv = I915_MADV_WILLNEED;
  3034. /* Avoid an unnecessary call to unbind on the first bind. */
  3035. obj->map_and_fenceable = true;
  3036. return obj;
  3037. }
  3038. int i915_gem_init_object(struct drm_gem_object *obj)
  3039. {
  3040. BUG();
  3041. return 0;
  3042. }
  3043. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  3044. {
  3045. struct drm_device *dev = obj->base.dev;
  3046. drm_i915_private_t *dev_priv = dev->dev_private;
  3047. int ret;
  3048. ret = i915_gem_object_unbind(obj);
  3049. if (ret == -ERESTARTSYS) {
  3050. list_move(&obj->mm_list,
  3051. &dev_priv->mm.deferred_free_list);
  3052. return;
  3053. }
  3054. trace_i915_gem_object_destroy(obj);
  3055. if (obj->base.map_list.map)
  3056. drm_gem_free_mmap_offset(&obj->base);
  3057. drm_gem_object_release(&obj->base);
  3058. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3059. kfree(obj->page_cpu_valid);
  3060. kfree(obj->bit_17);
  3061. kfree(obj);
  3062. }
  3063. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3064. {
  3065. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3066. struct drm_device *dev = obj->base.dev;
  3067. while (obj->pin_count > 0)
  3068. i915_gem_object_unpin(obj);
  3069. if (obj->phys_obj)
  3070. i915_gem_detach_phys_object(dev, obj);
  3071. i915_gem_free_object_tail(obj);
  3072. }
  3073. int
  3074. i915_gem_idle(struct drm_device *dev)
  3075. {
  3076. drm_i915_private_t *dev_priv = dev->dev_private;
  3077. int ret;
  3078. mutex_lock(&dev->struct_mutex);
  3079. if (dev_priv->mm.suspended) {
  3080. mutex_unlock(&dev->struct_mutex);
  3081. return 0;
  3082. }
  3083. ret = i915_gpu_idle(dev);
  3084. if (ret) {
  3085. mutex_unlock(&dev->struct_mutex);
  3086. return ret;
  3087. }
  3088. /* Under UMS, be paranoid and evict. */
  3089. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3090. ret = i915_gem_evict_inactive(dev, false);
  3091. if (ret) {
  3092. mutex_unlock(&dev->struct_mutex);
  3093. return ret;
  3094. }
  3095. }
  3096. i915_gem_reset_fences(dev);
  3097. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3098. * We need to replace this with a semaphore, or something.
  3099. * And not confound mm.suspended!
  3100. */
  3101. dev_priv->mm.suspended = 1;
  3102. del_timer_sync(&dev_priv->hangcheck_timer);
  3103. i915_kernel_lost_context(dev);
  3104. i915_gem_cleanup_ringbuffer(dev);
  3105. mutex_unlock(&dev->struct_mutex);
  3106. /* Cancel the retire work handler, which should be idle now. */
  3107. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3108. return 0;
  3109. }
  3110. int
  3111. i915_gem_init_ringbuffer(struct drm_device *dev)
  3112. {
  3113. drm_i915_private_t *dev_priv = dev->dev_private;
  3114. int ret;
  3115. ret = intel_init_render_ring_buffer(dev);
  3116. if (ret)
  3117. return ret;
  3118. if (HAS_BSD(dev)) {
  3119. ret = intel_init_bsd_ring_buffer(dev);
  3120. if (ret)
  3121. goto cleanup_render_ring;
  3122. }
  3123. if (HAS_BLT(dev)) {
  3124. ret = intel_init_blt_ring_buffer(dev);
  3125. if (ret)
  3126. goto cleanup_bsd_ring;
  3127. }
  3128. dev_priv->next_seqno = 1;
  3129. return 0;
  3130. cleanup_bsd_ring:
  3131. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3132. cleanup_render_ring:
  3133. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3134. return ret;
  3135. }
  3136. void
  3137. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3138. {
  3139. drm_i915_private_t *dev_priv = dev->dev_private;
  3140. int i;
  3141. for (i = 0; i < I915_NUM_RINGS; i++)
  3142. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3143. }
  3144. int
  3145. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3146. struct drm_file *file_priv)
  3147. {
  3148. drm_i915_private_t *dev_priv = dev->dev_private;
  3149. int ret, i;
  3150. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3151. return 0;
  3152. if (atomic_read(&dev_priv->mm.wedged)) {
  3153. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3154. atomic_set(&dev_priv->mm.wedged, 0);
  3155. }
  3156. mutex_lock(&dev->struct_mutex);
  3157. dev_priv->mm.suspended = 0;
  3158. ret = i915_gem_init_ringbuffer(dev);
  3159. if (ret != 0) {
  3160. mutex_unlock(&dev->struct_mutex);
