intel_display.c 296 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  46. struct intel_crtc_config *pipe_config);
  47. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  48. struct intel_crtc_config *pipe_config);
  49. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  50. int x, int y, struct drm_framebuffer *old_fb);
  51. typedef struct {
  52. int min, max;
  53. } intel_range_t;
  54. typedef struct {
  55. int dot_limit;
  56. int p2_slow, p2_fast;
  57. } intel_p2_t;
  58. typedef struct intel_limit intel_limit_t;
  59. struct intel_limit {
  60. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  61. intel_p2_t p2;
  62. };
  63. int
  64. intel_pch_rawclk(struct drm_device *dev)
  65. {
  66. struct drm_i915_private *dev_priv = dev->dev_private;
  67. WARN_ON(!HAS_PCH_SPLIT(dev));
  68. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  69. }
  70. static inline u32 /* units of 100MHz */
  71. intel_fdi_link_freq(struct drm_device *dev)
  72. {
  73. if (IS_GEN5(dev)) {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  76. } else
  77. return 27;
  78. }
  79. static const intel_limit_t intel_limits_i8xx_dac = {
  80. .dot = { .min = 25000, .max = 350000 },
  81. .vco = { .min = 930000, .max = 1400000 },
  82. .n = { .min = 3, .max = 16 },
  83. .m = { .min = 96, .max = 140 },
  84. .m1 = { .min = 18, .max = 26 },
  85. .m2 = { .min = 6, .max = 16 },
  86. .p = { .min = 4, .max = 128 },
  87. .p1 = { .min = 2, .max = 33 },
  88. .p2 = { .dot_limit = 165000,
  89. .p2_slow = 4, .p2_fast = 2 },
  90. };
  91. static const intel_limit_t intel_limits_i8xx_dvo = {
  92. .dot = { .min = 25000, .max = 350000 },
  93. .vco = { .min = 930000, .max = 1400000 },
  94. .n = { .min = 3, .max = 16 },
  95. .m = { .min = 96, .max = 140 },
  96. .m1 = { .min = 18, .max = 26 },
  97. .m2 = { .min = 6, .max = 16 },
  98. .p = { .min = 4, .max = 128 },
  99. .p1 = { .min = 2, .max = 33 },
  100. .p2 = { .dot_limit = 165000,
  101. .p2_slow = 4, .p2_fast = 4 },
  102. };
  103. static const intel_limit_t intel_limits_i8xx_lvds = {
  104. .dot = { .min = 25000, .max = 350000 },
  105. .vco = { .min = 930000, .max = 1400000 },
  106. .n = { .min = 3, .max = 16 },
  107. .m = { .min = 96, .max = 140 },
  108. .m1 = { .min = 18, .max = 26 },
  109. .m2 = { .min = 6, .max = 16 },
  110. .p = { .min = 4, .max = 128 },
  111. .p1 = { .min = 1, .max = 6 },
  112. .p2 = { .dot_limit = 165000,
  113. .p2_slow = 14, .p2_fast = 7 },
  114. };
  115. static const intel_limit_t intel_limits_i9xx_sdvo = {
  116. .dot = { .min = 20000, .max = 400000 },
  117. .vco = { .min = 1400000, .max = 2800000 },
  118. .n = { .min = 1, .max = 6 },
  119. .m = { .min = 70, .max = 120 },
  120. .m1 = { .min = 8, .max = 18 },
  121. .m2 = { .min = 3, .max = 7 },
  122. .p = { .min = 5, .max = 80 },
  123. .p1 = { .min = 1, .max = 8 },
  124. .p2 = { .dot_limit = 200000,
  125. .p2_slow = 10, .p2_fast = 5 },
  126. };
  127. static const intel_limit_t intel_limits_i9xx_lvds = {
  128. .dot = { .min = 20000, .max = 400000 },
  129. .vco = { .min = 1400000, .max = 2800000 },
  130. .n = { .min = 1, .max = 6 },
  131. .m = { .min = 70, .max = 120 },
  132. .m1 = { .min = 8, .max = 18 },
  133. .m2 = { .min = 3, .max = 7 },
  134. .p = { .min = 7, .max = 98 },
  135. .p1 = { .min = 1, .max = 8 },
  136. .p2 = { .dot_limit = 112000,
  137. .p2_slow = 14, .p2_fast = 7 },
  138. };
  139. static const intel_limit_t intel_limits_g4x_sdvo = {
  140. .dot = { .min = 25000, .max = 270000 },
  141. .vco = { .min = 1750000, .max = 3500000},
  142. .n = { .min = 1, .max = 4 },
  143. .m = { .min = 104, .max = 138 },
  144. .m1 = { .min = 17, .max = 23 },
  145. .m2 = { .min = 5, .max = 11 },
  146. .p = { .min = 10, .max = 30 },
  147. .p1 = { .min = 1, .max = 3},
  148. .p2 = { .dot_limit = 270000,
  149. .p2_slow = 10,
  150. .p2_fast = 10
  151. },
  152. };
  153. static const intel_limit_t intel_limits_g4x_hdmi = {
  154. .dot = { .min = 22000, .max = 400000 },
  155. .vco = { .min = 1750000, .max = 3500000},
  156. .n = { .min = 1, .max = 4 },
  157. .m = { .min = 104, .max = 138 },
  158. .m1 = { .min = 16, .max = 23 },
  159. .m2 = { .min = 5, .max = 11 },
  160. .p = { .min = 5, .max = 80 },
  161. .p1 = { .min = 1, .max = 8},
  162. .p2 = { .dot_limit = 165000,
  163. .p2_slow = 10, .p2_fast = 5 },
  164. };
  165. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  166. .dot = { .min = 20000, .max = 115000 },
  167. .vco = { .min = 1750000, .max = 3500000 },
  168. .n = { .min = 1, .max = 3 },
  169. .m = { .min = 104, .max = 138 },
  170. .m1 = { .min = 17, .max = 23 },
  171. .m2 = { .min = 5, .max = 11 },
  172. .p = { .min = 28, .max = 112 },
  173. .p1 = { .min = 2, .max = 8 },
  174. .p2 = { .dot_limit = 0,
  175. .p2_slow = 14, .p2_fast = 14
  176. },
  177. };
  178. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  179. .dot = { .min = 80000, .max = 224000 },
  180. .vco = { .min = 1750000, .max = 3500000 },
  181. .n = { .min = 1, .max = 3 },
  182. .m = { .min = 104, .max = 138 },
  183. .m1 = { .min = 17, .max = 23 },
  184. .m2 = { .min = 5, .max = 11 },
  185. .p = { .min = 14, .max = 42 },
  186. .p1 = { .min = 2, .max = 6 },
  187. .p2 = { .dot_limit = 0,
  188. .p2_slow = 7, .p2_fast = 7
  189. },
  190. };
  191. static const intel_limit_t intel_limits_pineview_sdvo = {
  192. .dot = { .min = 20000, .max = 400000},
  193. .vco = { .min = 1700000, .max = 3500000 },
  194. /* Pineview's Ncounter is a ring counter */
  195. .n = { .min = 3, .max = 6 },
  196. .m = { .min = 2, .max = 256 },
  197. /* Pineview only has one combined m divider, which we treat as m2. */
  198. .m1 = { .min = 0, .max = 0 },
  199. .m2 = { .min = 0, .max = 254 },
  200. .p = { .min = 5, .max = 80 },
  201. .p1 = { .min = 1, .max = 8 },
  202. .p2 = { .dot_limit = 200000,
  203. .p2_slow = 10, .p2_fast = 5 },
  204. };
  205. static const intel_limit_t intel_limits_pineview_lvds = {
  206. .dot = { .min = 20000, .max = 400000 },
  207. .vco = { .min = 1700000, .max = 3500000 },
  208. .n = { .min = 3, .max = 6 },
  209. .m = { .min = 2, .max = 256 },
  210. .m1 = { .min = 0, .max = 0 },
  211. .m2 = { .min = 0, .max = 254 },
  212. .p = { .min = 7, .max = 112 },
  213. .p1 = { .min = 1, .max = 8 },
  214. .p2 = { .dot_limit = 112000,
  215. .p2_slow = 14, .p2_fast = 14 },
  216. };
  217. /* Ironlake / Sandybridge
  218. *
  219. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  220. * the range value for them is (actual_value - 2).
  221. */
  222. static const intel_limit_t intel_limits_ironlake_dac = {
  223. .dot = { .min = 25000, .max = 350000 },
  224. .vco = { .min = 1760000, .max = 3510000 },
  225. .n = { .min = 1, .max = 5 },
  226. .m = { .min = 79, .max = 127 },
  227. .m1 = { .min = 12, .max = 22 },
  228. .m2 = { .min = 5, .max = 9 },
  229. .p = { .min = 5, .max = 80 },
  230. .p1 = { .min = 1, .max = 8 },
  231. .p2 = { .dot_limit = 225000,
  232. .p2_slow = 10, .p2_fast = 5 },
  233. };
  234. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  235. .dot = { .min = 25000, .max = 350000 },
  236. .vco = { .min = 1760000, .max = 3510000 },
  237. .n = { .min = 1, .max = 3 },
  238. .m = { .min = 79, .max = 118 },
  239. .m1 = { .min = 12, .max = 22 },
  240. .m2 = { .min = 5, .max = 9 },
  241. .p = { .min = 28, .max = 112 },
  242. .p1 = { .min = 2, .max = 8 },
  243. .p2 = { .dot_limit = 225000,
  244. .p2_slow = 14, .p2_fast = 14 },
  245. };
  246. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  247. .dot = { .min = 25000, .max = 350000 },
  248. .vco = { .min = 1760000, .max = 3510000 },
  249. .n = { .min = 1, .max = 3 },
  250. .m = { .min = 79, .max = 127 },
  251. .m1 = { .min = 12, .max = 22 },
  252. .m2 = { .min = 5, .max = 9 },
  253. .p = { .min = 14, .max = 56 },
  254. .p1 = { .min = 2, .max = 8 },
  255. .p2 = { .dot_limit = 225000,
  256. .p2_slow = 7, .p2_fast = 7 },
  257. };
  258. /* LVDS 100mhz refclk limits. */
  259. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  260. .dot = { .min = 25000, .max = 350000 },
  261. .vco = { .min = 1760000, .max = 3510000 },
  262. .n = { .min = 1, .max = 2 },
  263. .m = { .min = 79, .max = 126 },
  264. .m1 = { .min = 12, .max = 22 },
  265. .m2 = { .min = 5, .max = 9 },
  266. .p = { .min = 28, .max = 112 },
  267. .p1 = { .min = 2, .max = 8 },
  268. .p2 = { .dot_limit = 225000,
  269. .p2_slow = 14, .p2_fast = 14 },
  270. };
  271. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  272. .dot = { .min = 25000, .max = 350000 },
  273. .vco = { .min = 1760000, .max = 3510000 },
  274. .n = { .min = 1, .max = 3 },
  275. .m = { .min = 79, .max = 126 },
  276. .m1 = { .min = 12, .max = 22 },
  277. .m2 = { .min = 5, .max = 9 },
  278. .p = { .min = 14, .max = 42 },
  279. .p1 = { .min = 2, .max = 6 },
  280. .p2 = { .dot_limit = 225000,
  281. .p2_slow = 7, .p2_fast = 7 },
  282. };
  283. static const intel_limit_t intel_limits_vlv_dac = {
  284. .dot = { .min = 25000, .max = 270000 },
  285. .vco = { .min = 4000000, .max = 6000000 },
  286. .n = { .min = 1, .max = 7 },
  287. .m = { .min = 22, .max = 450 }, /* guess */
  288. .m1 = { .min = 2, .max = 3 },
  289. .m2 = { .min = 11, .max = 156 },
  290. .p = { .min = 10, .max = 30 },
  291. .p1 = { .min = 1, .max = 3 },
  292. .p2 = { .dot_limit = 270000,
  293. .p2_slow = 2, .p2_fast = 20 },
  294. };
  295. static const intel_limit_t intel_limits_vlv_hdmi = {
  296. .dot = { .min = 25000, .max = 270000 },
  297. .vco = { .min = 4000000, .max = 6000000 },
  298. .n = { .min = 1, .max = 7 },
  299. .m = { .min = 60, .max = 300 }, /* guess */
  300. .m1 = { .min = 2, .max = 3 },
  301. .m2 = { .min = 11, .max = 156 },
  302. .p = { .min = 10, .max = 30 },
  303. .p1 = { .min = 2, .max = 3 },
  304. .p2 = { .dot_limit = 270000,
  305. .p2_slow = 2, .p2_fast = 20 },
  306. };
  307. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  308. int refclk)
  309. {
  310. struct drm_device *dev = crtc->dev;
  311. const intel_limit_t *limit;
  312. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  313. if (intel_is_dual_link_lvds(dev)) {
  314. if (refclk == 100000)
  315. limit = &intel_limits_ironlake_dual_lvds_100m;
  316. else
  317. limit = &intel_limits_ironlake_dual_lvds;
  318. } else {
  319. if (refclk == 100000)
  320. limit = &intel_limits_ironlake_single_lvds_100m;
  321. else
  322. limit = &intel_limits_ironlake_single_lvds;
  323. }
  324. } else
  325. limit = &intel_limits_ironlake_dac;
  326. return limit;
  327. }
  328. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  329. {
  330. struct drm_device *dev = crtc->dev;
  331. const intel_limit_t *limit;
  332. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  333. if (intel_is_dual_link_lvds(dev))
  334. limit = &intel_limits_g4x_dual_channel_lvds;
  335. else
  336. limit = &intel_limits_g4x_single_channel_lvds;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  338. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  339. limit = &intel_limits_g4x_hdmi;
  340. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  341. limit = &intel_limits_g4x_sdvo;
  342. } else /* The option is for other outputs */
  343. limit = &intel_limits_i9xx_sdvo;
  344. return limit;
  345. }
  346. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  347. {
  348. struct drm_device *dev = crtc->dev;
  349. const intel_limit_t *limit;
  350. if (HAS_PCH_SPLIT(dev))
  351. limit = intel_ironlake_limit(crtc, refclk);
  352. else if (IS_G4X(dev)) {
  353. limit = intel_g4x_limit(crtc);
  354. } else if (IS_PINEVIEW(dev)) {
  355. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  356. limit = &intel_limits_pineview_lvds;
  357. else
  358. limit = &intel_limits_pineview_sdvo;
  359. } else if (IS_VALLEYVIEW(dev)) {
  360. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  361. limit = &intel_limits_vlv_dac;
  362. else
  363. limit = &intel_limits_vlv_hdmi;
  364. } else if (!IS_GEN2(dev)) {
  365. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  366. limit = &intel_limits_i9xx_lvds;
  367. else
  368. limit = &intel_limits_i9xx_sdvo;
  369. } else {
  370. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  371. limit = &intel_limits_i8xx_lvds;
  372. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  373. limit = &intel_limits_i8xx_dvo;
  374. else
  375. limit = &intel_limits_i8xx_dac;
  376. }
  377. return limit;
  378. }
  379. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  380. static void pineview_clock(int refclk, intel_clock_t *clock)
  381. {
  382. clock->m = clock->m2 + 2;
  383. clock->p = clock->p1 * clock->p2;
  384. clock->vco = refclk * clock->m / clock->n;
  385. clock->dot = clock->vco / clock->p;
  386. }
  387. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  388. {
  389. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  390. }
  391. static void i9xx_clock(int refclk, intel_clock_t *clock)
  392. {
  393. clock->m = i9xx_dpll_compute_m(clock);
  394. clock->p = clock->p1 * clock->p2;
  395. clock->vco = refclk * clock->m / (clock->n + 2);
  396. clock->dot = clock->vco / clock->p;
  397. }
  398. /**
  399. * Returns whether any output on the specified pipe is of the specified type
  400. */
  401. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  402. {
  403. struct drm_device *dev = crtc->dev;
  404. struct intel_encoder *encoder;
  405. for_each_encoder_on_crtc(dev, crtc, encoder)
  406. if (encoder->type == type)
  407. return true;
  408. return false;
  409. }
  410. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  411. /**
  412. * Returns whether the given set of divisors are valid for a given refclk with
  413. * the given connectors.
  414. */
  415. static bool intel_PLL_is_valid(struct drm_device *dev,
  416. const intel_limit_t *limit,
  417. const intel_clock_t *clock)
  418. {
  419. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  420. INTELPllInvalid("p1 out of range\n");
  421. if (clock->p < limit->p.min || limit->p.max < clock->p)
  422. INTELPllInvalid("p out of range\n");
  423. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  424. INTELPllInvalid("m2 out of range\n");
  425. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  426. INTELPllInvalid("m1 out of range\n");
  427. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  428. INTELPllInvalid("m1 <= m2\n");
  429. if (clock->m < limit->m.min || limit->m.max < clock->m)
  430. INTELPllInvalid("m out of range\n");
  431. if (clock->n < limit->n.min || limit->n.max < clock->n)
  432. INTELPllInvalid("n out of range\n");
  433. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  434. INTELPllInvalid("vco out of range\n");
  435. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  436. * connector, etc., rather than just a single range.
  437. */
  438. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  439. INTELPllInvalid("dot out of range\n");
  440. return true;
  441. }
  442. static bool
  443. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  444. int target, int refclk, intel_clock_t *match_clock,
  445. intel_clock_t *best_clock)
  446. {
  447. struct drm_device *dev = crtc->dev;
  448. intel_clock_t clock;
  449. int err = target;
  450. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  451. /*
  452. * For LVDS just rely on its current settings for dual-channel.
  453. * We haven't figured out how to reliably set up different
  454. * single/dual channel state, if we even can.
  455. */
  456. if (intel_is_dual_link_lvds(dev))
  457. clock.p2 = limit->p2.p2_fast;
  458. else
  459. clock.p2 = limit->p2.p2_slow;
  460. } else {
  461. if (target < limit->p2.dot_limit)
  462. clock.p2 = limit->p2.p2_slow;
  463. else
  464. clock.p2 = limit->p2.p2_fast;
  465. }
  466. memset(best_clock, 0, sizeof(*best_clock));
  467. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  468. clock.m1++) {
  469. for (clock.m2 = limit->m2.min;
  470. clock.m2 <= limit->m2.max; clock.m2++) {
  471. if (clock.m2 >= clock.m1)
  472. break;
  473. for (clock.n = limit->n.min;
  474. clock.n <= limit->n.max; clock.n++) {
  475. for (clock.p1 = limit->p1.min;
  476. clock.p1 <= limit->p1.max; clock.p1++) {
  477. int this_err;
  478. i9xx_clock(refclk, &clock);
  479. if (!intel_PLL_is_valid(dev, limit,
  480. &clock))
  481. continue;
  482. if (match_clock &&
  483. clock.p != match_clock->p)
  484. continue;
  485. this_err = abs(clock.dot - target);
  486. if (this_err < err) {
  487. *best_clock = clock;
  488. err = this_err;
  489. }
  490. }
  491. }
  492. }
  493. }
  494. return (err != target);
  495. }
  496. static bool
  497. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  498. int target, int refclk, intel_clock_t *match_clock,
  499. intel_clock_t *best_clock)
  500. {
  501. struct drm_device *dev = crtc->dev;
  502. intel_clock_t clock;
  503. int err = target;
  504. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  505. /*
  506. * For LVDS just rely on its current settings for dual-channel.
  507. * We haven't figured out how to reliably set up different
  508. * single/dual channel state, if we even can.
  509. */
  510. if (intel_is_dual_link_lvds(dev))
  511. clock.p2 = limit->p2.p2_fast;
  512. else
  513. clock.p2 = limit->p2.p2_slow;
  514. } else {
  515. if (target < limit->p2.dot_limit)
  516. clock.p2 = limit->p2.p2_slow;
  517. else
  518. clock.p2 = limit->p2.p2_fast;
  519. }
  520. memset(best_clock, 0, sizeof(*best_clock));
  521. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  522. clock.m1++) {
  523. for (clock.m2 = limit->m2.min;
  524. clock.m2 <= limit->m2.max; clock.m2++) {
  525. for (clock.n = limit->n.min;
  526. clock.n <= limit->n.max; clock.n++) {
  527. for (clock.p1 = limit->p1.min;
  528. clock.p1 <= limit->p1.max; clock.p1++) {
  529. int this_err;
  530. pineview_clock(refclk, &clock);
  531. if (!intel_PLL_is_valid(dev, limit,
  532. &clock))
  533. continue;
  534. if (match_clock &&
  535. clock.p != match_clock->p)
  536. continue;
  537. this_err = abs(clock.dot - target);
  538. if (this_err < err) {
  539. *best_clock = clock;
  540. err = this_err;
  541. }
  542. }
  543. }
  544. }
  545. }
  546. return (err != target);
  547. }
  548. static bool
  549. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  550. int target, int refclk, intel_clock_t *match_clock,
  551. intel_clock_t *best_clock)
  552. {
  553. struct drm_device *dev = crtc->dev;
  554. intel_clock_t clock;
  555. int max_n;
  556. bool found;
  557. /* approximately equals target * 0.00585 */
  558. int err_most = (target >> 8) + (target >> 9);
  559. found = false;
  560. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  561. if (intel_is_dual_link_lvds(dev))
  562. clock.p2 = limit->p2.p2_fast;
  563. else
  564. clock.p2 = limit->p2.p2_slow;
  565. } else {
  566. if (target < limit->p2.dot_limit)
  567. clock.p2 = limit->p2.p2_slow;
  568. else
  569. clock.p2 = limit->p2.p2_fast;
  570. }
  571. memset(best_clock, 0, sizeof(*best_clock));
  572. max_n = limit->n.max;
  573. /* based on hardware requirement, prefer smaller n to precision */
  574. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  575. /* based on hardware requirement, prefere larger m1,m2 */
  576. for (clock.m1 = limit->m1.max;
  577. clock.m1 >= limit->m1.min; clock.m1--) {
  578. for (clock.m2 = limit->m2.max;
  579. clock.m2 >= limit->m2.min; clock.m2--) {
  580. for (clock.p1 = limit->p1.max;
  581. clock.p1 >= limit->p1.min; clock.p1--) {
  582. int this_err;
  583. i9xx_clock(refclk, &clock);
  584. if (!intel_PLL_is_valid(dev, limit,
  585. &clock))
  586. continue;
  587. this_err = abs(clock.dot - target);
  588. if (this_err < err_most) {
  589. *best_clock = clock;
  590. err_most = this_err;
  591. max_n = clock.n;
  592. found = true;
  593. }
  594. }
  595. }
  596. }
  597. }
  598. return found;
  599. }
  600. static bool
  601. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  602. int target, int refclk, intel_clock_t *match_clock,
  603. intel_clock_t *best_clock)
  604. {
  605. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  606. u32 m, n, fastclk;
  607. u32 updrate, minupdate, p;
  608. unsigned long bestppm, ppm, absppm;
  609. int dotclk, flag;
  610. flag = 0;
  611. dotclk = target * 1000;
  612. bestppm = 1000000;
  613. ppm = absppm = 0;
  614. fastclk = dotclk / (2*100);
  615. updrate = 0;
  616. minupdate = 19200;
  617. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  618. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  619. /* based on hardware requirement, prefer smaller n to precision */
  620. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  621. updrate = refclk / n;
  622. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  623. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  624. if (p2 > 10)
  625. p2 = p2 - 1;
  626. p = p1 * p2;
  627. /* based on hardware requirement, prefer bigger m1,m2 values */
  628. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  629. m2 = (((2*(fastclk * p * n / m1 )) +
  630. refclk) / (2*refclk));
  631. m = m1 * m2;
  632. vco = updrate * m;
  633. if (vco >= limit->vco.min && vco < limit->vco.max) {
  634. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  635. absppm = (ppm > 0) ? ppm : (-ppm);
  636. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  637. bestppm = 0;
  638. flag = 1;
  639. }
  640. if (absppm < bestppm - 10) {
  641. bestppm = absppm;
  642. flag = 1;
  643. }
  644. if (flag) {
  645. bestn = n;
  646. bestm1 = m1;
  647. bestm2 = m2;
  648. bestp1 = p1;
  649. bestp2 = p2;
  650. flag = 0;
  651. }
  652. }
  653. }
  654. }
  655. }
  656. }
  657. best_clock->n = bestn;
  658. best_clock->m1 = bestm1;
  659. best_clock->m2 = bestm2;
  660. best_clock->p1 = bestp1;
  661. best_clock->p2 = bestp2;
  662. return true;
  663. }
  664. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  665. enum pipe pipe)
  666. {
  667. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  668. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  669. return intel_crtc->config.cpu_transcoder;
  670. }
  671. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  672. {
  673. struct drm_i915_private *dev_priv = dev->dev_private;
  674. u32 frame, frame_reg = PIPEFRAME(pipe);
  675. frame = I915_READ(frame_reg);
  676. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  677. DRM_DEBUG_KMS("vblank wait timed out\n");
  678. }
  679. /**
  680. * intel_wait_for_vblank - wait for vblank on a given pipe
  681. * @dev: drm device
  682. * @pipe: pipe to wait for
  683. *
  684. * Wait for vblank to occur on a given pipe. Needed for various bits of
  685. * mode setting code.
  686. */
  687. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  688. {
  689. struct drm_i915_private *dev_priv = dev->dev_private;
  690. int pipestat_reg = PIPESTAT(pipe);
  691. if (INTEL_INFO(dev)->gen >= 5) {
  692. ironlake_wait_for_vblank(dev, pipe);
  693. return;
  694. }
  695. /* Clear existing vblank status. Note this will clear any other
  696. * sticky status fields as well.
  697. *
  698. * This races with i915_driver_irq_handler() with the result
  699. * that either function could miss a vblank event. Here it is not
  700. * fatal, as we will either wait upon the next vblank interrupt or
  701. * timeout. Generally speaking intel_wait_for_vblank() is only
  702. * called during modeset at which time the GPU should be idle and
  703. * should *not* be performing page flips and thus not waiting on
  704. * vblanks...
  705. * Currently, the result of us stealing a vblank from the irq
  706. * handler is that a single frame will be skipped during swapbuffers.
  707. */
  708. I915_WRITE(pipestat_reg,
  709. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  710. /* Wait for vblank interrupt bit to set */
  711. if (wait_for(I915_READ(pipestat_reg) &
  712. PIPE_VBLANK_INTERRUPT_STATUS,
  713. 50))
  714. DRM_DEBUG_KMS("vblank wait timed out\n");
  715. }
  716. /*
  717. * intel_wait_for_pipe_off - wait for pipe to turn off
  718. * @dev: drm device
  719. * @pipe: pipe to wait for
  720. *
  721. * After disabling a pipe, we can't wait for vblank in the usual way,
  722. * spinning on the vblank interrupt status bit, since we won't actually
  723. * see an interrupt when the pipe is disabled.
  724. *
  725. * On Gen4 and above:
  726. * wait for the pipe register state bit to turn off
  727. *
  728. * Otherwise:
  729. * wait for the display line value to settle (it usually
  730. * ends up stopping at the start of the next frame).
  731. *
  732. */
  733. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  734. {
  735. struct drm_i915_private *dev_priv = dev->dev_private;
  736. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  737. pipe);
  738. if (INTEL_INFO(dev)->gen >= 4) {
  739. int reg = PIPECONF(cpu_transcoder);
  740. /* Wait for the Pipe State to go off */
  741. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  742. 100))
  743. WARN(1, "pipe_off wait timed out\n");
  744. } else {
  745. u32 last_line, line_mask;
  746. int reg = PIPEDSL(pipe);
  747. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  748. if (IS_GEN2(dev))
  749. line_mask = DSL_LINEMASK_GEN2;
  750. else
  751. line_mask = DSL_LINEMASK_GEN3;
  752. /* Wait for the display line to settle */
  753. do {
  754. last_line = I915_READ(reg) & line_mask;
  755. mdelay(5);
  756. } while (((I915_READ(reg) & line_mask) != last_line) &&
  757. time_after(timeout, jiffies));
  758. if (time_after(jiffies, timeout))
  759. WARN(1, "pipe_off wait timed out\n");
  760. }
  761. }
  762. /*
  763. * ibx_digital_port_connected - is the specified port connected?
  764. * @dev_priv: i915 private structure
  765. * @port: the port to test
  766. *
  767. * Returns true if @port is connected, false otherwise.
  768. */
  769. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  770. struct intel_digital_port *port)
  771. {
  772. u32 bit;
  773. if (HAS_PCH_IBX(dev_priv->dev)) {
  774. switch(port->port) {
  775. case PORT_B:
  776. bit = SDE_PORTB_HOTPLUG;
  777. break;
  778. case PORT_C:
  779. bit = SDE_PORTC_HOTPLUG;
  780. break;
  781. case PORT_D:
  782. bit = SDE_PORTD_HOTPLUG;
  783. break;
  784. default:
  785. return true;
  786. }
  787. } else {
  788. switch(port->port) {
  789. case PORT_B:
  790. bit = SDE_PORTB_HOTPLUG_CPT;
  791. break;
  792. case PORT_C:
  793. bit = SDE_PORTC_HOTPLUG_CPT;
  794. break;
  795. case PORT_D:
  796. bit = SDE_PORTD_HOTPLUG_CPT;
  797. break;
  798. default:
  799. return true;
  800. }
  801. }
  802. return I915_READ(SDEISR) & bit;
  803. }
  804. static const char *state_string(bool enabled)
  805. {
  806. return enabled ? "on" : "off";
  807. }
  808. /* Only for pre-ILK configs */
  809. void assert_pll(struct drm_i915_private *dev_priv,
  810. enum pipe pipe, bool state)
  811. {
  812. int reg;
  813. u32 val;
  814. bool cur_state;
  815. reg = DPLL(pipe);
  816. val = I915_READ(reg);
  817. cur_state = !!(val & DPLL_VCO_ENABLE);
  818. WARN(cur_state != state,
  819. "PLL state assertion failure (expected %s, current %s)\n",
  820. state_string(state), state_string(cur_state));
  821. }
  822. /* XXX: the dsi pll is shared between MIPI DSI ports */
  823. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  824. {
  825. u32 val;
  826. bool cur_state;
  827. mutex_lock(&dev_priv->dpio_lock);
  828. val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  829. mutex_unlock(&dev_priv->dpio_lock);
  830. cur_state = val & DSI_PLL_VCO_EN;
  831. WARN(cur_state != state,
  832. "DSI PLL state assertion failure (expected %s, current %s)\n",
  833. state_string(state), state_string(cur_state));
  834. }
  835. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  836. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  837. struct intel_shared_dpll *
  838. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  839. {
  840. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  841. if (crtc->config.shared_dpll < 0)
  842. return NULL;
  843. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  844. }
  845. /* For ILK+ */
  846. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  847. struct intel_shared_dpll *pll,
  848. bool state)
  849. {
  850. bool cur_state;
  851. struct intel_dpll_hw_state hw_state;
  852. if (HAS_PCH_LPT(dev_priv->dev)) {
  853. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  854. return;
  855. }
  856. if (WARN (!pll,
  857. "asserting DPLL %s with no DPLL\n", state_string(state)))
  858. return;
  859. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  860. WARN(cur_state != state,
  861. "%s assertion failure (expected %s, current %s)\n",
  862. pll->name, state_string(state), state_string(cur_state));
  863. }
  864. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  865. enum pipe pipe, bool state)
  866. {
  867. int reg;
  868. u32 val;
  869. bool cur_state;
  870. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  871. pipe);
  872. if (HAS_DDI(dev_priv->dev)) {
  873. /* DDI does not have a specific FDI_TX register */
  874. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  875. val = I915_READ(reg);
  876. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  877. } else {
  878. reg = FDI_TX_CTL(pipe);
  879. val = I915_READ(reg);
  880. cur_state = !!(val & FDI_TX_ENABLE);
  881. }
  882. WARN(cur_state != state,
  883. "FDI TX state assertion failure (expected %s, current %s)\n",
  884. state_string(state), state_string(cur_state));
  885. }
  886. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  887. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  888. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  889. enum pipe pipe, bool state)
  890. {
  891. int reg;
  892. u32 val;
  893. bool cur_state;
  894. reg = FDI_RX_CTL(pipe);
  895. val = I915_READ(reg);
  896. cur_state = !!(val & FDI_RX_ENABLE);
  897. WARN(cur_state != state,
  898. "FDI RX state assertion failure (expected %s, current %s)\n",
  899. state_string(state), state_string(cur_state));
  900. }
  901. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  902. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  903. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  904. enum pipe pipe)
  905. {
  906. int reg;
  907. u32 val;
  908. /* ILK FDI PLL is always enabled */
  909. if (dev_priv->info->gen == 5)
  910. return;
  911. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  912. if (HAS_DDI(dev_priv->dev))
  913. return;
  914. reg = FDI_TX_CTL(pipe);
  915. val = I915_READ(reg);
  916. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  917. }
  918. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  919. enum pipe pipe, bool state)
  920. {
  921. int reg;
  922. u32 val;
  923. bool cur_state;
  924. reg = FDI_RX_CTL(pipe);
  925. val = I915_READ(reg);
  926. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  927. WARN(cur_state != state,
  928. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  929. state_string(state), state_string(cur_state));
  930. }
  931. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  932. enum pipe pipe)
  933. {
  934. int pp_reg, lvds_reg;
  935. u32 val;
  936. enum pipe panel_pipe = PIPE_A;
  937. bool locked = true;
  938. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  939. pp_reg = PCH_PP_CONTROL;
  940. lvds_reg = PCH_LVDS;
  941. } else {
  942. pp_reg = PP_CONTROL;
  943. lvds_reg = LVDS;
  944. }
  945. val = I915_READ(pp_reg);
  946. if (!(val & PANEL_POWER_ON) ||
  947. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  948. locked = false;
  949. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  950. panel_pipe = PIPE_B;
  951. WARN(panel_pipe == pipe && locked,
  952. "panel assertion failure, pipe %c regs locked\n",
  953. pipe_name(pipe));
  954. }
  955. void assert_pipe(struct drm_i915_private *dev_priv,
  956. enum pipe pipe, bool state)
  957. {
  958. int reg;
  959. u32 val;
  960. bool cur_state;
  961. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  962. pipe);
  963. /* if we need the pipe A quirk it must be always on */
  964. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  965. state = true;
  966. if (!intel_display_power_enabled(dev_priv->dev,
  967. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  968. cur_state = false;
  969. } else {
  970. reg = PIPECONF(cpu_transcoder);
  971. val = I915_READ(reg);
  972. cur_state = !!(val & PIPECONF_ENABLE);
  973. }
  974. WARN(cur_state != state,
  975. "pipe %c assertion failure (expected %s, current %s)\n",
  976. pipe_name(pipe), state_string(state), state_string(cur_state));
  977. }
  978. static void assert_plane(struct drm_i915_private *dev_priv,
  979. enum plane plane, bool state)
  980. {
  981. int reg;
  982. u32 val;
  983. bool cur_state;
  984. reg = DSPCNTR(plane);
  985. val = I915_READ(reg);
  986. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  987. WARN(cur_state != state,
  988. "plane %c assertion failure (expected %s, current %s)\n",
  989. plane_name(plane), state_string(state), state_string(cur_state));
  990. }
  991. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  992. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  993. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  994. enum pipe pipe)
  995. {
  996. struct drm_device *dev = dev_priv->dev;
  997. int reg, i;
  998. u32 val;
  999. int cur_pipe;
  1000. /* Primary planes are fixed to pipes on gen4+ */
  1001. if (INTEL_INFO(dev)->gen >= 4) {
  1002. reg = DSPCNTR(pipe);
  1003. val = I915_READ(reg);
  1004. WARN((val & DISPLAY_PLANE_ENABLE),
  1005. "plane %c assertion failure, should be disabled but not\n",
  1006. plane_name(pipe));
  1007. return;
  1008. }
  1009. /* Need to check both planes against the pipe */
  1010. for_each_pipe(i) {
  1011. reg = DSPCNTR(i);
  1012. val = I915_READ(reg);
  1013. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1014. DISPPLANE_SEL_PIPE_SHIFT;
  1015. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1016. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1017. plane_name(i), pipe_name(pipe));
  1018. }
  1019. }
  1020. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1021. enum pipe pipe)
  1022. {
  1023. struct drm_device *dev = dev_priv->dev;
  1024. int reg, i;
  1025. u32 val;
  1026. if (IS_VALLEYVIEW(dev)) {
  1027. for (i = 0; i < dev_priv->num_plane; i++) {
  1028. reg = SPCNTR(pipe, i);
  1029. val = I915_READ(reg);
  1030. WARN((val & SP_ENABLE),
  1031. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1032. sprite_name(pipe, i), pipe_name(pipe));
  1033. }
  1034. } else if (INTEL_INFO(dev)->gen >= 7) {
  1035. reg = SPRCTL(pipe);
  1036. val = I915_READ(reg);
  1037. WARN((val & SPRITE_ENABLE),
  1038. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1039. plane_name(pipe), pipe_name(pipe));
  1040. } else if (INTEL_INFO(dev)->gen >= 5) {
  1041. reg = DVSCNTR(pipe);
  1042. val = I915_READ(reg);
  1043. WARN((val & DVS_ENABLE),
  1044. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1045. plane_name(pipe), pipe_name(pipe));
  1046. }
  1047. }
  1048. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1049. {
  1050. u32 val;
  1051. bool enabled;
  1052. if (HAS_PCH_LPT(dev_priv->dev)) {
  1053. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1054. return;
  1055. }
  1056. val = I915_READ(PCH_DREF_CONTROL);
  1057. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1058. DREF_SUPERSPREAD_SOURCE_MASK));
  1059. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1060. }
  1061. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1062. enum pipe pipe)
  1063. {
  1064. int reg;
  1065. u32 val;
  1066. bool enabled;
  1067. reg = PCH_TRANSCONF(pipe);
  1068. val = I915_READ(reg);
  1069. enabled = !!(val & TRANS_ENABLE);
  1070. WARN(enabled,
  1071. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1072. pipe_name(pipe));
  1073. }
  1074. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1075. enum pipe pipe, u32 port_sel, u32 val)
  1076. {
  1077. if ((val & DP_PORT_EN) == 0)
  1078. return false;
  1079. if (HAS_PCH_CPT(dev_priv->dev)) {
  1080. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1081. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1082. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1083. return false;
  1084. } else {
  1085. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1086. return false;
  1087. }
  1088. return true;
  1089. }
  1090. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1091. enum pipe pipe, u32 val)
  1092. {
  1093. if ((val & SDVO_ENABLE) == 0)
  1094. return false;
  1095. if (HAS_PCH_CPT(dev_priv->dev)) {
  1096. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1097. return false;
  1098. } else {
  1099. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1100. return false;
  1101. }
  1102. return true;
  1103. }
  1104. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1105. enum pipe pipe, u32 val)
  1106. {
  1107. if ((val & LVDS_PORT_EN) == 0)
  1108. return false;
  1109. if (HAS_PCH_CPT(dev_priv->dev)) {
  1110. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1111. return false;
  1112. } else {
  1113. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1114. return false;
  1115. }
  1116. return true;
  1117. }
  1118. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1119. enum pipe pipe, u32 val)
  1120. {
  1121. if ((val & ADPA_DAC_ENABLE) == 0)
  1122. return false;
  1123. if (HAS_PCH_CPT(dev_priv->dev)) {
  1124. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1125. return false;
  1126. } else {
  1127. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1128. return false;
  1129. }
  1130. return true;
  1131. }
  1132. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1133. enum pipe pipe, int reg, u32 port_sel)
  1134. {
  1135. u32 val = I915_READ(reg);
  1136. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1137. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1138. reg, pipe_name(pipe));
  1139. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1140. && (val & DP_PIPEB_SELECT),
  1141. "IBX PCH dp port still using transcoder B\n");
  1142. }
  1143. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1144. enum pipe pipe, int reg)
  1145. {
  1146. u32 val = I915_READ(reg);
  1147. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1148. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1149. reg, pipe_name(pipe));
  1150. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1151. && (val & SDVO_PIPE_B_SELECT),
  1152. "IBX PCH hdmi port still using transcoder B\n");
  1153. }
  1154. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1155. enum pipe pipe)
  1156. {
  1157. int reg;
  1158. u32 val;
  1159. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1160. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1161. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1162. reg = PCH_ADPA;
  1163. val = I915_READ(reg);
  1164. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1165. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1166. pipe_name(pipe));
  1167. reg = PCH_LVDS;
  1168. val = I915_READ(reg);
  1169. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1170. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1171. pipe_name(pipe));
  1172. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1173. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1174. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1175. }
  1176. static void vlv_enable_pll(struct intel_crtc *crtc)
  1177. {
  1178. struct drm_device *dev = crtc->base.dev;
  1179. struct drm_i915_private *dev_priv = dev->dev_private;
  1180. int reg = DPLL(crtc->pipe);
  1181. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1182. assert_pipe_disabled(dev_priv, crtc->pipe);
  1183. /* No really, not for ILK+ */
  1184. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1185. /* PLL is protected by panel, make sure we can write it */
  1186. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1187. assert_panel_unlocked(dev_priv, crtc->pipe);
  1188. I915_WRITE(reg, dpll);
  1189. POSTING_READ(reg);
  1190. udelay(150);
  1191. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1192. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1193. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1194. POSTING_READ(DPLL_MD(crtc->pipe));
  1195. /* We do this three times for luck */
  1196. I915_WRITE(reg, dpll);
  1197. POSTING_READ(reg);
  1198. udelay(150); /* wait for warmup */
  1199. I915_WRITE(reg, dpll);
  1200. POSTING_READ(reg);
  1201. udelay(150); /* wait for warmup */
  1202. I915_WRITE(reg, dpll);
  1203. POSTING_READ(reg);
  1204. udelay(150); /* wait for warmup */
  1205. }
  1206. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1207. {
  1208. struct drm_device *dev = crtc->base.dev;
  1209. struct drm_i915_private *dev_priv = dev->dev_private;
  1210. int reg = DPLL(crtc->pipe);
  1211. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1212. assert_pipe_disabled(dev_priv, crtc->pipe);
  1213. /* No really, not for ILK+ */
  1214. BUG_ON(dev_priv->info->gen >= 5);
  1215. /* PLL is protected by panel, make sure we can write it */
  1216. if (IS_MOBILE(dev) && !IS_I830(dev))
  1217. assert_panel_unlocked(dev_priv, crtc->pipe);
  1218. I915_WRITE(reg, dpll);
  1219. /* Wait for the clocks to stabilize. */
  1220. POSTING_READ(reg);
  1221. udelay(150);
  1222. if (INTEL_INFO(dev)->gen >= 4) {
  1223. I915_WRITE(DPLL_MD(crtc->pipe),
  1224. crtc->config.dpll_hw_state.dpll_md);
  1225. } else {
  1226. /* The pixel multiplier can only be updated once the
  1227. * DPLL is enabled and the clocks are stable.
