disk-io.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #ifdef CONFIG_X86
  49. #include <asm/cpufeature.h>
  50. #endif
  51. static struct extent_io_ops btree_extent_io_ops;
  52. static void end_workqueue_fn(struct btrfs_work *work);
  53. static void free_fs_root(struct btrfs_root *root);
  54. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  55. int read_only);
  56. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  57. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  58. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  59. struct btrfs_root *root);
  60. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  61. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  62. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  63. struct extent_io_tree *dirty_pages,
  64. int mark);
  65. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  66. struct extent_io_tree *pinned_extents);
  67. /*
  68. * end_io_wq structs are used to do processing in task context when an IO is
  69. * complete. This is used during reads to verify checksums, and it is used
  70. * by writes to insert metadata for new file extents after IO is complete.
  71. */
  72. struct end_io_wq {
  73. struct bio *bio;
  74. bio_end_io_t *end_io;
  75. void *private;
  76. struct btrfs_fs_info *info;
  77. int error;
  78. int metadata;
  79. struct list_head list;
  80. struct btrfs_work work;
  81. };
  82. /*
  83. * async submit bios are used to offload expensive checksumming
  84. * onto the worker threads. They checksum file and metadata bios
  85. * just before they are sent down the IO stack.
  86. */
  87. struct async_submit_bio {
  88. struct inode *inode;
  89. struct bio *bio;
  90. struct list_head list;
  91. extent_submit_bio_hook_t *submit_bio_start;
  92. extent_submit_bio_hook_t *submit_bio_done;
  93. int rw;
  94. int mirror_num;
  95. unsigned long bio_flags;
  96. /*
  97. * bio_offset is optional, can be used if the pages in the bio
  98. * can't tell us where in the file the bio should go
  99. */
  100. u64 bio_offset;
  101. struct btrfs_work work;
  102. int error;
  103. };
  104. /*
  105. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  106. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  107. * the level the eb occupies in the tree.
  108. *
  109. * Different roots are used for different purposes and may nest inside each
  110. * other and they require separate keysets. As lockdep keys should be
  111. * static, assign keysets according to the purpose of the root as indicated
  112. * by btrfs_root->objectid. This ensures that all special purpose roots
  113. * have separate keysets.
  114. *
  115. * Lock-nesting across peer nodes is always done with the immediate parent
  116. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  117. * subclass to avoid triggering lockdep warning in such cases.
  118. *
  119. * The key is set by the readpage_end_io_hook after the buffer has passed
  120. * csum validation but before the pages are unlocked. It is also set by
  121. * btrfs_init_new_buffer on freshly allocated blocks.
  122. *
  123. * We also add a check to make sure the highest level of the tree is the
  124. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  125. * needs update as well.
  126. */
  127. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  128. # if BTRFS_MAX_LEVEL != 8
  129. # error
  130. # endif
  131. static struct btrfs_lockdep_keyset {
  132. u64 id; /* root objectid */
  133. const char *name_stem; /* lock name stem */
  134. char names[BTRFS_MAX_LEVEL + 1][20];
  135. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  136. } btrfs_lockdep_keysets[] = {
  137. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  138. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  139. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  140. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  141. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  142. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  143. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  144. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  145. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  146. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  147. { .id = 0, .name_stem = "tree" },
  148. };
  149. void __init btrfs_init_lockdep(void)
  150. {
  151. int i, j;
  152. /* initialize lockdep class names */
  153. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  154. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  155. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  156. snprintf(ks->names[j], sizeof(ks->names[j]),
  157. "btrfs-%s-%02d", ks->name_stem, j);
  158. }
  159. }
  160. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  161. int level)
  162. {
  163. struct btrfs_lockdep_keyset *ks;
  164. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  165. /* find the matching keyset, id 0 is the default entry */
  166. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  167. if (ks->id == objectid)
  168. break;
  169. lockdep_set_class_and_name(&eb->lock,
  170. &ks->keys[level], ks->names[level]);
  171. }
  172. #endif
  173. /*
  174. * extents on the btree inode are pretty simple, there's one extent
  175. * that covers the entire device
  176. */
  177. static struct extent_map *btree_get_extent(struct inode *inode,
  178. struct page *page, size_t pg_offset, u64 start, u64 len,
  179. int create)
  180. {
  181. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  182. struct extent_map *em;
  183. int ret;
  184. read_lock(&em_tree->lock);
  185. em = lookup_extent_mapping(em_tree, start, len);
  186. if (em) {
  187. em->bdev =
  188. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  189. read_unlock(&em_tree->lock);
  190. goto out;
  191. }
  192. read_unlock(&em_tree->lock);
  193. em = alloc_extent_map();
  194. if (!em) {
  195. em = ERR_PTR(-ENOMEM);
  196. goto out;
  197. }
  198. em->start = 0;
  199. em->len = (u64)-1;
  200. em->block_len = (u64)-1;
  201. em->block_start = 0;
  202. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  203. write_lock(&em_tree->lock);
  204. ret = add_extent_mapping(em_tree, em);
  205. if (ret == -EEXIST) {
  206. free_extent_map(em);
  207. em = lookup_extent_mapping(em_tree, start, len);
  208. if (!em)
  209. em = ERR_PTR(-EIO);
  210. } else if (ret) {
  211. free_extent_map(em);
  212. em = ERR_PTR(ret);
  213. }
  214. write_unlock(&em_tree->lock);
  215. out:
  216. return em;
  217. }
  218. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  219. {
  220. return crc32c(seed, data, len);
  221. }
  222. void btrfs_csum_final(u32 crc, char *result)
  223. {
  224. put_unaligned_le32(~crc, result);
  225. }
  226. /*
  227. * compute the csum for a btree block, and either verify it or write it
  228. * into the csum field of the block.