  3161. return ret;
  3162. }
  3163. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3164. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3165. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3166. for (i = 0; i < I915_NUM_RINGS; i++) {
  3167. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3168. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3169. }
  3170. mutex_unlock(&dev->struct_mutex);
  3171. ret = drm_irq_install(dev);
  3172. if (ret)
  3173. goto cleanup_ringbuffer;
  3174. return 0;
  3175. cleanup_ringbuffer:
  3176. mutex_lock(&dev->struct_mutex);
  3177. i915_gem_cleanup_ringbuffer(dev);
  3178. dev_priv->mm.suspended = 1;
  3179. mutex_unlock(&dev->struct_mutex);
  3180. return ret;
  3181. }
  3182. int
  3183. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3184. struct drm_file *file_priv)
  3185. {
  3186. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3187. return 0;
  3188. drm_irq_uninstall(dev);
  3189. return i915_gem_idle(dev);
  3190. }
  3191. void
  3192. i915_gem_lastclose(struct drm_device *dev)
  3193. {
  3194. int ret;
  3195. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3196. return;
  3197. ret = i915_gem_idle(dev);
  3198. if (ret)
  3199. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3200. }
  3201. static void
  3202. init_ring_lists(struct intel_ring_buffer *ring)
  3203. {
  3204. INIT_LIST_HEAD(&ring->active_list);
  3205. INIT_LIST_HEAD(&ring->request_list);
  3206. INIT_LIST_HEAD(&ring->gpu_write_list);
  3207. }
  3208. void
  3209. i915_gem_load(struct drm_device *dev)
  3210. {
  3211. int i;
  3212. drm_i915_private_t *dev_priv = dev->dev_private;
  3213. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3214. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3215. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3216. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3217. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3218. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3219. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3220. for (i = 0; i < I915_NUM_RINGS; i++)
  3221. init_ring_lists(&dev_priv->ring[i]);
  3222. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3223. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3224. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3225. i915_gem_retire_work_handler);
  3226. init_completion(&dev_priv->error_completion);
  3227. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3228. if (IS_GEN3(dev)) {
  3229. u32 tmp = I915_READ(MI_ARB_STATE);
  3230. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3231. /* arb state is a masked write, so set bit + bit in mask */
  3232. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3233. I915_WRITE(MI_ARB_STATE, tmp);
  3234. }
  3235. }
  3236. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3237. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3238. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3239. dev_priv->fence_reg_start = 3;
  3240. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3241. dev_priv->num_fence_regs = 16;
  3242. else
  3243. dev_priv->num_fence_regs = 8;
  3244. /* Initialize fence registers to zero */
  3245. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3246. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3247. }
  3248. i915_gem_detect_bit_6_swizzle(dev);
  3249. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3250. dev_priv->mm.interruptible = true;
  3251. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3252. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3253. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3254. }
  3255. /*
  3256. * Create a physically contiguous memory object for this object
  3257. * e.g. for cursor + overlay regs
  3258. */
  3259. static int i915_gem_init_phys_object(struct drm_device *dev,
  3260. int id, int size, int align)
  3261. {
  3262. drm_i915_private_t *dev_priv = dev->dev_private;
  3263. struct drm_i915_gem_phys_object *phys_obj;
  3264. int ret;
  3265. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3266. return 0;
  3267. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3268. if (!phys_obj)