  1228. *
  1229. * So write it again.
  1230. */
  1231. I915_WRITE(reg, dpll);
  1232. }
  1233. /* We do this three times for luck */
  1234. I915_WRITE(reg, dpll);
  1235. POSTING_READ(reg);
  1236. udelay(150); /* wait for warmup */
  1237. I915_WRITE(reg, dpll);
  1238. POSTING_READ(reg);
  1239. udelay(150); /* wait for warmup */
  1240. I915_WRITE(reg, dpll);
  1241. POSTING_READ(reg);
  1242. udelay(150); /* wait for warmup */
  1243. }
  1244. /**
  1245. * i9xx_disable_pll - disable a PLL
  1246. * @dev_priv: i915 private structure
  1247. * @pipe: pipe PLL to disable
  1248. *
  1249. * Disable the PLL for @pipe, making sure the pipe is off first.
  1250. *
  1251. * Note! This is for pre-ILK only.
  1252. */
  1253. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1254. {
  1255. /* Don't disable pipe A or pipe A PLLs if needed */
  1256. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1257. return;
  1258. /* Make sure the pipe isn't still relying on us */
  1259. assert_pipe_disabled(dev_priv, pipe);
  1260. I915_WRITE(DPLL(pipe), 0);
  1261. POSTING_READ(DPLL(pipe));
  1262. }
  1263. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1264. {
  1265. u32 port_mask;
  1266. if (!port)
  1267. port_mask = DPLL_PORTB_READY_MASK;
  1268. else
  1269. port_mask = DPLL_PORTC_READY_MASK;
  1270. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1271. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1272. 'B' + port, I915_READ(DPLL(0)));
  1273. }
  1274. /**
  1275. * ironlake_enable_shared_dpll - enable PCH PLL
  1276. * @dev_priv: i915 private structure
  1277. * @pipe: pipe PLL to enable
  1278. *
  1279. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1280. * drives the transcoder clock.
  1281. */
  1282. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1283. {
  1284. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1285. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1286. /* PCH PLLs only available on ILK, SNB and IVB */
  1287. BUG_ON(dev_priv->info->gen < 5);
  1288. if (WARN_ON(pll == NULL))
  1289. return;
  1290. if (WARN_ON(pll->refcount == 0))
  1291. return;
  1292. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1293. pll->name, pll->active, pll->on,
  1294. crtc->base.base.id);
  1295. if (pll->active++) {
  1296. WARN_ON(!pll->on);
  1297. assert_shared_dpll_enabled(dev_priv, pll);
  1298. return;
  1299. }
  1300. WARN_ON(pll->on);
  1301. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1302. pll->enable(dev_priv, pll);
  1303. pll->on = true;
  1304. }
  1305. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1306. {
  1307. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1308. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1309. /* PCH only available on ILK+ */
  1310. BUG_ON(dev_priv->info->gen < 5);
  1311. if (WARN_ON(pll == NULL))
  1312. return;
  1313. if (WARN_ON(pll->refcount == 0))
  1314. return;
  1315. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1316. pll->name, pll->active, pll->on,
  1317. crtc->base.base.id);
  1318. if (WARN_ON(pll->active == 0)) {
  1319. assert_shared_dpll_disabled(dev_priv, pll);
  1320. return;
  1321. }
  1322. assert_shared_dpll_enabled(dev_priv, pll);
  1323. WARN_ON(!pll->on);
  1324. if (--pll->active)
  1325. return;
  1326. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1327. pll->disable(dev_priv, pll);
  1328. pll->on = false;
  1329. }
  1330. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1331. enum pipe pipe)
  1332. {
  1333. struct drm_device *dev = dev_priv->dev;
  1334. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1335. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1336. uint32_t reg, val, pipeconf_val;
  1337. /* PCH only available on ILK+ */
  1338. BUG_ON(dev_priv->info->gen < 5);
  1339. /* Make sure PCH DPLL is enabled */
  1340. assert_shared_dpll_enabled(dev_priv,
  1341. intel_crtc_to_shared_dpll(intel_crtc));
  1342. /* FDI must be feeding us bits for PCH ports */
  1343. assert_fdi_tx_enabled(dev_priv, pipe);
  1344. assert_fdi_rx_enabled(dev_priv, pipe);
  1345. if (HAS_PCH_CPT(dev)) {
  1346. /* Workaround: Set the timing override bit before enabling the
  1347. * pch transcoder. */
  1348. reg = TRANS_CHICKEN2(pipe);
  1349. val = I915_READ(reg);
  1350. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1351. I915_WRITE(reg, val);
  1352. }
  1353. reg = PCH_TRANSCONF(pipe);
  1354. val = I915_READ(reg);
  1355. pipeconf_val = I915_READ(PIPECONF(pipe));
  1356. if (HAS_PCH_IBX(dev_priv->dev)) {
  1357. /*
  1358. * make the BPC in transcoder be consistent with
  1359. * that in pipeconf reg.
  1360. */
  1361. val &= ~PIPECONF_BPC_MASK;
  1362. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1363. }
  1364. val &= ~TRANS_INTERLACE_MASK;
  1365. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1366. if (HAS_PCH_IBX(dev_priv->dev) &&
  1367. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1368. val |= TRANS_LEGACY_INTERLACED_ILK;
  1369. else
  1370. val |= TRANS_INTERLACED;
  1371. else
  1372. val |= TRANS_PROGRESSIVE;
  1373. I915_WRITE(reg, val | TRANS_ENABLE);
  1374. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1375. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1376. }
  1377. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1378. enum transcoder cpu_transcoder)
  1379. {
  1380. u32 val, pipeconf_val;
  1381. /* PCH only available on ILK+ */
  1382. BUG_ON(dev_priv->info->gen < 5);
  1383. /* FDI must be feeding us bits for PCH ports */
  1384. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1385. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1386. /* Workaround: set timing override bit. */
  1387. val = I915_READ(_TRANSA_CHICKEN2);
  1388. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1389. I915_WRITE(_TRANSA_CHICKEN2, val);
  1390. val = TRANS_ENABLE;
  1391. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1392. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1393. PIPECONF_INTERLACED_ILK)
  1394. val |= TRANS_INTERLACED;
  1395. else
  1396. val |= TRANS_PROGRESSIVE;
  1397. I915_WRITE(LPT_TRANSCONF, val);
  1398. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1399. DRM_ERROR("Failed to enable PCH transcoder\n");
  1400. }
  1401. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1402. enum pipe pipe)
  1403. {
  1404. struct drm_device *dev = dev_priv->dev;
  1405. uint32_t reg, val;
  1406. /* FDI relies on the transcoder */
  1407. assert_fdi_tx_disabled(dev_priv, pipe);
  1408. assert_fdi_rx_disabled(dev_priv, pipe);
  1409. /* Ports must be off as well */
  1410. assert_pch_ports_disabled(dev_priv, pipe);
  1411. reg = PCH_TRANSCONF(pipe);
  1412. val = I915_READ(reg);
  1413. val &= ~TRANS_ENABLE;
  1414. I915_WRITE(reg, val);
  1415. /* wait for PCH transcoder off, transcoder state */
  1416. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1417. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1418. if (!HAS_PCH_IBX(dev)) {
  1419. /* Workaround: Clear the timing override chicken bit again. */
  1420. reg = TRANS_CHICKEN2(pipe);
  1421. val = I915_READ(reg);
  1422. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1423. I915_WRITE(reg, val);
  1424. }
  1425. }
  1426. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1427. {
  1428. u32 val;
  1429. val = I915_READ(LPT_TRANSCONF);
  1430. val &= ~TRANS_ENABLE;
  1431. I915_WRITE(LPT_TRANSCONF, val);
  1432. /* wait for PCH transcoder off, transcoder state */
  1433. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1434. DRM_ERROR("Failed to disable PCH transcoder\n");
  1435. /* Workaround: clear timing override bit. */
  1436. val = I915_READ(_TRANSA_CHICKEN2);
  1437. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1438. I915_WRITE(_TRANSA_CHICKEN2, val);
  1439. }
  1440. /**
  1441. * intel_enable_pipe - enable a pipe, asserting requirements
  1442. * @dev_priv: i915 private structure
  1443. * @pipe: pipe to enable
  1444. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1445. *
  1446. * Enable @pipe, making sure that various hardware specific requirements
  1447. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1448. *
  1449. * @pipe should be %PIPE_A or %PIPE_B.
  1450. *
  1451. * Will wait until the pipe is actually running (i.e. first vblank) before
  1452. * returning.
  1453. */
  1454. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1455. bool pch_port, bool dsi)
  1456. {
  1457. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1458. pipe);
  1459. enum pipe pch_transcoder;
  1460. int reg;
  1461. u32 val;
  1462. assert_planes_disabled(dev_priv, pipe);
  1463. assert_sprites_disabled(dev_priv, pipe);
  1464. if (HAS_PCH_LPT(dev_priv->dev))
  1465. pch_transcoder = TRANSCODER_A;
  1466. else
  1467. pch_transcoder = pipe;
  1468. /*
  1469. * A pipe without a PLL won't actually be able to drive bits from
  1470. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1471. * need the check.
  1472. */
  1473. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1474. if (dsi)
  1475. assert_dsi_pll_enabled(dev_priv);
  1476. else
  1477. assert_pll_enabled(dev_priv, pipe);
  1478. else {
  1479. if (pch_port) {
  1480. /* if driving the PCH, we need FDI enabled */
  1481. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1482. assert_fdi_tx_pll_enabled(dev_priv,
  1483. (enum pipe) cpu_transcoder);
  1484. }
  1485. /* FIXME: assert CPU port conditions for SNB+ */
  1486. }
  1487. reg = PIPECONF(cpu_transcoder);
  1488. val = I915_READ(reg);
  1489. if (val & PIPECONF_ENABLE)
  1490. return;
  1491. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1492. intel_wait_for_vblank(dev_priv->dev, pipe);
  1493. }
  1494. /**
  1495. * intel_disable_pipe - disable a pipe, asserting requirements
  1496. * @dev_priv: i915 private structure
  1497. * @pipe: pipe to disable
  1498. *
  1499. * Disable @pipe, making sure that various hardware specific requirements
  1500. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1501. *
  1502. * @pipe should be %PIPE_A or %PIPE_B.
  1503. *
  1504. * Will wait until the pipe has shut down before returning.
  1505. */
  1506. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1507. enum pipe pipe)
  1508. {
  1509. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1510. pipe);
  1511. int reg;
  1512. u32 val;
  1513. /*
  1514. * Make sure planes won't keep trying to pump pixels to us,
  1515. * or we might hang the display.
  1516. */
  1517. assert_planes_disabled(dev_priv, pipe);
  1518. assert_sprites_disabled(dev_priv, pipe);
  1519. /* Don't disable pipe A or pipe A PLLs if needed */
  1520. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1521. return;
  1522. reg = PIPECONF(cpu_transcoder);
  1523. val = I915_READ(reg);
  1524. if ((val & PIPECONF_ENABLE) == 0)
  1525. return;
  1526. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1527. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1528. }
  1529. /*
  1530. * Plane regs are double buffered, going from enabled->disabled needs a
  1531. * trigger in order to latch. The display address reg provides this.
  1532. */
  1533. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1534. enum plane plane)
  1535. {
  1536. if (dev_priv->info->gen >= 4)
  1537. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1538. else
  1539. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1540. }
  1541. /**
  1542. * intel_enable_plane - enable a display plane on a given pipe
  1543. * @dev_priv: i915 private structure
  1544. * @plane: plane to enable
  1545. * @pipe: pipe being fed
  1546. *
  1547. * Enable @plane on @pipe, making sure that @pipe is running first.
  1548. */
  1549. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1550. enum plane plane, enum pipe pipe)
  1551. {
  1552. int reg;
  1553. u32 val;
  1554. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1555. assert_pipe_enabled(dev_priv, pipe);
  1556. reg = DSPCNTR(plane);
  1557. val = I915_READ(reg);
  1558. if (val & DISPLAY_PLANE_ENABLE)
  1559. return;
  1560. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1561. intel_flush_display_plane(dev_priv, plane);
  1562. intel_wait_for_vblank(dev_priv->dev, pipe);
  1563. }
  1564. /**
  1565. * intel_disable_plane - disable a display plane
  1566. * @dev_priv: i915 private structure
  1567. * @plane: plane to disable
  1568. * @pipe: pipe consuming the data
  1569. *
  1570. * Disable @plane; should be an independent operation.
  1571. */
  1572. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1573. enum plane plane, enum pipe pipe)
  1574. {
  1575. int reg;
  1576. u32 val;
  1577. reg = DSPCNTR(plane);
  1578. val = I915_READ(reg);
  1579. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1580. return;
  1581. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1582. intel_flush_display_plane(dev_priv, plane);
  1583. intel_wait_for_vblank(dev_priv->dev, pipe);
  1584. }
  1585. static bool need_vtd_wa(struct drm_device *dev)
  1586. {
  1587. #ifdef CONFIG_INTEL_IOMMU
  1588. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1589. return true;
  1590. #endif
  1591. return false;
  1592. }
  1593. int
  1594. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1595. struct drm_i915_gem_object *obj,
  1596. struct intel_ring_buffer *pipelined)
  1597. {
  1598. struct drm_i915_private *dev_priv = dev->dev_private;
  1599. u32 alignment;
  1600. int ret;
  1601. switch (obj->tiling_mode) {
  1602. case I915_TILING_NONE:
  1603. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1604. alignment = 128 * 1024;
  1605. else if (INTEL_INFO(dev)->gen >= 4)
  1606. alignment = 4 * 1024;
  1607. else
  1608. alignment = 64 * 1024;
  1609. break;
  1610. case I915_TILING_X:
  1611. /* pin() will align the object as required by fence */
  1612. alignment = 0;
  1613. break;
  1614. case I915_TILING_Y:
  1615. /* Despite that we check this in framebuffer_init userspace can
  1616. * screw us over and change the tiling after the fact. Only
  1617. * pinned buffers can't change their tiling. */
  1618. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1619. return -EINVAL;
  1620. default:
  1621. BUG();
  1622. }
  1623. /* Note that the w/a also requires 64 PTE of padding following the
  1624. * bo. We currently fill all unused PTE with the shadow page and so
  1625. * we should always have valid PTE following the scanout preventing
  1626. * the VT-d warning.
  1627. */
  1628. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1629. alignment = 256 * 1024;
  1630. dev_priv->mm.interruptible = false;
  1631. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1632. if (ret)
  1633. goto err_interruptible;
  1634. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1635. * fence, whereas 965+ only requires a fence if using
  1636. * framebuffer compression. For simplicity, we always install
  1637. * a fence as the cost is not that onerous.
  1638. */
  1639. ret = i915_gem_object_get_fence(obj);
  1640. if (ret)
  1641. goto err_unpin;
  1642. i915_gem_object_pin_fence(obj);
  1643. dev_priv->mm.interruptible = true;
  1644. return 0;
  1645. err_unpin:
  1646. i915_gem_object_unpin_from_display_plane(obj);
  1647. err_interruptible:
  1648. dev_priv->mm.interruptible = true;
  1649. return ret;
  1650. }
  1651. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1652. {
  1653. i915_gem_object_unpin_fence(obj);
  1654. i915_gem_object_unpin_from_display_plane(obj);
  1655. }
  1656. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1657. * is assumed to be a power-of-two. */
  1658. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1659. unsigned int tiling_mode,
  1660. unsigned int cpp,
  1661. unsigned int pitch)
  1662. {
  1663. if (tiling_mode != I915_TILING_NONE) {
  1664. unsigned int tile_rows, tiles;
  1665. tile_rows = *y / 8;
  1666. *y %= 8;
  1667. tiles = *x / (512/cpp);
  1668. *x %= 512/cpp;
  1669. return tile_rows * pitch * 8 + tiles * 4096;
  1670. } else {
  1671. unsigned int offset;
  1672. offset = *y * pitch + *x * cpp;
  1673. *y = 0;
  1674. *x = (offset & 4095) / cpp;
  1675. return offset & -4096;
  1676. }
  1677. }
  1678. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1679. int x, int y)
  1680. {
  1681. struct drm_device *dev = crtc->dev;
  1682. struct drm_i915_private *dev_priv = dev->dev_private;
  1683. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1684. struct intel_framebuffer *intel_fb;
  1685. struct drm_i915_gem_object *obj;
  1686. int plane = intel_crtc->plane;
  1687. unsigned long linear_offset;
  1688. u32 dspcntr;
  1689. u32 reg;
  1690. switch (plane) {
  1691. case 0:
  1692. case 1:
  1693. break;
  1694. default:
  1695. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1696. return -EINVAL;
  1697. }
  1698. intel_fb = to_intel_framebuffer(fb);
  1699. obj = intel_fb->obj;
  1700. reg = DSPCNTR(plane);
  1701. dspcntr = I915_READ(reg);
  1702. /* Mask out pixel format bits in case we change it */
  1703. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1704. switch (fb->pixel_format) {
  1705. case DRM_FORMAT_C8:
  1706. dspcntr |= DISPPLANE_8BPP;
  1707. break;
  1708. case DRM_FORMAT_XRGB1555:
  1709. case DRM_FORMAT_ARGB1555:
  1710. dspcntr |= DISPPLANE_BGRX555;
  1711. break;
  1712. case DRM_FORMAT_RGB565:
  1713. dspcntr |= DISPPLANE_BGRX565;
  1714. break;
  1715. case DRM_FORMAT_XRGB8888:
  1716. case DRM_FORMAT_ARGB8888:
  1717. dspcntr |= DISPPLANE_BGRX888;
  1718. break;
  1719. case DRM_FORMAT_XBGR8888:
  1720. case DRM_FORMAT_ABGR8888:
  1721. dspcntr |= DISPPLANE_RGBX888;
  1722. break;
  1723. case DRM_FORMAT_XRGB2101010:
  1724. case DRM_FORMAT_ARGB2101010:
  1725. dspcntr |= DISPPLANE_BGRX101010;
  1726. break;
  1727. case DRM_FORMAT_XBGR2101010:
  1728. case DRM_FORMAT_ABGR2101010:
  1729. dspcntr |= DISPPLANE_RGBX101010;
  1730. break;
  1731. default:
  1732. BUG();
  1733. }
  1734. if (INTEL_INFO(dev)->gen >= 4) {
  1735. if (obj->tiling_mode != I915_TILING_NONE)
  1736. dspcntr |= DISPPLANE_TILED;
  1737. else
  1738. dspcntr &= ~DISPPLANE_TILED;
  1739. }
  1740. if (IS_G4X(dev))
  1741. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1742. I915_WRITE(reg, dspcntr);
  1743. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1744. if (INTEL_INFO(dev)->gen >= 4) {
  1745. intel_crtc->dspaddr_offset =
  1746. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1747. fb->bits_per_pixel / 8,
  1748. fb->pitches[0]);
  1749. linear_offset -= intel_crtc->dspaddr_offset;
  1750. } else {
  1751. intel_crtc->dspaddr_offset = linear_offset;
  1752. }
  1753. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1754. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1755. fb->pitches[0]);
  1756. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1757. if (INTEL_INFO(dev)->gen >= 4) {
  1758. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1759. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1760. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1761. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1762. } else
  1763. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1764. POSTING_READ(reg);
  1765. return 0;
  1766. }
  1767. static int ironlake_update_plane(struct drm_crtc *crtc,
  1768. struct drm_framebuffer *fb, int x, int y)
  1769. {
  1770. struct drm_device *dev = crtc->dev;
  1771. struct drm_i915_private *dev_priv = dev->dev_private;
  1772. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1773. struct intel_framebuffer *intel_fb;
  1774. struct drm_i915_gem_object *obj;
  1775. int plane = intel_crtc->plane;
  1776. unsigned long linear_offset;
  1777. u32 dspcntr;
  1778. u32 reg;
  1779. switch (plane) {
  1780. case 0:
  1781. case 1:
  1782. case 2:
  1783. break;
  1784. default:
  1785. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1786. return -EINVAL;
  1787. }
  1788. intel_fb = to_intel_framebuffer(fb);
  1789. obj = intel_fb->obj;
  1790. reg = DSPCNTR(plane);
  1791. dspcntr = I915_READ(reg);
  1792. /* Mask out pixel format bits in case we change it */
  1793. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1794. switch (fb->pixel_format) {
  1795. case DRM_FORMAT_C8:
  1796. dspcntr |= DISPPLANE_8BPP;
  1797. break;
  1798. case DRM_FORMAT_RGB565:
  1799. dspcntr |= DISPPLANE_BGRX565;
  1800. break;
  1801. case DRM_FORMAT_XRGB8888:
  1802. case DRM_FORMAT_ARGB8888:
  1803. dspcntr |= DISPPLANE_BGRX888;
  1804. break;
  1805. case DRM_FORMAT_XBGR8888:
  1806. case DRM_FORMAT_ABGR8888:
  1807. dspcntr |= DISPPLANE_RGBX888;
  1808. break;
  1809. case DRM_FORMAT_XRGB2101010:
  1810. case DRM_FORMAT_ARGB2101010:
  1811. dspcntr |= DISPPLANE_BGRX101010;
  1812. break;
  1813. case DRM_FORMAT_XBGR2101010:
  1814. case DRM_FORMAT_ABGR2101010:
  1815. dspcntr |= DISPPLANE_RGBX101010;
  1816. break;
  1817. default:
  1818. BUG();
  1819. }
  1820. if (obj->tiling_mode != I915_TILING_NONE)
  1821. dspcntr |= DISPPLANE_TILED;
  1822. else
  1823. dspcntr &= ~DISPPLANE_TILED;
  1824. if (IS_HASWELL(dev))
  1825. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1826. else
  1827. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1828. I915_WRITE(reg, dspcntr);
  1829. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1830. intel_crtc->dspaddr_offset =
  1831. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1832. fb->bits_per_pixel / 8,
  1833. fb->pitches[0]);
  1834. linear_offset -= intel_crtc->dspaddr_offset;
  1835. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1836. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1837. fb->pitches[0]);
  1838. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1839. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1840. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1841. if (IS_HASWELL(dev)) {
  1842. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1843. } else {
  1844. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1845. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1846. }
  1847. POSTING_READ(reg);
  1848. return 0;
  1849. }
  1850. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1851. static int
  1852. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1853. int x, int y, enum mode_set_atomic state)
  1854. {
  1855. struct drm_device *dev = crtc->dev;
  1856. struct drm_i915_private *dev_priv = dev->dev_private;
  1857. if (dev_priv->display.disable_fbc)
  1858. dev_priv->display.disable_fbc(dev);
  1859. intel_increase_pllclock(crtc);
  1860. return dev_priv->display.update_plane(crtc, fb, x, y);
  1861. }
  1862. void intel_display_handle_reset(struct drm_device *dev)
  1863. {
  1864. struct drm_i915_private *dev_priv = dev->dev_private;
  1865. struct drm_crtc *crtc;
  1866. /*
  1867. * Flips in the rings have been nuked by the reset,
  1868. * so complete all pending flips so that user space
  1869. * will get its events and not get stuck.
  1870. *
  1871. * Also update the base address of all primary
  1872. * planes to the the last fb to make sure we're
  1873. * showing the correct fb after a reset.
  1874. *
  1875. * Need to make two loops over the crtcs so that we
  1876. * don't try to grab a crtc mutex before the
  1877. * pending_flip_queue really got woken up.
  1878. */
  1879. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1880. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1881. enum plane plane = intel_crtc->plane;
  1882. intel_prepare_page_flip(dev, plane);
  1883. intel_finish_page_flip_plane(dev, plane);
  1884. }
  1885. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1886. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1887. mutex_lock(&crtc->mutex);
  1888. if (intel_crtc->active)
  1889. dev_priv->display.update_plane(crtc, crtc->fb,
  1890. crtc->x, crtc->y);
  1891. mutex_unlock(&crtc->mutex);
  1892. }
  1893. }
  1894. static int
  1895. intel_finish_fb(struct drm_framebuffer *old_fb)
  1896. {
  1897. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1898. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1899. bool was_interruptible = dev_priv->mm.interruptible;
  1900. int ret;
  1901. /* Big Hammer, we also need to ensure that any pending
  1902. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1903. * current scanout is retired before unpinning the old
  1904. * framebuffer.
  1905. *
  1906. * This should only fail upon a hung GPU, in which case we
  1907. * can safely continue.
  1908. */
  1909. dev_priv->mm.interruptible = false;
  1910. ret = i915_gem_object_finish_gpu(obj);
  1911. dev_priv->mm.interruptible = was_interruptible;
  1912. return ret;
  1913. }
  1914. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1915. {
  1916. struct drm_device *dev = crtc->dev;
  1917. struct drm_i915_master_private *master_priv;
  1918. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1919. if (!dev->primary->master)
  1920. return;
  1921. master_priv = dev->primary->master->driver_priv;
  1922. if (!master_priv->sarea_priv)
  1923. return;
  1924. switch (intel_crtc->pipe) {
  1925. case 0:
  1926. master_priv->sarea_priv->pipeA_x = x;
  1927. master_priv->sarea_priv->pipeA_y = y;
  1928. break;
  1929. case 1:
  1930. master_priv->sarea_priv->pipeB_x = x;
  1931. master_priv->sarea_priv->pipeB_y = y;
  1932. break;
  1933. default:
  1934. break;
  1935. }
  1936. }
  1937. static int
  1938. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1939. struct drm_framebuffer *fb)
  1940. {
  1941. struct drm_device *dev = crtc->dev;
  1942. struct drm_i915_private *dev_priv = dev->dev_private;
  1943. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1944. struct drm_framebuffer *old_fb;
  1945. int ret;
  1946. /* no fb bound */
  1947. if (!fb) {
  1948. DRM_ERROR("No FB bound\n");
  1949. return 0;
  1950. }
  1951. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1952. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1953. plane_name(intel_crtc->plane),
  1954. INTEL_INFO(dev)->num_pipes);
  1955. return -EINVAL;
  1956. }
  1957. mutex_lock(&dev->struct_mutex);
  1958. ret = intel_pin_and_fence_fb_obj(dev,
  1959. to_intel_framebuffer(fb)->obj,
  1960. NULL);
  1961. if (ret != 0) {
  1962. mutex_unlock(&dev->struct_mutex);
  1963. DRM_ERROR("pin & fence failed\n");
  1964. return ret;
  1965. }
  1966. /* Update pipe size and adjust fitter if needed */
  1967. if (i915_fastboot) {
  1968. I915_WRITE(PIPESRC(intel_crtc->pipe),
  1969. ((crtc->mode.hdisplay - 1) << 16) |
  1970. (crtc->mode.vdisplay - 1));
  1971. if (!intel_crtc->config.pch_pfit.size &&
  1972. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  1973. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  1974. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  1975. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  1976. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  1977. }
  1978. }
  1979. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1980. if (ret) {
  1981. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1982. mutex_unlock(&dev->struct_mutex);
  1983. DRM_ERROR("failed to update base address\n");
  1984. return ret;
  1985. }
  1986. old_fb = crtc->fb;
  1987. crtc->fb = fb;
  1988. crtc->x = x;
  1989. crtc->y = y;
  1990. if (old_fb) {
  1991. if (intel_crtc->active && old_fb != fb)
  1992. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1993. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1994. }
  1995. intel_update_fbc(dev);
  1996. intel_edp_psr_update(dev);
  1997. mutex_unlock(&dev->struct_mutex);
  1998. intel_crtc_update_sarea_pos(crtc, x, y);
  1999. return 0;
  2000. }
  2001. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2002. {
  2003. struct drm_device *dev = crtc->dev;
  2004. struct drm_i915_private *dev_priv = dev->dev_private;
  2005. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2006. int pipe = intel_crtc->pipe;
  2007. u32 reg, temp;
  2008. /* enable normal train */
  2009. reg = FDI_TX_CTL(pipe);
  2010. temp = I915_READ(reg);
  2011. if (IS_IVYBRIDGE(dev)) {
  2012. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2013. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2014. } else {
  2015. temp &= ~FDI_LINK_TRAIN_NONE;
  2016. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2017. }
  2018. I915_WRITE(reg, temp);
  2019. reg = FDI_RX_CTL(pipe);
  2020. temp = I915_READ(reg);
  2021. if (HAS_PCH_CPT(dev)) {
  2022. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2023. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2024. } else {
  2025. temp &= ~FDI_LINK_TRAIN_NONE;
  2026. temp |= FDI_LINK_TRAIN_NONE;
  2027. }
  2028. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2029. /* wait one idle pattern time */
  2030. POSTING_READ(reg);
  2031. udelay(1000);
  2032. /* IVB wants error correction enabled */
  2033. if (IS_IVYBRIDGE(dev))
  2034. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2035. FDI_FE_ERRC_ENABLE);
  2036. }
  2037. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2038. {
  2039. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2040. }
  2041. static void ivb_modeset_global_resources(struct drm_device *dev)
  2042. {
  2043. struct drm_i915_private *dev_priv = dev->dev_private;
  2044. struct intel_crtc *pipe_B_crtc =
  2045. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2046. struct intel_crtc *pipe_C_crtc =
  2047. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2048. uint32_t temp;
  2049. /*
  2050. * When everything is off disable fdi C so that we could enable fdi B
  2051. * with all lanes. Note that we don't care about enabled pipes without
  2052. * an enabled pch encoder.