  229. */
  230. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  231. int verify)
  232. {
  233. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  234. char *result = NULL;
  235. unsigned long len;
  236. unsigned long cur_len;
  237. unsigned long offset = BTRFS_CSUM_SIZE;
  238. char *kaddr;
  239. unsigned long map_start;
  240. unsigned long map_len;
  241. int err;
  242. u32 crc = ~(u32)0;
  243. unsigned long inline_result;
  244. len = buf->len - offset;
  245. while (len > 0) {
  246. err = map_private_extent_buffer(buf, offset, 32,
  247. &kaddr, &map_start, &map_len);
  248. if (err)
  249. return 1;
  250. cur_len = min(len, map_len - (offset - map_start));
  251. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  252. crc, cur_len);
  253. len -= cur_len;
  254. offset += cur_len;
  255. }
  256. if (csum_size > sizeof(inline_result)) {
  257. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  258. if (!result)
  259. return 1;
  260. } else {
  261. result = (char *)&inline_result;
  262. }
  263. btrfs_csum_final(crc, result);
  264. if (verify) {
  265. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  266. u32 val;
  267. u32 found = 0;
  268. memcpy(&found, result, csum_size);
  269. read_extent_buffer(buf, &val, 0, csum_size);
  270. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  271. "failed on %llu wanted %X found %X "
  272. "level %d\n",
  273. root->fs_info->sb->s_id,
  274. (unsigned long long)buf->start, val, found,
  275. btrfs_header_level(buf));
  276. if (result != (char *)&inline_result)
  277. kfree(result);
  278. return 1;
  279. }
  280. } else {
  281. write_extent_buffer(buf, result, 0, csum_size);
  282. }
  283. if (result != (char *)&inline_result)
  284. kfree(result);
  285. return 0;
  286. }
  287. /*
  288. * we can't consider a given block up to date unless the transid of the
  289. * block matches the transid in the parent node's pointer. This is how we
  290. * detect blocks that either didn't get written at all or got written
  291. * in the wrong place.
  292. */
  293. static int verify_parent_transid(struct extent_io_tree *io_tree,
  294. struct extent_buffer *eb, u64 parent_transid,
  295. int atomic)
  296. {
  297. struct extent_state *cached_state = NULL;
  298. int ret;
  299. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  300. return 0;
  301. if (atomic)
  302. return -EAGAIN;
  303. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  304. 0, &cached_state);
  305. if (extent_buffer_uptodate(eb) &&
  306. btrfs_header_generation(eb) == parent_transid) {
  307. ret = 0;
  308. goto out;
  309. }
  310. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  311. "found %llu\n",
  312. (unsigned long long)eb->start,
  313. (unsigned long long)parent_transid,
  314. (unsigned long long)btrfs_header_generation(eb));
  315. ret = 1;
  316. clear_extent_buffer_uptodate(eb);
  317. out:
  318. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  319. &cached_state, GFP_NOFS);
  320. return ret;
  321. }
  322. /*
  323. * helper to read a given tree block, doing retries as required when
  324. * the checksums don't match and we have alternate mirrors to try.
  325. */
  326. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  327. struct extent_buffer *eb,
  328. u64 start, u64 parent_transid)
  329. {
  330. struct extent_io_tree *io_tree;
  331. int failed = 0;
  332. int ret;
  333. int num_copies = 0;
  334. int mirror_num = 0;
  335. int failed_mirror = 0;
  336. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  337. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  338. while (1) {
  339. ret = read_extent_buffer_pages(io_tree, eb, start,
  340. WAIT_COMPLETE,
  341. btree_get_extent, mirror_num);
  342. if (!ret) {
  343. if (!verify_parent_transid(io_tree, eb,
  344. parent_transid, 0))
  345. break;
  346. else
  347. ret = -EIO;
  348. }
  349. /*
  350. * This buffer's crc is fine, but its contents are corrupted, so
  351. * there is no reason to read the other copies, they won't be
  352. * any less wrong.