  3269. return -ENOMEM;
  3270. phys_obj->id = id;
  3271. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3272. if (!phys_obj->handle) {
  3273. ret = -ENOMEM;
  3274. goto kfree_obj;
  3275. }
  3276. #ifdef CONFIG_X86
  3277. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3278. #endif
  3279. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3280. return 0;
  3281. kfree_obj:
  3282. kfree(phys_obj);
  3283. return ret;
  3284. }
  3285. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3286. {
  3287. drm_i915_private_t *dev_priv = dev->dev_private;
  3288. struct drm_i915_gem_phys_object *phys_obj;
  3289. if (!dev_priv->mm.phys_objs[id - 1])
  3290. return;
  3291. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3292. if (phys_obj->cur_obj) {
  3293. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3294. }
  3295. #ifdef CONFIG_X86
  3296. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3297. #endif
  3298. drm_pci_free(dev, phys_obj->handle);
  3299. kfree(phys_obj);
  3300. dev_priv->mm.phys_objs[id - 1] = NULL;
  3301. }
  3302. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3303. {
  3304. int i;
  3305. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3306. i915_gem_free_phys_object(dev, i);
  3307. }
  3308. void i915_gem_detach_phys_object(struct drm_device *dev,
  3309. struct drm_i915_gem_object *obj)
  3310. {
  3311. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3312. char *vaddr;
  3313. int i;
  3314. int page_count;
  3315. if (!obj->phys_obj)
  3316. return;
  3317. vaddr = obj->phys_obj->handle->vaddr;
  3318. page_count = obj->base.size / PAGE_SIZE;
  3319. for (i = 0; i < page_count; i++) {
  3320. struct page *page = shmem_read_mapping_page(mapping, i);
  3321. if (!IS_ERR(page)) {
  3322. char *dst = kmap_atomic(page);
  3323. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3324. kunmap_atomic(dst);
  3325. drm_clflush_pages(&page, 1);
  3326. set_page_dirty(page);
  3327. mark_page_accessed(page);
  3328. page_cache_release(page);
  3329. }
  3330. }
  3331. intel_gtt_chipset_flush();
  3332. obj->phys_obj->cur_obj = NULL;
  3333. obj->phys_obj = NULL;
  3334. }
  3335. int
  3336. i915_gem_attach_phys_object(struct drm_device *dev,
  3337. struct drm_i915_gem_object *obj,
  3338. int id,
  3339. int align)
  3340. {
  3341. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3342. drm_i915_private_t *dev_priv = dev->dev_private;
  3343. int ret = 0;
  3344. int page_count;
  3345. int i;
  3346. if (id > I915_MAX_PHYS_OBJECT)
  3347. return -EINVAL;
  3348. if (obj->phys_obj) {
  3349. if (obj->phys_obj->id == id)
  3350. return 0;
  3351. i915_gem_detach_phys_object(dev, obj);
  3352. }
  3353. /* create a new object */
  3354. if (!dev_priv->mm.phys_objs[id - 1]) {
  3355. ret = i915_gem_init_phys_object(dev, id,
  3356. obj->base.size, align);
  3357. if (ret) {
  3358. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3359. id, obj->base.size);
  3360. return ret;
  3361. }
  3362. }
  3363. /* bind to the object */
  3364. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3365. obj->phys_obj->cur_obj = obj;
  3366. page_count = obj->base.size / PAGE_SIZE;
  3367. for (i = 0; i < page_count; i++) {
  3368. struct page *page;
  3369. char *dst, *src;
  3370. page = shmem_read_mapping_page(mapping, i);
  3371. if (IS_ERR(page))
  3372. return PTR_ERR(page);
  3373. src = kmap_atomic(page);
  3374. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3375. memcpy(dst, src, PAGE_SIZE);
  3376. kunmap_atomic(src);
  3377. mark_page_accessed(page);
  3378. page_cache_release(page);
  3379. }
  3380. return 0;
  3381. }
  3382. static int
  3383. i915_gem_phys_pwrite(struct drm_device *dev,
  3384. struct drm_i915_gem_object *obj,
  3385. struct drm_i915_gem_pwrite *args,
  3386. struct drm_file *file_priv)
  3387. {
  3388. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3389. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3390. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3391. unsigned long unwritten;
  3392. /* The physical object once assigned is fixed for the lifetime
  3393. * of the obj, so we can safely drop the lock and continue
  3394. * to access vaddr.