  2053. */
  2054. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2055. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2056. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2057. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2058. temp = I915_READ(SOUTH_CHICKEN1);
  2059. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2060. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2061. I915_WRITE(SOUTH_CHICKEN1, temp);
  2062. }
  2063. }
  2064. /* The FDI link training functions for ILK/Ibexpeak. */
  2065. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2066. {
  2067. struct drm_device *dev = crtc->dev;
  2068. struct drm_i915_private *dev_priv = dev->dev_private;
  2069. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2070. int pipe = intel_crtc->pipe;
  2071. int plane = intel_crtc->plane;
  2072. u32 reg, temp, tries;
  2073. /* FDI needs bits from pipe & plane first */
  2074. assert_pipe_enabled(dev_priv, pipe);
  2075. assert_plane_enabled(dev_priv, plane);
  2076. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2077. for train result */
  2078. reg = FDI_RX_IMR(pipe);
  2079. temp = I915_READ(reg);
  2080. temp &= ~FDI_RX_SYMBOL_LOCK;
  2081. temp &= ~FDI_RX_BIT_LOCK;
  2082. I915_WRITE(reg, temp);
  2083. I915_READ(reg);
  2084. udelay(150);
  2085. /* enable CPU FDI TX and PCH FDI RX */
  2086. reg = FDI_TX_CTL(pipe);
  2087. temp = I915_READ(reg);
  2088. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2089. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2090. temp &= ~FDI_LINK_TRAIN_NONE;
  2091. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2092. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2093. reg = FDI_RX_CTL(pipe);
  2094. temp = I915_READ(reg);
  2095. temp &= ~FDI_LINK_TRAIN_NONE;
  2096. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2097. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2098. POSTING_READ(reg);
  2099. udelay(150);
  2100. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2101. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2102. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2103. FDI_RX_PHASE_SYNC_POINTER_EN);
  2104. reg = FDI_RX_IIR(pipe);
  2105. for (tries = 0; tries < 5; tries++) {
  2106. temp = I915_READ(reg);
  2107. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2108. if ((temp & FDI_RX_BIT_LOCK)) {
  2109. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2110. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2111. break;
  2112. }
  2113. }
  2114. if (tries == 5)
  2115. DRM_ERROR("FDI train 1 fail!\n");
  2116. /* Train 2 */
  2117. reg = FDI_TX_CTL(pipe);
  2118. temp = I915_READ(reg);
  2119. temp &= ~FDI_LINK_TRAIN_NONE;
  2120. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2121. I915_WRITE(reg, temp);
  2122. reg = FDI_RX_CTL(pipe);
  2123. temp = I915_READ(reg);
  2124. temp &= ~FDI_LINK_TRAIN_NONE;
  2125. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2126. I915_WRITE(reg, temp);
  2127. POSTING_READ(reg);
  2128. udelay(150);
  2129. reg = FDI_RX_IIR(pipe);
  2130. for (tries = 0; tries < 5; tries++) {
  2131. temp = I915_READ(reg);
  2132. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2133. if (temp & FDI_RX_SYMBOL_LOCK) {
  2134. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2135. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2136. break;
  2137. }
  2138. }
  2139. if (tries == 5)
  2140. DRM_ERROR("FDI train 2 fail!\n");
  2141. DRM_DEBUG_KMS("FDI train done\n");
  2142. }
  2143. static const int snb_b_fdi_train_param[] = {
  2144. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2145. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2146. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2147. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2148. };
  2149. /* The FDI link training functions for SNB/Cougarpoint. */
  2150. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2151. {
  2152. struct drm_device *dev = crtc->dev;
  2153. struct drm_i915_private *dev_priv = dev->dev_private;
  2154. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2155. int pipe = intel_crtc->pipe;
  2156. u32 reg, temp, i, retry;
  2157. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2158. for train result */
  2159. reg = FDI_RX_IMR(pipe);
  2160. temp = I915_READ(reg);
  2161. temp &= ~FDI_RX_SYMBOL_LOCK;
  2162. temp &= ~FDI_RX_BIT_LOCK;
  2163. I915_WRITE(reg, temp);
  2164. POSTING_READ(reg);
  2165. udelay(150);
  2166. /* enable CPU FDI TX and PCH FDI RX */
  2167. reg = FDI_TX_CTL(pipe);
  2168. temp = I915_READ(reg);
  2169. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2170. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2171. temp &= ~FDI_LINK_TRAIN_NONE;
  2172. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2173. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2174. /* SNB-B */
  2175. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2176. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2177. I915_WRITE(FDI_RX_MISC(pipe),
  2178. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2179. reg = FDI_RX_CTL(pipe);
  2180. temp = I915_READ(reg);
  2181. if (HAS_PCH_CPT(dev)) {
  2182. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2183. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2184. } else {
  2185. temp &= ~FDI_LINK_TRAIN_NONE;
  2186. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2187. }
  2188. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2189. POSTING_READ(reg);
  2190. udelay(150);
  2191. for (i = 0; i < 4; i++) {
  2192. reg = FDI_TX_CTL(pipe);
  2193. temp = I915_READ(reg);
  2194. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2195. temp |= snb_b_fdi_train_param[i];
  2196. I915_WRITE(reg, temp);
  2197. POSTING_READ(reg);
  2198. udelay(500);
  2199. for (retry = 0; retry < 5; retry++) {
  2200. reg = FDI_RX_IIR(pipe);
  2201. temp = I915_READ(reg);
  2202. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2203. if (temp & FDI_RX_BIT_LOCK) {
  2204. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2205. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2206. break;
  2207. }
  2208. udelay(50);
  2209. }
  2210. if (retry < 5)
  2211. break;
  2212. }
  2213. if (i == 4)
  2214. DRM_ERROR("FDI train 1 fail!\n");
  2215. /* Train 2 */
  2216. reg = FDI_TX_CTL(pipe);
  2217. temp = I915_READ(reg);
  2218. temp &= ~FDI_LINK_TRAIN_NONE;
  2219. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2220. if (IS_GEN6(dev)) {
  2221. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2222. /* SNB-B */
  2223. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2224. }
  2225. I915_WRITE(reg, temp);
  2226. reg = FDI_RX_CTL(pipe);
  2227. temp = I915_READ(reg);
  2228. if (HAS_PCH_CPT(dev)) {
  2229. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2230. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2231. } else {
  2232. temp &= ~FDI_LINK_TRAIN_NONE;
  2233. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2234. }
  2235. I915_WRITE(reg, temp);
  2236. POSTING_READ(reg);
  2237. udelay(150);
  2238. for (i = 0; i < 4; i++) {
  2239. reg = FDI_TX_CTL(pipe);
  2240. temp = I915_READ(reg);
  2241. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2242. temp |= snb_b_fdi_train_param[i];
  2243. I915_WRITE(reg, temp);
  2244. POSTING_READ(reg);
  2245. udelay(500);
  2246. for (retry = 0; retry < 5; retry++) {
  2247. reg = FDI_RX_IIR(pipe);
  2248. temp = I915_READ(reg);
  2249. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2250. if (temp & FDI_RX_SYMBOL_LOCK) {
  2251. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2252. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2253. break;
  2254. }
  2255. udelay(50);
  2256. }
  2257. if (retry < 5)
  2258. break;
  2259. }
  2260. if (i == 4)
  2261. DRM_ERROR("FDI train 2 fail!\n");
  2262. DRM_DEBUG_KMS("FDI train done.\n");
  2263. }
  2264. /* Manual link training for Ivy Bridge A0 parts */
  2265. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2266. {
  2267. struct drm_device *dev = crtc->dev;
  2268. struct drm_i915_private *dev_priv = dev->dev_private;
  2269. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2270. int pipe = intel_crtc->pipe;
  2271. u32 reg, temp, i, j;
  2272. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2273. for train result */
  2274. reg = FDI_RX_IMR(pipe);
  2275. temp = I915_READ(reg);
  2276. temp &= ~FDI_RX_SYMBOL_LOCK;
  2277. temp &= ~FDI_RX_BIT_LOCK;
  2278. I915_WRITE(reg, temp);
  2279. POSTING_READ(reg);
  2280. udelay(150);
  2281. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2282. I915_READ(FDI_RX_IIR(pipe)));
  2283. /* Try each vswing and preemphasis setting twice before moving on */
  2284. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2285. /* disable first in case we need to retry */
  2286. reg = FDI_TX_CTL(pipe);
  2287. temp = I915_READ(reg);
  2288. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2289. temp &= ~FDI_TX_ENABLE;
  2290. I915_WRITE(reg, temp);
  2291. reg = FDI_RX_CTL(pipe);
  2292. temp = I915_READ(reg);
  2293. temp &= ~FDI_LINK_TRAIN_AUTO;
  2294. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2295. temp &= ~FDI_RX_ENABLE;
  2296. I915_WRITE(reg, temp);
  2297. /* enable CPU FDI TX and PCH FDI RX */
  2298. reg = FDI_TX_CTL(pipe);
  2299. temp = I915_READ(reg);
  2300. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2301. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2302. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2303. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2304. temp |= snb_b_fdi_train_param[j/2];
  2305. temp |= FDI_COMPOSITE_SYNC;
  2306. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2307. I915_WRITE(FDI_RX_MISC(pipe),
  2308. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2309. reg = FDI_RX_CTL(pipe);
  2310. temp = I915_READ(reg);
  2311. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2312. temp |= FDI_COMPOSITE_SYNC;
  2313. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2314. POSTING_READ(reg);
  2315. udelay(1); /* should be 0.5us */
  2316. for (i = 0; i < 4; i++) {
  2317. reg = FDI_RX_IIR(pipe);
  2318. temp = I915_READ(reg);
  2319. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2320. if (temp & FDI_RX_BIT_LOCK ||
  2321. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2322. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2323. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2324. i);
  2325. break;
  2326. }
  2327. udelay(1); /* should be 0.5us */
  2328. }
  2329. if (i == 4) {
  2330. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2331. continue;
  2332. }
  2333. /* Train 2 */
  2334. reg = FDI_TX_CTL(pipe);
  2335. temp = I915_READ(reg);
  2336. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2337. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2338. I915_WRITE(reg, temp);
  2339. reg = FDI_RX_CTL(pipe);
  2340. temp = I915_READ(reg);
  2341. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2342. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2343. I915_WRITE(reg, temp);
  2344. POSTING_READ(reg);
  2345. udelay(2); /* should be 1.5us */
  2346. for (i = 0; i < 4; i++) {
  2347. reg = FDI_RX_IIR(pipe);
  2348. temp = I915_READ(reg);
  2349. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2350. if (temp & FDI_RX_SYMBOL_LOCK ||
  2351. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2352. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2353. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2354. i);
  2355. goto train_done;
  2356. }
  2357. udelay(2); /* should be 1.5us */
  2358. }
  2359. if (i == 4)
  2360. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2361. }
  2362. train_done:
  2363. DRM_DEBUG_KMS("FDI train done.\n");
  2364. }
  2365. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2366. {
  2367. struct drm_device *dev = intel_crtc->base.dev;
  2368. struct drm_i915_private *dev_priv = dev->dev_private;
  2369. int pipe = intel_crtc->pipe;
  2370. u32 reg, temp;
  2371. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2372. reg = FDI_RX_CTL(pipe);
  2373. temp = I915_READ(reg);
  2374. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2375. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2376. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2377. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2378. POSTING_READ(reg);
  2379. udelay(200);
  2380. /* Switch from Rawclk to PCDclk */
  2381. temp = I915_READ(reg);
  2382. I915_WRITE(reg, temp | FDI_PCDCLK);
  2383. POSTING_READ(reg);
  2384. udelay(200);
  2385. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2386. reg = FDI_TX_CTL(pipe);
  2387. temp = I915_READ(reg);
  2388. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2389. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2390. POSTING_READ(reg);
  2391. udelay(100);
  2392. }
  2393. }
  2394. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2395. {
  2396. struct drm_device *dev = intel_crtc->base.dev;
  2397. struct drm_i915_private *dev_priv = dev->dev_private;
  2398. int pipe = intel_crtc->pipe;
  2399. u32 reg, temp;
  2400. /* Switch from PCDclk to Rawclk */
  2401. reg = FDI_RX_CTL(pipe);
  2402. temp = I915_READ(reg);
  2403. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2404. /* Disable CPU FDI TX PLL */
  2405. reg = FDI_TX_CTL(pipe);
  2406. temp = I915_READ(reg);
  2407. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2408. POSTING_READ(reg);
  2409. udelay(100);
  2410. reg = FDI_RX_CTL(pipe);
  2411. temp = I915_READ(reg);
  2412. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2413. /* Wait for the clocks to turn off. */
  2414. POSTING_READ(reg);
  2415. udelay(100);
  2416. }
  2417. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2418. {
  2419. struct drm_device *dev = crtc->dev;
  2420. struct drm_i915_private *dev_priv = dev->dev_private;
  2421. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2422. int pipe = intel_crtc->pipe;
  2423. u32 reg, temp;
  2424. /* disable CPU FDI tx and PCH FDI rx */
  2425. reg = FDI_TX_CTL(pipe);
  2426. temp = I915_READ(reg);
  2427. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2428. POSTING_READ(reg);
  2429. reg = FDI_RX_CTL(pipe);
  2430. temp = I915_READ(reg);
  2431. temp &= ~(0x7 << 16);
  2432. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2433. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2434. POSTING_READ(reg);
  2435. udelay(100);
  2436. /* Ironlake workaround, disable clock pointer after downing FDI */
  2437. if (HAS_PCH_IBX(dev)) {
  2438. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2439. }
  2440. /* still set train pattern 1 */
  2441. reg = FDI_TX_CTL(pipe);
  2442. temp = I915_READ(reg);
  2443. temp &= ~FDI_LINK_TRAIN_NONE;
  2444. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2445. I915_WRITE(reg, temp);
  2446. reg = FDI_RX_CTL(pipe);
  2447. temp = I915_READ(reg);
  2448. if (HAS_PCH_CPT(dev)) {
  2449. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2450. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2451. } else {
  2452. temp &= ~FDI_LINK_TRAIN_NONE;
  2453. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2454. }
  2455. /* BPC in FDI rx is consistent with that in PIPECONF */
  2456. temp &= ~(0x07 << 16);
  2457. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2458. I915_WRITE(reg, temp);
  2459. POSTING_READ(reg);
  2460. udelay(100);
  2461. }
  2462. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2463. {
  2464. struct drm_device *dev = crtc->dev;
  2465. struct drm_i915_private *dev_priv = dev->dev_private;
  2466. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2467. unsigned long flags;
  2468. bool pending;
  2469. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2470. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2471. return false;
  2472. spin_lock_irqsave(&dev->event_lock, flags);
  2473. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2474. spin_unlock_irqrestore(&dev->event_lock, flags);
  2475. return pending;
  2476. }
  2477. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2478. {
  2479. struct drm_device *dev = crtc->dev;
  2480. struct drm_i915_private *dev_priv = dev->dev_private;
  2481. if (crtc->fb == NULL)
  2482. return;
  2483. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2484. wait_event(dev_priv->pending_flip_queue,
  2485. !intel_crtc_has_pending_flip(crtc));
  2486. mutex_lock(&dev->struct_mutex);
  2487. intel_finish_fb(crtc->fb);
  2488. mutex_unlock(&dev->struct_mutex);
  2489. }
  2490. /* Program iCLKIP clock to the desired frequency */
  2491. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2492. {
  2493. struct drm_device *dev = crtc->dev;
  2494. struct drm_i915_private *dev_priv = dev->dev_private;
  2495. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2496. u32 temp;
  2497. mutex_lock(&dev_priv->dpio_lock);
  2498. /* It is necessary to ungate the pixclk gate prior to programming
  2499. * the divisors, and gate it back when it is done.
  2500. */
  2501. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2502. /* Disable SSCCTL */
  2503. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2504. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2505. SBI_SSCCTL_DISABLE,
  2506. SBI_ICLK);
  2507. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2508. if (crtc->mode.clock == 20000) {
  2509. auxdiv = 1;
  2510. divsel = 0x41;
  2511. phaseinc = 0x20;
  2512. } else {
  2513. /* The iCLK virtual clock root frequency is in MHz,
  2514. * but the crtc->mode.clock in in KHz. To get the divisors,
  2515. * it is necessary to divide one by another, so we
  2516. * convert the virtual clock precision to KHz here for higher
  2517. * precision.
  2518. */
  2519. u32 iclk_virtual_root_freq = 172800 * 1000;
  2520. u32 iclk_pi_range = 64;
  2521. u32 desired_divisor, msb_divisor_value, pi_value;
  2522. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2523. msb_divisor_value = desired_divisor / iclk_pi_range;
  2524. pi_value = desired_divisor % iclk_pi_range;
  2525. auxdiv = 0;
  2526. divsel = msb_divisor_value - 2;
  2527. phaseinc = pi_value;
  2528. }
  2529. /* This should not happen with any sane values */
  2530. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2531. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2532. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2533. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2534. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2535. crtc->mode.clock,
  2536. auxdiv,
  2537. divsel,
  2538. phasedir,
  2539. phaseinc);
  2540. /* Program SSCDIVINTPHASE6 */
  2541. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2542. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2543. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2544. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2545. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2546. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2547. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2548. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2549. /* Program SSCAUXDIV */
  2550. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2551. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2552. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2553. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2554. /* Enable modulator and associated divider */
  2555. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2556. temp &= ~SBI_SSCCTL_DISABLE;
  2557. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2558. /* Wait for initialization time */
  2559. udelay(24);
  2560. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2561. mutex_unlock(&dev_priv->dpio_lock);
  2562. }
  2563. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2564. enum pipe pch_transcoder)
  2565. {
  2566. struct drm_device *dev = crtc->base.dev;
  2567. struct drm_i915_private *dev_priv = dev->dev_private;
  2568. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2569. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2570. I915_READ(HTOTAL(cpu_transcoder)));
  2571. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2572. I915_READ(HBLANK(cpu_transcoder)));
  2573. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2574. I915_READ(HSYNC(cpu_transcoder)));
  2575. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2576. I915_READ(VTOTAL(cpu_transcoder)));
  2577. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2578. I915_READ(VBLANK(cpu_transcoder)));
  2579. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2580. I915_READ(VSYNC(cpu_transcoder)));
  2581. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2582. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2583. }
  2584. /*
  2585. * Enable PCH resources required for PCH ports:
  2586. * - PCH PLLs
  2587. * - FDI training & RX/TX
  2588. * - update transcoder timings
  2589. * - DP transcoding bits
  2590. * - transcoder
  2591. */
  2592. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2593. {
  2594. struct drm_device *dev = crtc->dev;
  2595. struct drm_i915_private *dev_priv = dev->dev_private;
  2596. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2597. int pipe = intel_crtc->pipe;
  2598. u32 reg, temp;
  2599. assert_pch_transcoder_disabled(dev_priv, pipe);
  2600. /* Write the TU size bits before fdi link training, so that error
  2601. * detection works. */
  2602. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2603. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2604. /* For PCH output, training FDI link */
  2605. dev_priv->display.fdi_link_train(crtc);
  2606. /* We need to program the right clock selection before writing the pixel
  2607. * mutliplier into the DPLL. */
  2608. if (HAS_PCH_CPT(dev)) {
  2609. u32 sel;
  2610. temp = I915_READ(PCH_DPLL_SEL);
  2611. temp |= TRANS_DPLL_ENABLE(pipe);
  2612. sel = TRANS_DPLLB_SEL(pipe);
  2613. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2614. temp |= sel;
  2615. else
  2616. temp &= ~sel;
  2617. I915_WRITE(PCH_DPLL_SEL, temp);
  2618. }
  2619. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2620. * transcoder, and we actually should do this to not upset any PCH
  2621. * transcoder that already use the clock when we share it.
  2622. *
  2623. * Note that enable_shared_dpll tries to do the right thing, but
  2624. * get_shared_dpll unconditionally resets the pll - we need that to have
  2625. * the right LVDS enable sequence. */
  2626. ironlake_enable_shared_dpll(intel_crtc);
  2627. /* set transcoder timing, panel must allow it */
  2628. assert_panel_unlocked(dev_priv, pipe);
  2629. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2630. intel_fdi_normal_train(crtc);
  2631. /* For PCH DP, enable TRANS_DP_CTL */
  2632. if (HAS_PCH_CPT(dev) &&
  2633. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2634. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2635. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2636. reg = TRANS_DP_CTL(pipe);
  2637. temp = I915_READ(reg);
  2638. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2639. TRANS_DP_SYNC_MASK |
  2640. TRANS_DP_BPC_MASK);
  2641. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2642. TRANS_DP_ENH_FRAMING);
  2643. temp |= bpc << 9; /* same format but at 11:9 */
  2644. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2645. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2646. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2647. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2648. switch (intel_trans_dp_port_sel(crtc)) {
  2649. case PCH_DP_B:
  2650. temp |= TRANS_DP_PORT_SEL_B;
  2651. break;
  2652. case PCH_DP_C:
  2653. temp |= TRANS_DP_PORT_SEL_C;
  2654. break;
  2655. case PCH_DP_D:
  2656. temp |= TRANS_DP_PORT_SEL_D;
  2657. break;
  2658. default:
  2659. BUG();
  2660. }
  2661. I915_WRITE(reg, temp);
  2662. }
  2663. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2664. }
  2665. static void lpt_pch_enable(struct drm_crtc *crtc)
  2666. {
  2667. struct drm_device *dev = crtc->dev;
  2668. struct drm_i915_private *dev_priv = dev->dev_private;
  2669. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2670. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2671. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2672. lpt_program_iclkip(crtc);
  2673. /* Set transcoder timing. */
  2674. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2675. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2676. }
  2677. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2678. {
  2679. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2680. if (pll == NULL)
  2681. return;
  2682. if (pll->refcount == 0) {
  2683. WARN(1, "bad %s refcount\n", pll->name);
  2684. return;
  2685. }
  2686. if (--pll->refcount == 0) {
  2687. WARN_ON(pll->on);
  2688. WARN_ON(pll->active);
  2689. }
  2690. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2691. }
  2692. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2693. {
  2694. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2695. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2696. enum intel_dpll_id i;
  2697. if (pll) {
  2698. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2699. crtc->base.base.id, pll->name);
  2700. intel_put_shared_dpll(crtc);
  2701. }
  2702. if (HAS_PCH_IBX(dev_priv->dev)) {
  2703. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2704. i = (enum intel_dpll_id) crtc->pipe;
  2705. pll = &dev_priv->shared_dplls[i];
  2706. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2707. crtc->base.base.id, pll->name);
  2708. goto found;
  2709. }
  2710. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2711. pll = &dev_priv->shared_dplls[i];
  2712. /* Only want to check enabled timings first */
  2713. if (pll->refcount == 0)
  2714. continue;
  2715. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2716. sizeof(pll->hw_state)) == 0) {
  2717. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2718. crtc->base.base.id,
  2719. pll->name, pll->refcount, pll->active);
  2720. goto found;
  2721. }
  2722. }
  2723. /* Ok no matching timings, maybe there's a free one? */
  2724. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2725. pll = &dev_priv->shared_dplls[i];
  2726. if (pll->refcount == 0) {
  2727. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2728. crtc->base.base.id, pll->name);
  2729. goto found;
  2730. }
  2731. }
  2732. return NULL;
  2733. found:
  2734. crtc->config.shared_dpll = i;
  2735. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2736. pipe_name(crtc->pipe));
  2737. if (pll->active == 0) {
  2738. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2739. sizeof(pll->hw_state));
  2740. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2741. WARN_ON(pll->on);
  2742. assert_shared_dpll_disabled(dev_priv, pll);
  2743. pll->mode_set(dev_priv, pll);
  2744. }
  2745. pll->refcount++;
  2746. return pll;
  2747. }
  2748. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2749. {
  2750. struct drm_i915_private *dev_priv = dev->dev_private;
  2751. int dslreg = PIPEDSL(pipe);
  2752. u32 temp;
  2753. temp = I915_READ(dslreg);
  2754. udelay(500);
  2755. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2756. if (wait_for(I915_READ(dslreg) != temp, 5))
  2757. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2758. }
  2759. }
  2760. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2761. {
  2762. struct drm_device *dev = crtc->base.dev;
  2763. struct drm_i915_private *dev_priv = dev->dev_private;
  2764. int pipe = crtc->pipe;
  2765. if (crtc->config.pch_pfit.size) {
  2766. /* Force use of hard-coded filter coefficients
  2767. * as some pre-programmed values are broken,
  2768. * e.g. x201.
  2769. */
  2770. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2771. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2772. PF_PIPE_SEL_IVB(pipe));
  2773. else
  2774. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2775. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2776. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2777. }
  2778. }
  2779. static void intel_enable_planes(struct drm_crtc *crtc)
  2780. {
  2781. struct drm_device *dev = crtc->dev;
  2782. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2783. struct intel_plane *intel_plane;
  2784. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2785. if (intel_plane->pipe == pipe)
  2786. intel_plane_restore(&intel_plane->base);
  2787. }
  2788. static void intel_disable_planes(struct drm_crtc *crtc)
  2789. {
  2790. struct drm_device *dev = crtc->dev;
  2791. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2792. struct intel_plane *intel_plane;
  2793. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2794. if (intel_plane->pipe == pipe)
  2795. intel_plane_disable(&intel_plane->base);
  2796. }
  2797. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2798. {
  2799. struct drm_device *dev = crtc->dev;
  2800. struct drm_i915_private *dev_priv = dev->dev_private;
  2801. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2802. struct intel_encoder *encoder;
  2803. int pipe = intel_crtc->pipe;
  2804. int plane = intel_crtc->plane;
  2805. WARN_ON(!crtc->enabled);
  2806. if (intel_crtc->active)
  2807. return;
  2808. intel_crtc->active = true;
  2809. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2810. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2811. for_each_encoder_on_crtc(dev, crtc, encoder)
  2812. if (encoder->pre_enable)
  2813. encoder->pre_enable(encoder);
  2814. if (intel_crtc->config.has_pch_encoder) {
  2815. /* Note: FDI PLL enabling _must_ be done before we enable the
  2816. * cpu pipes, hence this is separate from all the other fdi/pch
  2817. * enabling. */
  2818. ironlake_fdi_pll_enable(intel_crtc);
  2819. } else {
  2820. assert_fdi_tx_disabled(dev_priv, pipe);
  2821. assert_fdi_rx_disabled(dev_priv, pipe);
  2822. }
  2823. ironlake_pfit_enable(intel_crtc);
  2824. /*
  2825. * On ILK+ LUT must be loaded before the pipe is running but with
  2826. * clocks enabled
  2827. */
  2828. intel_crtc_load_lut(crtc);
  2829. intel_update_watermarks(crtc);
  2830. intel_enable_pipe(dev_priv, pipe,
  2831. intel_crtc->config.has_pch_encoder, false);
  2832. intel_enable_plane(dev_priv, plane, pipe);
  2833. intel_enable_planes(crtc);
  2834. intel_crtc_update_cursor(crtc, true);
  2835. if (intel_crtc->config.has_pch_encoder)
  2836. ironlake_pch_enable(crtc);
  2837. mutex_lock(&dev->struct_mutex);
  2838. intel_update_fbc(dev);
  2839. mutex_unlock(&dev->struct_mutex);
  2840. for_each_encoder_on_crtc(dev, crtc, encoder)
  2841. encoder->enable(encoder);
  2842. if (HAS_PCH_CPT(dev))
  2843. cpt_verify_modeset(dev, intel_crtc->pipe);
  2844. /*
  2845. * There seems to be a race in PCH platform hw (at least on some
  2846. * outputs) where an enabled pipe still completes any pageflip right
  2847. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2848. * as the first vblank happend, everything works as expected. Hence just
  2849. * wait for one vblank before returning to avoid strange things
  2850. * happening.
  2851. */
  2852. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2853. }
  2854. /* IPS only exists on ULT machines and is tied to pipe A. */
  2855. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2856. {
  2857. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2858. }
  2859. static void hsw_enable_ips(struct intel_crtc *crtc)
  2860. {
  2861. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2862. if (!crtc->config.ips_enabled)
  2863. return;
  2864. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2865. * We guarantee that the plane is enabled by calling intel_enable_ips
  2866. * only after intel_enable_plane. And intel_enable_plane already waits
  2867. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2868. assert_plane_enabled(dev_priv, crtc->plane);
  2869. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2870. }
  2871. static void hsw_disable_ips(struct intel_crtc *crtc)
  2872. {
  2873. struct drm_device *dev = crtc->base.dev;
  2874. struct drm_i915_private *dev_priv = dev->dev_private;
  2875. if (!crtc->config.ips_enabled)
  2876. return;
  2877. assert_plane_enabled(dev_priv, crtc->plane);
  2878. I915_WRITE(IPS_CTL, 0);
  2879. /* We need to wait for a vblank before we can disable the plane. */
  2880. intel_wait_for_vblank(dev, crtc->pipe);
  2881. }
  2882. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2883. {
  2884. struct drm_device *dev = crtc->dev;
  2885. struct drm_i915_private *dev_priv = dev->dev_private;
  2886. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2887. struct intel_encoder *encoder;
  2888. int pipe = intel_crtc->pipe;
  2889. int plane = intel_crtc->plane;
  2890. WARN_ON(!crtc->enabled);
  2891. if (intel_crtc->active)
  2892. return;
  2893. intel_crtc->active = true;
  2894. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2895. if (intel_crtc->config.has_pch_encoder)
  2896. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2897. if (intel_crtc->config.has_pch_encoder)
  2898. dev_priv->display.fdi_link_train(crtc);
  2899. for_each_encoder_on_crtc(dev, crtc, encoder)
  2900. if (encoder->pre_enable)
  2901. encoder->pre_enable(encoder);
  2902. intel_ddi_enable_pipe_clock(intel_crtc);
  2903. ironlake_pfit_enable(intel_crtc);
  2904. /*
  2905. * On ILK+ LUT must be loaded before the pipe is running but with
  2906. * clocks enabled
  2907. */
  2908. intel_crtc_load_lut(crtc);
  2909. intel_ddi_set_pipe_settings(crtc);
  2910. intel_ddi_enable_transcoder_func(crtc);
  2911. intel_update_watermarks(crtc);
  2912. intel_enable_pipe(dev_priv, pipe,
  2913. intel_crtc->config.has_pch_encoder, false);
  2914. intel_enable_plane(dev_priv, plane, pipe);
  2915. intel_enable_planes(crtc);
  2916. intel_crtc_update_cursor(crtc, true);
  2917. hsw_enable_ips(intel_crtc);
  2918. if (intel_crtc->config.has_pch_encoder)
  2919. lpt_pch_enable(crtc);
  2920. mutex_lock(&dev->struct_mutex);
  2921. intel_update_fbc(dev);
  2922. mutex_unlock(&dev->struct_mutex);
  2923. for_each_encoder_on_crtc(dev, crtc, encoder) {
  2924. encoder->enable(encoder);
  2925. intel_opregion_notify_encoder(encoder, true);
  2926. }
  2927. /*
  2928. * There seems to be a race in PCH platform hw (at least on some
  2929. * outputs) where an enabled pipe still completes any pageflip right
  2930. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2931. * as the first vblank happend, everything works as expected. Hence just
  2932. * wait for one vblank before returning to avoid strange things
  2933. * happening.
  2934. */
  2935. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2936. }
  2937. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2938. {
  2939. struct drm_device *dev = crtc->base.dev;
  2940. struct drm_i915_private *dev_priv = dev->dev_private;
  2941. int pipe = crtc->pipe;
  2942. /* To avoid upsetting the power well on haswell only disable the pfit if
  2943. * it's in use. The hw state code will make sure we get this right. */
  2944. if (crtc->config.pch_pfit.size) {
  2945. I915_WRITE(PF_CTL(pipe), 0);
  2946. I915_WRITE(PF_WIN_POS(pipe), 0);
  2947. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2948. }
  2949. }
  2950. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2951. {
  2952. struct drm_device *dev = crtc->dev;
  2953. struct drm_i915_private *dev_priv = dev->dev_private;
  2954. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2955. struct intel_encoder *encoder;
  2956. int pipe = intel_crtc->pipe;
  2957. int plane = intel_crtc->plane;
  2958. u32 reg, temp;
  2959. if (!intel_crtc->active)
  2960. return;
  2961. for_each_encoder_on_crtc(dev, crtc, encoder)
  2962. encoder->disable(encoder);
  2963. intel_crtc_wait_for_pending_flips(crtc);
  2964. drm_vblank_off(dev, pipe);
  2965. if (dev_priv->fbc.plane == plane)
  2966. intel_disable_fbc(dev);
  2967. intel_crtc_update_cursor(crtc, false);
  2968. intel_disable_planes(crtc);
  2969. intel_disable_plane(dev_priv, plane, pipe);
  2970. if (intel_crtc->config.has_pch_encoder)
  2971. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2972. intel_disable_pipe(dev_priv, pipe);
  2973. ironlake_pfit_disable(intel_crtc);
  2974. for_each_encoder_on_crtc(dev, crtc, encoder)
  2975. if (encoder->post_disable)
  2976. encoder->post_disable(encoder);
  2977. if (intel_crtc->config.has_pch_encoder) {
  2978. ironlake_fdi_disable(crtc);
  2979. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2980. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2981. if (HAS_PCH_CPT(dev)) {
  2982. /* disable TRANS_DP_CTL */
  2983. reg = TRANS_DP_CTL(pipe);
  2984. temp = I915_READ(reg);
  2985. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  2986. TRANS_DP_PORT_SEL_MASK);
  2987. temp |= TRANS_DP_PORT_SEL_NONE;
  2988. I915_WRITE(reg, temp);
  2989. /* disable DPLL_SEL */
  2990. temp = I915_READ(PCH_DPLL_SEL);
  2991. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  2992. I915_WRITE(PCH_DPLL_SEL, temp);
  2993. }
  2994. /* disable PCH DPLL */
  2995. intel_disable_shared_dpll(intel_crtc);
  2996. ironlake_fdi_pll_disable(intel_crtc);
  2997. }
  2998. intel_crtc->active = false;
  2999. intel_update_watermarks(crtc);
  3000. mutex_lock(&dev->struct_mutex);
  3001. intel_update_fbc(dev);
  3002. mutex_unlock(&dev->struct_mutex);
  3003. }
  3004. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3005. {
  3006. struct drm_device *dev = crtc->dev;
  3007. struct drm_i915_private *dev_priv = dev->dev_private;
  3008. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3009. struct intel_encoder *encoder;
  3010. int pipe = intel_crtc->pipe;
  3011. int plane = intel_crtc->plane;
  3012. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3013. if (!intel_crtc->active)
  3014. return;
  3015. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3016. intel_opregion_notify_encoder(encoder, false);
  3017. encoder->disable(encoder);
  3018. }
  3019. intel_crtc_wait_for_pending_flips(crtc);
  3020. drm_vblank_off(dev, pipe);
  3021. /* FBC must be disabled before disabling the plane on HSW. */
  3022. if (dev_priv->fbc.plane == plane)
  3023. intel_disable_fbc(dev);
  3024. hsw_disable_ips(intel_crtc);
  3025. intel_crtc_update_cursor(crtc, false);
  3026. intel_disable_planes(crtc);
  3027. intel_disable_plane(dev_priv, plane, pipe);
  3028. if (intel_crtc->config.has_pch_encoder)
  3029. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3030. intel_disable_pipe(dev_priv, pipe);
  3031. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3032. ironlake_pfit_disable(intel_crtc);
  3033. intel_ddi_disable_pipe_clock(intel_crtc);
  3034. for_each_encoder_on_crtc(dev, crtc, encoder)
  3035. if (encoder->post_disable)
  3036. encoder->post_disable(encoder);
  3037. if (intel_crtc->config.has_pch_encoder) {
  3038. lpt_disable_pch_transcoder(dev_priv);
  3039. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3040. intel_ddi_fdi_disable(crtc);
  3041. }
  3042. intel_crtc->active = false;
  3043. intel_update_watermarks(crtc);
  3044. mutex_lock(&dev->struct_mutex);
  3045. intel_update_fbc(dev);
  3046. mutex_unlock(&dev->struct_mutex);
  3047. }
  3048. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3049. {
  3050. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3051. intel_put_shared_dpll(intel_crtc);
  3052. }
  3053. static void haswell_crtc_off(struct drm_crtc *crtc)
  3054. {
  3055. intel_ddi_put_crtc_pll(crtc);
  3056. }
  3057. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3058. {
  3059. if (!enable && intel_crtc->overlay) {
  3060. struct drm_device *dev = intel_crtc->base.dev;
  3061. struct drm_i915_private *dev_priv = dev->dev_private;
  3062. mutex_lock(&dev->struct_mutex);
  3063. dev_priv->mm.interruptible = false;
  3064. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3065. dev_priv->mm.interruptible = true;
  3066. mutex_unlock(&dev->struct_mutex);
  3067. }
  3068. /* Let userspace switch the overlay on again. In most cases userspace
  3069. * has to recompute where to put it anyway.
  3070. */
  3071. }
  3072. /**
  3073. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3074. * cursor plane briefly if not already running after enabling the display
  3075. * plane.
  3076. * This workaround avoids occasional blank screens when self refresh is
  3077. * enabled.
  3078. */
  3079. static void
  3080. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3081. {
  3082. u32 cntl = I915_READ(CURCNTR(pipe));
  3083. if ((cntl & CURSOR_MODE) == 0) {
  3084. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3085. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3086. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3087. intel_wait_for_vblank(dev_priv->dev, pipe);
  3088. I915_WRITE(CURCNTR(pipe), cntl);
  3089. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3090. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3091. }
  3092. }
  3093. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3094. {
  3095. struct drm_device *dev = crtc->base.dev;
  3096. struct drm_i915_private *dev_priv = dev->dev_private;
  3097. struct intel_crtc_config *pipe_config = &crtc->config;
  3098. if (!crtc->config.gmch_pfit.control)
  3099. return;
  3100. /*
  3101. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3102. * according to register description and PRM.
  3103. */
  3104. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3105. assert_pipe_disabled(dev_priv, crtc->pipe);
  3106. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3107. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3108. /* Border color in case we don't scale up to the full screen. Black by
  3109. * default, change to something else for debugging. */
  3110. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3111. }
  3112. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3113. {
  3114. struct drm_device *dev = crtc->dev;
  3115. struct drm_i915_private *dev_priv = dev->dev_private;
  3116. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3117. struct intel_encoder *encoder;
  3118. int pipe = intel_crtc->pipe;
  3119. int plane = intel_crtc->plane;
  3120. bool is_dsi;
  3121. WARN_ON(!crtc->enabled);
  3122. if (intel_crtc->active)
  3123. return;
  3124. intel_crtc->active = true;
  3125. for_each_encoder_on_crtc(dev, crtc, encoder)
  3126. if (encoder->pre_pll_enable)
  3127. encoder->pre_pll_enable(encoder);
  3128. is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
  3129. if (!is_dsi)
  3130. vlv_enable_pll(intel_crtc);
  3131. for_each_encoder_on_crtc(dev, crtc, encoder)
  3132. if (encoder->pre_enable)
  3133. encoder->pre_enable(encoder);
  3134. i9xx_pfit_enable(intel_crtc);
  3135. intel_crtc_load_lut(crtc);
  3136. intel_update_watermarks(crtc);
  3137. intel_enable_pipe(dev_priv, pipe, false, is_dsi);
  3138. intel_enable_plane(dev_priv, plane, pipe);
  3139. intel_enable_planes(crtc);
  3140. intel_crtc_update_cursor(crtc, true);
  3141. intel_update_fbc(dev);
  3142. for_each_encoder_on_crtc(dev, crtc, encoder)
  3143. encoder->enable(encoder);
  3144. }
  3145. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3146. {
  3147. struct drm_device *dev = crtc->dev;
  3148. struct drm_i915_private *dev_priv = dev->dev_private;
  3149. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3150. struct intel_encoder *encoder;
  3151. int pipe = intel_crtc->pipe;
  3152. int plane = intel_crtc->plane;
  3153. WARN_ON(!crtc->enabled);
  3154. if (intel_crtc->active)
  3155. return;
  3156. intel_crtc->active = true;
  3157. for_each_encoder_on_crtc(dev, crtc, encoder)
  3158. if (encoder->pre_enable)
  3159. encoder->pre_enable(encoder);
  3160. i9xx_enable_pll(intel_crtc);
  3161. i9xx_pfit_enable(intel_crtc);
  3162. intel_crtc_load_lut(crtc);
  3163. intel_update_watermarks(crtc);
  3164. intel_enable_pipe(dev_priv, pipe, false, false);
  3165. intel_enable_plane(dev_priv, plane, pipe);
  3166. intel_enable_planes(crtc);
  3167. /* The fixup needs to happen before cursor is enabled */
  3168. if (IS_G4X(dev))
  3169. g4x_fixup_plane(dev_priv, pipe);
  3170. intel_crtc_update_cursor(crtc, true);
  3171. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3172. intel_crtc_dpms_overlay(intel_crtc, true);
  3173. intel_update_fbc(dev);
  3174. for_each_encoder_on_crtc(dev, crtc, encoder)
  3175. encoder->enable(encoder);
  3176. }
  3177. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3178. {
  3179. struct drm_device *dev = crtc->base.dev;
  3180. struct drm_i915_private *dev_priv = dev->dev_private;
  3181. if (!crtc->config.gmch_pfit.control)
  3182. return;
  3183. assert_pipe_disabled(dev_priv, crtc->pipe);
  3184. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3185. I915_READ(PFIT_CONTROL));
  3186. I915_WRITE(PFIT_CONTROL, 0);
  3187. }
  3188. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3189. {
  3190. struct drm_device *dev = crtc->dev;
  3191. struct drm_i915_private *dev_priv = dev->dev_private;
  3192. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3193. struct intel_encoder *encoder;
  3194. int pipe = intel_crtc->pipe;
  3195. int plane = intel_crtc->plane;
  3196. if (!intel_crtc->active)
  3197. return;
  3198. for_each_encoder_on_crtc(dev, crtc, encoder)
  3199. encoder->disable(encoder);
  3200. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3201. intel_crtc_wait_for_pending_flips(crtc);
  3202. drm_vblank_off(dev, pipe);
  3203. if (dev_priv->fbc.plane == plane)
  3204. intel_disable_fbc(dev);
  3205. intel_crtc_dpms_overlay(intel_crtc, false);
  3206. intel_crtc_update_cursor(crtc, false);
  3207. intel_disable_planes(crtc);
  3208. intel_disable_plane(dev_priv, plane, pipe);
  3209. intel_disable_pipe(dev_priv, pipe);
  3210. i9xx_pfit_disable(intel_crtc);
  3211. for_each_encoder_on_crtc(dev, crtc, encoder)
  3212. if (encoder->post_disable)
  3213. encoder->post_disable(encoder);
  3214. if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  3215. i9xx_disable_pll(dev_priv, pipe);
  3216. intel_crtc->active = false;
  3217. intel_update_watermarks(crtc);
  3218. intel_update_fbc(dev);
  3219. }
  3220. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3221. {
  3222. }
  3223. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3224. bool enabled)
  3225. {
  3226. struct drm_device *dev = crtc->dev;
  3227. struct drm_i915_master_private *master_priv;
  3228. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3229. int pipe = intel_crtc->pipe;
  3230. if (!dev->primary->master)
  3231. return;
  3232. master_priv = dev->primary->master->driver_priv;
  3233. if (!master_priv->sarea_priv)
  3234. return;
  3235. switch (pipe) {
  3236. case 0:
  3237. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3238. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3239. break;
  3240. case 1:
  3241. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3242. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3243. break;
  3244. default:
  3245. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3246. break;
  3247. }
  3248. }
  3249. /**
  3250. * Sets the power management mode of the pipe and plane.