  353. */
  354. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  355. break;
  356. num_copies = btrfs_num_copies(root->fs_info,
  357. eb->start, eb->len);
  358. if (num_copies == 1)
  359. break;
  360. if (!failed_mirror) {
  361. failed = 1;
  362. failed_mirror = eb->read_mirror;
  363. }
  364. mirror_num++;
  365. if (mirror_num == failed_mirror)
  366. mirror_num++;
  367. if (mirror_num > num_copies)
  368. break;
  369. }
  370. if (failed && !ret && failed_mirror)
  371. repair_eb_io_failure(root, eb, failed_mirror);
  372. return ret;
  373. }
  374. /*
  375. * checksum a dirty tree block before IO. This has extra checks to make sure
  376. * we only fill in the checksum field in the first page of a multi-page block
  377. */
  378. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  379. {
  380. struct extent_io_tree *tree;
  381. u64 start = page_offset(page);
  382. u64 found_start;
  383. struct extent_buffer *eb;
  384. tree = &BTRFS_I(page->mapping->host)->io_tree;
  385. eb = (struct extent_buffer *)page->private;
  386. if (page != eb->pages[0])
  387. return 0;
  388. found_start = btrfs_header_bytenr(eb);
  389. if (found_start != start) {
  390. WARN_ON(1);
  391. return 0;
  392. }
  393. if (!PageUptodate(page)) {
  394. WARN_ON(1);
  395. return 0;
  396. }
  397. csum_tree_block(root, eb, 0);
  398. return 0;
  399. }
  400. static int check_tree_block_fsid(struct btrfs_root *root,
  401. struct extent_buffer *eb)
  402. {
  403. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  404. u8 fsid[BTRFS_UUID_SIZE];
  405. int ret = 1;
  406. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  407. BTRFS_FSID_SIZE);
  408. while (fs_devices) {
  409. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  410. ret = 0;
  411. break;
  412. }
  413. fs_devices = fs_devices->seed;
  414. }
  415. return ret;
  416. }
  417. #define CORRUPT(reason, eb, root, slot) \
  418. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  419. "root=%llu, slot=%d\n", reason, \
  420. (unsigned long long)btrfs_header_bytenr(eb), \
  421. (unsigned long long)root->objectid, slot)
  422. static noinline int check_leaf(struct btrfs_root *root,
  423. struct extent_buffer *leaf)
  424. {
  425. struct btrfs_key key;
  426. struct btrfs_key leaf_key;
  427. u32 nritems = btrfs_header_nritems(leaf);
  428. int slot;
  429. if (nritems == 0)
  430. return 0;
  431. /* Check the 0 item */
  432. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  433. BTRFS_LEAF_DATA_SIZE(root)) {
  434. CORRUPT("invalid item offset size pair", leaf, root, 0);
  435. return -EIO;
  436. }
  437. /*
  438. * Check to make sure each items keys are in the correct order and their
  439. * offsets make sense. We only have to loop through nritems-1 because
  440. * we check the current slot against the next slot, which verifies the
  441. * next slot's offset+size makes sense and that the current's slot
  442. * offset is correct.
  443. */
  444. for (slot = 0; slot < nritems - 1; slot++) {
  445. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  446. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  447. /* Make sure the keys are in the right order */
  448. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  449. CORRUPT("bad key order", leaf, root, slot);
  450. return -EIO;
  451. }
  452. /*
  453. * Make sure the offset and ends are right, remember that the
  454. * item data starts at the end of the leaf and grows towards the
  455. * front.
  456. */
  457. if (btrfs_item_offset_nr(leaf, slot) !=
  458. btrfs_item_end_nr(leaf, slot + 1)) {
  459. CORRUPT("slot offset bad", leaf, root, slot);
  460. return -EIO;
  461. }
  462. /*
  463. * Check to make sure that we don't point outside of the leaf,
  464. * just incase all the items are consistent to eachother, but
  465. * all point outside of the leaf.
  466. */
  467. if (btrfs_item_end_nr(leaf, slot) >
  468. BTRFS_LEAF_DATA_SIZE(root)) {
  469. CORRUPT("slot end outside of leaf", leaf, root, slot);
  470. return -EIO;
  471. }
  472. }
  473. return 0;
  474. }
  475. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  476. struct page *page, int max_walk)
  477. {
  478. struct extent_buffer *eb;
  479. u64 start = page_offset(page);
  480. u64 target = start;
  481. u64 min_start;
  482. if (start < max_walk)
  483. min_start = 0;
  484. else
  485. min_start = start - max_walk;
  486. while (start >= min_start) {
  487. eb = find_extent_buffer(tree, start, 0);
  488. if (eb) {
  489. /*
  490. * we found an extent buffer and it contains our page
  491. * horray!