  3395. */
  3396. mutex_unlock(&dev->struct_mutex);
  3397. unwritten = copy_from_user(vaddr, user_data, args->size);
  3398. mutex_lock(&dev->struct_mutex);
  3399. if (unwritten)
  3400. return -EFAULT;
  3401. }
  3402. intel_gtt_chipset_flush();
  3403. return 0;
  3404. }
  3405. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3406. {
  3407. struct drm_i915_file_private *file_priv = file->driver_priv;
  3408. /* Clean up our request list when the client is going away, so that
  3409. * later retire_requests won't dereference our soon-to-be-gone
  3410. * file_priv.
  3411. */
  3412. spin_lock(&file_priv->mm.lock);
  3413. while (!list_empty(&file_priv->mm.request_list)) {
  3414. struct drm_i915_gem_request *request;
  3415. request = list_first_entry(&file_priv->mm.request_list,
  3416. struct drm_i915_gem_request,
  3417. client_list);
  3418. list_del(&request->client_list);
  3419. request->file_priv = NULL;
  3420. }
  3421. spin_unlock(&file_priv->mm.lock);
  3422. }
  3423. static int
  3424. i915_gpu_is_active(struct drm_device *dev)
  3425. {
  3426. drm_i915_private_t *dev_priv = dev->dev_private;
  3427. int lists_empty;
  3428. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3429. list_empty(&dev_priv->mm.active_list);
  3430. return !lists_empty;
  3431. }
  3432. static int
  3433. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3434. {
  3435. struct drm_i915_private *dev_priv =
  3436. container_of(shrinker,
  3437. struct drm_i915_private,
  3438. mm.inactive_shrinker);
  3439. struct drm_device *dev = dev_priv->dev;
  3440. struct drm_i915_gem_object *obj, *next;
  3441. int nr_to_scan = sc->nr_to_scan;
  3442. int cnt;
  3443. if (!mutex_trylock(&dev->struct_mutex))
  3444. return 0;
  3445. /* "fast-path" to count number of available objects */
  3446. if (nr_to_scan == 0) {
  3447. cnt = 0;
  3448. list_for_each_entry(obj,
  3449. &dev_priv->mm.inactive_list,
  3450. mm_list)
  3451. cnt++;
  3452. mutex_unlock(&dev->struct_mutex);
  3453. return cnt / 100 * sysctl_vfs_cache_pressure;
  3454. }
  3455. rescan:
  3456. /* first scan for clean buffers */
  3457. i915_gem_retire_requests(dev);
  3458. list_for_each_entry_safe(obj, next,
  3459. &dev_priv->mm.inactive_list,
  3460. mm_list) {
  3461. if (i915_gem_object_is_purgeable(obj)) {
  3462. if (i915_gem_object_unbind(obj) == 0 &&
  3463. --nr_to_scan == 0)
  3464. break;
  3465. }
  3466. }
  3467. /* second pass, evict/count anything still on the inactive list */
  3468. cnt = 0;
  3469. list_for_each_entry_safe(obj, next,
  3470. &dev_priv->mm.inactive_list,
  3471. mm_list) {
  3472. if (nr_to_scan &&
  3473. i915_gem_object_unbind(obj) == 0)
  3474. nr_to_scan--;
  3475. else
  3476. cnt++;
  3477. }
  3478. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3479. /*
  3480. * We are desperate for pages, so as a last resort, wait
  3481. * for the GPU to finish and discard whatever we can.
  3482. * This has a dramatic impact to reduce the number of
  3483. * OOM-killer events whilst running the GPU aggressively.
  3484. */
  3485. if (i915_gpu_idle(dev) == 0)
  3486. goto rescan;
  3487. }
  3488. mutex_unlock(&dev->struct_mutex);
  3489. return cnt / 100 * sysctl_vfs_cache_pressure;
  3490. }