  3251. */
  3252. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3253. {
  3254. struct drm_device *dev = crtc->dev;
  3255. struct drm_i915_private *dev_priv = dev->dev_private;
  3256. struct intel_encoder *intel_encoder;
  3257. bool enable = false;
  3258. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3259. enable |= intel_encoder->connectors_active;
  3260. if (enable)
  3261. dev_priv->display.crtc_enable(crtc);
  3262. else
  3263. dev_priv->display.crtc_disable(crtc);
  3264. intel_crtc_update_sarea(crtc, enable);
  3265. }
  3266. static void intel_crtc_disable(struct drm_crtc *crtc)
  3267. {
  3268. struct drm_device *dev = crtc->dev;
  3269. struct drm_connector *connector;
  3270. struct drm_i915_private *dev_priv = dev->dev_private;
  3271. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3272. /* crtc should still be enabled when we disable it. */
  3273. WARN_ON(!crtc->enabled);
  3274. dev_priv->display.crtc_disable(crtc);
  3275. intel_crtc->eld_vld = false;
  3276. intel_crtc_update_sarea(crtc, false);
  3277. dev_priv->display.off(crtc);
  3278. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3279. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3280. if (crtc->fb) {
  3281. mutex_lock(&dev->struct_mutex);
  3282. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3283. mutex_unlock(&dev->struct_mutex);
  3284. crtc->fb = NULL;
  3285. }
  3286. /* Update computed state. */
  3287. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3288. if (!connector->encoder || !connector->encoder->crtc)
  3289. continue;
  3290. if (connector->encoder->crtc != crtc)
  3291. continue;
  3292. connector->dpms = DRM_MODE_DPMS_OFF;
  3293. to_intel_encoder(connector->encoder)->connectors_active = false;
  3294. }
  3295. }
  3296. void intel_encoder_destroy(struct drm_encoder *encoder)
  3297. {
  3298. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3299. drm_encoder_cleanup(encoder);
  3300. kfree(intel_encoder);
  3301. }
  3302. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3303. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3304. * state of the entire output pipe. */
  3305. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3306. {
  3307. if (mode == DRM_MODE_DPMS_ON) {
  3308. encoder->connectors_active = true;
  3309. intel_crtc_update_dpms(encoder->base.crtc);
  3310. } else {
  3311. encoder->connectors_active = false;
  3312. intel_crtc_update_dpms(encoder->base.crtc);
  3313. }
  3314. }
  3315. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3316. * internal consistency). */
  3317. static void intel_connector_check_state(struct intel_connector *connector)
  3318. {
  3319. if (connector->get_hw_state(connector)) {
  3320. struct intel_encoder *encoder = connector->encoder;
  3321. struct drm_crtc *crtc;
  3322. bool encoder_enabled;
  3323. enum pipe pipe;
  3324. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3325. connector->base.base.id,
  3326. drm_get_connector_name(&connector->base));
  3327. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3328. "wrong connector dpms state\n");
  3329. WARN(connector->base.encoder != &encoder->base,
  3330. "active connector not linked to encoder\n");
  3331. WARN(!encoder->connectors_active,
  3332. "encoder->connectors_active not set\n");
  3333. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3334. WARN(!encoder_enabled, "encoder not enabled\n");
  3335. if (WARN_ON(!encoder->base.crtc))
  3336. return;
  3337. crtc = encoder->base.crtc;
  3338. WARN(!crtc->enabled, "crtc not enabled\n");
  3339. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3340. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3341. "encoder active on the wrong pipe\n");
  3342. }
  3343. }
  3344. /* Even simpler default implementation, if there's really no special case to
  3345. * consider. */
  3346. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3347. {
  3348. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3349. /* All the simple cases only support two dpms states. */
  3350. if (mode != DRM_MODE_DPMS_ON)
  3351. mode = DRM_MODE_DPMS_OFF;
  3352. if (mode == connector->dpms)
  3353. return;
  3354. connector->dpms = mode;
  3355. /* Only need to change hw state when actually enabled */
  3356. if (encoder->base.crtc)
  3357. intel_encoder_dpms(encoder, mode);
  3358. else
  3359. WARN_ON(encoder->connectors_active != false);
  3360. intel_modeset_check_state(connector->dev);
  3361. }
  3362. /* Simple connector->get_hw_state implementation for encoders that support only
  3363. * one connector and no cloning and hence the encoder state determines the state
  3364. * of the connector. */
  3365. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3366. {
  3367. enum pipe pipe = 0;
  3368. struct intel_encoder *encoder = connector->encoder;
  3369. return encoder->get_hw_state(encoder, &pipe);
  3370. }
  3371. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3372. struct intel_crtc_config *pipe_config)
  3373. {
  3374. struct drm_i915_private *dev_priv = dev->dev_private;
  3375. struct intel_crtc *pipe_B_crtc =
  3376. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3377. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3378. pipe_name(pipe), pipe_config->fdi_lanes);
  3379. if (pipe_config->fdi_lanes > 4) {
  3380. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3381. pipe_name(pipe), pipe_config->fdi_lanes);
  3382. return false;
  3383. }
  3384. if (IS_HASWELL(dev)) {
  3385. if (pipe_config->fdi_lanes > 2) {
  3386. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3387. pipe_config->fdi_lanes);
  3388. return false;
  3389. } else {
  3390. return true;
  3391. }
  3392. }
  3393. if (INTEL_INFO(dev)->num_pipes == 2)
  3394. return true;
  3395. /* Ivybridge 3 pipe is really complicated */
  3396. switch (pipe) {
  3397. case PIPE_A:
  3398. return true;
  3399. case PIPE_B:
  3400. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3401. pipe_config->fdi_lanes > 2) {
  3402. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3403. pipe_name(pipe), pipe_config->fdi_lanes);
  3404. return false;
  3405. }
  3406. return true;
  3407. case PIPE_C:
  3408. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3409. pipe_B_crtc->config.fdi_lanes <= 2) {
  3410. if (pipe_config->fdi_lanes > 2) {
  3411. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3412. pipe_name(pipe), pipe_config->fdi_lanes);
  3413. return false;
  3414. }
  3415. } else {
  3416. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3417. return false;
  3418. }
  3419. return true;
  3420. default:
  3421. BUG();
  3422. }
  3423. }
  3424. #define RETRY 1
  3425. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3426. struct intel_crtc_config *pipe_config)
  3427. {
  3428. struct drm_device *dev = intel_crtc->base.dev;
  3429. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3430. int lane, link_bw, fdi_dotclock;
  3431. bool setup_ok, needs_recompute = false;
  3432. retry:
  3433. /* FDI is a binary signal running at ~2.7GHz, encoding
  3434. * each output octet as 10 bits. The actual frequency
  3435. * is stored as a divider into a 100MHz clock, and the
  3436. * mode pixel clock is stored in units of 1KHz.
  3437. * Hence the bw of each lane in terms of the mode signal
  3438. * is:
  3439. */
  3440. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3441. fdi_dotclock = adjusted_mode->clock;
  3442. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3443. pipe_config->pipe_bpp);
  3444. pipe_config->fdi_lanes = lane;
  3445. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3446. link_bw, &pipe_config->fdi_m_n);
  3447. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3448. intel_crtc->pipe, pipe_config);
  3449. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3450. pipe_config->pipe_bpp -= 2*3;
  3451. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3452. pipe_config->pipe_bpp);
  3453. needs_recompute = true;
  3454. pipe_config->bw_constrained = true;
  3455. goto retry;
  3456. }
  3457. if (needs_recompute)
  3458. return RETRY;
  3459. return setup_ok ? 0 : -EINVAL;
  3460. }
  3461. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3462. struct intel_crtc_config *pipe_config)
  3463. {
  3464. pipe_config->ips_enabled = i915_enable_ips &&
  3465. hsw_crtc_supports_ips(crtc) &&
  3466. pipe_config->pipe_bpp <= 24;
  3467. }
  3468. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3469. struct intel_crtc_config *pipe_config)
  3470. {
  3471. struct drm_device *dev = crtc->base.dev;
  3472. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3473. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3474. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3475. */
  3476. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3477. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3478. return -EINVAL;
  3479. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3480. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3481. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3482. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3483. * for lvds. */
  3484. pipe_config->pipe_bpp = 8*3;
  3485. }
  3486. if (HAS_IPS(dev))
  3487. hsw_compute_ips_config(crtc, pipe_config);
  3488. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3489. * clock survives for now. */
  3490. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3491. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3492. if (pipe_config->has_pch_encoder)
  3493. return ironlake_fdi_compute_config(crtc, pipe_config);
  3494. return 0;
  3495. }
  3496. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3497. {
  3498. return 400000; /* FIXME */
  3499. }
  3500. static int i945_get_display_clock_speed(struct drm_device *dev)
  3501. {
  3502. return 400000;
  3503. }
  3504. static int i915_get_display_clock_speed(struct drm_device *dev)
  3505. {
  3506. return 333000;
  3507. }
  3508. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3509. {
  3510. return 200000;
  3511. }
  3512. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3513. {
  3514. u16 gcfgc = 0;
  3515. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3516. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3517. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3518. return 267000;
  3519. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3520. return 333000;
  3521. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3522. return 444000;
  3523. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3524. return 200000;
  3525. default:
  3526. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3527. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3528. return 133000;
  3529. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3530. return 167000;
  3531. }
  3532. }
  3533. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3534. {
  3535. u16 gcfgc = 0;
  3536. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3537. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3538. return 133000;
  3539. else {
  3540. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3541. case GC_DISPLAY_CLOCK_333_MHZ:
  3542. return 333000;
  3543. default:
  3544. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3545. return 190000;
  3546. }
  3547. }
  3548. }
  3549. static int i865_get_display_clock_speed(struct drm_device *dev)
  3550. {
  3551. return 266000;
  3552. }
  3553. static int i855_get_display_clock_speed(struct drm_device *dev)
  3554. {
  3555. u16 hpllcc = 0;
  3556. /* Assume that the hardware is in the high speed state. This
  3557. * should be the default.
  3558. */
  3559. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3560. case GC_CLOCK_133_200:
  3561. case GC_CLOCK_100_200:
  3562. return 200000;
  3563. case GC_CLOCK_166_250:
  3564. return 250000;
  3565. case GC_CLOCK_100_133:
  3566. return 133000;
  3567. }
  3568. /* Shouldn't happen */
  3569. return 0;
  3570. }
  3571. static int i830_get_display_clock_speed(struct drm_device *dev)
  3572. {
  3573. return 133000;
  3574. }
  3575. static void
  3576. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3577. {
  3578. while (*num > DATA_LINK_M_N_MASK ||
  3579. *den > DATA_LINK_M_N_MASK) {
  3580. *num >>= 1;
  3581. *den >>= 1;
  3582. }
  3583. }
  3584. static void compute_m_n(unsigned int m, unsigned int n,
  3585. uint32_t *ret_m, uint32_t *ret_n)
  3586. {
  3587. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3588. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3589. intel_reduce_m_n_ratio(ret_m, ret_n);
  3590. }
  3591. void
  3592. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3593. int pixel_clock, int link_clock,
  3594. struct intel_link_m_n *m_n)
  3595. {
  3596. m_n->tu = 64;
  3597. compute_m_n(bits_per_pixel * pixel_clock,
  3598. link_clock * nlanes * 8,
  3599. &m_n->gmch_m, &m_n->gmch_n);
  3600. compute_m_n(pixel_clock, link_clock,
  3601. &m_n->link_m, &m_n->link_n);
  3602. }
  3603. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3604. {
  3605. if (i915_panel_use_ssc >= 0)
  3606. return i915_panel_use_ssc != 0;
  3607. return dev_priv->vbt.lvds_use_ssc
  3608. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3609. }
  3610. static int vlv_get_refclk(struct drm_crtc *crtc)
  3611. {
  3612. struct drm_device *dev = crtc->dev;
  3613. struct drm_i915_private *dev_priv = dev->dev_private;
  3614. int refclk = 27000; /* for DP & HDMI */
  3615. return 100000; /* only one validated so far */
  3616. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3617. refclk = 96000;
  3618. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3619. if (intel_panel_use_ssc(dev_priv))
  3620. refclk = 100000;
  3621. else
  3622. refclk = 96000;
  3623. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3624. refclk = 100000;
  3625. }
  3626. return refclk;
  3627. }
  3628. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3629. {
  3630. struct drm_device *dev = crtc->dev;
  3631. struct drm_i915_private *dev_priv = dev->dev_private;
  3632. int refclk;
  3633. if (IS_VALLEYVIEW(dev)) {
  3634. refclk = vlv_get_refclk(crtc);
  3635. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3636. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3637. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3638. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3639. refclk / 1000);
  3640. } else if (!IS_GEN2(dev)) {
  3641. refclk = 96000;
  3642. } else {
  3643. refclk = 48000;
  3644. }
  3645. return refclk;
  3646. }
  3647. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3648. {
  3649. return (1 << dpll->n) << 16 | dpll->m2;
  3650. }
  3651. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3652. {
  3653. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3654. }
  3655. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3656. intel_clock_t *reduced_clock)
  3657. {
  3658. struct drm_device *dev = crtc->base.dev;
  3659. struct drm_i915_private *dev_priv = dev->dev_private;
  3660. int pipe = crtc->pipe;
  3661. u32 fp, fp2 = 0;
  3662. if (IS_PINEVIEW(dev)) {
  3663. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3664. if (reduced_clock)
  3665. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3666. } else {
  3667. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3668. if (reduced_clock)
  3669. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3670. }
  3671. I915_WRITE(FP0(pipe), fp);
  3672. crtc->config.dpll_hw_state.fp0 = fp;
  3673. crtc->lowfreq_avail = false;
  3674. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3675. reduced_clock && i915_powersave) {
  3676. I915_WRITE(FP1(pipe), fp2);
  3677. crtc->config.dpll_hw_state.fp1 = fp2;
  3678. crtc->lowfreq_avail = true;
  3679. } else {
  3680. I915_WRITE(FP1(pipe), fp);
  3681. crtc->config.dpll_hw_state.fp1 = fp;
  3682. }
  3683. }
  3684. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  3685. pipe)
  3686. {
  3687. u32 reg_val;
  3688. /*
  3689. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3690. * and set it to a reasonable value instead.
  3691. */
  3692. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3693. reg_val &= 0xffffff00;
  3694. reg_val |= 0x00000030;
  3695. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3696. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3697. reg_val &= 0x8cffffff;
  3698. reg_val = 0x8c000000;
  3699. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3700. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3701. reg_val &= 0xffffff00;
  3702. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3703. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3704. reg_val &= 0x00ffffff;
  3705. reg_val |= 0xb0000000;
  3706. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3707. }
  3708. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3709. struct intel_link_m_n *m_n)
  3710. {
  3711. struct drm_device *dev = crtc->base.dev;
  3712. struct drm_i915_private *dev_priv = dev->dev_private;
  3713. int pipe = crtc->pipe;
  3714. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3715. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3716. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3717. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3718. }
  3719. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3720. struct intel_link_m_n *m_n)
  3721. {
  3722. struct drm_device *dev = crtc->base.dev;
  3723. struct drm_i915_private *dev_priv = dev->dev_private;
  3724. int pipe = crtc->pipe;
  3725. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3726. if (INTEL_INFO(dev)->gen >= 5) {
  3727. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3728. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3729. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3730. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3731. } else {
  3732. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3733. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3734. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3735. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3736. }
  3737. }
  3738. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3739. {
  3740. if (crtc->config.has_pch_encoder)
  3741. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3742. else
  3743. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3744. }
  3745. static void vlv_update_pll(struct intel_crtc *crtc)
  3746. {
  3747. struct drm_device *dev = crtc->base.dev;
  3748. struct drm_i915_private *dev_priv = dev->dev_private;
  3749. int pipe = crtc->pipe;
  3750. u32 dpll, mdiv;
  3751. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3752. u32 coreclk, reg_val, dpll_md;
  3753. mutex_lock(&dev_priv->dpio_lock);
  3754. bestn = crtc->config.dpll.n;
  3755. bestm1 = crtc->config.dpll.m1;
  3756. bestm2 = crtc->config.dpll.m2;
  3757. bestp1 = crtc->config.dpll.p1;
  3758. bestp2 = crtc->config.dpll.p2;
  3759. /* See eDP HDMI DPIO driver vbios notes doc */
  3760. /* PLL B needs special handling */
  3761. if (pipe)
  3762. vlv_pllb_recal_opamp(dev_priv, pipe);
  3763. /* Set up Tx target for periodic Rcomp update */
  3764. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
  3765. /* Disable target IRef on PLL */
  3766. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
  3767. reg_val &= 0x00ffffff;
  3768. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
  3769. /* Disable fast lock */
  3770. vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
  3771. /* Set idtafcrecal before PLL is enabled */
  3772. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3773. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3774. mdiv |= ((bestn << DPIO_N_SHIFT));
  3775. mdiv |= (1 << DPIO_K_SHIFT);
  3776. /*
  3777. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3778. * but we don't support that).
  3779. * Note: don't use the DAC post divider as it seems unstable.
  3780. */
  3781. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3782. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3783. mdiv |= DPIO_ENABLE_CALIBRATION;
  3784. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3785. /* Set HBR and RBR LPF coefficients */
  3786. if (crtc->config.port_clock == 162000 ||
  3787. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3788. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3789. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3790. 0x009f0003);
  3791. else
  3792. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3793. 0x00d0000f);
  3794. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3795. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3796. /* Use SSC source */
  3797. if (!pipe)
  3798. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3799. 0x0df40000);
  3800. else
  3801. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3802. 0x0df70000);
  3803. } else { /* HDMI or VGA */
  3804. /* Use bend source */
  3805. if (!pipe)
  3806. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3807. 0x0df70000);
  3808. else
  3809. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3810. 0x0df40000);
  3811. }
  3812. coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
  3813. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3814. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3815. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3816. coreclk |= 0x01000000;
  3817. vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
  3818. vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
  3819. /* Enable DPIO clock input */
  3820. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3821. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3822. if (pipe)
  3823. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3824. dpll |= DPLL_VCO_ENABLE;
  3825. crtc->config.dpll_hw_state.dpll = dpll;
  3826. dpll_md = (crtc->config.pixel_multiplier - 1)
  3827. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3828. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3829. if (crtc->config.has_dp_encoder)
  3830. intel_dp_set_m_n(crtc);
  3831. mutex_unlock(&dev_priv->dpio_lock);
  3832. }
  3833. static void i9xx_update_pll(struct intel_crtc *crtc,
  3834. intel_clock_t *reduced_clock,
  3835. int num_connectors)
  3836. {
  3837. struct drm_device *dev = crtc->base.dev;
  3838. struct drm_i915_private *dev_priv = dev->dev_private;
  3839. u32 dpll;
  3840. bool is_sdvo;
  3841. struct dpll *clock = &crtc->config.dpll;
  3842. i9xx_update_pll_dividers(crtc, reduced_clock);
  3843. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3844. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3845. dpll = DPLL_VGA_MODE_DIS;
  3846. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3847. dpll |= DPLLB_MODE_LVDS;
  3848. else
  3849. dpll |= DPLLB_MODE_DAC_SERIAL;
  3850. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3851. dpll |= (crtc->config.pixel_multiplier - 1)
  3852. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3853. }
  3854. if (is_sdvo)
  3855. dpll |= DPLL_SDVO_HIGH_SPEED;
  3856. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3857. dpll |= DPLL_SDVO_HIGH_SPEED;
  3858. /* compute bitmask from p1 value */
  3859. if (IS_PINEVIEW(dev))
  3860. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3861. else {
  3862. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3863. if (IS_G4X(dev) && reduced_clock)
  3864. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3865. }
  3866. switch (clock->p2) {
  3867. case 5:
  3868. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3869. break;
  3870. case 7:
  3871. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3872. break;
  3873. case 10:
  3874. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3875. break;
  3876. case 14:
  3877. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3878. break;
  3879. }
  3880. if (INTEL_INFO(dev)->gen >= 4)
  3881. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3882. if (crtc->config.sdvo_tv_clock)
  3883. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3884. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3885. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3886. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3887. else
  3888. dpll |= PLL_REF_INPUT_DREFCLK;
  3889. dpll |= DPLL_VCO_ENABLE;
  3890. crtc->config.dpll_hw_state.dpll = dpll;
  3891. if (INTEL_INFO(dev)->gen >= 4) {
  3892. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3893. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3894. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3895. }
  3896. if (crtc->config.has_dp_encoder)
  3897. intel_dp_set_m_n(crtc);
  3898. }
  3899. static void i8xx_update_pll(struct intel_crtc *crtc,
  3900. intel_clock_t *reduced_clock,
  3901. int num_connectors)
  3902. {
  3903. struct drm_device *dev = crtc->base.dev;
  3904. struct drm_i915_private *dev_priv = dev->dev_private;
  3905. u32 dpll;
  3906. struct dpll *clock = &crtc->config.dpll;
  3907. i9xx_update_pll_dividers(crtc, reduced_clock);
  3908. dpll = DPLL_VGA_MODE_DIS;
  3909. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3910. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3911. } else {
  3912. if (clock->p1 == 2)
  3913. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3914. else
  3915. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3916. if (clock->p2 == 4)
  3917. dpll |= PLL_P2_DIVIDE_BY_4;
  3918. }
  3919. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  3920. dpll |= DPLL_DVO_2X_MODE;
  3921. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3922. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3923. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3924. else
  3925. dpll |= PLL_REF_INPUT_DREFCLK;
  3926. dpll |= DPLL_VCO_ENABLE;
  3927. crtc->config.dpll_hw_state.dpll = dpll;
  3928. }
  3929. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3930. {
  3931. struct drm_device *dev = intel_crtc->base.dev;
  3932. struct drm_i915_private *dev_priv = dev->dev_private;
  3933. enum pipe pipe = intel_crtc->pipe;
  3934. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3935. struct drm_display_mode *adjusted_mode =
  3936. &intel_crtc->config.adjusted_mode;
  3937. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3938. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3939. /* We need to be careful not to changed the adjusted mode, for otherwise
  3940. * the hw state checker will get angry at the mismatch. */
  3941. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3942. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3943. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3944. /* the chip adds 2 halflines automatically */
  3945. crtc_vtotal -= 1;
  3946. crtc_vblank_end -= 1;
  3947. vsyncshift = adjusted_mode->crtc_hsync_start
  3948. - adjusted_mode->crtc_htotal / 2;
  3949. } else {
  3950. vsyncshift = 0;
  3951. }
  3952. if (INTEL_INFO(dev)->gen > 3)
  3953. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3954. I915_WRITE(HTOTAL(cpu_transcoder),
  3955. (adjusted_mode->crtc_hdisplay - 1) |
  3956. ((adjusted_mode->crtc_htotal - 1) << 16));
  3957. I915_WRITE(HBLANK(cpu_transcoder),
  3958. (adjusted_mode->crtc_hblank_start - 1) |
  3959. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3960. I915_WRITE(HSYNC(cpu_transcoder),
  3961. (adjusted_mode->crtc_hsync_start - 1) |
  3962. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3963. I915_WRITE(VTOTAL(cpu_transcoder),
  3964. (adjusted_mode->crtc_vdisplay - 1) |
  3965. ((crtc_vtotal - 1) << 16));
  3966. I915_WRITE(VBLANK(cpu_transcoder),
  3967. (adjusted_mode->crtc_vblank_start - 1) |
  3968. ((crtc_vblank_end - 1) << 16));
  3969. I915_WRITE(VSYNC(cpu_transcoder),
  3970. (adjusted_mode->crtc_vsync_start - 1) |
  3971. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3972. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3973. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3974. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3975. * bits. */
  3976. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3977. (pipe == PIPE_B || pipe == PIPE_C))
  3978. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3979. /* pipesrc controls the size that is scaled from, which should
  3980. * always be the user's requested size.
  3981. */
  3982. I915_WRITE(PIPESRC(pipe),
  3983. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3984. }
  3985. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3986. struct intel_crtc_config *pipe_config)
  3987. {
  3988. struct drm_device *dev = crtc->base.dev;
  3989. struct drm_i915_private *dev_priv = dev->dev_private;
  3990. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3991. uint32_t tmp;
  3992. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3993. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3994. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3995. tmp = I915_READ(HBLANK(cpu_transcoder));
  3996. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3997. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3998. tmp = I915_READ(HSYNC(cpu_transcoder));
  3999. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4000. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4001. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4002. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4003. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4004. tmp = I915_READ(VBLANK(cpu_transcoder));
  4005. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4006. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4007. tmp = I915_READ(VSYNC(cpu_transcoder));
  4008. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4009. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4010. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4011. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4012. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4013. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4014. }
  4015. tmp = I915_READ(PIPESRC(crtc->pipe));
  4016. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4017. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4018. }
  4019. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4020. struct intel_crtc_config *pipe_config)
  4021. {
  4022. struct drm_crtc *crtc = &intel_crtc->base;
  4023. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4024. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4025. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4026. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4027. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4028. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4029. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4030. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4031. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4032. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4033. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4034. }
  4035. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4036. {
  4037. struct drm_device *dev = intel_crtc->base.dev;
  4038. struct drm_i915_private *dev_priv = dev->dev_private;
  4039. uint32_t pipeconf;
  4040. pipeconf = 0;
  4041. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4042. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4043. * core speed.
  4044. *
  4045. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4046. * pipe == 0 check?
  4047. */
  4048. if (intel_crtc->config.requested_mode.clock >
  4049. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4050. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4051. }
  4052. /* only g4x and later have fancy bpc/dither controls */
  4053. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4054. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4055. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4056. pipeconf |= PIPECONF_DITHER_EN |
  4057. PIPECONF_DITHER_TYPE_SP;
  4058. switch (intel_crtc->config.pipe_bpp) {
  4059. case 18:
  4060. pipeconf |= PIPECONF_6BPC;
  4061. break;
  4062. case 24:
  4063. pipeconf |= PIPECONF_8BPC;
  4064. break;
  4065. case 30:
  4066. pipeconf |= PIPECONF_10BPC;
  4067. break;
  4068. default:
  4069. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4070. BUG();
  4071. }
  4072. }
  4073. if (HAS_PIPE_CXSR(dev)) {
  4074. if (intel_crtc->lowfreq_avail) {
  4075. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4076. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4077. } else {
  4078. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4079. }
  4080. }
  4081. if (!IS_GEN2(dev) &&
  4082. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4083. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4084. else
  4085. pipeconf |= PIPECONF_PROGRESSIVE;
  4086. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4087. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4088. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4089. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4090. }
  4091. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4092. int x, int y,
  4093. struct drm_framebuffer *fb)
  4094. {
  4095. struct drm_device *dev = crtc->dev;
  4096. struct drm_i915_private *dev_priv = dev->dev_private;
  4097. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4098. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4099. int pipe = intel_crtc->pipe;
  4100. int plane = intel_crtc->plane;
  4101. int refclk, num_connectors = 0;
  4102. intel_clock_t clock, reduced_clock;
  4103. u32 dspcntr;
  4104. bool ok, has_reduced_clock = false;
  4105. bool is_lvds = false, is_dsi = false;
  4106. struct intel_encoder *encoder;
  4107. const intel_limit_t *limit;
  4108. int ret;
  4109. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4110. switch (encoder->type) {
  4111. case INTEL_OUTPUT_LVDS:
  4112. is_lvds = true;
  4113. break;
  4114. case INTEL_OUTPUT_DSI:
  4115. is_dsi = true;
  4116. break;
  4117. }
  4118. num_connectors++;
  4119. }
  4120. refclk = i9xx_get_refclk(crtc, num_connectors);
  4121. if (!is_dsi && !intel_crtc->config.clock_set) {
  4122. /*
  4123. * Returns a set of divisors for the desired target clock with
  4124. * the given refclk, or FALSE. The returned values represent
  4125. * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  4126. * 2) / p1 / p2.
  4127. */
  4128. limit = intel_limit(crtc, refclk);
  4129. ok = dev_priv->display.find_dpll(limit, crtc,
  4130. intel_crtc->config.port_clock,
  4131. refclk, NULL, &clock);
  4132. if (!ok && !intel_crtc->config.clock_set) {
  4133. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4134. return -EINVAL;
  4135. }
  4136. }
  4137. /* Ensure that the cursor is valid for the new mode before changing... */
  4138. intel_crtc_update_cursor(crtc, true);
  4139. if (!is_dsi && is_lvds && dev_priv->lvds_downclock_avail) {
  4140. /*
  4141. * Ensure we match the reduced clock's P to the target clock.
  4142. * If the clocks don't match, we can't switch the display clock
  4143. * by using the FP0/FP1. In such case we will disable the LVDS
  4144. * downclock feature.
  4145. */
  4146. limit = intel_limit(crtc, refclk);
  4147. has_reduced_clock =
  4148. dev_priv->display.find_dpll(limit, crtc,
  4149. dev_priv->lvds_downclock,
  4150. refclk, &clock,
  4151. &reduced_clock);
  4152. }
  4153. /* Compat-code for transition, will disappear. */
  4154. if (!intel_crtc->config.clock_set) {
  4155. intel_crtc->config.dpll.n = clock.n;
  4156. intel_crtc->config.dpll.m1 = clock.m1;
  4157. intel_crtc->config.dpll.m2 = clock.m2;
  4158. intel_crtc->config.dpll.p1 = clock.p1;
  4159. intel_crtc->config.dpll.p2 = clock.p2;
  4160. }
  4161. if (IS_GEN2(dev)) {
  4162. i8xx_update_pll(intel_crtc,
  4163. has_reduced_clock ? &reduced_clock : NULL,
  4164. num_connectors);
  4165. } else if (IS_VALLEYVIEW(dev)) {
  4166. if (!is_dsi)
  4167. vlv_update_pll(intel_crtc);
  4168. } else {
  4169. i9xx_update_pll(intel_crtc,
  4170. has_reduced_clock ? &reduced_clock : NULL,
  4171. num_connectors);
  4172. }
  4173. /* Set up the display plane register */
  4174. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4175. if (!IS_VALLEYVIEW(dev)) {
  4176. if (pipe == 0)
  4177. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4178. else
  4179. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4180. }
  4181. intel_set_pipe_timings(intel_crtc);
  4182. /* pipesrc and dspsize control the size that is scaled from,
  4183. * which should always be the user's requested size.
  4184. */
  4185. I915_WRITE(DSPSIZE(plane),
  4186. ((mode->vdisplay - 1) << 16) |
  4187. (mode->hdisplay - 1));
  4188. I915_WRITE(DSPPOS(plane), 0);
  4189. i9xx_set_pipeconf(intel_crtc);
  4190. I915_WRITE(DSPCNTR(plane), dspcntr);
  4191. POSTING_READ(DSPCNTR(plane));
  4192. ret = intel_pipe_set_base(crtc, x, y, fb);
  4193. return ret;
  4194. }
  4195. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4196. struct intel_crtc_config *pipe_config)
  4197. {
  4198. struct drm_device *dev = crtc->base.dev;
  4199. struct drm_i915_private *dev_priv = dev->dev_private;
  4200. uint32_t tmp;
  4201. tmp = I915_READ(PFIT_CONTROL);
  4202. if (!(tmp & PFIT_ENABLE))
  4203. return;
  4204. /* Check whether the pfit is attached to our pipe. */
  4205. if (INTEL_INFO(dev)->gen < 4) {
  4206. if (crtc->pipe != PIPE_B)
  4207. return;
  4208. } else {
  4209. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4210. return;
  4211. }
  4212. pipe_config->gmch_pfit.control = tmp;
  4213. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4214. if (INTEL_INFO(dev)->gen < 5)
  4215. pipe_config->gmch_pfit.lvds_border_bits =
  4216. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4217. }
  4218. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4219. struct intel_crtc_config *pipe_config)
  4220. {
  4221. struct drm_device *dev = crtc->base.dev;
  4222. struct drm_i915_private *dev_priv = dev->dev_private;
  4223. uint32_t tmp;
  4224. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4225. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4226. tmp = I915_READ(PIPECONF(crtc->pipe));
  4227. if (!(tmp & PIPECONF_ENABLE))
  4228. return false;
  4229. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4230. switch (tmp & PIPECONF_BPC_MASK) {
  4231. case PIPECONF_6BPC:
  4232. pipe_config->pipe_bpp = 18;
  4233. break;
  4234. case PIPECONF_8BPC:
  4235. pipe_config->pipe_bpp = 24;
  4236. break;
  4237. case PIPECONF_10BPC:
  4238. pipe_config->pipe_bpp = 30;
  4239. break;
  4240. default:
  4241. break;
  4242. }
  4243. }
  4244. intel_get_pipe_timings(crtc, pipe_config);
  4245. i9xx_get_pfit_config(crtc, pipe_config);
  4246. if (INTEL_INFO(dev)->gen >= 4) {
  4247. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4248. pipe_config->pixel_multiplier =
  4249. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4250. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4251. pipe_config->dpll_hw_state.dpll_md = tmp;
  4252. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4253. tmp = I915_READ(DPLL(crtc->pipe));
  4254. pipe_config->pixel_multiplier =
  4255. ((tmp & SDVO_MULTIPLIER_MASK)
  4256. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4257. } else {
  4258. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4259. * port and will be fixed up in the encoder->get_config
  4260. * function. */
  4261. pipe_config->pixel_multiplier = 1;
  4262. }
  4263. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4264. if (!IS_VALLEYVIEW(dev)) {
  4265. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4266. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4267. } else {
  4268. /* Mask out read-only status bits. */
  4269. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4270. DPLL_PORTC_READY_MASK |
  4271. DPLL_PORTB_READY_MASK);
  4272. }
  4273. return true;
  4274. }
  4275. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4276. {
  4277. struct drm_i915_private *dev_priv = dev->dev_private;
  4278. struct drm_mode_config *mode_config = &dev->mode_config;
  4279. struct intel_encoder *encoder;
  4280. u32 val, final;
  4281. bool has_lvds = false;
  4282. bool has_cpu_edp = false;
  4283. bool has_panel = false;
  4284. bool has_ck505 = false;
  4285. bool can_ssc = false;
  4286. /* We need to take the global config into account */
  4287. list_for_each_entry(encoder, &mode_config->encoder_list,
  4288. base.head) {
  4289. switch (encoder->type) {
  4290. case INTEL_OUTPUT_LVDS:
  4291. has_panel = true;
  4292. has_lvds = true;
  4293. break;
  4294. case INTEL_OUTPUT_EDP:
  4295. has_panel = true;
  4296. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4297. has_cpu_edp = true;
  4298. break;
  4299. }
  4300. }
  4301. if (HAS_PCH_IBX(dev)) {
  4302. has_ck505 = dev_priv->vbt.display_clock_mode;
  4303. can_ssc = has_ck505;
  4304. } else {
  4305. has_ck505 = false;
  4306. can_ssc = true;
  4307. }
  4308. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4309. has_panel, has_lvds, has_ck505);
  4310. /* Ironlake: try to setup display ref clock before DPLL
  4311. * enabling. This is only under driver's control after
  4312. * PCH B stepping, previous chipset stepping should be
  4313. * ignoring this setting.
  4314. */
  4315. val = I915_READ(PCH_DREF_CONTROL);
  4316. /* As we must carefully and slowly disable/enable each source in turn,
  4317. * compute the final state we want first and check if we need to
  4318. * make any changes at all.
  4319. */
  4320. final = val;
  4321. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4322. if (has_ck505)
  4323. final |= DREF_NONSPREAD_CK505_ENABLE;
  4324. else
  4325. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4326. final &= ~DREF_SSC_SOURCE_MASK;
  4327. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4328. final &= ~DREF_SSC1_ENABLE;
  4329. if (has_panel) {
  4330. final |= DREF_SSC_SOURCE_ENABLE;
  4331. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4332. final |= DREF_SSC1_ENABLE;
  4333. if (has_cpu_edp) {
  4334. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4335. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4336. else
  4337. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4338. } else
  4339. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4340. } else {
  4341. final |= DREF_SSC_SOURCE_DISABLE;
  4342. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4343. }
  4344. if (final == val)
  4345. return;
  4346. /* Always enable nonspread source */
  4347. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4348. if (has_ck505)
  4349. val |= DREF_NONSPREAD_CK505_ENABLE;
  4350. else
  4351. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4352. if (has_panel) {
  4353. val &= ~DREF_SSC_SOURCE_MASK;
  4354. val |= DREF_SSC_SOURCE_ENABLE;
  4355. /* SSC must be turned on before enabling the CPU output */
  4356. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4357. DRM_DEBUG_KMS("Using SSC on panel\n");
  4358. val |= DREF_SSC1_ENABLE;
  4359. } else
  4360. val &= ~DREF_SSC1_ENABLE;
  4361. /* Get SSC going before enabling the outputs */
  4362. I915_WRITE(PCH_DREF_CONTROL, val);
  4363. POSTING_READ(PCH_DREF_CONTROL);
  4364. udelay(200);
  4365. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4366. /* Enable CPU source on CPU attached eDP */
  4367. if (has_cpu_edp) {
  4368. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4369. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4370. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4371. }
  4372. else
  4373. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4374. } else
  4375. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4376. I915_WRITE(PCH_DREF_CONTROL, val);
  4377. POSTING_READ(PCH_DREF_CONTROL);
  4378. udelay(200);
  4379. } else {
  4380. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4381. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4382. /* Turn off CPU output */
  4383. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4384. I915_WRITE(PCH_DREF_CONTROL, val);
  4385. POSTING_READ(PCH_DREF_CONTROL);
  4386. udelay(200);
  4387. /* Turn off the SSC source */
  4388. val &= ~DREF_SSC_SOURCE_MASK;
  4389. val |= DREF_SSC_SOURCE_DISABLE;
  4390. /* Turn off SSC1 */
  4391. val &= ~DREF_SSC1_ENABLE;
  4392. I915_WRITE(PCH_DREF_CONTROL, val);
  4393. POSTING_READ(PCH_DREF_CONTROL);
  4394. udelay(200);
  4395. }
  4396. BUG_ON(val != final);
  4397. }
  4398. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4399. {
  4400. uint32_t tmp;
  4401. tmp = I915_READ(SOUTH_CHICKEN2);
  4402. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4403. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4404. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4405. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4406. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4407. tmp = I915_READ(SOUTH_CHICKEN2);
  4408. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4409. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4410. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4411. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4412. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4413. }
  4414. /* WaMPhyProgramming:hsw */
  4415. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4416. {
  4417. uint32_t tmp;
  4418. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4419. tmp &= ~(0xFF << 24);
  4420. tmp |= (0x12 << 24);
  4421. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4422. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4423. tmp |= (1 << 11);
  4424. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4425. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4426. tmp |= (1 << 11);
  4427. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4428. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4429. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4430. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4431. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4432. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4433. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4434. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4435. tmp &= ~(7 << 13);
  4436. tmp |= (5 << 13);
  4437. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4438. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4439. tmp &= ~(7 << 13);
  4440. tmp |= (5 << 13);
  4441. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4442. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4443. tmp &= ~0xFF;
  4444. tmp |= 0x1C;
  4445. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4446. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4447. tmp &= ~0xFF;
  4448. tmp |= 0x1C;
  4449. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4450. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4451. tmp &= ~(0xFF << 16);
  4452. tmp |= (0x1C << 16);
  4453. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4454. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4455. tmp &= ~(0xFF << 16);
  4456. tmp |= (0x1C << 16);
  4457. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4458. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4459. tmp |= (1 << 27);
  4460. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4461. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4462. tmp |= (1 << 27);
  4463. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4464. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4465. tmp &= ~(0xF << 28);
  4466. tmp |= (4 << 28);
  4467. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4468. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4469. tmp &= ~(0xF << 28);
  4470. tmp |= (4 << 28);
  4471. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4472. }
  4473. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4474. * Programming" based on the parameters passed:
  4475. * - Sequence to enable CLKOUT_DP
  4476. * - Sequence to enable CLKOUT_DP without spread
  4477. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4478. */
  4479. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4480. bool with_fdi)
  4481. {
  4482. struct drm_i915_private *dev_priv = dev->dev_private;
  4483. uint32_t reg, tmp;
  4484. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4485. with_spread = true;
  4486. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4487. with_fdi, "LP PCH doesn't have FDI\n"))
  4488. with_fdi = false;
  4489. mutex_lock(&dev_priv->dpio_lock);
  4490. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4491. tmp &= ~SBI_SSCCTL_DISABLE;
  4492. tmp |= SBI_SSCCTL_PATHALT;
  4493. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4494. udelay(24);
  4495. if (with_spread) {
  4496. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4497. tmp &= ~SBI_SSCCTL_PATHALT;
  4498. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4499. if (with_fdi) {
  4500. lpt_reset_fdi_mphy(dev_priv);
  4501. lpt_program_fdi_mphy(dev_priv);
  4502. }
  4503. }
  4504. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4505. SBI_GEN0 : SBI_DBUFF0;
  4506. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4507. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4508. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4509. mutex_unlock(&dev_priv->dpio_lock);
  4510. }
  4511. /* Sequence to disable CLKOUT_DP */
  4512. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4513. {
  4514. struct drm_i915_private *dev_priv = dev->dev_private;
  4515. uint32_t reg, tmp;
  4516. mutex_lock(&dev_priv->dpio_lock);
  4517. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4518. SBI_GEN0 : SBI_DBUFF0;
  4519. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4520. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4521. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4522. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4523. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4524. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4525. tmp |= SBI_SSCCTL_PATHALT;
  4526. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4527. udelay(32);
  4528. }
  4529. tmp |= SBI_SSCCTL_DISABLE;
  4530. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4531. }
  4532. mutex_unlock(&dev_priv->dpio_lock);
  4533. }
  4534. static void lpt_init_pch_refclk(struct drm_device *dev)
  4535. {
  4536. struct drm_mode_config *mode_config = &dev->mode_config;
  4537. struct intel_encoder *encoder;
  4538. bool has_vga = false;
  4539. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4540. switch (encoder->type) {
  4541. case INTEL_OUTPUT_ANALOG:
  4542. has_vga = true;
  4543. break;
  4544. }
  4545. }
  4546. if (has_vga)
  4547. lpt_enable_clkout_dp(dev, true, true);
  4548. else
  4549. lpt_disable_clkout_dp(dev);
  4550. }
  4551. /*
  4552. * Initialize reference clocks when the driver loads
  4553. */
  4554. void intel_init_pch_refclk(struct drm_device *dev)
  4555. {
  4556. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4557. ironlake_init_pch_refclk(dev);
  4558. else if (HAS_PCH_LPT(dev))
  4559. lpt_init_pch_refclk(dev);
  4560. }
  4561. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4562. {
  4563. struct drm_device *dev = crtc->dev;
  4564. struct drm_i915_private *dev_priv = dev->dev_private;
  4565. struct intel_encoder *encoder;
  4566. int num_connectors = 0;
  4567. bool is_lvds = false;
  4568. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4569. switch (encoder->type) {
  4570. case INTEL_OUTPUT_LVDS:
  4571. is_lvds = true;
  4572. break;
  4573. }
  4574. num_connectors++;
  4575. }
  4576. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4577. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4578. dev_priv->vbt.lvds_ssc_freq);
  4579. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4580. }
  4581. return 120000;
  4582. }
  4583. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4584. {
  4585. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4586. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4587. int pipe = intel_crtc->pipe;
  4588. uint32_t val;
  4589. val = 0;
  4590. switch (intel_crtc->config.pipe_bpp) {
  4591. case 18:
  4592. val |= PIPECONF_6BPC;
  4593. break;
  4594. case 24:
  4595. val |= PIPECONF_8BPC;
  4596. break;
  4597. case 30:
  4598. val |= PIPECONF_10BPC;
  4599. break;
  4600. case 36:
  4601. val |= PIPECONF_12BPC;
  4602. break;
  4603. default:
  4604. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4605. BUG();
  4606. }
  4607. if (intel_crtc->config.dither)
  4608. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4609. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4610. val |= PIPECONF_INTERLACED_ILK;
  4611. else
  4612. val |= PIPECONF_PROGRESSIVE;
  4613. if (intel_crtc->config.limited_color_range)
  4614. val |= PIPECONF_COLOR_RANGE_SELECT;
  4615. I915_WRITE(PIPECONF(pipe), val);
  4616. POSTING_READ(PIPECONF(pipe));
  4617. }
  4618. /*
  4619. * Set up the pipe CSC unit.