  492. */
  493. if (eb->start <= target &&
  494. eb->start + eb->len > target)
  495. return eb;
  496. /* we found an extent buffer that wasn't for us */
  497. free_extent_buffer(eb);
  498. return NULL;
  499. }
  500. if (start == 0)
  501. break;
  502. start -= PAGE_CACHE_SIZE;
  503. }
  504. return NULL;
  505. }
  506. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  507. struct extent_state *state, int mirror)
  508. {
  509. struct extent_io_tree *tree;
  510. u64 found_start;
  511. int found_level;
  512. struct extent_buffer *eb;
  513. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  514. int ret = 0;
  515. int reads_done;
  516. if (!page->private)
  517. goto out;
  518. tree = &BTRFS_I(page->mapping->host)->io_tree;
  519. eb = (struct extent_buffer *)page->private;
  520. /* the pending IO might have been the only thing that kept this buffer
  521. * in memory. Make sure we have a ref for all this other checks
  522. */
  523. extent_buffer_get(eb);
  524. reads_done = atomic_dec_and_test(&eb->io_pages);
  525. if (!reads_done)
  526. goto err;
  527. eb->read_mirror = mirror;
  528. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  529. ret = -EIO;
  530. goto err;
  531. }
  532. found_start = btrfs_header_bytenr(eb);
  533. if (found_start != eb->start) {
  534. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  535. "%llu %llu\n",
  536. (unsigned long long)found_start,
  537. (unsigned long long)eb->start);
  538. ret = -EIO;
  539. goto err;
  540. }
  541. if (check_tree_block_fsid(root, eb)) {
  542. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  543. (unsigned long long)eb->start);
  544. ret = -EIO;
  545. goto err;
  546. }
  547. found_level = btrfs_header_level(eb);
  548. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  549. eb, found_level);
  550. ret = csum_tree_block(root, eb, 1);
  551. if (ret) {
  552. ret = -EIO;
  553. goto err;
  554. }
  555. /*
  556. * If this is a leaf block and it is corrupt, set the corrupt bit so
  557. * that we don't try and read the other copies of this block, just
  558. * return -EIO.
  559. */
  560. if (found_level == 0 && check_leaf(root, eb)) {
  561. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  562. ret = -EIO;
  563. }
  564. if (!ret)
  565. set_extent_buffer_uptodate(eb);
  566. err:
  567. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  568. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  569. btree_readahead_hook(root, eb, eb->start, ret);
  570. }
  571. if (ret)
  572. clear_extent_buffer_uptodate(eb);
  573. free_extent_buffer(eb);
  574. out:
  575. return ret;
  576. }
  577. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  578. {
  579. struct extent_buffer *eb;
  580. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  581. eb = (struct extent_buffer *)page->private;
  582. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  583. eb->read_mirror = failed_mirror;
  584. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  585. btree_readahead_hook(root, eb, eb->start, -EIO);
  586. return -EIO; /* we fixed nothing */
  587. }
  588. static void end_workqueue_bio(struct bio *bio, int err)
  589. {
  590. struct end_io_wq *end_io_wq = bio->bi_private;
  591. struct btrfs_fs_info *fs_info;
  592. fs_info = end_io_wq->info;
  593. end_io_wq->error = err;
  594. end_io_wq->work.func = end_workqueue_fn;
  595. end_io_wq->work.flags = 0;
  596. if (bio->bi_rw & REQ_WRITE) {
  597. if (end_io_wq->metadata == 1)
  598. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  599. &end_io_wq->work);
  600. else if (end_io_wq->metadata == 2)
  601. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  602. &end_io_wq->work);
  603. else
  604. btrfs_queue_worker(&fs_info->endio_write_workers,
  605. &end_io_wq->work);
  606. } else {
  607. if (end_io_wq->metadata)
  608. btrfs_queue_worker(&fs_info->endio_meta_workers,
  609. &end_io_wq->work);
  610. else
  611. btrfs_queue_worker(&fs_info->endio_workers,
  612. &end_io_wq->work);
  613. }
  614. }
  615. /*
  616. * For the metadata arg you want
  617. *
  618. * 0 - if data
  619. * 1 - if normal metadta
  620. * 2 - if writing to the free space cache area
  621. */
  622. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  623. int metadata)
  624. {
  625. struct end_io_wq *end_io_wq;
  626. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  627. if (!end_io_wq)
  628. return -ENOMEM;
  629. end_io_wq->private = bio->bi_private;
  630. end_io_wq->end_io = bio->bi_end_io;
  631. end_io_wq->info = info;
  632. end_io_wq->error = 0;
  633. end_io_wq->bio = bio;
  634. end_io_wq->metadata = metadata;
  635. bio->bi_private = end_io_wq;
  636. bio->bi_end_io = end_workqueue_bio;
  637. return 0;
  638. }
  639. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  640. {
  641. unsigned long limit = min_t(unsigned long,
  642. info->workers.max_workers,
  643. info->fs_devices->open_devices);
  644. return 256 * limit;
  645. }
  646. static void run_one_async_start(struct btrfs_work *work)
  647. {
  648. struct async_submit_bio *async;
  649. int ret;
  650. async = container_of(work, struct async_submit_bio, work);
  651. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  652. async->mirror_num, async->bio_flags,
  653. async->bio_offset);
  654. if (ret)
  655. async->error = ret;
  656. }
  657. static void run_one_async_done(struct btrfs_work *work)
  658. {