  4620. *
  4621. * Currently only full range RGB to limited range RGB conversion
  4622. * is supported, but eventually this should handle various
  4623. * RGB<->YCbCr scenarios as well.
  4624. */
  4625. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4626. {
  4627. struct drm_device *dev = crtc->dev;
  4628. struct drm_i915_private *dev_priv = dev->dev_private;
  4629. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4630. int pipe = intel_crtc->pipe;
  4631. uint16_t coeff = 0x7800; /* 1.0 */
  4632. /*
  4633. * TODO: Check what kind of values actually come out of the pipe
  4634. * with these coeff/postoff values and adjust to get the best
  4635. * accuracy. Perhaps we even need to take the bpc value into
  4636. * consideration.
  4637. */
  4638. if (intel_crtc->config.limited_color_range)
  4639. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4640. /*
  4641. * GY/GU and RY/RU should be the other way around according
  4642. * to BSpec, but reality doesn't agree. Just set them up in
  4643. * a way that results in the correct picture.
  4644. */
  4645. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4646. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4647. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4648. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4649. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4650. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4651. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4652. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4653. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4654. if (INTEL_INFO(dev)->gen > 6) {
  4655. uint16_t postoff = 0;
  4656. if (intel_crtc->config.limited_color_range)
  4657. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4658. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4659. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4660. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4661. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4662. } else {
  4663. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4664. if (intel_crtc->config.limited_color_range)
  4665. mode |= CSC_BLACK_SCREEN_OFFSET;
  4666. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4667. }
  4668. }
  4669. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4670. {
  4671. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4672. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4673. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4674. uint32_t val;
  4675. val = 0;
  4676. if (intel_crtc->config.dither)
  4677. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4678. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4679. val |= PIPECONF_INTERLACED_ILK;
  4680. else
  4681. val |= PIPECONF_PROGRESSIVE;
  4682. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4683. POSTING_READ(PIPECONF(cpu_transcoder));
  4684. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4685. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4686. }
  4687. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4688. intel_clock_t *clock,
  4689. bool *has_reduced_clock,
  4690. intel_clock_t *reduced_clock)
  4691. {
  4692. struct drm_device *dev = crtc->dev;
  4693. struct drm_i915_private *dev_priv = dev->dev_private;
  4694. struct intel_encoder *intel_encoder;
  4695. int refclk;
  4696. const intel_limit_t *limit;
  4697. bool ret, is_lvds = false;
  4698. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4699. switch (intel_encoder->type) {
  4700. case INTEL_OUTPUT_LVDS:
  4701. is_lvds = true;
  4702. break;
  4703. }
  4704. }
  4705. refclk = ironlake_get_refclk(crtc);
  4706. /*
  4707. * Returns a set of divisors for the desired target clock with the given
  4708. * refclk, or FALSE. The returned values represent the clock equation:
  4709. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4710. */
  4711. limit = intel_limit(crtc, refclk);
  4712. ret = dev_priv->display.find_dpll(limit, crtc,
  4713. to_intel_crtc(crtc)->config.port_clock,
  4714. refclk, NULL, clock);
  4715. if (!ret)
  4716. return false;
  4717. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4718. /*
  4719. * Ensure we match the reduced clock's P to the target clock.
  4720. * If the clocks don't match, we can't switch the display clock
  4721. * by using the FP0/FP1. In such case we will disable the LVDS
  4722. * downclock feature.
  4723. */
  4724. *has_reduced_clock =
  4725. dev_priv->display.find_dpll(limit, crtc,
  4726. dev_priv->lvds_downclock,
  4727. refclk, clock,
  4728. reduced_clock);
  4729. }
  4730. return true;
  4731. }
  4732. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4733. {
  4734. struct drm_i915_private *dev_priv = dev->dev_private;
  4735. uint32_t temp;
  4736. temp = I915_READ(SOUTH_CHICKEN1);
  4737. if (temp & FDI_BC_BIFURCATION_SELECT)
  4738. return;
  4739. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4740. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4741. temp |= FDI_BC_BIFURCATION_SELECT;
  4742. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4743. I915_WRITE(SOUTH_CHICKEN1, temp);
  4744. POSTING_READ(SOUTH_CHICKEN1);
  4745. }
  4746. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4747. {
  4748. struct drm_device *dev = intel_crtc->base.dev;
  4749. struct drm_i915_private *dev_priv = dev->dev_private;
  4750. switch (intel_crtc->pipe) {
  4751. case PIPE_A:
  4752. break;
  4753. case PIPE_B:
  4754. if (intel_crtc->config.fdi_lanes > 2)
  4755. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4756. else
  4757. cpt_enable_fdi_bc_bifurcation(dev);
  4758. break;
  4759. case PIPE_C:
  4760. cpt_enable_fdi_bc_bifurcation(dev);
  4761. break;
  4762. default:
  4763. BUG();
  4764. }
  4765. }
  4766. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4767. {
  4768. /*
  4769. * Account for spread spectrum to avoid
  4770. * oversubscribing the link. Max center spread
  4771. * is 2.5%; use 5% for safety's sake.
  4772. */
  4773. u32 bps = target_clock * bpp * 21 / 20;
  4774. return bps / (link_bw * 8) + 1;
  4775. }
  4776. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4777. {
  4778. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4779. }
  4780. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4781. u32 *fp,
  4782. intel_clock_t *reduced_clock, u32 *fp2)
  4783. {
  4784. struct drm_crtc *crtc = &intel_crtc->base;
  4785. struct drm_device *dev = crtc->dev;
  4786. struct drm_i915_private *dev_priv = dev->dev_private;
  4787. struct intel_encoder *intel_encoder;
  4788. uint32_t dpll;
  4789. int factor, num_connectors = 0;
  4790. bool is_lvds = false, is_sdvo = false;
  4791. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4792. switch (intel_encoder->type) {
  4793. case INTEL_OUTPUT_LVDS:
  4794. is_lvds = true;
  4795. break;
  4796. case INTEL_OUTPUT_SDVO:
  4797. case INTEL_OUTPUT_HDMI:
  4798. is_sdvo = true;
  4799. break;
  4800. }
  4801. num_connectors++;
  4802. }
  4803. /* Enable autotuning of the PLL clock (if permissible) */
  4804. factor = 21;
  4805. if (is_lvds) {
  4806. if ((intel_panel_use_ssc(dev_priv) &&
  4807. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4808. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4809. factor = 25;
  4810. } else if (intel_crtc->config.sdvo_tv_clock)
  4811. factor = 20;
  4812. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4813. *fp |= FP_CB_TUNE;
  4814. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4815. *fp2 |= FP_CB_TUNE;
  4816. dpll = 0;
  4817. if (is_lvds)
  4818. dpll |= DPLLB_MODE_LVDS;
  4819. else
  4820. dpll |= DPLLB_MODE_DAC_SERIAL;
  4821. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4822. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4823. if (is_sdvo)
  4824. dpll |= DPLL_SDVO_HIGH_SPEED;
  4825. if (intel_crtc->config.has_dp_encoder)
  4826. dpll |= DPLL_SDVO_HIGH_SPEED;
  4827. /* compute bitmask from p1 value */
  4828. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4829. /* also FPA1 */
  4830. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4831. switch (intel_crtc->config.dpll.p2) {
  4832. case 5:
  4833. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4834. break;
  4835. case 7:
  4836. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4837. break;
  4838. case 10:
  4839. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4840. break;
  4841. case 14:
  4842. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4843. break;
  4844. }
  4845. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4846. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4847. else
  4848. dpll |= PLL_REF_INPUT_DREFCLK;
  4849. return dpll | DPLL_VCO_ENABLE;
  4850. }
  4851. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4852. int x, int y,
  4853. struct drm_framebuffer *fb)
  4854. {
  4855. struct drm_device *dev = crtc->dev;
  4856. struct drm_i915_private *dev_priv = dev->dev_private;
  4857. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4858. int pipe = intel_crtc->pipe;
  4859. int plane = intel_crtc->plane;
  4860. int num_connectors = 0;
  4861. intel_clock_t clock, reduced_clock;
  4862. u32 dpll = 0, fp = 0, fp2 = 0;
  4863. bool ok, has_reduced_clock = false;
  4864. bool is_lvds = false;
  4865. struct intel_encoder *encoder;
  4866. struct intel_shared_dpll *pll;
  4867. int ret;
  4868. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4869. switch (encoder->type) {
  4870. case INTEL_OUTPUT_LVDS:
  4871. is_lvds = true;
  4872. break;
  4873. }
  4874. num_connectors++;
  4875. }
  4876. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4877. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4878. ok = ironlake_compute_clocks(crtc, &clock,
  4879. &has_reduced_clock, &reduced_clock);
  4880. if (!ok && !intel_crtc->config.clock_set) {
  4881. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4882. return -EINVAL;
  4883. }
  4884. /* Compat-code for transition, will disappear. */
  4885. if (!intel_crtc->config.clock_set) {
  4886. intel_crtc->config.dpll.n = clock.n;
  4887. intel_crtc->config.dpll.m1 = clock.m1;
  4888. intel_crtc->config.dpll.m2 = clock.m2;
  4889. intel_crtc->config.dpll.p1 = clock.p1;
  4890. intel_crtc->config.dpll.p2 = clock.p2;
  4891. }
  4892. /* Ensure that the cursor is valid for the new mode before changing... */
  4893. intel_crtc_update_cursor(crtc, true);
  4894. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4895. if (intel_crtc->config.has_pch_encoder) {
  4896. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4897. if (has_reduced_clock)
  4898. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4899. dpll = ironlake_compute_dpll(intel_crtc,
  4900. &fp, &reduced_clock,
  4901. has_reduced_clock ? &fp2 : NULL);
  4902. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4903. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4904. if (has_reduced_clock)
  4905. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4906. else
  4907. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4908. pll = intel_get_shared_dpll(intel_crtc);
  4909. if (pll == NULL) {
  4910. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4911. pipe_name(pipe));
  4912. return -EINVAL;
  4913. }
  4914. } else
  4915. intel_put_shared_dpll(intel_crtc);
  4916. if (intel_crtc->config.has_dp_encoder)
  4917. intel_dp_set_m_n(intel_crtc);
  4918. if (is_lvds && has_reduced_clock && i915_powersave)
  4919. intel_crtc->lowfreq_avail = true;
  4920. else
  4921. intel_crtc->lowfreq_avail = false;
  4922. if (intel_crtc->config.has_pch_encoder) {
  4923. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4924. }
  4925. intel_set_pipe_timings(intel_crtc);
  4926. if (intel_crtc->config.has_pch_encoder) {
  4927. intel_cpu_transcoder_set_m_n(intel_crtc,
  4928. &intel_crtc->config.fdi_m_n);
  4929. }
  4930. if (IS_IVYBRIDGE(dev))
  4931. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4932. ironlake_set_pipeconf(crtc);
  4933. /* Set up the display plane register */
  4934. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4935. POSTING_READ(DSPCNTR(plane));
  4936. ret = intel_pipe_set_base(crtc, x, y, fb);
  4937. return ret;
  4938. }
  4939. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  4940. struct intel_link_m_n *m_n)
  4941. {
  4942. struct drm_device *dev = crtc->base.dev;
  4943. struct drm_i915_private *dev_priv = dev->dev_private;
  4944. enum pipe pipe = crtc->pipe;
  4945. m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  4946. m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  4947. m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  4948. & ~TU_SIZE_MASK;
  4949. m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  4950. m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  4951. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4952. }
  4953. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  4954. enum transcoder transcoder,
  4955. struct intel_link_m_n *m_n)
  4956. {
  4957. struct drm_device *dev = crtc->base.dev;
  4958. struct drm_i915_private *dev_priv = dev->dev_private;
  4959. enum pipe pipe = crtc->pipe;
  4960. if (INTEL_INFO(dev)->gen >= 5) {
  4961. m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4962. m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4963. m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4964. & ~TU_SIZE_MASK;
  4965. m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4966. m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4967. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4968. } else {
  4969. m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  4970. m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  4971. m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  4972. & ~TU_SIZE_MASK;
  4973. m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  4974. m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  4975. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4976. }
  4977. }
  4978. void intel_dp_get_m_n(struct intel_crtc *crtc,
  4979. struct intel_crtc_config *pipe_config)
  4980. {
  4981. if (crtc->config.has_pch_encoder)
  4982. intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  4983. else
  4984. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  4985. &pipe_config->dp_m_n);
  4986. }
  4987. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4988. struct intel_crtc_config *pipe_config)
  4989. {
  4990. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  4991. &pipe_config->fdi_m_n);
  4992. }
  4993. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4994. struct intel_crtc_config *pipe_config)
  4995. {
  4996. struct drm_device *dev = crtc->base.dev;
  4997. struct drm_i915_private *dev_priv = dev->dev_private;
  4998. uint32_t tmp;
  4999. tmp = I915_READ(PF_CTL(crtc->pipe));
  5000. if (tmp & PF_ENABLE) {
  5001. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  5002. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  5003. /* We currently do not free assignements of panel fitters on
  5004. * ivb/hsw (since we don't use the higher upscaling modes which
  5005. * differentiates them) so just WARN about this case for now. */
  5006. if (IS_GEN7(dev)) {
  5007. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  5008. PF_PIPE_SEL_IVB(crtc->pipe));
  5009. }
  5010. }
  5011. }
  5012. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  5013. struct intel_crtc_config *pipe_config)
  5014. {
  5015. struct drm_device *dev = crtc->base.dev;
  5016. struct drm_i915_private *dev_priv = dev->dev_private;
  5017. uint32_t tmp;
  5018. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5019. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5020. tmp = I915_READ(PIPECONF(crtc->pipe));
  5021. if (!(tmp & PIPECONF_ENABLE))
  5022. return false;
  5023. switch (tmp & PIPECONF_BPC_MASK) {
  5024. case PIPECONF_6BPC:
  5025. pipe_config->pipe_bpp = 18;
  5026. break;
  5027. case PIPECONF_8BPC:
  5028. pipe_config->pipe_bpp = 24;
  5029. break;
  5030. case PIPECONF_10BPC:
  5031. pipe_config->pipe_bpp = 30;
  5032. break;
  5033. case PIPECONF_12BPC:
  5034. pipe_config->pipe_bpp = 36;
  5035. break;
  5036. default:
  5037. break;
  5038. }
  5039. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  5040. struct intel_shared_dpll *pll;
  5041. pipe_config->has_pch_encoder = true;
  5042. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  5043. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5044. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5045. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5046. if (HAS_PCH_IBX(dev_priv->dev)) {
  5047. pipe_config->shared_dpll =
  5048. (enum intel_dpll_id) crtc->pipe;
  5049. } else {
  5050. tmp = I915_READ(PCH_DPLL_SEL);
  5051. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  5052. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  5053. else
  5054. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  5055. }
  5056. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  5057. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  5058. &pipe_config->dpll_hw_state));
  5059. tmp = pipe_config->dpll_hw_state.dpll;
  5060. pipe_config->pixel_multiplier =
  5061. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  5062. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  5063. } else {
  5064. pipe_config->pixel_multiplier = 1;
  5065. }
  5066. intel_get_pipe_timings(crtc, pipe_config);
  5067. ironlake_get_pfit_config(crtc, pipe_config);
  5068. return true;
  5069. }
  5070. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  5071. {
  5072. struct drm_device *dev = dev_priv->dev;
  5073. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  5074. struct intel_crtc *crtc;
  5075. unsigned long irqflags;
  5076. uint32_t val;
  5077. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5078. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  5079. pipe_name(crtc->pipe));
  5080. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  5081. WARN(plls->spll_refcount, "SPLL enabled\n");
  5082. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5083. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5084. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5085. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5086. "CPU PWM1 enabled\n");
  5087. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5088. "CPU PWM2 enabled\n");
  5089. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5090. "PCH PWM1 enabled\n");
  5091. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5092. "Utility pin enabled\n");
  5093. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5094. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5095. val = I915_READ(DEIMR);
  5096. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5097. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5098. val = I915_READ(SDEIMR);
  5099. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5100. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5101. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5102. }
  5103. /*
  5104. * This function implements pieces of two sequences from BSpec:
  5105. * - Sequence for display software to disable LCPLL
  5106. * - Sequence for display software to allow package C8+
  5107. * The steps implemented here are just the steps that actually touch the LCPLL
  5108. * register. Callers should take care of disabling all the display engine
  5109. * functions, doing the mode unset, fixing interrupts, etc.
  5110. */
  5111. void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5112. bool switch_to_fclk, bool allow_power_down)
  5113. {
  5114. uint32_t val;
  5115. assert_can_disable_lcpll(dev_priv);
  5116. val = I915_READ(LCPLL_CTL);
  5117. if (switch_to_fclk) {
  5118. val |= LCPLL_CD_SOURCE_FCLK;
  5119. I915_WRITE(LCPLL_CTL, val);
  5120. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5121. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5122. DRM_ERROR("Switching to FCLK failed\n");
  5123. val = I915_READ(LCPLL_CTL);
  5124. }
  5125. val |= LCPLL_PLL_DISABLE;
  5126. I915_WRITE(LCPLL_CTL, val);
  5127. POSTING_READ(LCPLL_CTL);
  5128. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5129. DRM_ERROR("LCPLL still locked\n");
  5130. val = I915_READ(D_COMP);
  5131. val |= D_COMP_COMP_DISABLE;
  5132. I915_WRITE(D_COMP, val);
  5133. POSTING_READ(D_COMP);
  5134. ndelay(100);
  5135. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5136. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5137. if (allow_power_down) {
  5138. val = I915_READ(LCPLL_CTL);
  5139. val |= LCPLL_POWER_DOWN_ALLOW;
  5140. I915_WRITE(LCPLL_CTL, val);
  5141. POSTING_READ(LCPLL_CTL);
  5142. }
  5143. }
  5144. /*
  5145. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5146. * source.
  5147. */
  5148. void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5149. {
  5150. uint32_t val;
  5151. val = I915_READ(LCPLL_CTL);
  5152. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5153. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5154. return;
  5155. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5156. * we'll hang the machine! */
  5157. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5158. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5159. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5160. I915_WRITE(LCPLL_CTL, val);
  5161. POSTING_READ(LCPLL_CTL);
  5162. }
  5163. val = I915_READ(D_COMP);
  5164. val |= D_COMP_COMP_FORCE;
  5165. val &= ~D_COMP_COMP_DISABLE;
  5166. I915_WRITE(D_COMP, val);
  5167. POSTING_READ(D_COMP);
  5168. val = I915_READ(LCPLL_CTL);
  5169. val &= ~LCPLL_PLL_DISABLE;
  5170. I915_WRITE(LCPLL_CTL, val);
  5171. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5172. DRM_ERROR("LCPLL not locked yet\n");
  5173. if (val & LCPLL_CD_SOURCE_FCLK) {
  5174. val = I915_READ(LCPLL_CTL);
  5175. val &= ~LCPLL_CD_SOURCE_FCLK;
  5176. I915_WRITE(LCPLL_CTL, val);
  5177. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5178. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5179. DRM_ERROR("Switching back to LCPLL failed\n");
  5180. }
  5181. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5182. }
  5183. void hsw_enable_pc8_work(struct work_struct *__work)
  5184. {
  5185. struct drm_i915_private *dev_priv =
  5186. container_of(to_delayed_work(__work), struct drm_i915_private,
  5187. pc8.enable_work);
  5188. struct drm_device *dev = dev_priv->dev;
  5189. uint32_t val;
  5190. if (dev_priv->pc8.enabled)
  5191. return;
  5192. DRM_DEBUG_KMS("Enabling package C8+\n");
  5193. dev_priv->pc8.enabled = true;
  5194. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5195. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5196. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5197. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5198. }
  5199. lpt_disable_clkout_dp(dev);
  5200. hsw_pc8_disable_interrupts(dev);
  5201. hsw_disable_lcpll(dev_priv, true, true);
  5202. }
  5203. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5204. {
  5205. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5206. WARN(dev_priv->pc8.disable_count < 1,
  5207. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5208. dev_priv->pc8.disable_count--;
  5209. if (dev_priv->pc8.disable_count != 0)
  5210. return;
  5211. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5212. msecs_to_jiffies(i915_pc8_timeout));
  5213. }
  5214. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5215. {
  5216. struct drm_device *dev = dev_priv->dev;
  5217. uint32_t val;
  5218. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5219. WARN(dev_priv->pc8.disable_count < 0,
  5220. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5221. dev_priv->pc8.disable_count++;
  5222. if (dev_priv->pc8.disable_count != 1)
  5223. return;
  5224. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5225. if (!dev_priv->pc8.enabled)
  5226. return;
  5227. DRM_DEBUG_KMS("Disabling package C8+\n");
  5228. hsw_restore_lcpll(dev_priv);
  5229. hsw_pc8_restore_interrupts(dev);
  5230. lpt_init_pch_refclk(dev);
  5231. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5232. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5233. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5234. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5235. }
  5236. intel_prepare_ddi(dev);
  5237. i915_gem_init_swizzling(dev);
  5238. mutex_lock(&dev_priv->rps.hw_lock);
  5239. gen6_update_ring_freq(dev);
  5240. mutex_unlock(&dev_priv->rps.hw_lock);
  5241. dev_priv->pc8.enabled = false;
  5242. }
  5243. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5244. {
  5245. mutex_lock(&dev_priv->pc8.lock);
  5246. __hsw_enable_package_c8(dev_priv);
  5247. mutex_unlock(&dev_priv->pc8.lock);
  5248. }
  5249. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5250. {
  5251. mutex_lock(&dev_priv->pc8.lock);
  5252. __hsw_disable_package_c8(dev_priv);
  5253. mutex_unlock(&dev_priv->pc8.lock);
  5254. }
  5255. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5256. {
  5257. struct drm_device *dev = dev_priv->dev;
  5258. struct intel_crtc *crtc;
  5259. uint32_t val;
  5260. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5261. if (crtc->base.enabled)
  5262. return false;
  5263. /* This case is still possible since we have the i915.disable_power_well
  5264. * parameter and also the KVMr or something else might be requesting the
  5265. * power well. */
  5266. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5267. if (val != 0) {
  5268. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5269. return false;
  5270. }
  5271. return true;
  5272. }
  5273. /* Since we're called from modeset_global_resources there's no way to
  5274. * symmetrically increase and decrease the refcount, so we use
  5275. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5276. * or not.
  5277. */
  5278. static void hsw_update_package_c8(struct drm_device *dev)
  5279. {
  5280. struct drm_i915_private *dev_priv = dev->dev_private;
  5281. bool allow;
  5282. if (!i915_enable_pc8)
  5283. return;
  5284. mutex_lock(&dev_priv->pc8.lock);
  5285. allow = hsw_can_enable_package_c8(dev_priv);
  5286. if (allow == dev_priv->pc8.requirements_met)
  5287. goto done;
  5288. dev_priv->pc8.requirements_met = allow;
  5289. if (allow)
  5290. __hsw_enable_package_c8(dev_priv);
  5291. else
  5292. __hsw_disable_package_c8(dev_priv);
  5293. done:
  5294. mutex_unlock(&dev_priv->pc8.lock);
  5295. }
  5296. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5297. {
  5298. if (!dev_priv->pc8.gpu_idle) {
  5299. dev_priv->pc8.gpu_idle = true;
  5300. hsw_enable_package_c8(dev_priv);
  5301. }
  5302. }
  5303. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5304. {
  5305. if (dev_priv->pc8.gpu_idle) {
  5306. dev_priv->pc8.gpu_idle = false;
  5307. hsw_disable_package_c8(dev_priv);
  5308. }
  5309. }
  5310. static void haswell_modeset_global_resources(struct drm_device *dev)
  5311. {
  5312. bool enable = false;
  5313. struct intel_crtc *crtc;
  5314. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5315. if (!crtc->base.enabled)
  5316. continue;
  5317. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  5318. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  5319. enable = true;
  5320. }
  5321. intel_set_power_well(dev, enable);
  5322. hsw_update_package_c8(dev);
  5323. }
  5324. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5325. int x, int y,
  5326. struct drm_framebuffer *fb)
  5327. {
  5328. struct drm_device *dev = crtc->dev;
  5329. struct drm_i915_private *dev_priv = dev->dev_private;
  5330. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5331. int plane = intel_crtc->plane;
  5332. int ret;
  5333. if (!intel_ddi_pll_mode_set(crtc))
  5334. return -EINVAL;
  5335. /* Ensure that the cursor is valid for the new mode before changing... */
  5336. intel_crtc_update_cursor(crtc, true);
  5337. if (intel_crtc->config.has_dp_encoder)
  5338. intel_dp_set_m_n(intel_crtc);
  5339. intel_crtc->lowfreq_avail = false;
  5340. intel_set_pipe_timings(intel_crtc);
  5341. if (intel_crtc->config.has_pch_encoder) {
  5342. intel_cpu_transcoder_set_m_n(intel_crtc,
  5343. &intel_crtc->config.fdi_m_n);
  5344. }
  5345. haswell_set_pipeconf(crtc);
  5346. intel_set_pipe_csc(crtc);
  5347. /* Set up the display plane register */
  5348. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5349. POSTING_READ(DSPCNTR(plane));
  5350. ret = intel_pipe_set_base(crtc, x, y, fb);
  5351. return ret;
  5352. }
  5353. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5354. struct intel_crtc_config *pipe_config)
  5355. {
  5356. struct drm_device *dev = crtc->base.dev;
  5357. struct drm_i915_private *dev_priv = dev->dev_private;
  5358. enum intel_display_power_domain pfit_domain;
  5359. uint32_t tmp;
  5360. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5361. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5362. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5363. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5364. enum pipe trans_edp_pipe;
  5365. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5366. default:
  5367. WARN(1, "unknown pipe linked to edp transcoder\n");
  5368. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5369. case TRANS_DDI_EDP_INPUT_A_ON:
  5370. trans_edp_pipe = PIPE_A;
  5371. break;
  5372. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5373. trans_edp_pipe = PIPE_B;
  5374. break;
  5375. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5376. trans_edp_pipe = PIPE_C;
  5377. break;
  5378. }
  5379. if (trans_edp_pipe == crtc->pipe)
  5380. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5381. }
  5382. if (!intel_display_power_enabled(dev,
  5383. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5384. return false;
  5385. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5386. if (!(tmp & PIPECONF_ENABLE))
  5387. return false;
  5388. /*
  5389. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5390. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5391. * the PCH transcoder is on.
  5392. */
  5393. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5394. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5395. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5396. pipe_config->has_pch_encoder = true;
  5397. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5398. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5399. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5400. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5401. }
  5402. intel_get_pipe_timings(crtc, pipe_config);
  5403. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5404. if (intel_display_power_enabled(dev, pfit_domain))
  5405. ironlake_get_pfit_config(crtc, pipe_config);
  5406. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5407. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5408. pipe_config->pixel_multiplier = 1;
  5409. return true;
  5410. }
  5411. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5412. int x, int y,
  5413. struct drm_framebuffer *fb)
  5414. {
  5415. struct drm_device *dev = crtc->dev;
  5416. struct drm_i915_private *dev_priv = dev->dev_private;
  5417. struct intel_encoder *encoder;
  5418. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5419. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5420. int pipe = intel_crtc->pipe;
  5421. int ret;
  5422. drm_vblank_pre_modeset(dev, pipe);
  5423. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5424. drm_vblank_post_modeset(dev, pipe);
  5425. if (ret != 0)
  5426. return ret;
  5427. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5428. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5429. encoder->base.base.id,
  5430. drm_get_encoder_name(&encoder->base),
  5431. mode->base.id, mode->name);
  5432. encoder->mode_set(encoder);
  5433. }
  5434. return 0;
  5435. }
  5436. static bool intel_eld_uptodate(struct drm_connector *connector,
  5437. int reg_eldv, uint32_t bits_eldv,
  5438. int reg_elda, uint32_t bits_elda,
  5439. int reg_edid)
  5440. {
  5441. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5442. uint8_t *eld = connector->eld;
  5443. uint32_t i;
  5444. i = I915_READ(reg_eldv);
  5445. i &= bits_eldv;
  5446. if (!eld[0])
  5447. return !i;
  5448. if (!i)
  5449. return false;
  5450. i = I915_READ(reg_elda);
  5451. i &= ~bits_elda;
  5452. I915_WRITE(reg_elda, i);
  5453. for (i = 0; i < eld[2]; i++)
  5454. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5455. return false;
  5456. return true;
  5457. }
  5458. static void g4x_write_eld(struct drm_connector *connector,
  5459. struct drm_crtc *crtc)
  5460. {
  5461. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5462. uint8_t *eld = connector->eld;
  5463. uint32_t eldv;
  5464. uint32_t len;
  5465. uint32_t i;
  5466. i = I915_READ(G4X_AUD_VID_DID);
  5467. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5468. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5469. else
  5470. eldv = G4X_ELDV_DEVCTG;
  5471. if (intel_eld_uptodate(connector,
  5472. G4X_AUD_CNTL_ST, eldv,
  5473. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5474. G4X_HDMIW_HDMIEDID))
  5475. return;
  5476. i = I915_READ(G4X_AUD_CNTL_ST);
  5477. i &= ~(eldv | G4X_ELD_ADDR);
  5478. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5479. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5480. if (!eld[0])
  5481. return;
  5482. len = min_t(uint8_t, eld[2], len);
  5483. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5484. for (i = 0; i < len; i++)
  5485. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5486. i = I915_READ(G4X_AUD_CNTL_ST);
  5487. i |= eldv;
  5488. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5489. }
  5490. static void haswell_write_eld(struct drm_connector *connector,
  5491. struct drm_crtc *crtc)
  5492. {
  5493. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5494. uint8_t *eld = connector->eld;
  5495. struct drm_device *dev = crtc->dev;
  5496. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5497. uint32_t eldv;
  5498. uint32_t i;
  5499. int len;
  5500. int pipe = to_intel_crtc(crtc)->pipe;
  5501. int tmp;
  5502. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5503. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5504. int aud_config = HSW_AUD_CFG(pipe);
  5505. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5506. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5507. /* Audio output enable */
  5508. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5509. tmp = I915_READ(aud_cntrl_st2);
  5510. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5511. I915_WRITE(aud_cntrl_st2, tmp);
  5512. /* Wait for 1 vertical blank */
  5513. intel_wait_for_vblank(dev, pipe);
  5514. /* Set ELD valid state */
  5515. tmp = I915_READ(aud_cntrl_st2);
  5516. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5517. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5518. I915_WRITE(aud_cntrl_st2, tmp);
  5519. tmp = I915_READ(aud_cntrl_st2);
  5520. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5521. /* Enable HDMI mode */
  5522. tmp = I915_READ(aud_config);
  5523. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5524. /* clear N_programing_enable and N_value_index */
  5525. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5526. I915_WRITE(aud_config, tmp);
  5527. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5528. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5529. intel_crtc->eld_vld = true;
  5530. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5531. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5532. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5533. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5534. } else
  5535. I915_WRITE(aud_config, 0);
  5536. if (intel_eld_uptodate(connector,
  5537. aud_cntrl_st2, eldv,
  5538. aud_cntl_st, IBX_ELD_ADDRESS,
  5539. hdmiw_hdmiedid))
  5540. return;
  5541. i = I915_READ(aud_cntrl_st2);
  5542. i &= ~eldv;
  5543. I915_WRITE(aud_cntrl_st2, i);
  5544. if (!eld[0])
  5545. return;
  5546. i = I915_READ(aud_cntl_st);
  5547. i &= ~IBX_ELD_ADDRESS;
  5548. I915_WRITE(aud_cntl_st, i);
  5549. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5550. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5551. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5552. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5553. for (i = 0; i < len; i++)
  5554. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5555. i = I915_READ(aud_cntrl_st2);
  5556. i |= eldv;
  5557. I915_WRITE(aud_cntrl_st2, i);
  5558. }
  5559. static void ironlake_write_eld(struct drm_connector *connector,
  5560. struct drm_crtc *crtc)
  5561. {
  5562. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5563. uint8_t *eld = connector->eld;
  5564. uint32_t eldv;
  5565. uint32_t i;
  5566. int len;
  5567. int hdmiw_hdmiedid;
  5568. int aud_config;
  5569. int aud_cntl_st;
  5570. int aud_cntrl_st2;
  5571. int pipe = to_intel_crtc(crtc)->pipe;
  5572. if (HAS_PCH_IBX(connector->dev)) {
  5573. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5574. aud_config = IBX_AUD_CFG(pipe);
  5575. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5576. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5577. } else {
  5578. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5579. aud_config = CPT_AUD_CFG(pipe);
  5580. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5581. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5582. }
  5583. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5584. i = I915_READ(aud_cntl_st);
  5585. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5586. if (!i) {
  5587. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5588. /* operate blindly on all ports */
  5589. eldv = IBX_ELD_VALIDB;
  5590. eldv |= IBX_ELD_VALIDB << 4;
  5591. eldv |= IBX_ELD_VALIDB << 8;
  5592. } else {
  5593. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5594. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5595. }
  5596. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5597. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5598. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5599. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5600. } else
  5601. I915_WRITE(aud_config, 0);
  5602. if (intel_eld_uptodate(connector,
  5603. aud_cntrl_st2, eldv,
  5604. aud_cntl_st, IBX_ELD_ADDRESS,
  5605. hdmiw_hdmiedid))
  5606. return;
  5607. i = I915_READ(aud_cntrl_st2);
  5608. i &= ~eldv;
  5609. I915_WRITE(aud_cntrl_st2, i);
  5610. if (!eld[0])
  5611. return;
  5612. i = I915_READ(aud_cntl_st);
  5613. i &= ~IBX_ELD_ADDRESS;
  5614. I915_WRITE(aud_cntl_st, i);
  5615. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5616. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5617. for (i = 0; i < len; i++)
  5618. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5619. i = I915_READ(aud_cntrl_st2);
  5620. i |= eldv;
  5621. I915_WRITE(aud_cntrl_st2, i);
  5622. }
  5623. void intel_write_eld(struct drm_encoder *encoder,
  5624. struct drm_display_mode *mode)
  5625. {
  5626. struct drm_crtc *crtc = encoder->crtc;
  5627. struct drm_connector *connector;
  5628. struct drm_device *dev = encoder->dev;
  5629. struct drm_i915_private *dev_priv = dev->dev_private;
  5630. connector = drm_select_eld(encoder, mode);
  5631. if (!connector)
  5632. return;
  5633. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5634. connector->base.id,
  5635. drm_get_connector_name(connector),
  5636. connector->encoder->base.id,
  5637. drm_get_encoder_name(connector->encoder));
  5638. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5639. if (dev_priv->display.write_eld)
  5640. dev_priv->display.write_eld(connector, crtc);
  5641. }
  5642. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5643. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5644. {
  5645. struct drm_device *dev = crtc->dev;
  5646. struct drm_i915_private *dev_priv = dev->dev_private;
  5647. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5648. enum pipe pipe = intel_crtc->pipe;
  5649. int palreg = PALETTE(pipe);
  5650. int i;
  5651. bool reenable_ips = false;
  5652. /* The clocks have to be on to load the palette. */
  5653. if (!crtc->enabled || !intel_crtc->active)
  5654. return;
  5655. if (!HAS_PCH_SPLIT(dev_priv->dev)) {
  5656. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  5657. assert_dsi_pll_enabled(dev_priv);
  5658. else
  5659. assert_pll_enabled(dev_priv, pipe);
  5660. }
  5661. /* use legacy palette for Ironlake */
  5662. if (HAS_PCH_SPLIT(dev))
  5663. palreg = LGC_PALETTE(pipe);
  5664. /* Workaround : Do not read or write the pipe palette/gamma data while
  5665. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5666. */
  5667. if (intel_crtc->config.ips_enabled &&
  5668. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5669. GAMMA_MODE_MODE_SPLIT)) {
  5670. hsw_disable_ips(intel_crtc);
  5671. reenable_ips = true;
  5672. }
  5673. for (i = 0; i < 256; i++) {
  5674. I915_WRITE(palreg + 4 * i,
  5675. (intel_crtc->lut_r[i] << 16) |
  5676. (intel_crtc->lut_g[i] << 8) |
  5677. intel_crtc->lut_b[i]);
  5678. }
  5679. if (reenable_ips)
  5680. hsw_enable_ips(intel_crtc);
  5681. }
  5682. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5683. {
  5684. struct drm_device *dev = crtc->dev;
  5685. struct drm_i915_private *dev_priv = dev->dev_private;
  5686. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5687. bool visible = base != 0;
  5688. u32 cntl;
  5689. if (intel_crtc->cursor_visible == visible)
  5690. return;
  5691. cntl = I915_READ(_CURACNTR);
  5692. if (visible) {
  5693. /* On these chipsets we can only modify the base whilst
  5694. * the cursor is disabled.
  5695. */
  5696. I915_WRITE(_CURABASE, base);
  5697. cntl &= ~(CURSOR_FORMAT_MASK);
  5698. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5699. cntl |= CURSOR_ENABLE |
  5700. CURSOR_GAMMA_ENABLE |
  5701. CURSOR_FORMAT_ARGB;
  5702. } else
  5703. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5704. I915_WRITE(_CURACNTR, cntl);
  5705. intel_crtc->cursor_visible = visible;
  5706. }
  5707. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5708. {
  5709. struct drm_device *dev = crtc->dev;
  5710. struct drm_i915_private *dev_priv = dev->dev_private;
  5711. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5712. int pipe = intel_crtc->pipe;
  5713. bool visible = base != 0;
  5714. if (intel_crtc->cursor_visible != visible) {
  5715. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5716. if (base) {
  5717. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5718. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5719. cntl |= pipe << 28; /* Connect to correct pipe */
  5720. } else {
  5721. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5722. cntl |= CURSOR_MODE_DISABLE;
  5723. }
  5724. I915_WRITE(CURCNTR(pipe), cntl);
  5725. intel_crtc->cursor_visible = visible;
  5726. }
  5727. /* and commit changes on next vblank */
  5728. I915_WRITE(CURBASE(pipe), base);
  5729. }
  5730. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5731. {
  5732. struct drm_device *dev = crtc->dev;
  5733. struct drm_i915_private *dev_priv = dev->dev_private;
  5734. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5735. int pipe = intel_crtc->pipe;
  5736. bool visible = base != 0;
  5737. if (intel_crtc->cursor_visible != visible) {
  5738. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5739. if (base) {
  5740. cntl &= ~CURSOR_MODE;
  5741. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5742. } else {
  5743. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5744. cntl |= CURSOR_MODE_DISABLE;
  5745. }
  5746. if (IS_HASWELL(dev)) {
  5747. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5748. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5749. }
  5750. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5751. intel_crtc->cursor_visible = visible;
  5752. }
  5753. /* and commit changes on next vblank */
  5754. I915_WRITE(CURBASE_IVB(pipe), base);
  5755. }
  5756. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5757. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5758. bool on)
  5759. {
  5760. struct drm_device *dev = crtc->dev;
  5761. struct drm_i915_private *dev_priv = dev->dev_private;
  5762. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5763. int pipe = intel_crtc->pipe;
  5764. int x = intel_crtc->cursor_x;
  5765. int y = intel_crtc->cursor_y;
  5766. u32 base, pos;
  5767. bool visible;
  5768. pos = 0;
  5769. if (on && crtc->enabled && crtc->fb) {
  5770. base = intel_crtc->cursor_addr;
  5771. if (x > (int) crtc->fb->width)
  5772. base = 0;
  5773. if (y > (int) crtc->fb->height)
  5774. base = 0;
  5775. } else
  5776. base = 0;
  5777. if (x < 0) {
  5778. if (x + intel_crtc->cursor_width < 0)
  5779. base = 0;
  5780. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5781. x = -x;
  5782. }
  5783. pos |= x << CURSOR_X_SHIFT;
  5784. if (y < 0) {
  5785. if (y + intel_crtc->cursor_height < 0)
  5786. base = 0;
  5787. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5788. y = -y;
  5789. }
  5790. pos |= y << CURSOR_Y_SHIFT;
  5791. visible = base != 0;
  5792. if (!visible && !intel_crtc->cursor_visible)
  5793. return;
  5794. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5795. I915_WRITE(CURPOS_IVB(pipe), pos);
  5796. ivb_update_cursor(crtc, base);
  5797. } else {
  5798. I915_WRITE(CURPOS(pipe), pos);
  5799. if (IS_845G(dev) || IS_I865G(dev))
  5800. i845_update_cursor(crtc, base);
  5801. else
  5802. i9xx_update_cursor(crtc, base);
  5803. }
  5804. }
  5805. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5806. struct drm_file *file,
  5807. uint32_t handle,
  5808. uint32_t width, uint32_t height)
  5809. {
  5810. struct drm_device *dev = crtc->dev;
  5811. struct drm_i915_private *dev_priv = dev->dev_private;
  5812. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5813. struct drm_i915_gem_object *obj;
  5814. uint32_t addr;
  5815. int ret;
  5816. /* if we want to turn off the cursor ignore width and height */
  5817. if (!handle) {
  5818. DRM_DEBUG_KMS("cursor off\n");
  5819. addr = 0;
  5820. obj = NULL;
  5821. mutex_lock(&dev->struct_mutex);
  5822. goto finish;
  5823. }
  5824. /* Currently we only support 64x64 cursors */
  5825. if (width != 64 || height != 64) {
  5826. DRM_ERROR("we currently only support 64x64 cursors\n");
  5827. return -EINVAL;
  5828. }
  5829. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5830. if (&obj->base == NULL)
  5831. return -ENOENT;
  5832. if (obj->base.size < width * height * 4) {
  5833. DRM_ERROR("buffer is to small\n");
  5834. ret = -ENOMEM;
  5835. goto fail;
  5836. }
  5837. /* we only need to pin inside GTT if cursor is non-phy */
  5838. mutex_lock(&dev->struct_mutex);
  5839. if (!dev_priv->info->cursor_needs_physical) {
  5840. unsigned alignment;
  5841. if (obj->tiling_mode) {
  5842. DRM_ERROR("cursor cannot be tiled\n");
  5843. ret = -EINVAL;
  5844. goto fail_locked;
  5845. }
  5846. /* Note that the w/a also requires 2 PTE of padding following
  5847. * the bo. We currently fill all unused PTE with the shadow
  5848. * page and so we should always have valid PTE following the
  5849. * cursor preventing the VT-d warning.
  5850. */
  5851. alignment = 0;
  5852. if (need_vtd_wa(dev))
  5853. alignment = 64*1024;
  5854. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5855. if (ret) {
  5856. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5857. goto fail_locked;
  5858. }
  5859. ret = i915_gem_object_put_fence(obj);
  5860. if (ret) {
  5861. DRM_ERROR("failed to release fence for cursor");
  5862. goto fail_unpin;
  5863. }
  5864. addr = i915_gem_obj_ggtt_offset(obj);
  5865. } else {
  5866. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5867. ret = i915_gem_attach_phys_object(dev, obj,
  5868. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5869. align);
  5870. if (ret) {
  5871. DRM_ERROR("failed to attach phys object\n");
  5872. goto fail_locked;
  5873. }
  5874. addr = obj->phys_obj->handle->busaddr;
  5875. }
  5876. if (IS_GEN2(dev))
  5877. I915_WRITE(CURSIZE, (height << 12) | width);
  5878. finish:
  5879. if (intel_crtc->cursor_bo) {
  5880. if (dev_priv->info->cursor_needs_physical) {
  5881. if (intel_crtc->cursor_bo != obj)
  5882. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5883. } else
  5884. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  5885. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5886. }
  5887. mutex_unlock(&dev->struct_mutex);
  5888. intel_crtc->cursor_addr = addr;
  5889. intel_crtc->cursor_bo = obj;
  5890. intel_crtc->cursor_width = width;
  5891. intel_crtc->cursor_height = height;
  5892. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5893. return 0;
  5894. fail_unpin:
  5895. i915_gem_object_unpin_from_display_plane(obj);
  5896. fail_locked:
  5897. mutex_unlock(&dev->struct_mutex);
  5898. fail:
  5899. drm_gem_object_unreference_unlocked(&obj->base);
  5900. return ret;
  5901. }
  5902. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5903. {
  5904. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5905. intel_crtc->cursor_x = x;
  5906. intel_crtc->cursor_y = y;
  5907. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5908. return 0;
  5909. }
  5910. /** Sets the color ramps on behalf of RandR */
  5911. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5912. u16 blue, int regno)
  5913. {
  5914. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5915. intel_crtc->lut_r[regno] = red >> 8;
  5916. intel_crtc->lut_g[regno] = green >> 8;
  5917. intel_crtc->lut_b[regno] = blue >> 8;
  5918. }
  5919. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5920. u16 *blue, int regno)
  5921. {
  5922. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5923. *red = intel_crtc->lut_r[regno] << 8;
  5924. *green = intel_crtc->lut_g[regno] << 8;
  5925. *blue = intel_crtc->lut_b[regno] << 8;
  5926. }
  5927. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5928. u16 *blue, uint32_t start, uint32_t size)
  5929. {
  5930. int end = (start + size > 256) ? 256 : start + size, i;
  5931. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5932. for (i = start; i < end; i++) {
  5933. intel_crtc->lut_r[i] = red[i] >> 8;
  5934. intel_crtc->lut_g[i] = green[i] >> 8;
  5935. intel_crtc->lut_b[i] = blue[i] >> 8;
  5936. }
  5937. intel_crtc_load_lut(crtc);
  5938. }
  5939. /* VESA 640x480x72Hz mode to set on the pipe */
  5940. static struct drm_display_mode load_detect_mode = {
  5941. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5942. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5943. };
  5944. static struct drm_framebuffer *
  5945. intel_framebuffer_create(struct drm_device *dev,
  5946. struct drm_mode_fb_cmd2 *mode_cmd,
  5947. struct drm_i915_gem_object *obj)
  5948. {
  5949. struct intel_framebuffer *intel_fb;
  5950. int ret;
  5951. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5952. if (!intel_fb) {
  5953. drm_gem_object_unreference_unlocked(&obj->base);
  5954. return ERR_PTR(-ENOMEM);
  5955. }
  5956. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5957. if (ret) {
  5958. drm_gem_object_unreference_unlocked(&obj->base);
  5959. kfree(intel_fb);
  5960. return ERR_PTR(ret);
  5961. }
  5962. return &intel_fb->base;
  5963. }
  5964. static u32
  5965. intel_framebuffer_pitch_for_width(int width, int bpp)
  5966. {
  5967. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5968. return ALIGN(pitch, 64);
  5969. }
  5970. static u32
  5971. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5972. {
  5973. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5974. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5975. }
  5976. static struct drm_framebuffer *
  5977. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5978. struct drm_display_mode *mode,
  5979. int depth, int bpp)
  5980. {
  5981. struct drm_i915_gem_object *obj;
  5982. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5983. obj = i915_gem_alloc_object(dev,
  5984. intel_framebuffer_size_for_mode(mode, bpp));
  5985. if (obj == NULL)
  5986. return ERR_PTR(-ENOMEM);
  5987. mode_cmd.width = mode->hdisplay;
  5988. mode_cmd.height = mode->vdisplay;
  5989. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5990. bpp);
  5991. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5992. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5993. }
  5994. static struct drm_framebuffer *
  5995. mode_fits_in_fbdev(struct drm_device *dev,
  5996. struct drm_display_mode *mode)
  5997. {
  5998. struct drm_i915_private *dev_priv = dev->dev_private;
  5999. struct drm_i915_gem_object *obj;
  6000. struct drm_framebuffer *fb;
  6001. if (dev_priv->fbdev == NULL)
  6002. return NULL;
  6003. obj = dev_priv->fbdev->ifb.obj;
  6004. if (obj == NULL)
  6005. return NULL;
  6006. fb = &dev_priv->fbdev->ifb.base;
  6007. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6008. fb->bits_per_pixel))
  6009. return NULL;
  6010. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6011. return NULL;
  6012. return fb;
  6013. }
  6014. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  6015. struct drm_display_mode *mode,
  6016. struct intel_load_detect_pipe *old)
  6017. {
  6018. struct intel_crtc *intel_crtc;
  6019. struct intel_encoder *intel_encoder =
  6020. intel_attached_encoder(connector);
  6021. struct drm_crtc *possible_crtc;
  6022. struct drm_encoder *encoder = &intel_encoder->base;
  6023. struct drm_crtc *crtc = NULL;
  6024. struct drm_device *dev = encoder->dev;
  6025. struct drm_framebuffer *fb;
  6026. int i = -1;
  6027. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6028. connector->base.id, drm_get_connector_name(connector),
  6029. encoder->base.id, drm_get_encoder_name(encoder));
  6030. /*
  6031. * Algorithm gets a little messy:
  6032. *
  6033. * - if the connector already has an assigned crtc, use it (but make
  6034. * sure it's on first)
  6035. *
  6036. * - try to find the first unused crtc that can drive this connector,
  6037. * and use that if we find one
  6038. */
  6039. /* See if we already have a CRTC for this connector */
  6040. if (encoder->crtc) {
  6041. crtc = encoder->crtc;
  6042. mutex_lock(&crtc->mutex);
  6043. old->dpms_mode = connector->dpms;
  6044. old->load_detect_temp = false;
  6045. /* Make sure the crtc and connector are running */
  6046. if (connector->dpms != DRM_MODE_DPMS_ON)
  6047. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  6048. return true;
  6049. }
  6050. /* Find an unused one (if possible) */
  6051. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6052. i++;
  6053. if (!(encoder->possible_crtcs & (1 << i)))
  6054. continue;
  6055. if (!possible_crtc->enabled) {
  6056. crtc = possible_crtc;
  6057. break;
  6058. }
  6059. }
  6060. /*
  6061. * If we didn't find an unused CRTC, don't use any.
  6062. */
  6063. if (!crtc) {
  6064. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6065. return false;
  6066. }
  6067. mutex_lock(&crtc->mutex);
  6068. intel_encoder->new_crtc = to_intel_crtc(crtc);
  6069. to_intel_connector(connector)->new_encoder = intel_encoder;
  6070. intel_crtc = to_intel_crtc(crtc);
  6071. old->dpms_mode = connector->dpms;
  6072. old->load_detect_temp = true;
  6073. old->release_fb = NULL;
  6074. if (!mode)
  6075. mode = &load_detect_mode;
  6076. /* We need a framebuffer large enough to accommodate all accesses
  6077. * that the plane may generate whilst we perform load detection.
  6078. * We can not rely on the fbcon either being present (we get called
  6079. * during its initialisation to detect all boot displays, or it may
  6080. * not even exist) or that it is large enough to satisfy the
  6081. * requested mode.
  6082. */
  6083. fb = mode_fits_in_fbdev(dev, mode);
  6084. if (fb == NULL) {
  6085. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6086. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6087. old->release_fb = fb;
  6088. } else
  6089. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6090. if (IS_ERR(fb)) {
  6091. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6092. mutex_unlock(&crtc->mutex);
  6093. return false;
  6094. }
  6095. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6096. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6097. if (old->release_fb)
  6098. old->release_fb->funcs->destroy(old->release_fb);
  6099. mutex_unlock(&crtc->mutex);
  6100. return false;
  6101. }
  6102. /* let the connector get through one full cycle before testing */
  6103. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6104. return true;
  6105. }
  6106. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6107. struct intel_load_detect_pipe *old)
  6108. {
  6109. struct intel_encoder *intel_encoder =
  6110. intel_attached_encoder(connector);
  6111. struct drm_encoder *encoder = &intel_encoder->base;
  6112. struct drm_crtc *crtc = encoder->crtc;
  6113. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6114. connector->base.id, drm_get_connector_name(connector),
  6115. encoder->base.id, drm_get_encoder_name(encoder));
  6116. if (old->load_detect_temp) {
  6117. to_intel_connector(connector)->new_encoder = NULL;
  6118. intel_encoder->new_crtc = NULL;
  6119. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6120. if (old->release_fb) {
  6121. drm_framebuffer_unregister_private(old->release_fb);
  6122. drm_framebuffer_unreference(old->release_fb);
  6123. }
  6124. mutex_unlock(&crtc->mutex);
  6125. return;
  6126. }
  6127. /* Switch crtc and encoder back off if necessary */
  6128. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6129. connector->funcs->dpms(connector, old->dpms_mode);
  6130. mutex_unlock(&crtc->mutex);
  6131. }
  6132. /* Returns the clock of the currently programmed mode of the given pipe. */
  6133. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6134. struct intel_crtc_config *pipe_config)
  6135. {
  6136. struct drm_device *dev = crtc->base.dev;
  6137. struct drm_i915_private *dev_priv = dev->dev_private;
  6138. int pipe = pipe_config->cpu_transcoder;
  6139. u32 dpll = I915_READ(DPLL(pipe));
  6140. u32 fp;
  6141. intel_clock_t clock;
  6142. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6143. fp = I915_READ(FP0(pipe));
  6144. else
  6145. fp = I915_READ(FP1(pipe));
  6146. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6147. if (IS_PINEVIEW(dev)) {
  6148. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6149. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6150. } else {
  6151. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6152. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6153. }
  6154. if (!IS_GEN2(dev)) {
  6155. if (IS_PINEVIEW(dev))
  6156. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6157. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6158. else
  6159. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6160. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6161. switch (dpll & DPLL_MODE_MASK) {
  6162. case DPLLB_MODE_DAC_SERIAL:
  6163. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6164. 5 : 10;
  6165. break;
  6166. case DPLLB_MODE_LVDS:
  6167. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6168. 7 : 14;
  6169. break;
  6170. default:
  6171. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6172. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6173. pipe_config->adjusted_mode.clock = 0;
  6174. return;
  6175. }
  6176. if (IS_PINEVIEW(dev))
  6177. pineview_clock(96000, &clock);
  6178. else
  6179. i9xx_clock(96000, &clock);
  6180. } else {
  6181. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6182. if (is_lvds) {
  6183. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6184. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6185. clock.p2 = 14;
  6186. if ((dpll & PLL_REF_INPUT_MASK) ==
  6187. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  6188. /* XXX: might not be 66MHz */
  6189. i9xx_clock(66000, &clock);
  6190. } else
  6191. i9xx_clock(48000, &clock);
  6192. } else {
  6193. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6194. clock.p1 = 2;
  6195. else {
  6196. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6197. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6198. }
  6199. if (dpll & PLL_P2_DIVIDE_BY_4)
  6200. clock.p2 = 4;
  6201. else
  6202. clock.p2 = 2;
  6203. i9xx_clock(48000, &clock);
  6204. }
  6205. }
  6206. pipe_config->adjusted_mode.clock = clock.dot;
  6207. }
  6208. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  6209. struct intel_crtc_config *pipe_config)
  6210. {
  6211. struct drm_device *dev = crtc->base.dev;
  6212. struct drm_i915_private *dev_priv = dev->dev_private;
  6213. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  6214. int link_freq;
  6215. u64 clock;
  6216. u32 link_m, link_n;
  6217. /*
  6218. * The calculation for the data clock is:
  6219. * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  6220. * But we want to avoid losing precison if possible, so:
  6221. * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  6222. *
  6223. * and the link clock is simpler:
  6224. * link_clock = (m * link_clock) / n
  6225. */
  6226. /*
  6227. * We need to get the FDI or DP link clock here to derive
  6228. * the M/N dividers.
  6229. *
  6230. * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
  6231. * For DP, it's either 1.62GHz or 2.7GHz.
  6232. * We do our calculations in 10*MHz since we don't need much precison.
  6233. */
  6234. if (pipe_config->has_pch_encoder)
  6235. link_freq = intel_fdi_link_freq(dev) * 10000;
  6236. else
  6237. link_freq = pipe_config->port_clock;
  6238. link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
  6239. link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
  6240. if (!link_m || !link_n)
  6241. return;
  6242. clock = ((u64)link_m * (u64)link_freq);
  6243. do_div(clock, link_n);
  6244. pipe_config->adjusted_mode.clock = clock;
  6245. }
  6246. /** Returns the currently programmed mode of the given pipe. */
  6247. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6248. struct drm_crtc *crtc)
  6249. {
  6250. struct drm_i915_private *dev_priv = dev->dev_private;
  6251. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6252. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6253. struct drm_display_mode *mode;
  6254. struct intel_crtc_config pipe_config;
  6255. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6256. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6257. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6258. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6259. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6260. if (!mode)
  6261. return NULL;
  6262. /*
  6263. * Construct a pipe_config sufficient for getting the clock info
  6264. * back out of crtc_clock_get.
  6265. *
  6266. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6267. * to use a real value here instead.
  6268. */
  6269. pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  6270. pipe_config.pixel_multiplier = 1;
  6271. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6272. mode->clock = pipe_config.adjusted_mode.clock;
  6273. mode->hdisplay = (htot & 0xffff) + 1;
  6274. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6275. mode->hsync_start = (hsync & 0xffff) + 1;
  6276. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6277. mode->vdisplay = (vtot & 0xffff) + 1;
  6278. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6279. mode->vsync_start = (vsync & 0xffff) + 1;
  6280. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6281. drm_mode_set_name(mode);
  6282. return mode;
  6283. }
  6284. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6285. {
  6286. struct drm_device *dev = crtc->dev;
  6287. drm_i915_private_t *dev_priv = dev->dev_private;
  6288. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6289. int pipe = intel_crtc->pipe;
  6290. int dpll_reg = DPLL(pipe);
  6291. int dpll;
  6292. if (HAS_PCH_SPLIT(dev))
  6293. return;
  6294. if (!dev_priv->lvds_downclock_avail)
  6295. return;
  6296. dpll = I915_READ(dpll_reg);
  6297. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6298. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6299. assert_panel_unlocked(dev_priv, pipe);
  6300. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6301. I915_WRITE(dpll_reg, dpll);
  6302. intel_wait_for_vblank(dev, pipe);
  6303. dpll = I915_READ(dpll_reg);
  6304. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6305. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6306. }
  6307. }
  6308. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6309. {
  6310. struct drm_device *dev = crtc->dev;
  6311. drm_i915_private_t *dev_priv = dev->dev_private;
  6312. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6313. if (HAS_PCH_SPLIT(dev))
  6314. return;
  6315. if (!dev_priv->lvds_downclock_avail)
  6316. return;
  6317. /*
  6318. * Since this is called by a timer, we should never get here in
  6319. * the manual case.
  6320. */
  6321. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6322. int pipe = intel_crtc->pipe;
  6323. int dpll_reg = DPLL(pipe);
  6324. int dpll;
  6325. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6326. assert_panel_unlocked(dev_priv, pipe);
  6327. dpll = I915_READ(dpll_reg);
  6328. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6329. I915_WRITE(dpll_reg, dpll);
  6330. intel_wait_for_vblank(dev, pipe);
  6331. dpll = I915_READ(dpll_reg);
  6332. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6333. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6334. }
  6335. }
  6336. void intel_mark_busy(struct drm_device *dev)
  6337. {
  6338. struct drm_i915_private *dev_priv = dev->dev_private;
  6339. hsw_package_c8_gpu_busy(dev_priv);
  6340. i915_update_gfx_val(dev_priv);
  6341. }
  6342. void intel_mark_idle(struct drm_device *dev)
  6343. {
  6344. struct drm_i915_private *dev_priv = dev->dev_private;
  6345. struct drm_crtc *crtc;
  6346. hsw_package_c8_gpu_idle(dev_priv);
  6347. if (!i915_powersave)
  6348. return;
  6349. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6350. if (!crtc->fb)
  6351. continue;
  6352. intel_decrease_pllclock(crtc);
  6353. }
  6354. }
  6355. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6356. struct intel_ring_buffer *ring)
  6357. {
  6358. struct drm_device *dev = obj->base.dev;
  6359. struct drm_crtc *crtc;
  6360. if (!i915_powersave)
  6361. return;
  6362. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6363. if (!crtc->fb)
  6364. continue;
  6365. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6366. continue;
  6367. intel_increase_pllclock(crtc);
  6368. if (ring && intel_fbc_enabled(dev))
  6369. ring->fbc_dirty = true;
  6370. }
  6371. }
  6372. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6373. {
  6374. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6375. struct drm_device *dev = crtc->dev;
  6376. struct intel_unpin_work *work;
  6377. unsigned long flags;
  6378. spin_lock_irqsave(&dev->event_lock, flags);
  6379. work = intel_crtc->unpin_work;
  6380. intel_crtc->unpin_work = NULL;
  6381. spin_unlock_irqrestore(&dev->event_lock, flags);
  6382. if (work) {
  6383. cancel_work_sync(&work->work);
  6384. kfree(work);
  6385. }
  6386. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6387. drm_crtc_cleanup(crtc);
  6388. kfree(intel_crtc);
  6389. }
  6390. static void intel_unpin_work_fn(struct work_struct *__work)
  6391. {
  6392. struct intel_unpin_work *work =
  6393. container_of(__work, struct intel_unpin_work, work);
  6394. struct drm_device *dev = work->crtc->dev;
  6395. mutex_lock(&dev->struct_mutex);
  6396. intel_unpin_fb_obj(work->old_fb_obj);
  6397. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6398. drm_gem_object_unreference(&work->old_fb_obj->base);
  6399. intel_update_fbc(dev);
  6400. mutex_unlock(&dev->struct_mutex);
  6401. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6402. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6403. kfree(work);
  6404. }
  6405. static void do_intel_finish_page_flip(struct drm_device *dev,
  6406. struct drm_crtc *crtc)
  6407. {
  6408. drm_i915_private_t *dev_priv = dev->dev_private;
  6409. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6410. struct intel_unpin_work *work;
  6411. unsigned long flags;
  6412. /* Ignore early vblank irqs */
  6413. if (intel_crtc == NULL)
  6414. return;
  6415. spin_lock_irqsave(&dev->event_lock, flags);
  6416. work = intel_crtc->unpin_work;
  6417. /* Ensure we don't miss a work->pending update ... */
  6418. smp_rmb();
  6419. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6420. spin_unlock_irqrestore(&dev->event_lock, flags);
  6421. return;
  6422. }
  6423. /* and that the unpin work is consistent wrt ->pending. */
  6424. smp_rmb();
  6425. intel_crtc->unpin_work = NULL;
  6426. if (work->event)
  6427. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6428. drm_vblank_put(dev, intel_crtc->pipe);
  6429. spin_unlock_irqrestore(&dev->event_lock, flags);
  6430. wake_up_all(&dev_priv->pending_flip_queue);
  6431. queue_work(dev_priv->wq, &work->work);
  6432. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6433. }
  6434. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6435. {
  6436. drm_i915_private_t *dev_priv = dev->dev_private;
  6437. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6438. do_intel_finish_page_flip(dev, crtc);
  6439. }
  6440. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6441. {
  6442. drm_i915_private_t *dev_priv = dev->dev_private;
  6443. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6444. do_intel_finish_page_flip(dev, crtc);
  6445. }
  6446. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6447. {
  6448. drm_i915_private_t *dev_priv = dev->dev_private;
  6449. struct intel_crtc *intel_crtc =
  6450. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6451. unsigned long flags;
  6452. /* NB: An MMIO update of the plane base pointer will also
  6453. * generate a page-flip completion irq, i.e. every modeset
  6454. * is also accompanied by a spurious intel_prepare_page_flip().
  6455. */
  6456. spin_lock_irqsave(&dev->event_lock, flags);
  6457. if (intel_crtc->unpin_work)
  6458. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6459. spin_unlock_irqrestore(&dev->event_lock, flags);
  6460. }
  6461. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6462. {
  6463. /* Ensure that the work item is consistent when activating it ... */
  6464. smp_wmb();
  6465. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6466. /* and that it is marked active as soon as the irq could fire. */
  6467. smp_wmb();
  6468. }
  6469. static int intel_gen2_queue_flip(struct drm_device *dev,
  6470. struct drm_crtc *crtc,
  6471. struct drm_framebuffer *fb,
  6472. struct drm_i915_gem_object *obj,
  6473. uint32_t flags)
  6474. {
  6475. struct drm_i915_private *dev_priv = dev->dev_private;
  6476. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6477. u32 flip_mask;
  6478. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6479. int ret;
  6480. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6481. if (ret)
  6482. goto err;
  6483. ret = intel_ring_begin(ring, 6);
  6484. if (ret)
  6485. goto err_unpin;
  6486. /* Can't queue multiple flips, so wait for the previous
  6487. * one to finish before executing the next.
  6488. */
  6489. if (intel_crtc->plane)
  6490. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6491. else
  6492. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6493. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6494. intel_ring_emit(ring, MI_NOOP);
  6495. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6496. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6497. intel_ring_emit(ring, fb->pitches[0]);
  6498. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6499. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6500. intel_mark_page_flip_active(intel_crtc);
  6501. __intel_ring_advance(ring);
  6502. return 0;
  6503. err_unpin:
  6504. intel_unpin_fb_obj(obj);
  6505. err:
  6506. return ret;
  6507. }
  6508. static int intel_gen3_queue_flip(struct drm_device *dev,
  6509. struct drm_crtc *crtc,
  6510. struct drm_framebuffer *fb,
  6511. struct drm_i915_gem_object *obj,
  6512. uint32_t flags)
  6513. {
  6514. struct drm_i915_private *dev_priv = dev->dev_private;
  6515. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6516. u32 flip_mask;
  6517. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6518. int ret;
  6519. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6520. if (ret)
  6521. goto err;
  6522. ret = intel_ring_begin(ring, 6);
  6523. if (ret)
  6524. goto err_unpin;
  6525. if (intel_crtc->plane)
  6526. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6527. else
  6528. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6529. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6530. intel_ring_emit(ring, MI_NOOP);
  6531. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6532. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6533. intel_ring_emit(ring, fb->pitches[0]);
  6534. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6535. intel_ring_emit(ring, MI_NOOP);
  6536. intel_mark_page_flip_active(intel_crtc);
  6537. __intel_ring_advance(ring);
  6538. return 0;
  6539. err_unpin:
  6540. intel_unpin_fb_obj(obj);
  6541. err:
  6542. return ret;
  6543. }
  6544. static int intel_gen4_queue_flip(struct drm_device *dev,
  6545. struct drm_crtc *crtc,
  6546. struct drm_framebuffer *fb,
  6547. struct drm_i915_gem_object *obj,
  6548. uint32_t flags)
  6549. {
  6550. struct drm_i915_private *dev_priv = dev->dev_private;
  6551. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6552. uint32_t pf, pipesrc;
  6553. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6554. int ret;
  6555. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6556. if (ret)
  6557. goto err;
  6558. ret = intel_ring_begin(ring, 4);
  6559. if (ret)
  6560. goto err_unpin;
  6561. /* i965+ uses the linear or tiled offsets from the
  6562. * Display Registers (which do not change across a page-flip)
  6563. * so we need only reprogram the base address.
  6564. */
  6565. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6566. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6567. intel_ring_emit(ring, fb->pitches[0]);
  6568. intel_ring_emit(ring,
  6569. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6570. obj->tiling_mode);
  6571. /* XXX Enabling the panel-fitter across page-flip is so far
  6572. * untested on non-native modes, so ignore it for now.
  6573. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6574. */
  6575. pf = 0;
  6576. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6577. intel_ring_emit(ring, pf | pipesrc);
  6578. intel_mark_page_flip_active(intel_crtc);
  6579. __intel_ring_advance(ring);
  6580. return 0;
  6581. err_unpin:
  6582. intel_unpin_fb_obj(obj);
  6583. err:
  6584. return ret;
  6585. }
  6586. static int intel_gen6_queue_flip(struct drm_device *dev,
  6587. struct drm_crtc *crtc,
  6588. struct drm_framebuffer *fb,
  6589. struct drm_i915_gem_object *obj,
  6590. uint32_t flags)
  6591. {
  6592. struct drm_i915_private *dev_priv = dev->dev_private;
  6593. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6594. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6595. uint32_t pf, pipesrc;
  6596. int ret;
  6597. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6598. if (ret)
  6599. goto err;
  6600. ret = intel_ring_begin(ring, 4);
  6601. if (ret)
  6602. goto err_unpin;
  6603. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6604. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6605. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6606. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6607. /* Contrary to the suggestions in the documentation,
  6608. * "Enable Panel Fitter" does not seem to be required when page
  6609. * flipping with a non-native mode, and worse causes a normal
  6610. * modeset to fail.
  6611. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6612. */
  6613. pf = 0;
  6614. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6615. intel_ring_emit(ring, pf | pipesrc);
  6616. intel_mark_page_flip_active(intel_crtc);
  6617. __intel_ring_advance(ring);
  6618. return 0;
  6619. err_unpin:
  6620. intel_unpin_fb_obj(obj);
  6621. err:
  6622. return ret;
  6623. }
  6624. static int intel_gen7_queue_flip(struct drm_device *dev,
  6625. struct drm_crtc *crtc,
  6626. struct drm_framebuffer *fb,
  6627. struct drm_i915_gem_object *obj,
  6628. uint32_t flags)
  6629. {
  6630. struct drm_i915_private *dev_priv = dev->dev_private;
  6631. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6632. struct intel_ring_buffer *ring;
  6633. uint32_t plane_bit = 0;
  6634. int len, ret;
  6635. ring = obj->ring;
  6636. if (ring == NULL || ring->id != RCS)
  6637. ring = &dev_priv->ring[BCS];
  6638. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6639. if (ret)
  6640. goto err;
  6641. switch(intel_crtc->plane) {
  6642. case PLANE_A:
  6643. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6644. break;
  6645. case PLANE_B:
  6646. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6647. break;
  6648. case PLANE_C:
  6649. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6650. break;
  6651. default:
  6652. WARN_ONCE(1, "unknown plane in flip command\n");
  6653. ret = -ENODEV;
  6654. goto err_unpin;
  6655. }
  6656. len = 4;
  6657. if (ring->id == RCS)
  6658. len += 6;
  6659. ret = intel_ring_begin(ring, len);
  6660. if (ret)
  6661. goto err_unpin;
  6662. /* Unmask the flip-done completion message. Note that the bspec says that
  6663. * we should do this for both the BCS and RCS, and that we must not unmask
  6664. * more than one flip event at any time (or ensure that one flip message
  6665. * can be sent by waiting for flip-done prior to queueing new flips).
  6666. * Experimentation says that BCS works despite DERRMR masking all
  6667. * flip-done completion events and that unmasking all planes at once
  6668. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6669. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6670. */
  6671. if (ring->id == RCS) {
  6672. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6673. intel_ring_emit(ring, DERRMR);
  6674. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6675. DERRMR_PIPEB_PRI_FLIP_DONE |
  6676. DERRMR_PIPEC_PRI_FLIP_DONE));
  6677. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6678. intel_ring_emit(ring, DERRMR);
  6679. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6680. }
  6681. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6682. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6683. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6684. intel_ring_emit(ring, (MI_NOOP));
  6685. intel_mark_page_flip_active(intel_crtc);
  6686. __intel_ring_advance(ring);
  6687. return 0;
  6688. err_unpin:
  6689. intel_unpin_fb_obj(obj);
  6690. err:
  6691. return ret;
  6692. }
  6693. static int intel_default_queue_flip(struct drm_device *dev,
  6694. struct drm_crtc *crtc,
  6695. struct drm_framebuffer *fb,
  6696. struct drm_i915_gem_object *obj,
  6697. uint32_t flags)
  6698. {
  6699. return -ENODEV;
  6700. }
  6701. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6702. struct drm_framebuffer *fb,
  6703. struct drm_pending_vblank_event *event,
  6704. uint32_t page_flip_flags)
  6705. {
  6706. struct drm_device *dev = crtc->dev;
  6707. struct drm_i915_private *dev_priv = dev->dev_private;
  6708. struct drm_framebuffer *old_fb = crtc->fb;
  6709. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6710. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6711. struct intel_unpin_work *work;
  6712. unsigned long flags;
  6713. int ret;
  6714. /* Can't change pixel format via MI display flips. */
  6715. if (fb->pixel_format != crtc->fb->pixel_format)
  6716. return -EINVAL;
  6717. /*
  6718. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6719. * Note that pitch changes could also affect these register.
  6720. */
  6721. if (INTEL_INFO(dev)->gen > 3 &&
  6722. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6723. fb->pitches[0] != crtc->fb->pitches[0]))
  6724. return -EINVAL;
  6725. work = kzalloc(sizeof *work, GFP_KERNEL);
  6726. if (work == NULL)
  6727. return -ENOMEM;
  6728. work->event = event;
  6729. work->crtc = crtc;
  6730. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6731. INIT_WORK(&work->work, intel_unpin_work_fn);
  6732. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6733. if (ret)
  6734. goto free_work;
  6735. /* We borrow the event spin lock for protecting unpin_work */
  6736. spin_lock_irqsave(&dev->event_lock, flags);
  6737. if (intel_crtc->unpin_work) {
  6738. spin_unlock_irqrestore(&dev->event_lock, flags);
  6739. kfree(work);
  6740. drm_vblank_put(dev, intel_crtc->pipe);
  6741. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6742. return -EBUSY;
  6743. }
  6744. intel_crtc->unpin_work = work;
  6745. spin_unlock_irqrestore(&dev->event_lock, flags);
  6746. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6747. flush_workqueue(dev_priv->wq);
  6748. ret = i915_mutex_lock_interruptible(dev);
  6749. if (ret)
  6750. goto cleanup;
  6751. /* Reference the objects for the scheduled work. */
  6752. drm_gem_object_reference(&work->old_fb_obj->base);
  6753. drm_gem_object_reference(&obj->base);
  6754. crtc->fb = fb;
  6755. work->pending_flip_obj = obj;
  6756. work->enable_stall_check = true;
  6757. atomic_inc(&intel_crtc->unpin_work_count);
  6758. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6759. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6760. if (ret)
  6761. goto cleanup_pending;
  6762. intel_disable_fbc(dev);
  6763. intel_mark_fb_busy(obj, NULL);
  6764. mutex_unlock(&dev->struct_mutex);
  6765. trace_i915_flip_request(intel_crtc->plane, obj);
  6766. return 0;
  6767. cleanup_pending:
  6768. atomic_dec(&intel_crtc->unpin_work_count);
  6769. crtc->fb = old_fb;
  6770. drm_gem_object_unreference(&work->old_fb_obj->base);
  6771. drm_gem_object_unreference(&obj->base);
  6772. mutex_unlock(&dev->struct_mutex);
  6773. cleanup:
  6774. spin_lock_irqsave(&dev->event_lock, flags);
  6775. intel_crtc->unpin_work = NULL;
  6776. spin_unlock_irqrestore(&dev->event_lock, flags);
  6777. drm_vblank_put(dev, intel_crtc->pipe);
  6778. free_work:
  6779. kfree(work);
  6780. return ret;
  6781. }
  6782. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6783. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6784. .load_lut = intel_crtc_load_lut,
  6785. };
  6786. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6787. struct drm_crtc *crtc)
  6788. {
  6789. struct drm_device *dev;
  6790. struct drm_crtc *tmp;
  6791. int crtc_mask = 1;
  6792. WARN(!crtc, "checking null crtc?\n");
  6793. dev = crtc->dev;
  6794. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6795. if (tmp == crtc)
  6796. break;
  6797. crtc_mask <<= 1;
  6798. }
  6799. if (encoder->possible_crtcs & crtc_mask)
  6800. return true;
  6801. return false;
  6802. }
  6803. /**
  6804. * intel_modeset_update_staged_output_state
  6805. *
  6806. * Updates the staged output configuration state, e.g. after we've read out the
  6807. * current hw state.
  6808. */
  6809. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6810. {
  6811. struct intel_encoder *encoder;
  6812. struct intel_connector *connector;
  6813. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6814. base.head) {
  6815. connector->new_encoder =
  6816. to_intel_encoder(connector->base.encoder);
  6817. }
  6818. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6819. base.head) {
  6820. encoder->new_crtc =
  6821. to_intel_crtc(encoder->base.crtc);
  6822. }
  6823. }
  6824. /**
  6825. * intel_modeset_commit_output_state
  6826. *
  6827. * This function copies the stage display pipe configuration to the real one.