  659. struct btrfs_fs_info *fs_info;
  660. struct async_submit_bio *async;
  661. int limit;
  662. async = container_of(work, struct async_submit_bio, work);
  663. fs_info = BTRFS_I(async->inode)->root->fs_info;
  664. limit = btrfs_async_submit_limit(fs_info);
  665. limit = limit * 2 / 3;
  666. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  667. waitqueue_active(&fs_info->async_submit_wait))
  668. wake_up(&fs_info->async_submit_wait);
  669. /* If an error occured we just want to clean up the bio and move on */
  670. if (async->error) {
  671. bio_endio(async->bio, async->error);
  672. return;
  673. }
  674. async->submit_bio_done(async->inode, async->rw, async->bio,
  675. async->mirror_num, async->bio_flags,
  676. async->bio_offset);
  677. }
  678. static void run_one_async_free(struct btrfs_work *work)
  679. {
  680. struct async_submit_bio *async;
  681. async = container_of(work, struct async_submit_bio, work);
  682. kfree(async);
  683. }
  684. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  685. int rw, struct bio *bio, int mirror_num,
  686. unsigned long bio_flags,
  687. u64 bio_offset,
  688. extent_submit_bio_hook_t *submit_bio_start,
  689. extent_submit_bio_hook_t *submit_bio_done)
  690. {
  691. struct async_submit_bio *async;
  692. async = kmalloc(sizeof(*async), GFP_NOFS);
  693. if (!async)
  694. return -ENOMEM;
  695. async->inode = inode;
  696. async->rw = rw;
  697. async->bio = bio;
  698. async->mirror_num = mirror_num;
  699. async->submit_bio_start = submit_bio_start;
  700. async->submit_bio_done = submit_bio_done;
  701. async->work.func = run_one_async_start;
  702. async->work.ordered_func = run_one_async_done;
  703. async->work.ordered_free = run_one_async_free;
  704. async->work.flags = 0;
  705. async->bio_flags = bio_flags;
  706. async->bio_offset = bio_offset;
  707. async->error = 0;
  708. atomic_inc(&fs_info->nr_async_submits);
  709. if (rw & REQ_SYNC)
  710. btrfs_set_work_high_prio(&async->work);
  711. btrfs_queue_worker(&fs_info->workers, &async->work);
  712. while (atomic_read(&fs_info->async_submit_draining) &&
  713. atomic_read(&fs_info->nr_async_submits)) {
  714. wait_event(fs_info->async_submit_wait,
  715. (atomic_read(&fs_info->nr_async_submits) == 0));
  716. }
  717. return 0;
  718. }
  719. static int btree_csum_one_bio(struct bio *bio)
  720. {
  721. struct bio_vec *bvec = bio->bi_io_vec;
  722. int bio_index = 0;
  723. struct btrfs_root *root;
  724. int ret = 0;
  725. WARN_ON(bio->bi_vcnt <= 0);
  726. while (bio_index < bio->bi_vcnt) {
  727. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  728. ret = csum_dirty_buffer(root, bvec->bv_page);
  729. if (ret)
  730. break;
  731. bio_index++;
  732. bvec++;
  733. }
  734. return ret;
  735. }
  736. static int __btree_submit_bio_start(struct inode *inode, int rw,
  737. struct bio *bio, int mirror_num,
  738. unsigned long bio_flags,
  739. u64 bio_offset)
  740. {
  741. /*
  742. * when we're called for a write, we're already in the async
  743. * submission context. Just jump into btrfs_map_bio
  744. */
  745. return btree_csum_one_bio(bio);
  746. }
  747. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  748. int mirror_num, unsigned long bio_flags,
  749. u64 bio_offset)
  750. {
  751. int ret;
  752. /*
  753. * when we're called for a write, we're already in the async
  754. * submission context. Just jump into btrfs_map_bio
  755. */
  756. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  757. if (ret)
  758. bio_endio(bio, ret);
  759. return ret;
  760. }
  761. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  762. {
  763. if (bio_flags & EXTENT_BIO_TREE_LOG)
  764. return 0;
  765. #ifdef CONFIG_X86
  766. if (cpu_has_xmm4_2)
  767. return 0;
  768. #endif
  769. return 1;
  770. }
  771. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  772. int mirror_num, unsigned long bio_flags,
  773. u64 bio_offset)
  774. {
  775. int async = check_async_write(inode, bio_flags);
  776. int ret;
  777. if (!(rw & REQ_WRITE)) {
  778. /*
  779. * called for a read, do the setup so that checksum validation
  780. * can happen in the async kernel threads
  781. */
  782. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  783. bio, 1);
  784. if (ret)
  785. goto out_w_error;
  786. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  787. mirror_num, 0);
  788. } else if (!async) {
  789. ret = btree_csum_one_bio(bio);
  790. if (ret)
  791. goto out_w_error;
  792. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  793. mirror_num, 0);
  794. } else {
  795. /*
  796. * kthread helpers are used to submit writes so that
  797. * checksumming can happen in parallel across all CPUs
  798. */
  799. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  800. inode, rw, bio, mirror_num, 0,
  801. bio_offset,
  802. __btree_submit_bio_start,
  803. __btree_submit_bio_done);
  804. }
  805. if (ret) {
  806. out_w_error:
  807. bio_endio(bio, ret);
  808. }
  809. return ret;
  810. }
  811. #ifdef CONFIG_MIGRATION
  812. static int btree_migratepage(struct address_space *mapping,
  813. struct page *newpage, struct page *page,
  814. enum migrate_mode mode)
  815. {
  816. /*
  817. * we can't safely write a btree page from here,
  818. * we haven't done the locking hook
  819. */
  820. if (PageDirty(page))
  821. return -EAGAIN;
  822. /*
  823. * Buffers may be managed in a filesystem specific way.
  824. * We must have no buffers or drop them.
  825. */
  826. if (page_has_private(page) &&
  827. !try_to_release_page(page, GFP_KERNEL))
  828. return -EAGAIN;
  829. return migrate_page(mapping, newpage, page, mode);
  830. }
  831. #endif
  832. static int btree_writepages(struct address_space *mapping,
  833. struct writeback_control *wbc)
  834. {
  835. struct extent_io_tree *tree;
  836. struct btrfs_fs_info *fs_info;
  837. int ret;
  838. tree = &BTRFS_I(mapping->host)->io_tree;
  839. if (wbc->sync_mode == WB_SYNC_NONE) {
  840. if (wbc->for_kupdate)
  841. return 0;
  842. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  843. /* this is a bit racy, but that's ok */
  844. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  845. BTRFS_DIRTY_METADATA_THRESH);
  846. if (ret < 0)
  847. return 0;
  848. }
  849. return btree_write_cache_pages(mapping, wbc);
  850. }
  851. static int btree_readpage(struct file *file, struct page *page)
  852. {
  853. struct extent_io_tree *tree;
  854. tree = &BTRFS_I(page->mapping->host)->io_tree;
  855. return extent_read_full_page(tree, page, btree_get_extent, 0);
  856. }
  857. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  858. {
  859. if (PageWriteback(page) || PageDirty(page))
  860. return 0;
  861. /*
  862. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  863. * slab allocation from alloc_extent_state down the callchain where
  864. * it'd hit a BUG_ON as those flags are not allowed.
  865. */
  866. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  867. return try_release_extent_buffer(page, gfp_flags);
  868. }
  869. static void btree_invalidatepage(struct page *page, unsigned long offset)
  870. {
  871. struct extent_io_tree *tree;
  872. tree = &BTRFS_I(page->mapping->host)->io_tree;
  873. extent_invalidatepage(tree, page, offset);
  874. btree_releasepage(page, GFP_NOFS);
  875. if (PagePrivate(page)) {
  876. printk(KERN_WARNING "btrfs warning page private not zero "
  877. "on page %llu\n", (unsigned long long)page_offset(page));
  878. ClearPagePrivate(page);
  879. set_page_private(page, 0);
  880. page_cache_release(page);
  881. }
  882. }
  883. static int btree_set_page_dirty(struct page *page)
  884. {
  885. #ifdef DEBUG
  886. struct extent_buffer *eb;
  887. BUG_ON(!PagePrivate(page));
  888. eb = (struct extent_buffer *)page->private;
  889. BUG_ON(!eb);
  890. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  891. BUG_ON(!atomic_read(&eb->refs));
  892. btrfs_assert_tree_locked(eb);
  893. #endif
  894. return __set_page_dirty_nobuffers(page);
  895. }
  896. static const struct address_space_operations btree_aops = {
  897. .readpage = btree_readpage,
  898. .writepages = btree_writepages,
  899. .releasepage = btree_releasepage,
  900. .invalidatepage = btree_invalidatepage,
  901. #ifdef CONFIG_MIGRATION
  902. .migratepage = btree_migratepage,
  903. #endif
  904. .set_page_dirty = btree_set_page_dirty,
  905. };
  906. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  907. u64 parent_transid)
  908. {
  909. struct extent_buffer *buf = NULL;
  910. struct inode *btree_inode = root->fs_info->btree_inode;
  911. int ret = 0;
  912. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  913. if (!buf)
  914. return 0;
  915. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  916. buf, 0, WAIT_NONE, btree_get_extent, 0);
  917. free_extent_buffer(buf);
  918. return ret;
  919. }
  920. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  921. int mirror_num, struct extent_buffer **eb)
  922. {
  923. struct extent_buffer *buf = NULL;
  924. struct inode *btree_inode = root->fs_info->btree_inode;
  925. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  926. int ret;
  927. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  928. if (!buf)
  929. return 0;
  930. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  931. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  932. btree_get_extent, mirror_num);
  933. if (ret) {
  934. free_extent_buffer(buf);
  935. return ret;
  936. }
  937. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  938. free_extent_buffer(buf);
  939. return -EIO;
  940. } else if (extent_buffer_uptodate(buf)) {
  941. *eb = buf;
  942. } else {
  943. free_extent_buffer(buf);
  944. }
  945. return 0;
  946. }
  947. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  948. u64 bytenr, u32 blocksize)
  949. {
  950. struct inode *btree_inode = root->fs_info->btree_inode;