  6828. */
  6829. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6830. {
  6831. struct intel_encoder *encoder;
  6832. struct intel_connector *connector;
  6833. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6834. base.head) {
  6835. connector->base.encoder = &connector->new_encoder->base;
  6836. }
  6837. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6838. base.head) {
  6839. encoder->base.crtc = &encoder->new_crtc->base;
  6840. }
  6841. }
  6842. static void
  6843. connected_sink_compute_bpp(struct intel_connector * connector,
  6844. struct intel_crtc_config *pipe_config)
  6845. {
  6846. int bpp = pipe_config->pipe_bpp;
  6847. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6848. connector->base.base.id,
  6849. drm_get_connector_name(&connector->base));
  6850. /* Don't use an invalid EDID bpc value */
  6851. if (connector->base.display_info.bpc &&
  6852. connector->base.display_info.bpc * 3 < bpp) {
  6853. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6854. bpp, connector->base.display_info.bpc*3);
  6855. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6856. }
  6857. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6858. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6859. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6860. bpp);
  6861. pipe_config->pipe_bpp = 24;
  6862. }
  6863. }
  6864. static int
  6865. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6866. struct drm_framebuffer *fb,
  6867. struct intel_crtc_config *pipe_config)
  6868. {
  6869. struct drm_device *dev = crtc->base.dev;
  6870. struct intel_connector *connector;
  6871. int bpp;
  6872. switch (fb->pixel_format) {
  6873. case DRM_FORMAT_C8:
  6874. bpp = 8*3; /* since we go through a colormap */
  6875. break;
  6876. case DRM_FORMAT_XRGB1555:
  6877. case DRM_FORMAT_ARGB1555:
  6878. /* checked in intel_framebuffer_init already */
  6879. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6880. return -EINVAL;
  6881. case DRM_FORMAT_RGB565:
  6882. bpp = 6*3; /* min is 18bpp */
  6883. break;
  6884. case DRM_FORMAT_XBGR8888:
  6885. case DRM_FORMAT_ABGR8888:
  6886. /* checked in intel_framebuffer_init already */
  6887. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6888. return -EINVAL;
  6889. case DRM_FORMAT_XRGB8888:
  6890. case DRM_FORMAT_ARGB8888:
  6891. bpp = 8*3;
  6892. break;
  6893. case DRM_FORMAT_XRGB2101010:
  6894. case DRM_FORMAT_ARGB2101010:
  6895. case DRM_FORMAT_XBGR2101010:
  6896. case DRM_FORMAT_ABGR2101010:
  6897. /* checked in intel_framebuffer_init already */
  6898. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6899. return -EINVAL;
  6900. bpp = 10*3;
  6901. break;
  6902. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6903. default:
  6904. DRM_DEBUG_KMS("unsupported depth\n");
  6905. return -EINVAL;
  6906. }
  6907. pipe_config->pipe_bpp = bpp;
  6908. /* Clamp display bpp to EDID value */
  6909. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6910. base.head) {
  6911. if (!connector->new_encoder ||
  6912. connector->new_encoder->new_crtc != crtc)
  6913. continue;
  6914. connected_sink_compute_bpp(connector, pipe_config);
  6915. }
  6916. return bpp;
  6917. }
  6918. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6919. struct intel_crtc_config *pipe_config,
  6920. const char *context)
  6921. {
  6922. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6923. context, pipe_name(crtc->pipe));
  6924. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6925. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6926. pipe_config->pipe_bpp, pipe_config->dither);
  6927. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6928. pipe_config->has_pch_encoder,
  6929. pipe_config->fdi_lanes,
  6930. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6931. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6932. pipe_config->fdi_m_n.tu);
  6933. DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6934. pipe_config->has_dp_encoder,
  6935. pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  6936. pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  6937. pipe_config->dp_m_n.tu);
  6938. DRM_DEBUG_KMS("requested mode:\n");
  6939. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6940. DRM_DEBUG_KMS("adjusted mode:\n");
  6941. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6942. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6943. pipe_config->gmch_pfit.control,
  6944. pipe_config->gmch_pfit.pgm_ratios,
  6945. pipe_config->gmch_pfit.lvds_border_bits);
  6946. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6947. pipe_config->pch_pfit.pos,
  6948. pipe_config->pch_pfit.size);
  6949. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6950. }
  6951. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6952. {
  6953. int num_encoders = 0;
  6954. bool uncloneable_encoders = false;
  6955. struct intel_encoder *encoder;
  6956. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6957. base.head) {
  6958. if (&encoder->new_crtc->base != crtc)
  6959. continue;
  6960. num_encoders++;
  6961. if (!encoder->cloneable)
  6962. uncloneable_encoders = true;
  6963. }
  6964. return !(num_encoders > 1 && uncloneable_encoders);
  6965. }
  6966. static struct intel_crtc_config *
  6967. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6968. struct drm_framebuffer *fb,
  6969. struct drm_display_mode *mode)
  6970. {
  6971. struct drm_device *dev = crtc->dev;
  6972. struct intel_encoder *encoder;
  6973. struct intel_crtc_config *pipe_config;
  6974. int plane_bpp, ret = -EINVAL;
  6975. bool retry = true;
  6976. if (!check_encoder_cloning(crtc)) {
  6977. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6978. return ERR_PTR(-EINVAL);
  6979. }
  6980. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6981. if (!pipe_config)
  6982. return ERR_PTR(-ENOMEM);
  6983. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6984. drm_mode_copy(&pipe_config->requested_mode, mode);
  6985. pipe_config->cpu_transcoder =
  6986. (enum transcoder) to_intel_crtc(crtc)->pipe;
  6987. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6988. /*
  6989. * Sanitize sync polarity flags based on requested ones. If neither
  6990. * positive or negative polarity is requested, treat this as meaning
  6991. * negative polarity.
  6992. */
  6993. if (!(pipe_config->adjusted_mode.flags &
  6994. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  6995. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  6996. if (!(pipe_config->adjusted_mode.flags &
  6997. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  6998. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  6999. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  7000. * plane pixel format and any sink constraints into account. Returns the
  7001. * source plane bpp so that dithering can be selected on mismatches
  7002. * after encoders and crtc also have had their say. */
  7003. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  7004. fb, pipe_config);
  7005. if (plane_bpp < 0)
  7006. goto fail;
  7007. encoder_retry:
  7008. /* Ensure the port clock defaults are reset when retrying. */
  7009. pipe_config->port_clock = 0;
  7010. pipe_config->pixel_multiplier = 1;
  7011. /* Fill in default crtc timings, allow encoders to overwrite them. */
  7012. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
  7013. /* Pass our mode to the connectors and the CRTC to give them a chance to
  7014. * adjust it according to limitations or connector properties, and also
  7015. * a chance to reject the mode entirely.
  7016. */
  7017. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7018. base.head) {
  7019. if (&encoder->new_crtc->base != crtc)
  7020. continue;
  7021. if (!(encoder->compute_config(encoder, pipe_config))) {
  7022. DRM_DEBUG_KMS("Encoder config failure\n");
  7023. goto fail;
  7024. }
  7025. }
  7026. /* Set default port clock if not overwritten by the encoder. Needs to be
  7027. * done afterwards in case the encoder adjusts the mode. */
  7028. if (!pipe_config->port_clock)
  7029. pipe_config->port_clock = pipe_config->adjusted_mode.clock *
  7030. pipe_config->pixel_multiplier;
  7031. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  7032. if (ret < 0) {
  7033. DRM_DEBUG_KMS("CRTC fixup failed\n");
  7034. goto fail;
  7035. }
  7036. if (ret == RETRY) {
  7037. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  7038. ret = -EINVAL;
  7039. goto fail;
  7040. }
  7041. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  7042. retry = false;
  7043. goto encoder_retry;
  7044. }
  7045. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  7046. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  7047. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  7048. return pipe_config;
  7049. fail:
  7050. kfree(pipe_config);
  7051. return ERR_PTR(ret);
  7052. }
  7053. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  7054. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  7055. static void
  7056. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  7057. unsigned *prepare_pipes, unsigned *disable_pipes)
  7058. {
  7059. struct intel_crtc *intel_crtc;
  7060. struct drm_device *dev = crtc->dev;
  7061. struct intel_encoder *encoder;
  7062. struct intel_connector *connector;
  7063. struct drm_crtc *tmp_crtc;
  7064. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  7065. /* Check which crtcs have changed outputs connected to them, these need
  7066. * to be part of the prepare_pipes mask. We don't (yet) support global
  7067. * modeset across multiple crtcs, so modeset_pipes will only have one
  7068. * bit set at most. */
  7069. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7070. base.head) {
  7071. if (connector->base.encoder == &connector->new_encoder->base)
  7072. continue;
  7073. if (connector->base.encoder) {
  7074. tmp_crtc = connector->base.encoder->crtc;
  7075. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7076. }
  7077. if (connector->new_encoder)
  7078. *prepare_pipes |=
  7079. 1 << connector->new_encoder->new_crtc->pipe;
  7080. }
  7081. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7082. base.head) {
  7083. if (encoder->base.crtc == &encoder->new_crtc->base)
  7084. continue;
  7085. if (encoder->base.crtc) {
  7086. tmp_crtc = encoder->base.crtc;
  7087. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7088. }
  7089. if (encoder->new_crtc)
  7090. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7091. }
  7092. /* Check for any pipes that will be fully disabled ... */
  7093. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7094. base.head) {
  7095. bool used = false;
  7096. /* Don't try to disable disabled crtcs. */
  7097. if (!intel_crtc->base.enabled)
  7098. continue;
  7099. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7100. base.head) {
  7101. if (encoder->new_crtc == intel_crtc)
  7102. used = true;
  7103. }
  7104. if (!used)
  7105. *disable_pipes |= 1 << intel_crtc->pipe;
  7106. }
  7107. /* set_mode is also used to update properties on life display pipes. */
  7108. intel_crtc = to_intel_crtc(crtc);
  7109. if (crtc->enabled)
  7110. *prepare_pipes |= 1 << intel_crtc->pipe;
  7111. /*
  7112. * For simplicity do a full modeset on any pipe where the output routing
  7113. * changed. We could be more clever, but that would require us to be
  7114. * more careful with calling the relevant encoder->mode_set functions.
  7115. */
  7116. if (*prepare_pipes)
  7117. *modeset_pipes = *prepare_pipes;
  7118. /* ... and mask these out. */
  7119. *modeset_pipes &= ~(*disable_pipes);
  7120. *prepare_pipes &= ~(*disable_pipes);
  7121. /*
  7122. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7123. * obies this rule, but the modeset restore mode of
  7124. * intel_modeset_setup_hw_state does not.
  7125. */
  7126. *modeset_pipes &= 1 << intel_crtc->pipe;
  7127. *prepare_pipes &= 1 << intel_crtc->pipe;
  7128. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7129. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7130. }
  7131. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7132. {
  7133. struct drm_encoder *encoder;
  7134. struct drm_device *dev = crtc->dev;
  7135. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7136. if (encoder->crtc == crtc)
  7137. return true;
  7138. return false;
  7139. }
  7140. static void
  7141. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7142. {
  7143. struct intel_encoder *intel_encoder;
  7144. struct intel_crtc *intel_crtc;
  7145. struct drm_connector *connector;
  7146. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7147. base.head) {
  7148. if (!intel_encoder->base.crtc)
  7149. continue;
  7150. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7151. if (prepare_pipes & (1 << intel_crtc->pipe))
  7152. intel_encoder->connectors_active = false;
  7153. }
  7154. intel_modeset_commit_output_state(dev);
  7155. /* Update computed state. */
  7156. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7157. base.head) {
  7158. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7159. }
  7160. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7161. if (!connector->encoder || !connector->encoder->crtc)
  7162. continue;
  7163. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7164. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7165. struct drm_property *dpms_property =
  7166. dev->mode_config.dpms_property;
  7167. connector->dpms = DRM_MODE_DPMS_ON;
  7168. drm_object_property_set_value(&connector->base,
  7169. dpms_property,
  7170. DRM_MODE_DPMS_ON);
  7171. intel_encoder = to_intel_encoder(connector->encoder);
  7172. intel_encoder->connectors_active = true;
  7173. }
  7174. }
  7175. }
  7176. static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
  7177. struct intel_crtc_config *new)
  7178. {
  7179. int clock1, clock2, diff;
  7180. clock1 = cur->adjusted_mode.clock;
  7181. clock2 = new->adjusted_mode.clock;
  7182. if (clock1 == clock2)
  7183. return true;
  7184. if (!clock1 || !clock2)
  7185. return false;
  7186. diff = abs(clock1 - clock2);
  7187. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7188. return true;
  7189. return false;
  7190. }
  7191. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7192. list_for_each_entry((intel_crtc), \
  7193. &(dev)->mode_config.crtc_list, \
  7194. base.head) \
  7195. if (mask & (1 <<(intel_crtc)->pipe))
  7196. static bool
  7197. intel_pipe_config_compare(struct drm_device *dev,
  7198. struct intel_crtc_config *current_config,
  7199. struct intel_crtc_config *pipe_config)
  7200. {
  7201. #define PIPE_CONF_CHECK_X(name) \
  7202. if (current_config->name != pipe_config->name) { \
  7203. DRM_ERROR("mismatch in " #name " " \
  7204. "(expected 0x%08x, found 0x%08x)\n", \
  7205. current_config->name, \
  7206. pipe_config->name); \
  7207. return false; \
  7208. }
  7209. #define PIPE_CONF_CHECK_I(name) \
  7210. if (current_config->name != pipe_config->name) { \
  7211. DRM_ERROR("mismatch in " #name " " \
  7212. "(expected %i, found %i)\n", \
  7213. current_config->name, \
  7214. pipe_config->name); \
  7215. return false; \
  7216. }
  7217. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7218. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7219. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7220. "(expected %i, found %i)\n", \
  7221. current_config->name & (mask), \
  7222. pipe_config->name & (mask)); \
  7223. return false; \
  7224. }
  7225. #define PIPE_CONF_QUIRK(quirk) \
  7226. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7227. PIPE_CONF_CHECK_I(cpu_transcoder);
  7228. PIPE_CONF_CHECK_I(has_pch_encoder);
  7229. PIPE_CONF_CHECK_I(fdi_lanes);
  7230. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7231. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7232. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7233. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7234. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7235. PIPE_CONF_CHECK_I(has_dp_encoder);
  7236. PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
  7237. PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
  7238. PIPE_CONF_CHECK_I(dp_m_n.link_m);
  7239. PIPE_CONF_CHECK_I(dp_m_n.link_n);
  7240. PIPE_CONF_CHECK_I(dp_m_n.tu);
  7241. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7242. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7243. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7244. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7245. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7246. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7247. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7248. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7249. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7250. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7251. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7252. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7253. PIPE_CONF_CHECK_I(pixel_multiplier);
  7254. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7255. DRM_MODE_FLAG_INTERLACE);
  7256. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7257. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7258. DRM_MODE_FLAG_PHSYNC);
  7259. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7260. DRM_MODE_FLAG_NHSYNC);
  7261. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7262. DRM_MODE_FLAG_PVSYNC);
  7263. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7264. DRM_MODE_FLAG_NVSYNC);
  7265. }
  7266. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  7267. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  7268. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7269. /* pfit ratios are autocomputed by the hw on gen4+ */
  7270. if (INTEL_INFO(dev)->gen < 4)
  7271. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7272. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7273. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7274. PIPE_CONF_CHECK_I(pch_pfit.size);
  7275. PIPE_CONF_CHECK_I(ips_enabled);
  7276. PIPE_CONF_CHECK_I(shared_dpll);
  7277. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7278. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7279. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7280. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7281. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  7282. PIPE_CONF_CHECK_I(pipe_bpp);
  7283. #undef PIPE_CONF_CHECK_X
  7284. #undef PIPE_CONF_CHECK_I
  7285. #undef PIPE_CONF_CHECK_FLAGS
  7286. #undef PIPE_CONF_QUIRK
  7287. if (!IS_HASWELL(dev)) {
  7288. if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
  7289. DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
  7290. current_config->adjusted_mode.clock,
  7291. pipe_config->adjusted_mode.clock);
  7292. return false;
  7293. }
  7294. }
  7295. return true;
  7296. }
  7297. static void
  7298. check_connector_state(struct drm_device *dev)
  7299. {
  7300. struct intel_connector *connector;
  7301. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7302. base.head) {
  7303. /* This also checks the encoder/connector hw state with the
  7304. * ->get_hw_state callbacks. */
  7305. intel_connector_check_state(connector);
  7306. WARN(&connector->new_encoder->base != connector->base.encoder,
  7307. "connector's staged encoder doesn't match current encoder\n");
  7308. }
  7309. }
  7310. static void
  7311. check_encoder_state(struct drm_device *dev)
  7312. {
  7313. struct intel_encoder *encoder;
  7314. struct intel_connector *connector;
  7315. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7316. base.head) {
  7317. bool enabled = false;
  7318. bool active = false;
  7319. enum pipe pipe, tracked_pipe;
  7320. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7321. encoder->base.base.id,
  7322. drm_get_encoder_name(&encoder->base));
  7323. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7324. "encoder's stage crtc doesn't match current crtc\n");
  7325. WARN(encoder->connectors_active && !encoder->base.crtc,
  7326. "encoder's active_connectors set, but no crtc\n");
  7327. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7328. base.head) {
  7329. if (connector->base.encoder != &encoder->base)
  7330. continue;
  7331. enabled = true;
  7332. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7333. active = true;
  7334. }
  7335. WARN(!!encoder->base.crtc != enabled,
  7336. "encoder's enabled state mismatch "
  7337. "(expected %i, found %i)\n",
  7338. !!encoder->base.crtc, enabled);
  7339. WARN(active && !encoder->base.crtc,
  7340. "active encoder with no crtc\n");
  7341. WARN(encoder->connectors_active != active,
  7342. "encoder's computed active state doesn't match tracked active state "
  7343. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7344. active = encoder->get_hw_state(encoder, &pipe);
  7345. WARN(active != encoder->connectors_active,
  7346. "encoder's hw state doesn't match sw tracking "
  7347. "(expected %i, found %i)\n",
  7348. encoder->connectors_active, active);
  7349. if (!encoder->base.crtc)
  7350. continue;
  7351. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7352. WARN(active && pipe != tracked_pipe,
  7353. "active encoder's pipe doesn't match"
  7354. "(expected %i, found %i)\n",
  7355. tracked_pipe, pipe);
  7356. }
  7357. }
  7358. static void
  7359. check_crtc_state(struct drm_device *dev)
  7360. {
  7361. drm_i915_private_t *dev_priv = dev->dev_private;
  7362. struct intel_crtc *crtc;
  7363. struct intel_encoder *encoder;
  7364. struct intel_crtc_config pipe_config;
  7365. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7366. base.head) {
  7367. bool enabled = false;
  7368. bool active = false;
  7369. memset(&pipe_config, 0, sizeof(pipe_config));
  7370. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7371. crtc->base.base.id);
  7372. WARN(crtc->active && !crtc->base.enabled,
  7373. "active crtc, but not enabled in sw tracking\n");
  7374. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7375. base.head) {
  7376. if (encoder->base.crtc != &crtc->base)
  7377. continue;
  7378. enabled = true;
  7379. if (encoder->connectors_active)
  7380. active = true;
  7381. }
  7382. WARN(active != crtc->active,
  7383. "crtc's computed active state doesn't match tracked active state "
  7384. "(expected %i, found %i)\n", active, crtc->active);
  7385. WARN(enabled != crtc->base.enabled,
  7386. "crtc's computed enabled state doesn't match tracked enabled state "
  7387. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7388. active = dev_priv->display.get_pipe_config(crtc,
  7389. &pipe_config);
  7390. /* hw state is inconsistent with the pipe A quirk */
  7391. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7392. active = crtc->active;
  7393. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7394. base.head) {
  7395. enum pipe pipe;
  7396. if (encoder->base.crtc != &crtc->base)
  7397. continue;
  7398. if (encoder->get_config &&
  7399. encoder->get_hw_state(encoder, &pipe))
  7400. encoder->get_config(encoder, &pipe_config);
  7401. }
  7402. if (dev_priv->display.get_clock)
  7403. dev_priv->display.get_clock(crtc, &pipe_config);
  7404. WARN(crtc->active != active,
  7405. "crtc active state doesn't match with hw state "
  7406. "(expected %i, found %i)\n", crtc->active, active);
  7407. if (active &&
  7408. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7409. WARN(1, "pipe state doesn't match!\n");
  7410. intel_dump_pipe_config(crtc, &pipe_config,
  7411. "[hw state]");
  7412. intel_dump_pipe_config(crtc, &crtc->config,
  7413. "[sw state]");
  7414. }
  7415. }
  7416. }
  7417. static void
  7418. check_shared_dpll_state(struct drm_device *dev)
  7419. {
  7420. drm_i915_private_t *dev_priv = dev->dev_private;
  7421. struct intel_crtc *crtc;
  7422. struct intel_dpll_hw_state dpll_hw_state;
  7423. int i;
  7424. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7425. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7426. int enabled_crtcs = 0, active_crtcs = 0;
  7427. bool active;
  7428. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7429. DRM_DEBUG_KMS("%s\n", pll->name);
  7430. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7431. WARN(pll->active > pll->refcount,
  7432. "more active pll users than references: %i vs %i\n",
  7433. pll->active, pll->refcount);
  7434. WARN(pll->active && !pll->on,
  7435. "pll in active use but not on in sw tracking\n");
  7436. WARN(pll->on && !pll->active,
  7437. "pll in on but not on in use in sw tracking\n");
  7438. WARN(pll->on != active,
  7439. "pll on state mismatch (expected %i, found %i)\n",
  7440. pll->on, active);
  7441. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7442. base.head) {
  7443. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7444. enabled_crtcs++;
  7445. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7446. active_crtcs++;
  7447. }
  7448. WARN(pll->active != active_crtcs,
  7449. "pll active crtcs mismatch (expected %i, found %i)\n",
  7450. pll->active, active_crtcs);
  7451. WARN(pll->refcount != enabled_crtcs,
  7452. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7453. pll->refcount, enabled_crtcs);
  7454. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7455. sizeof(dpll_hw_state)),
  7456. "pll hw state mismatch\n");
  7457. }
  7458. }
  7459. void
  7460. intel_modeset_check_state(struct drm_device *dev)
  7461. {
  7462. check_connector_state(dev);
  7463. check_encoder_state(dev);
  7464. check_crtc_state(dev);
  7465. check_shared_dpll_state(dev);
  7466. }
  7467. static int __intel_set_mode(struct drm_crtc *crtc,
  7468. struct drm_display_mode *mode,
  7469. int x, int y, struct drm_framebuffer *fb)
  7470. {
  7471. struct drm_device *dev = crtc->dev;
  7472. drm_i915_private_t *dev_priv = dev->dev_private;
  7473. struct drm_display_mode *saved_mode, *saved_hwmode;
  7474. struct intel_crtc_config *pipe_config = NULL;
  7475. struct intel_crtc *intel_crtc;
  7476. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7477. int ret = 0;
  7478. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  7479. if (!saved_mode)
  7480. return -ENOMEM;
  7481. saved_hwmode = saved_mode + 1;
  7482. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7483. &prepare_pipes, &disable_pipes);
  7484. *saved_hwmode = crtc->hwmode;
  7485. *saved_mode = crtc->mode;
  7486. /* Hack: Because we don't (yet) support global modeset on multiple
  7487. * crtcs, we don't keep track of the new mode for more than one crtc.
  7488. * Hence simply check whether any bit is set in modeset_pipes in all the
  7489. * pieces of code that are not yet converted to deal with mutliple crtcs
  7490. * changing their mode at the same time. */
  7491. if (modeset_pipes) {
  7492. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7493. if (IS_ERR(pipe_config)) {
  7494. ret = PTR_ERR(pipe_config);
  7495. pipe_config = NULL;
  7496. goto out;
  7497. }
  7498. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7499. "[modeset]");
  7500. }
  7501. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7502. intel_crtc_disable(&intel_crtc->base);
  7503. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7504. if (intel_crtc->base.enabled)
  7505. dev_priv->display.crtc_disable(&intel_crtc->base);
  7506. }
  7507. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7508. * to set it here already despite that we pass it down the callchain.
  7509. */
  7510. if (modeset_pipes) {
  7511. crtc->mode = *mode;
  7512. /* mode_set/enable/disable functions rely on a correct pipe
  7513. * config. */
  7514. to_intel_crtc(crtc)->config = *pipe_config;
  7515. }
  7516. /* Only after disabling all output pipelines that will be changed can we
  7517. * update the the output configuration. */
  7518. intel_modeset_update_state(dev, prepare_pipes);
  7519. if (dev_priv->display.modeset_global_resources)
  7520. dev_priv->display.modeset_global_resources(dev);
  7521. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7522. * on the DPLL.
  7523. */
  7524. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7525. ret = intel_crtc_mode_set(&intel_crtc->base,
  7526. x, y, fb);
  7527. if (ret)
  7528. goto done;
  7529. }
  7530. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7531. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7532. dev_priv->display.crtc_enable(&intel_crtc->base);
  7533. if (modeset_pipes) {
  7534. /* Store real post-adjustment hardware mode. */
  7535. crtc->hwmode = pipe_config->adjusted_mode;
  7536. /* Calculate and store various constants which
  7537. * are later needed by vblank and swap-completion
  7538. * timestamping. They are derived from true hwmode.
  7539. */
  7540. drm_calc_timestamping_constants(crtc);
  7541. }
  7542. /* FIXME: add subpixel order */
  7543. done:
  7544. if (ret && crtc->enabled) {
  7545. crtc->hwmode = *saved_hwmode;
  7546. crtc->mode = *saved_mode;
  7547. }
  7548. out:
  7549. kfree(pipe_config);
  7550. kfree(saved_mode);
  7551. return ret;
  7552. }
  7553. static int intel_set_mode(struct drm_crtc *crtc,
  7554. struct drm_display_mode *mode,
  7555. int x, int y, struct drm_framebuffer *fb)
  7556. {
  7557. int ret;
  7558. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7559. if (ret == 0)
  7560. intel_modeset_check_state(crtc->dev);
  7561. return ret;
  7562. }
  7563. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7564. {
  7565. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7566. }
  7567. #undef for_each_intel_crtc_masked
  7568. static void intel_set_config_free(struct intel_set_config *config)
  7569. {
  7570. if (!config)
  7571. return;
  7572. kfree(config->save_connector_encoders);
  7573. kfree(config->save_encoder_crtcs);
  7574. kfree(config);
  7575. }
  7576. static int intel_set_config_save_state(struct drm_device *dev,
  7577. struct intel_set_config *config)
  7578. {
  7579. struct drm_encoder *encoder;
  7580. struct drm_connector *connector;
  7581. int count;
  7582. config->save_encoder_crtcs =
  7583. kcalloc(dev->mode_config.num_encoder,
  7584. sizeof(struct drm_crtc *), GFP_KERNEL);
  7585. if (!config->save_encoder_crtcs)
  7586. return -ENOMEM;
  7587. config->save_connector_encoders =
  7588. kcalloc(dev->mode_config.num_connector,
  7589. sizeof(struct drm_encoder *), GFP_KERNEL);
  7590. if (!config->save_connector_encoders)
  7591. return -ENOMEM;
  7592. /* Copy data. Note that driver private data is not affected.
  7593. * Should anything bad happen only the expected state is
  7594. * restored, not the drivers personal bookkeeping.
  7595. */
  7596. count = 0;
  7597. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7598. config->save_encoder_crtcs[count++] = encoder->crtc;
  7599. }
  7600. count = 0;
  7601. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7602. config->save_connector_encoders[count++] = connector->encoder;
  7603. }
  7604. return 0;
  7605. }
  7606. static void intel_set_config_restore_state(struct drm_device *dev,
  7607. struct intel_set_config *config)
  7608. {
  7609. struct intel_encoder *encoder;
  7610. struct intel_connector *connector;
  7611. int count;
  7612. count = 0;
  7613. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7614. encoder->new_crtc =
  7615. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7616. }
  7617. count = 0;
  7618. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7619. connector->new_encoder =
  7620. to_intel_encoder(config->save_connector_encoders[count++]);
  7621. }
  7622. }
  7623. static bool
  7624. is_crtc_connector_off(struct drm_mode_set *set)
  7625. {
  7626. int i;
  7627. if (set->num_connectors == 0)
  7628. return false;
  7629. if (WARN_ON(set->connectors == NULL))
  7630. return false;
  7631. for (i = 0; i < set->num_connectors; i++)
  7632. if (set->connectors[i]->encoder &&
  7633. set->connectors[i]->encoder->crtc == set->crtc &&
  7634. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7635. return true;
  7636. return false;
  7637. }
  7638. static void
  7639. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7640. struct intel_set_config *config)
  7641. {
  7642. /* We should be able to check here if the fb has the same properties
  7643. * and then just flip_or_move it */
  7644. if (is_crtc_connector_off(set)) {
  7645. config->mode_changed = true;
  7646. } else if (set->crtc->fb != set->fb) {
  7647. /* If we have no fb then treat it as a full mode set */
  7648. if (set->crtc->fb == NULL) {
  7649. struct intel_crtc *intel_crtc =
  7650. to_intel_crtc(set->crtc);
  7651. if (intel_crtc->active && i915_fastboot) {
  7652. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7653. config->fb_changed = true;
  7654. } else {
  7655. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7656. config->mode_changed = true;
  7657. }
  7658. } else if (set->fb == NULL) {
  7659. config->mode_changed = true;
  7660. } else if (set->fb->pixel_format !=
  7661. set->crtc->fb->pixel_format) {
  7662. config->mode_changed = true;
  7663. } else {
  7664. config->fb_changed = true;
  7665. }
  7666. }
  7667. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7668. config->fb_changed = true;
  7669. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7670. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7671. drm_mode_debug_printmodeline(&set->crtc->mode);
  7672. drm_mode_debug_printmodeline(set->mode);
  7673. config->mode_changed = true;
  7674. }
  7675. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7676. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7677. }
  7678. static int
  7679. intel_modeset_stage_output_state(struct drm_device *dev,
  7680. struct drm_mode_set *set,
  7681. struct intel_set_config *config)
  7682. {
  7683. struct drm_crtc *new_crtc;
  7684. struct intel_connector *connector;
  7685. struct intel_encoder *encoder;
  7686. int ro;
  7687. /* The upper layers ensure that we either disable a crtc or have a list
  7688. * of connectors. For paranoia, double-check this. */
  7689. WARN_ON(!set->fb && (set->num_connectors != 0));
  7690. WARN_ON(set->fb && (set->num_connectors == 0));
  7691. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7692. base.head) {
  7693. /* Otherwise traverse passed in connector list and get encoders
  7694. * for them. */
  7695. for (ro = 0; ro < set->num_connectors; ro++) {
  7696. if (set->connectors[ro] == &connector->base) {
  7697. connector->new_encoder = connector->encoder;
  7698. break;
  7699. }
  7700. }
  7701. /* If we disable the crtc, disable all its connectors. Also, if
  7702. * the connector is on the changing crtc but not on the new
  7703. * connector list, disable it. */
  7704. if ((!set->fb || ro == set->num_connectors) &&
  7705. connector->base.encoder &&
  7706. connector->base.encoder->crtc == set->crtc) {
  7707. connector->new_encoder = NULL;
  7708. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7709. connector->base.base.id,
  7710. drm_get_connector_name(&connector->base));
  7711. }
  7712. if (&connector->new_encoder->base != connector->base.encoder) {
  7713. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7714. config->mode_changed = true;
  7715. }
  7716. }
  7717. /* connector->new_encoder is now updated for all connectors. */
  7718. /* Update crtc of enabled connectors. */
  7719. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7720. base.head) {
  7721. if (!connector->new_encoder)
  7722. continue;
  7723. new_crtc = connector->new_encoder->base.crtc;
  7724. for (ro = 0; ro < set->num_connectors; ro++) {
  7725. if (set->connectors[ro] == &connector->base)
  7726. new_crtc = set->crtc;
  7727. }
  7728. /* Make sure the new CRTC will work with the encoder */
  7729. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7730. new_crtc)) {
  7731. return -EINVAL;
  7732. }
  7733. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7734. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7735. connector->base.base.id,
  7736. drm_get_connector_name(&connector->base),
  7737. new_crtc->base.id);
  7738. }
  7739. /* Check for any encoders that needs to be disabled. */
  7740. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7741. base.head) {
  7742. list_for_each_entry(connector,
  7743. &dev->mode_config.connector_list,
  7744. base.head) {
  7745. if (connector->new_encoder == encoder) {
  7746. WARN_ON(!connector->new_encoder->new_crtc);
  7747. goto next_encoder;
  7748. }
  7749. }
  7750. encoder->new_crtc = NULL;
  7751. next_encoder:
  7752. /* Only now check for crtc changes so we don't miss encoders
  7753. * that will be disabled. */
  7754. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7755. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7756. config->mode_changed = true;
  7757. }
  7758. }
  7759. /* Now we've also updated encoder->new_crtc for all encoders. */
  7760. return 0;
  7761. }
  7762. static int intel_crtc_set_config(struct drm_mode_set *set)
  7763. {
  7764. struct drm_device *dev;
  7765. struct drm_mode_set save_set;
  7766. struct intel_set_config *config;
  7767. int ret;
  7768. BUG_ON(!set);
  7769. BUG_ON(!set->crtc);
  7770. BUG_ON(!set->crtc->helper_private);
  7771. /* Enforce sane interface api - has been abused by the fb helper. */
  7772. BUG_ON(!set->mode && set->fb);
  7773. BUG_ON(set->fb && set->num_connectors == 0);
  7774. if (set->fb) {
  7775. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7776. set->crtc->base.id, set->fb->base.id,
  7777. (int)set->num_connectors, set->x, set->y);
  7778. } else {
  7779. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7780. }
  7781. dev = set->crtc->dev;
  7782. ret = -ENOMEM;
  7783. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7784. if (!config)
  7785. goto out_config;
  7786. ret = intel_set_config_save_state(dev, config);
  7787. if (ret)
  7788. goto out_config;
  7789. save_set.crtc = set->crtc;
  7790. save_set.mode = &set->crtc->mode;
  7791. save_set.x = set->crtc->x;
  7792. save_set.y = set->crtc->y;
  7793. save_set.fb = set->crtc->fb;
  7794. /* Compute whether we need a full modeset, only an fb base update or no
  7795. * change at all. In the future we might also check whether only the
  7796. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7797. * such cases. */
  7798. intel_set_config_compute_mode_changes(set, config);
  7799. ret = intel_modeset_stage_output_state(dev, set, config);
  7800. if (ret)
  7801. goto fail;
  7802. if (config->mode_changed) {
  7803. ret = intel_set_mode(set->crtc, set->mode,
  7804. set->x, set->y, set->fb);
  7805. } else if (config->fb_changed) {
  7806. intel_crtc_wait_for_pending_flips(set->crtc);
  7807. ret = intel_pipe_set_base(set->crtc,
  7808. set->x, set->y, set->fb);
  7809. }
  7810. if (ret) {
  7811. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7812. set->crtc->base.id, ret);
  7813. fail:
  7814. intel_set_config_restore_state(dev, config);
  7815. /* Try to restore the config */
  7816. if (config->mode_changed &&
  7817. intel_set_mode(save_set.crtc, save_set.mode,
  7818. save_set.x, save_set.y, save_set.fb))
  7819. DRM_ERROR("failed to restore config after modeset failure\n");
  7820. }
  7821. out_config:
  7822. intel_set_config_free(config);
  7823. return ret;
  7824. }
  7825. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7826. .cursor_set = intel_crtc_cursor_set,
  7827. .cursor_move = intel_crtc_cursor_move,
  7828. .gamma_set = intel_crtc_gamma_set,
  7829. .set_config = intel_crtc_set_config,
  7830. .destroy = intel_crtc_destroy,
  7831. .page_flip = intel_crtc_page_flip,
  7832. };
  7833. static void intel_cpu_pll_init(struct drm_device *dev)
  7834. {
  7835. if (HAS_DDI(dev))
  7836. intel_ddi_pll_init(dev);
  7837. }
  7838. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7839. struct intel_shared_dpll *pll,
  7840. struct intel_dpll_hw_state *hw_state)
  7841. {
  7842. uint32_t val;
  7843. val = I915_READ(PCH_DPLL(pll->id));
  7844. hw_state->dpll = val;
  7845. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7846. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7847. return val & DPLL_VCO_ENABLE;
  7848. }
  7849. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7850. struct intel_shared_dpll *pll)
  7851. {
  7852. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7853. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7854. }
  7855. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7856. struct intel_shared_dpll *pll)
  7857. {
  7858. /* PCH refclock must be enabled first */
  7859. assert_pch_refclk_enabled(dev_priv);
  7860. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7861. /* Wait for the clocks to stabilize. */
  7862. POSTING_READ(PCH_DPLL(pll->id));
  7863. udelay(150);
  7864. /* The pixel multiplier can only be updated once the
  7865. * DPLL is enabled and the clocks are stable.
  7866. *
  7867. * So write it again.