  951. struct extent_buffer *eb;
  952. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  953. bytenr, blocksize);
  954. return eb;
  955. }
  956. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  957. u64 bytenr, u32 blocksize)
  958. {
  959. struct inode *btree_inode = root->fs_info->btree_inode;
  960. struct extent_buffer *eb;
  961. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  962. bytenr, blocksize);
  963. return eb;
  964. }
  965. int btrfs_write_tree_block(struct extent_buffer *buf)
  966. {
  967. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  968. buf->start + buf->len - 1);
  969. }
  970. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  971. {
  972. return filemap_fdatawait_range(buf->pages[0]->mapping,
  973. buf->start, buf->start + buf->len - 1);
  974. }
  975. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  976. u32 blocksize, u64 parent_transid)
  977. {
  978. struct extent_buffer *buf = NULL;
  979. int ret;
  980. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  981. if (!buf)
  982. return NULL;
  983. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  984. return buf;
  985. }
  986. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  987. struct extent_buffer *buf)
  988. {
  989. struct btrfs_fs_info *fs_info = root->fs_info;
  990. if (btrfs_header_generation(buf) ==
  991. fs_info->running_transaction->transid) {
  992. btrfs_assert_tree_locked(buf);
  993. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  994. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  995. -buf->len,
  996. fs_info->dirty_metadata_batch);
  997. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  998. btrfs_set_lock_blocking(buf);
  999. clear_extent_buffer_dirty(buf);
  1000. }
  1001. }
  1002. }
  1003. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1004. u32 stripesize, struct btrfs_root *root,
  1005. struct btrfs_fs_info *fs_info,
  1006. u64 objectid)
  1007. {
  1008. root->node = NULL;
  1009. root->commit_root = NULL;
  1010. root->sectorsize = sectorsize;
  1011. root->nodesize = nodesize;
  1012. root->leafsize = leafsize;
  1013. root->stripesize = stripesize;
  1014. root->ref_cows = 0;
  1015. root->track_dirty = 0;
  1016. root->in_radix = 0;
  1017. root->orphan_item_inserted = 0;
  1018. root->orphan_cleanup_state = 0;
  1019. root->objectid = objectid;
  1020. root->last_trans = 0;
  1021. root->highest_objectid = 0;
  1022. root->name = NULL;
  1023. root->inode_tree = RB_ROOT;
  1024. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1025. root->block_rsv = NULL;
  1026. root->orphan_block_rsv = NULL;
  1027. INIT_LIST_HEAD(&root->dirty_list);
  1028. INIT_LIST_HEAD(&root->root_list);
  1029. INIT_LIST_HEAD(&root->logged_list[0]);
  1030. INIT_LIST_HEAD(&root->logged_list[1]);
  1031. spin_lock_init(&root->orphan_lock);
  1032. spin_lock_init(&root->inode_lock);
  1033. spin_lock_init(&root->accounting_lock);
  1034. spin_lock_init(&root->log_extents_lock[0]);
  1035. spin_lock_init(&root->log_extents_lock[1]);
  1036. mutex_init(&root->objectid_mutex);
  1037. mutex_init(&root->log_mutex);
  1038. init_waitqueue_head(&root->log_writer_wait);
  1039. init_waitqueue_head(&root->log_commit_wait[0]);
  1040. init_waitqueue_head(&root->log_commit_wait[1]);
  1041. atomic_set(&root->log_commit[0], 0);
  1042. atomic_set(&root->log_commit[1], 0);
  1043. atomic_set(&root->log_writers, 0);
  1044. atomic_set(&root->log_batch, 0);
  1045. atomic_set(&root->orphan_inodes, 0);
  1046. root->log_transid = 0;
  1047. root->last_log_commit = 0;
  1048. extent_io_tree_init(&root->dirty_log_pages,
  1049. fs_info->btree_inode->i_mapping);
  1050. memset(&root->root_key, 0, sizeof(root->root_key));
  1051. memset(&root->root_item, 0, sizeof(root->root_item));
  1052. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1053. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1054. root->defrag_trans_start = fs_info->generation;
  1055. init_completion(&root->kobj_unregister);
  1056. root->defrag_running = 0;
  1057. root->root_key.objectid = objectid;
  1058. root->anon_dev = 0;
  1059. spin_lock_init(&root->root_item_lock);
  1060. }
  1061. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1062. struct btrfs_fs_info *fs_info,
  1063. u64 objectid,
  1064. struct btrfs_root *root)
  1065. {
  1066. int ret;
  1067. u32 blocksize;
  1068. u64 generation;