  7868. */
  7869. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7870. POSTING_READ(PCH_DPLL(pll->id));
  7871. udelay(200);
  7872. }
  7873. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7874. struct intel_shared_dpll *pll)
  7875. {
  7876. struct drm_device *dev = dev_priv->dev;
  7877. struct intel_crtc *crtc;
  7878. /* Make sure no transcoder isn't still depending on us. */
  7879. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7880. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7881. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7882. }
  7883. I915_WRITE(PCH_DPLL(pll->id), 0);
  7884. POSTING_READ(PCH_DPLL(pll->id));
  7885. udelay(200);
  7886. }
  7887. static char *ibx_pch_dpll_names[] = {
  7888. "PCH DPLL A",
  7889. "PCH DPLL B",
  7890. };
  7891. static void ibx_pch_dpll_init(struct drm_device *dev)
  7892. {
  7893. struct drm_i915_private *dev_priv = dev->dev_private;
  7894. int i;
  7895. dev_priv->num_shared_dpll = 2;
  7896. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7897. dev_priv->shared_dplls[i].id = i;
  7898. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7899. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7900. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7901. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7902. dev_priv->shared_dplls[i].get_hw_state =
  7903. ibx_pch_dpll_get_hw_state;
  7904. }
  7905. }
  7906. static void intel_shared_dpll_init(struct drm_device *dev)
  7907. {
  7908. struct drm_i915_private *dev_priv = dev->dev_private;
  7909. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7910. ibx_pch_dpll_init(dev);
  7911. else
  7912. dev_priv->num_shared_dpll = 0;
  7913. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7914. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7915. dev_priv->num_shared_dpll);
  7916. }
  7917. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7918. {
  7919. drm_i915_private_t *dev_priv = dev->dev_private;
  7920. struct intel_crtc *intel_crtc;
  7921. int i;
  7922. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7923. if (intel_crtc == NULL)
  7924. return;
  7925. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7926. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7927. for (i = 0; i < 256; i++) {
  7928. intel_crtc->lut_r[i] = i;
  7929. intel_crtc->lut_g[i] = i;
  7930. intel_crtc->lut_b[i] = i;
  7931. }
  7932. /* Swap pipes & planes for FBC on pre-965 */
  7933. intel_crtc->pipe = pipe;
  7934. intel_crtc->plane = pipe;
  7935. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7936. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7937. intel_crtc->plane = !pipe;
  7938. }
  7939. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7940. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7941. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7942. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7943. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7944. }
  7945. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7946. struct drm_file *file)
  7947. {
  7948. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7949. struct drm_mode_object *drmmode_obj;
  7950. struct intel_crtc *crtc;
  7951. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7952. return -ENODEV;
  7953. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7954. DRM_MODE_OBJECT_CRTC);
  7955. if (!drmmode_obj) {
  7956. DRM_ERROR("no such CRTC id\n");
  7957. return -EINVAL;
  7958. }
  7959. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7960. pipe_from_crtc_id->pipe = crtc->pipe;
  7961. return 0;
  7962. }
  7963. static int intel_encoder_clones(struct intel_encoder *encoder)
  7964. {
  7965. struct drm_device *dev = encoder->base.dev;
  7966. struct intel_encoder *source_encoder;
  7967. int index_mask = 0;
  7968. int entry = 0;
  7969. list_for_each_entry(source_encoder,
  7970. &dev->mode_config.encoder_list, base.head) {
  7971. if (encoder == source_encoder)
  7972. index_mask |= (1 << entry);
  7973. /* Intel hw has only one MUX where enocoders could be cloned. */
  7974. if (encoder->cloneable && source_encoder->cloneable)
  7975. index_mask |= (1 << entry);
  7976. entry++;
  7977. }
  7978. return index_mask;
  7979. }
  7980. static bool has_edp_a(struct drm_device *dev)
  7981. {
  7982. struct drm_i915_private *dev_priv = dev->dev_private;
  7983. if (!IS_MOBILE(dev))
  7984. return false;
  7985. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7986. return false;
  7987. if (IS_GEN5(dev) &&
  7988. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7989. return false;
  7990. return true;
  7991. }
  7992. static void intel_setup_outputs(struct drm_device *dev)
  7993. {
  7994. struct drm_i915_private *dev_priv = dev->dev_private;
  7995. struct intel_encoder *encoder;
  7996. bool dpd_is_edp = false;
  7997. intel_lvds_init(dev);
  7998. if (!IS_ULT(dev))
  7999. intel_crt_init(dev);
  8000. if (HAS_DDI(dev)) {
  8001. int found;
  8002. /* Haswell uses DDI functions to detect digital outputs */
  8003. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  8004. /* DDI A only supports eDP */
  8005. if (found)
  8006. intel_ddi_init(dev, PORT_A);
  8007. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  8008. * register */
  8009. found = I915_READ(SFUSE_STRAP);
  8010. if (found & SFUSE_STRAP_DDIB_DETECTED)
  8011. intel_ddi_init(dev, PORT_B);
  8012. if (found & SFUSE_STRAP_DDIC_DETECTED)
  8013. intel_ddi_init(dev, PORT_C);
  8014. if (found & SFUSE_STRAP_DDID_DETECTED)
  8015. intel_ddi_init(dev, PORT_D);
  8016. } else if (HAS_PCH_SPLIT(dev)) {
  8017. int found;
  8018. dpd_is_edp = intel_dpd_is_edp(dev);
  8019. if (has_edp_a(dev))
  8020. intel_dp_init(dev, DP_A, PORT_A);
  8021. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  8022. /* PCH SDVOB multiplex with HDMIB */
  8023. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  8024. if (!found)
  8025. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  8026. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  8027. intel_dp_init(dev, PCH_DP_B, PORT_B);
  8028. }
  8029. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  8030. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  8031. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  8032. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  8033. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  8034. intel_dp_init(dev, PCH_DP_C, PORT_C);
  8035. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  8036. intel_dp_init(dev, PCH_DP_D, PORT_D);
  8037. } else if (IS_VALLEYVIEW(dev)) {
  8038. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  8039. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  8040. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  8041. PORT_C);
  8042. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  8043. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  8044. PORT_C);
  8045. }
  8046. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  8047. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  8048. PORT_B);
  8049. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  8050. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  8051. }
  8052. intel_dsi_init(dev);
  8053. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  8054. bool found = false;
  8055. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8056. DRM_DEBUG_KMS("probing SDVOB\n");
  8057. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  8058. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  8059. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  8060. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  8061. }
  8062. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  8063. intel_dp_init(dev, DP_B, PORT_B);
  8064. }
  8065. /* Before G4X SDVOC doesn't have its own detect register */
  8066. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8067. DRM_DEBUG_KMS("probing SDVOC\n");
  8068. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  8069. }
  8070. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  8071. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  8072. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  8073. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  8074. }
  8075. if (SUPPORTS_INTEGRATED_DP(dev))
  8076. intel_dp_init(dev, DP_C, PORT_C);
  8077. }
  8078. if (SUPPORTS_INTEGRATED_DP(dev) &&
  8079. (I915_READ(DP_D) & DP_DETECTED))
  8080. intel_dp_init(dev, DP_D, PORT_D);
  8081. } else if (IS_GEN2(dev))
  8082. intel_dvo_init(dev);
  8083. if (SUPPORTS_TV(dev))
  8084. intel_tv_init(dev);
  8085. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  8086. encoder->base.possible_crtcs = encoder->crtc_mask;
  8087. encoder->base.possible_clones =
  8088. intel_encoder_clones(encoder);
  8089. }
  8090. intel_init_pch_refclk(dev);
  8091. drm_helper_move_panel_connectors_to_head(dev);
  8092. }
  8093. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  8094. {
  8095. drm_framebuffer_cleanup(&fb->base);
  8096. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8097. }
  8098. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8099. {
  8100. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8101. intel_framebuffer_fini(intel_fb);
  8102. kfree(intel_fb);
  8103. }
  8104. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8105. struct drm_file *file,
  8106. unsigned int *handle)
  8107. {
  8108. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8109. struct drm_i915_gem_object *obj = intel_fb->obj;
  8110. return drm_gem_handle_create(file, &obj->base, handle);
  8111. }
  8112. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8113. .destroy = intel_user_framebuffer_destroy,
  8114. .create_handle = intel_user_framebuffer_create_handle,
  8115. };
  8116. int intel_framebuffer_init(struct drm_device *dev,
  8117. struct intel_framebuffer *intel_fb,
  8118. struct drm_mode_fb_cmd2 *mode_cmd,
  8119. struct drm_i915_gem_object *obj)
  8120. {
  8121. int pitch_limit;
  8122. int ret;
  8123. if (obj->tiling_mode == I915_TILING_Y) {
  8124. DRM_DEBUG("hardware does not support tiling Y\n");
  8125. return -EINVAL;
  8126. }
  8127. if (mode_cmd->pitches[0] & 63) {
  8128. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8129. mode_cmd->pitches[0]);
  8130. return -EINVAL;
  8131. }
  8132. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8133. pitch_limit = 32*1024;
  8134. } else if (INTEL_INFO(dev)->gen >= 4) {
  8135. if (obj->tiling_mode)
  8136. pitch_limit = 16*1024;
  8137. else
  8138. pitch_limit = 32*1024;
  8139. } else if (INTEL_INFO(dev)->gen >= 3) {
  8140. if (obj->tiling_mode)
  8141. pitch_limit = 8*1024;
  8142. else
  8143. pitch_limit = 16*1024;
  8144. } else
  8145. /* XXX DSPC is limited to 4k tiled */
  8146. pitch_limit = 8*1024;
  8147. if (mode_cmd->pitches[0] > pitch_limit) {
  8148. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8149. obj->tiling_mode ? "tiled" : "linear",
  8150. mode_cmd->pitches[0], pitch_limit);
  8151. return -EINVAL;
  8152. }
  8153. if (obj->tiling_mode != I915_TILING_NONE &&
  8154. mode_cmd->pitches[0] != obj->stride) {
  8155. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8156. mode_cmd->pitches[0], obj->stride);
  8157. return -EINVAL;
  8158. }
  8159. /* Reject formats not supported by any plane early. */
  8160. switch (mode_cmd->pixel_format) {
  8161. case DRM_FORMAT_C8:
  8162. case DRM_FORMAT_RGB565:
  8163. case DRM_FORMAT_XRGB8888:
  8164. case DRM_FORMAT_ARGB8888:
  8165. break;
  8166. case DRM_FORMAT_XRGB1555:
  8167. case DRM_FORMAT_ARGB1555:
  8168. if (INTEL_INFO(dev)->gen > 3) {
  8169. DRM_DEBUG("unsupported pixel format: %s\n",
  8170. drm_get_format_name(mode_cmd->pixel_format));
  8171. return -EINVAL;
  8172. }
  8173. break;
  8174. case DRM_FORMAT_XBGR8888:
  8175. case DRM_FORMAT_ABGR8888:
  8176. case DRM_FORMAT_XRGB2101010:
  8177. case DRM_FORMAT_ARGB2101010:
  8178. case DRM_FORMAT_XBGR2101010:
  8179. case DRM_FORMAT_ABGR2101010:
  8180. if (INTEL_INFO(dev)->gen < 4) {
  8181. DRM_DEBUG("unsupported pixel format: %s\n",
  8182. drm_get_format_name(mode_cmd->pixel_format));
  8183. return -EINVAL;
  8184. }
  8185. break;
  8186. case DRM_FORMAT_YUYV:
  8187. case DRM_FORMAT_UYVY:
  8188. case DRM_FORMAT_YVYU:
  8189. case DRM_FORMAT_VYUY:
  8190. if (INTEL_INFO(dev)->gen < 5) {
  8191. DRM_DEBUG("unsupported pixel format: %s\n",
  8192. drm_get_format_name(mode_cmd->pixel_format));
  8193. return -EINVAL;
  8194. }
  8195. break;
  8196. default:
  8197. DRM_DEBUG("unsupported pixel format: %s\n",
  8198. drm_get_format_name(mode_cmd->pixel_format));
  8199. return -EINVAL;
  8200. }
  8201. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8202. if (mode_cmd->offsets[0] != 0)
  8203. return -EINVAL;
  8204. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8205. intel_fb->obj = obj;
  8206. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8207. if (ret) {
  8208. DRM_ERROR("framebuffer init failed %d\n", ret);
  8209. return ret;
  8210. }
  8211. return 0;
  8212. }
  8213. static struct drm_framebuffer *
  8214. intel_user_framebuffer_create(struct drm_device *dev,
  8215. struct drm_file *filp,
  8216. struct drm_mode_fb_cmd2 *mode_cmd)
  8217. {
  8218. struct drm_i915_gem_object *obj;
  8219. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8220. mode_cmd->handles[0]));
  8221. if (&obj->base == NULL)
  8222. return ERR_PTR(-ENOENT);
  8223. return intel_framebuffer_create(dev, mode_cmd, obj);
  8224. }
  8225. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8226. .fb_create = intel_user_framebuffer_create,
  8227. .output_poll_changed = intel_fb_output_poll_changed,
  8228. };
  8229. /* Set up chip specific display functions */
  8230. static void intel_init_display(struct drm_device *dev)
  8231. {
  8232. struct drm_i915_private *dev_priv = dev->dev_private;
  8233. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8234. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8235. else if (IS_VALLEYVIEW(dev))
  8236. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8237. else if (IS_PINEVIEW(dev))
  8238. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8239. else
  8240. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8241. if (HAS_DDI(dev)) {
  8242. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8243. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8244. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8245. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8246. dev_priv->display.off = haswell_crtc_off;
  8247. dev_priv->display.update_plane = ironlake_update_plane;
  8248. } else if (HAS_PCH_SPLIT(dev)) {
  8249. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8250. dev_priv->display.get_clock = ironlake_crtc_clock_get;
  8251. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8252. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8253. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8254. dev_priv->display.off = ironlake_crtc_off;
  8255. dev_priv->display.update_plane = ironlake_update_plane;
  8256. } else if (IS_VALLEYVIEW(dev)) {
  8257. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8258. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  8259. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8260. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8261. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8262. dev_priv->display.off = i9xx_crtc_off;
  8263. dev_priv->display.update_plane = i9xx_update_plane;
  8264. } else {
  8265. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8266. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  8267. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8268. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8269. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8270. dev_priv->display.off = i9xx_crtc_off;
  8271. dev_priv->display.update_plane = i9xx_update_plane;
  8272. }
  8273. /* Returns the core display clock speed */
  8274. if (IS_VALLEYVIEW(dev))
  8275. dev_priv->display.get_display_clock_speed =
  8276. valleyview_get_display_clock_speed;
  8277. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8278. dev_priv->display.get_display_clock_speed =
  8279. i945_get_display_clock_speed;
  8280. else if (IS_I915G(dev))
  8281. dev_priv->display.get_display_clock_speed =
  8282. i915_get_display_clock_speed;
  8283. else if (IS_I945GM(dev) || IS_845G(dev))
  8284. dev_priv->display.get_display_clock_speed =
  8285. i9xx_misc_get_display_clock_speed;
  8286. else if (IS_PINEVIEW(dev))
  8287. dev_priv->display.get_display_clock_speed =
  8288. pnv_get_display_clock_speed;
  8289. else if (IS_I915GM(dev))
  8290. dev_priv->display.get_display_clock_speed =
  8291. i915gm_get_display_clock_speed;
  8292. else if (IS_I865G(dev))
  8293. dev_priv->display.get_display_clock_speed =
  8294. i865_get_display_clock_speed;
  8295. else if (IS_I85X(dev))
  8296. dev_priv->display.get_display_clock_speed =
  8297. i855_get_display_clock_speed;
  8298. else /* 852, 830 */
  8299. dev_priv->display.get_display_clock_speed =
  8300. i830_get_display_clock_speed;
  8301. if (HAS_PCH_SPLIT(dev)) {
  8302. if (IS_GEN5(dev)) {
  8303. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8304. dev_priv->display.write_eld = ironlake_write_eld;
  8305. } else if (IS_GEN6(dev)) {
  8306. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8307. dev_priv->display.write_eld = ironlake_write_eld;
  8308. } else if (IS_IVYBRIDGE(dev)) {
  8309. /* FIXME: detect B0+ stepping and use auto training */
  8310. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8311. dev_priv->display.write_eld = ironlake_write_eld;
  8312. dev_priv->display.modeset_global_resources =
  8313. ivb_modeset_global_resources;
  8314. } else if (IS_HASWELL(dev)) {
  8315. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8316. dev_priv->display.write_eld = haswell_write_eld;
  8317. dev_priv->display.modeset_global_resources =
  8318. haswell_modeset_global_resources;
  8319. }
  8320. } else if (IS_G4X(dev)) {
  8321. dev_priv->display.write_eld = g4x_write_eld;
  8322. }
  8323. /* Default just returns -ENODEV to indicate unsupported */
  8324. dev_priv->display.queue_flip = intel_default_queue_flip;
  8325. switch (INTEL_INFO(dev)->gen) {
  8326. case 2:
  8327. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8328. break;
  8329. case 3:
  8330. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8331. break;
  8332. case 4:
  8333. case 5:
  8334. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8335. break;
  8336. case 6:
  8337. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8338. break;
  8339. case 7:
  8340. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8341. break;
  8342. }
  8343. }
  8344. /*
  8345. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8346. * resume, or other times. This quirk makes sure that's the case for
  8347. * affected systems.
  8348. */
  8349. static void quirk_pipea_force(struct drm_device *dev)
  8350. {
  8351. struct drm_i915_private *dev_priv = dev->dev_private;
  8352. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8353. DRM_INFO("applying pipe a force quirk\n");
  8354. }
  8355. /*
  8356. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8357. */
  8358. static void quirk_ssc_force_disable(struct drm_device *dev)
  8359. {
  8360. struct drm_i915_private *dev_priv = dev->dev_private;
  8361. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8362. DRM_INFO("applying lvds SSC disable quirk\n");
  8363. }
  8364. /*
  8365. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8366. * brightness value
  8367. */
  8368. static void quirk_invert_brightness(struct drm_device *dev)
  8369. {
  8370. struct drm_i915_private *dev_priv = dev->dev_private;
  8371. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8372. DRM_INFO("applying inverted panel brightness quirk\n");
  8373. }
  8374. /*
  8375. * Some machines (Dell XPS13) suffer broken backlight controls if
  8376. * BLM_PCH_PWM_ENABLE is set.
  8377. */
  8378. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8379. {
  8380. struct drm_i915_private *dev_priv = dev->dev_private;
  8381. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8382. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8383. }
  8384. struct intel_quirk {
  8385. int device;
  8386. int subsystem_vendor;
  8387. int subsystem_device;
  8388. void (*hook)(struct drm_device *dev);
  8389. };
  8390. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8391. struct intel_dmi_quirk {
  8392. void (*hook)(struct drm_device *dev);
  8393. const struct dmi_system_id (*dmi_id_list)[];
  8394. };
  8395. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8396. {
  8397. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8398. return 1;
  8399. }
  8400. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8401. {
  8402. .dmi_id_list = &(const struct dmi_system_id[]) {
  8403. {
  8404. .callback = intel_dmi_reverse_brightness,
  8405. .ident = "NCR Corporation",
  8406. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8407. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8408. },
  8409. },
  8410. { } /* terminating entry */
  8411. },
  8412. .hook = quirk_invert_brightness,
  8413. },
  8414. };
  8415. static struct intel_quirk intel_quirks[] = {
  8416. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8417. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8418. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8419. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8420. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8421. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8422. /* 830/845 need to leave pipe A & dpll A up */
  8423. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8424. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8425. /* Lenovo U160 cannot use SSC on LVDS */
  8426. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8427. /* Sony Vaio Y cannot use SSC on LVDS */
  8428. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8429. /* Acer Aspire 5734Z must invert backlight brightness */
  8430. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8431. /* Acer/eMachines G725 */
  8432. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  8433. /* Acer/eMachines e725 */
  8434. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  8435. /* Acer/Packard Bell NCL20 */
  8436. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  8437. /* Acer Aspire 4736Z */
  8438. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  8439. /* Dell XPS13 HD Sandy Bridge */
  8440. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8441. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8442. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8443. };
  8444. static void intel_init_quirks(struct drm_device *dev)
  8445. {
  8446. struct pci_dev *d = dev->pdev;
  8447. int i;
  8448. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8449. struct intel_quirk *q = &intel_quirks[i];
  8450. if (d->device == q->device &&
  8451. (d->subsystem_vendor == q->subsystem_vendor ||
  8452. q->subsystem_vendor == PCI_ANY_ID) &&
  8453. (d->subsystem_device == q->subsystem_device ||
  8454. q->subsystem_device == PCI_ANY_ID))
  8455. q->hook(dev);
  8456. }
  8457. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8458. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8459. intel_dmi_quirks[i].hook(dev);
  8460. }
  8461. }
  8462. /* Disable the VGA plane that we never use */
  8463. static void i915_disable_vga(struct drm_device *dev)
  8464. {
  8465. struct drm_i915_private *dev_priv = dev->dev_private;
  8466. u8 sr1;
  8467. u32 vga_reg = i915_vgacntrl_reg(dev);
  8468. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8469. outb(SR01, VGA_SR_INDEX);
  8470. sr1 = inb(VGA_SR_DATA);
  8471. outb(sr1 | 1<<5, VGA_SR_DATA);
  8472. /* Disable VGA memory on Intel HD */
  8473. if (HAS_PCH_SPLIT(dev)) {
  8474. outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8475. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8476. VGA_RSRC_NORMAL_IO |
  8477. VGA_RSRC_NORMAL_MEM);
  8478. }
  8479. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8480. udelay(300);
  8481. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8482. POSTING_READ(vga_reg);
  8483. }
  8484. static void i915_enable_vga(struct drm_device *dev)
  8485. {
  8486. /* Enable VGA memory on Intel HD */
  8487. if (HAS_PCH_SPLIT(dev)) {
  8488. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8489. outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8490. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8491. VGA_RSRC_LEGACY_MEM |
  8492. VGA_RSRC_NORMAL_IO |
  8493. VGA_RSRC_NORMAL_MEM);
  8494. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8495. }
  8496. }
  8497. void intel_modeset_init_hw(struct drm_device *dev)
  8498. {
  8499. intel_init_power_well(dev);
  8500. intel_prepare_ddi(dev);
  8501. intel_init_clock_gating(dev);
  8502. mutex_lock(&dev->struct_mutex);
  8503. intel_enable_gt_powersave(dev);
  8504. mutex_unlock(&dev->struct_mutex);
  8505. }
  8506. void intel_modeset_suspend_hw(struct drm_device *dev)
  8507. {
  8508. intel_suspend_hw(dev);
  8509. }
  8510. void intel_modeset_init(struct drm_device *dev)
  8511. {
  8512. struct drm_i915_private *dev_priv = dev->dev_private;
  8513. int i, j, ret;
  8514. drm_mode_config_init(dev);
  8515. dev->mode_config.min_width = 0;
  8516. dev->mode_config.min_height = 0;
  8517. dev->mode_config.preferred_depth = 24;
  8518. dev->mode_config.prefer_shadow = 1;
  8519. dev->mode_config.funcs = &intel_mode_funcs;
  8520. intel_init_quirks(dev);
  8521. intel_init_pm(dev);
  8522. if (INTEL_INFO(dev)->num_pipes == 0)
  8523. return;
  8524. intel_init_display(dev);
  8525. if (IS_GEN2(dev)) {
  8526. dev->mode_config.max_width = 2048;
  8527. dev->mode_config.max_height = 2048;
  8528. } else if (IS_GEN3(dev)) {
  8529. dev->mode_config.max_width = 4096;
  8530. dev->mode_config.max_height = 4096;
  8531. } else {
  8532. dev->mode_config.max_width = 8192;
  8533. dev->mode_config.max_height = 8192;
  8534. }
  8535. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8536. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8537. INTEL_INFO(dev)->num_pipes,
  8538. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8539. for_each_pipe(i) {
  8540. intel_crtc_init(dev, i);
  8541. for (j = 0; j < dev_priv->num_plane; j++) {
  8542. ret = intel_plane_init(dev, i, j);
  8543. if (ret)
  8544. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8545. pipe_name(i), sprite_name(i, j), ret);
  8546. }
  8547. }
  8548. intel_cpu_pll_init(dev);
  8549. intel_shared_dpll_init(dev);
  8550. /* Just disable it once at startup */
  8551. i915_disable_vga(dev);
  8552. intel_setup_outputs(dev);
  8553. /* Just in case the BIOS is doing something questionable. */
  8554. intel_disable_fbc(dev);
  8555. }
  8556. static void
  8557. intel_connector_break_all_links(struct intel_connector *connector)
  8558. {
  8559. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8560. connector->base.encoder = NULL;
  8561. connector->encoder->connectors_active = false;
  8562. connector->encoder->base.crtc = NULL;
  8563. }
  8564. static void intel_enable_pipe_a(struct drm_device *dev)
  8565. {
  8566. struct intel_connector *connector;
  8567. struct drm_connector *crt = NULL;
  8568. struct intel_load_detect_pipe load_detect_temp;
  8569. /* We can't just switch on the pipe A, we need to set things up with a
  8570. * proper mode and output configuration. As a gross hack, enable pipe A
  8571. * by enabling the load detect pipe once. */
  8572. list_for_each_entry(connector,
  8573. &dev->mode_config.connector_list,
  8574. base.head) {
  8575. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8576. crt = &connector->base;
  8577. break;
  8578. }
  8579. }
  8580. if (!crt)
  8581. return;
  8582. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8583. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8584. }
  8585. static bool
  8586. intel_check_plane_mapping(struct intel_crtc *crtc)
  8587. {
  8588. struct drm_device *dev = crtc->base.dev;
  8589. struct drm_i915_private *dev_priv = dev->dev_private;
  8590. u32 reg, val;
  8591. if (INTEL_INFO(dev)->num_pipes == 1)
  8592. return true;
  8593. reg = DSPCNTR(!crtc->plane);
  8594. val = I915_READ(reg);
  8595. if ((val & DISPLAY_PLANE_ENABLE) &&
  8596. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8597. return false;
  8598. return true;
  8599. }
  8600. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8601. {
  8602. struct drm_device *dev = crtc->base.dev;
  8603. struct drm_i915_private *dev_priv = dev->dev_private;
  8604. u32 reg;
  8605. /* Clear any frame start delays used for debugging left by the BIOS */
  8606. reg = PIPECONF(crtc->config.cpu_transcoder);
  8607. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8608. /* We need to sanitize the plane -> pipe mapping first because this will
  8609. * disable the crtc (and hence change the state) if it is wrong. Note
  8610. * that gen4+ has a fixed plane -> pipe mapping. */
  8611. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8612. struct intel_connector *connector;
  8613. bool plane;
  8614. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8615. crtc->base.base.id);
  8616. /* Pipe has the wrong plane attached and the plane is active.
  8617. * Temporarily change the plane mapping and disable everything
  8618. * ... */
  8619. plane = crtc->plane;
  8620. crtc->plane = !plane;
  8621. dev_priv->display.crtc_disable(&crtc->base);
  8622. crtc->plane = plane;
  8623. /* ... and break all links. */
  8624. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8625. base.head) {
  8626. if (connector->encoder->base.crtc != &crtc->base)
  8627. continue;
  8628. intel_connector_break_all_links(connector);
  8629. }
  8630. WARN_ON(crtc->active);
  8631. crtc->base.enabled = false;
  8632. }
  8633. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8634. crtc->pipe == PIPE_A && !crtc->active) {
  8635. /* BIOS forgot to enable pipe A, this mostly happens after
  8636. * resume. Force-enable the pipe to fix this, the update_dpms
  8637. * call below we restore the pipe to the right state, but leave
  8638. * the required bits on. */
  8639. intel_enable_pipe_a(dev);
  8640. }
  8641. /* Adjust the state of the output pipe according to whether we
  8642. * have active connectors/encoders. */
  8643. intel_crtc_update_dpms(&crtc->base);
  8644. if (crtc->active != crtc->base.enabled) {
  8645. struct intel_encoder *encoder;
  8646. /* This can happen either due to bugs in the get_hw_state
  8647. * functions or because the pipe is force-enabled due to the
  8648. * pipe A quirk. */
  8649. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8650. crtc->base.base.id,
  8651. crtc->base.enabled ? "enabled" : "disabled",
  8652. crtc->active ? "enabled" : "disabled");
  8653. crtc->base.enabled = crtc->active;
  8654. /* Because we only establish the connector -> encoder ->
  8655. * crtc links if something is active, this means the
  8656. * crtc is now deactivated. Break the links. connector
  8657. * -> encoder links are only establish when things are
  8658. * actually up, hence no need to break them. */
  8659. WARN_ON(crtc->active);
  8660. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8661. WARN_ON(encoder->connectors_active);
  8662. encoder->base.crtc = NULL;
  8663. }
  8664. }
  8665. }
  8666. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8667. {
  8668. struct intel_connector *connector;
  8669. struct drm_device *dev = encoder->base.dev;
  8670. /* We need to check both for a crtc link (meaning that the
  8671. * encoder is active and trying to read from a pipe) and the
  8672. * pipe itself being active. */
  8673. bool has_active_crtc = encoder->base.crtc &&
  8674. to_intel_crtc(encoder->base.crtc)->active;
  8675. if (encoder->connectors_active && !has_active_crtc) {
  8676. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8677. encoder->base.base.id,
  8678. drm_get_encoder_name(&encoder->base));
  8679. /* Connector is active, but has no active pipe. This is
  8680. * fallout from our resume register restoring. Disable
  8681. * the encoder manually again. */
  8682. if (encoder->base.crtc) {
  8683. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8684. encoder->base.base.id,
  8685. drm_get_encoder_name(&encoder->base));
  8686. encoder->disable(encoder);
  8687. }
  8688. /* Inconsistent output/port/pipe state happens presumably due to
  8689. * a bug in one of the get_hw_state functions. Or someplace else
  8690. * in our code, like the register restore mess on resume. Clamp
  8691. * things to off as a safer default. */
  8692. list_for_each_entry(connector,
  8693. &dev->mode_config.connector_list,
  8694. base.head) {
  8695. if (connector->encoder != encoder)
  8696. continue;
  8697. intel_connector_break_all_links(connector);
  8698. }
  8699. }
  8700. /* Enabled encoders without active connectors will be fixed in
  8701. * the crtc fixup. */
  8702. }
  8703. void i915_redisable_vga(struct drm_device *dev)
  8704. {
  8705. struct drm_i915_private *dev_priv = dev->dev_private;
  8706. u32 vga_reg = i915_vgacntrl_reg(dev);
  8707. /* This function can be called both from intel_modeset_setup_hw_state or
  8708. * at a very early point in our resume sequence, where the power well
  8709. * structures are not yet restored. Since this function is at a very
  8710. * paranoid "someone might have enabled VGA while we were not looking"
  8711. * level, just check if the power well is enabled instead of trying to
  8712. * follow the "don't touch the power well if we don't need it" policy
  8713. * the rest of the driver uses. */
  8714. if (HAS_POWER_WELL(dev) &&
  8715. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8716. return;
  8717. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8718. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8719. i915_disable_vga(dev);
  8720. }
  8721. }
  8722. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8723. {
  8724. struct drm_i915_private *dev_priv = dev->dev_private;
  8725. enum pipe pipe;
  8726. struct intel_crtc *crtc;
  8727. struct intel_encoder *encoder;
  8728. struct intel_connector *connector;
  8729. int i;
  8730. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8731. base.head) {
  8732. memset(&crtc->config, 0, sizeof(crtc->config));
  8733. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8734. &crtc->config);
  8735. crtc->base.enabled = crtc->active;
  8736. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8737. crtc->base.base.id,
  8738. crtc->active ? "enabled" : "disabled");
  8739. }
  8740. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8741. if (HAS_DDI(dev))
  8742. intel_ddi_setup_hw_pll_state(dev);
  8743. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8744. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8745. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8746. pll->active = 0;
  8747. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8748. base.head) {
  8749. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8750. pll->active++;
  8751. }
  8752. pll->refcount = pll->active;
  8753. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  8754. pll->name, pll->refcount, pll->on);
  8755. }
  8756. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8757. base.head) {
  8758. pipe = 0;
  8759. if (encoder->get_hw_state(encoder, &pipe)) {
  8760. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8761. encoder->base.crtc = &crtc->base;
  8762. if (encoder->get_config)
  8763. encoder->get_config(encoder, &crtc->config);
  8764. } else {
  8765. encoder->base.crtc = NULL;
  8766. }
  8767. encoder->connectors_active = false;
  8768. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8769. encoder->base.base.id,
  8770. drm_get_encoder_name(&encoder->base),
  8771. encoder->base.crtc ? "enabled" : "disabled",
  8772. pipe);
  8773. }
  8774. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8775. base.head) {
  8776. if (!crtc->active)
  8777. continue;
  8778. if (dev_priv->display.get_clock)
  8779. dev_priv->display.get_clock(crtc,
  8780. &crtc->config);
  8781. }
  8782. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8783. base.head) {
  8784. if (connector->get_hw_state(connector)) {
  8785. connector->base.dpms = DRM_MODE_DPMS_ON;
  8786. connector->encoder->connectors_active = true;
  8787. connector->base.encoder = &connector->encoder->base;
  8788. } else {
  8789. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8790. connector->base.encoder = NULL;
  8791. }
  8792. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8793. connector->base.base.id,
  8794. drm_get_connector_name(&connector->base),
  8795. connector->base.encoder ? "enabled" : "disabled");
  8796. }
  8797. }
  8798. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8799. * and i915 state tracking structures. */
  8800. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8801. bool force_restore)
  8802. {
  8803. struct drm_i915_private *dev_priv = dev->dev_private;
  8804. enum pipe pipe;
  8805. struct drm_plane *plane;
  8806. struct intel_crtc *crtc;
  8807. struct intel_encoder *encoder;
  8808. int i;
  8809. intel_modeset_readout_hw_state(dev);
  8810. /*
  8811. * Now that we have the config, copy it to each CRTC struct
  8812. * Note that this could go away if we move to using crtc_config
  8813. * checking everywhere.
  8814. */
  8815. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8816. base.head) {
  8817. if (crtc->active && i915_fastboot) {
  8818. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8819. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8820. crtc->base.base.id);
  8821. drm_mode_debug_printmodeline(&crtc->base.mode);
  8822. }
  8823. }
  8824. /* HW state is read out, now we need to sanitize this mess. */
  8825. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8826. base.head) {
  8827. intel_sanitize_encoder(encoder);
  8828. }
  8829. for_each_pipe(pipe) {
  8830. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8831. intel_sanitize_crtc(crtc);
  8832. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8833. }
  8834. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8835. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8836. if (!pll->on || pll->active)
  8837. continue;
  8838. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  8839. pll->disable(dev_priv, pll);
  8840. pll->on = false;
  8841. }
  8842. if (force_restore) {
  8843. /*
  8844. * We need to use raw interfaces for restoring state to avoid
  8845. * checking (bogus) intermediate states.
  8846. */
  8847. for_each_pipe(pipe) {
  8848. struct drm_crtc *crtc =
  8849. dev_priv->pipe_to_crtc_mapping[pipe];
  8850. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8851. crtc->fb);
  8852. }
  8853. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8854. intel_plane_restore(plane);
  8855. i915_redisable_vga(dev);
  8856. } else {
  8857. intel_modeset_update_staged_output_state(dev);
  8858. }
  8859. intel_modeset_check_state(dev);
  8860. drm_mode_config_reset(dev);
  8861. }
  8862. void intel_modeset_gem_init(struct drm_device *dev)
  8863. {
  8864. intel_modeset_init_hw(dev);
  8865. intel_setup_overlay(dev);
  8866. intel_modeset_setup_hw_state(dev, false);
  8867. }
  8868. void intel_modeset_cleanup(struct drm_device *dev)
  8869. {
  8870. struct drm_i915_private *dev_priv = dev->dev_private;
  8871. struct drm_crtc *crtc;
  8872. /*
  8873. * Interrupts and polling as the first thing to avoid creating havoc.
  8874. * Too much stuff here (turning of rps, connectors, ...) would
  8875. * experience fancy races otherwise.
  8876. */
  8877. drm_irq_uninstall(dev);
  8878. cancel_work_sync(&dev_priv->hotplug_work);
  8879. /*
  8880. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8881. * poll handlers. Hence disable polling after hpd handling is shut down.
  8882. */
  8883. drm_kms_helper_poll_fini(dev);
  8884. mutex_lock(&dev->struct_mutex);
  8885. intel_unregister_dsm_handler();
  8886. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8887. /* Skip inactive CRTCs */
  8888. if (!crtc->fb)
  8889. continue;
  8890. intel_increase_pllclock(crtc);
  8891. }
  8892. intel_disable_fbc(dev);
  8893. i915_enable_vga(dev);
  8894. intel_disable_gt_powersave(dev);
  8895. ironlake_teardown_rc6(dev);
  8896. mutex_unlock(&dev->struct_mutex);
  8897. /* flush any delayed tasks or pending work */
  8898. flush_scheduled_work();
  8899. /* destroy backlight, if any, before the connectors */
  8900. intel_panel_destroy_backlight(dev);
  8901. drm_mode_config_cleanup(dev);
  8902. intel_cleanup_overlay(dev);
  8903. }
  8904. /*
  8905. * Return which encoder is currently attached for connector.
  8906. */
  8907. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8908. {
  8909. return &intel_attached_encoder(connector)->base;
  8910. }
  8911. void intel_connector_attach_encoder(struct intel_connector *connector,
  8912. struct intel_encoder *encoder)
  8913. {
  8914. connector->encoder = encoder;
  8915. drm_mode_connector_attach_encoder(&connector->base,
  8916. &encoder->base);
  8917. }
  8918. /*
  8919. * set vga decode state - true == enable VGA decode
  8920. */
  8921. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8922. {
  8923. struct drm_i915_private *dev_priv = dev->dev_private;
  8924. u16 gmch_ctrl;
  8925. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8926. if (state)
  8927. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8928. else
  8929. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8930. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8931. return 0;
  8932. }
  8933. struct intel_display_error_state {
  8934. u32 power_well_driver;
  8935. int num_transcoders;
  8936. struct intel_cursor_error_state {
  8937. u32 control;
  8938. u32 position;
  8939. u32 base;
  8940. u32 size;
  8941. } cursor[I915_MAX_PIPES];
  8942. struct intel_pipe_error_state {
  8943. u32 source;
  8944. } pipe[I915_MAX_PIPES];
  8945. struct intel_plane_error_state {
  8946. u32 control;
  8947. u32 stride;
  8948. u32 size;
  8949. u32 pos;
  8950. u32 addr;
  8951. u32 surface;
  8952. u32 tile_offset;
  8953. } plane[I915_MAX_PIPES];
  8954. struct intel_transcoder_error_state {
  8955. enum transcoder cpu_transcoder;
  8956. u32 conf;
  8957. u32 htotal;
  8958. u32 hblank;
  8959. u32 hsync;
  8960. u32 vtotal;
  8961. u32 vblank;
  8962. u32 vsync;
  8963. } transcoder[4];
  8964. };
  8965. struct intel_display_error_state *
  8966. intel_display_capture_error_state(struct drm_device *dev)
  8967. {
  8968. drm_i915_private_t *dev_priv = dev->dev_private;
  8969. struct intel_display_error_state *error;
  8970. int transcoders[] = {
  8971. TRANSCODER_A,
  8972. TRANSCODER_B,
  8973. TRANSCODER_C,
  8974. TRANSCODER_EDP,
  8975. };
  8976. int i;
  8977. if (INTEL_INFO(dev)->num_pipes == 0)
  8978. return NULL;
  8979. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8980. if (error == NULL)
  8981. return NULL;
  8982. if (HAS_POWER_WELL(dev))
  8983. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8984. for_each_pipe(i) {
  8985. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8986. error->cursor[i].control = I915_READ(CURCNTR(i));
  8987. error->cursor[i].position = I915_READ(CURPOS(i));
  8988. error->cursor[i].base = I915_READ(CURBASE(i));
  8989. } else {
  8990. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8991. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8992. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8993. }
  8994. error->plane[i].control = I915_READ(DSPCNTR(i));
  8995. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8996. if (INTEL_INFO(dev)->gen <= 3) {
  8997. error->plane[i].size = I915_READ(DSPSIZE(i));
  8998. error->plane[i].pos = I915_READ(DSPPOS(i));
  8999. }
  9000. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9001. error->plane[i].addr = I915_READ(DSPADDR(i));
  9002. if (INTEL_INFO(dev)->gen >= 4) {
  9003. error->plane[i].surface = I915_READ(DSPSURF(i));
  9004. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  9005. }
  9006. error->pipe[i].source = I915_READ(PIPESRC(i));
  9007. }
  9008. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  9009. if (HAS_DDI(dev_priv->dev))
  9010. error->num_transcoders++; /* Account for eDP. */
  9011. for (i = 0; i < error->num_transcoders; i++) {
  9012. enum transcoder cpu_transcoder = transcoders[i];
  9013. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  9014. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  9015. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  9016. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  9017. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  9018. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  9019. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  9020. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  9021. }
  9022. /* In the code above we read the registers without checking if the power
  9023. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  9024. * prevent the next I915_WRITE from detecting it and printing an error
  9025. * message. */
  9026. intel_uncore_clear_errors(dev);
  9027. return error;
  9028. }
  9029. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  9030. void
  9031. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  9032. struct drm_device *dev,
  9033. struct intel_display_error_state *error)
  9034. {
  9035. int i;
  9036. if (!error)
  9037. return;
  9038. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  9039. if (HAS_POWER_WELL(dev))
  9040. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  9041. error->power_well_driver);
  9042. for_each_pipe(i) {
  9043. err_printf(m, "Pipe [%d]:\n", i);
  9044. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  9045. err_printf(m, "Plane [%d]:\n", i);
  9046. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  9047. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  9048. if (INTEL_INFO(dev)->gen <= 3) {
  9049. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  9050. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  9051. }
  9052. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9053. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  9054. if (INTEL_INFO(dev)->gen >= 4) {
  9055. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  9056. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  9057. }
  9058. err_printf(m, "Cursor [%d]:\n", i);
  9059. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  9060. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  9061. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  9062. }
  9063. for (i = 0; i < error->num_transcoders; i++) {
  9064. err_printf(m, " CPU transcoder: %c\n",
  9065. transcoder_name(error->transcoder[i].cpu_transcoder));
  9066. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  9067. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  9068. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  9069. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  9070. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  9071. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  9072. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  9073. }
  9074. }