  1069. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1070. tree_root->sectorsize, tree_root->stripesize,
  1071. root, fs_info, objectid);
  1072. ret = btrfs_find_last_root(tree_root, objectid,
  1073. &root->root_item, &root->root_key);
  1074. if (ret > 0)
  1075. return -ENOENT;
  1076. else if (ret < 0)
  1077. return ret;
  1078. generation = btrfs_root_generation(&root->root_item);
  1079. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1080. root->commit_root = NULL;
  1081. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1082. blocksize, generation);
  1083. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1084. free_extent_buffer(root->node);
  1085. root->node = NULL;
  1086. return -EIO;
  1087. }
  1088. root->commit_root = btrfs_root_node(root);
  1089. return 0;
  1090. }
  1091. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1092. {
  1093. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1094. if (root)
  1095. root->fs_info = fs_info;
  1096. return root;
  1097. }
  1098. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1099. struct btrfs_fs_info *fs_info,
  1100. u64 objectid)
  1101. {
  1102. struct extent_buffer *leaf;
  1103. struct btrfs_root *tree_root = fs_info->tree_root;
  1104. struct btrfs_root *root;
  1105. struct btrfs_key key;
  1106. int ret = 0;
  1107. u64 bytenr;
  1108. root = btrfs_alloc_root(fs_info);
  1109. if (!root)
  1110. return ERR_PTR(-ENOMEM);
  1111. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1112. tree_root->sectorsize, tree_root->stripesize,
  1113. root, fs_info, objectid);
  1114. root->root_key.objectid = objectid;
  1115. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1116. root->root_key.offset = 0;
  1117. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1118. 0, objectid, NULL, 0, 0, 0);
  1119. if (IS_ERR(leaf)) {
  1120. ret = PTR_ERR(leaf);
  1121. goto fail;
  1122. }
  1123. bytenr = leaf->start;
  1124. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1125. btrfs_set_header_bytenr(leaf, leaf->start);
  1126. btrfs_set_header_generation(leaf, trans->transid);
  1127. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1128. btrfs_set_header_owner(leaf, objectid);
  1129. root->node = leaf;
  1130. write_extent_buffer(leaf, fs_info->fsid,
  1131. (unsigned long)btrfs_header_fsid(leaf),
  1132. BTRFS_FSID_SIZE);
  1133. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1134. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1135. BTRFS_UUID_SIZE);
  1136. btrfs_mark_buffer_dirty(leaf);
  1137. root->commit_root = btrfs_root_node(root);
  1138. root->track_dirty = 1;
  1139. root->root_item.flags = 0;
  1140. root->root_item.byte_limit = 0;
  1141. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1142. btrfs_set_root_generation(&root->root_item, trans->transid);
  1143. btrfs_set_root_level(&root->root_item, 0);
  1144. btrfs_set_root_refs(&root->root_item, 1);
  1145. btrfs_set_root_used(&root->root_item, leaf->len);
  1146. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1147. btrfs_set_root_dirid(&root->root_item, 0);
  1148. root->root_item.drop_level = 0;
  1149. key.objectid = objectid;
  1150. key.type = BTRFS_ROOT_ITEM_KEY;
  1151. key.offset = 0;
  1152. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1153. if (ret)
  1154. goto fail;
  1155. btrfs_tree_unlock(leaf);
  1156. fail:
  1157. if (ret)
  1158. return ERR_PTR(ret);
  1159. return root;
  1160. }
  1161. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1162. struct btrfs_fs_info *fs_info)
  1163. {
  1164. struct btrfs_root *root;
  1165. struct btrfs_root *tree_root = fs_info->tree_root;
  1166. struct extent_buffer *leaf;
  1167. root = btrfs_alloc_root(fs_info);
  1168. if (!root)
  1169. return ERR_PTR(-ENOMEM);
  1170. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1171. tree_root->sectorsize, tree_root->stripesize,
  1172. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1173. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1174. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1175. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1176. /*
  1177. * log trees do not get reference counted because they go away
  1178. * before a real commit is actually done. They do store pointers
  1179. * to file data extents, and those reference counts still get
  1180. * updated (along with back refs to the log tree).
  1181. */
  1182. root->ref_cows = 0;
  1183. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1184. BTRFS_TREE_LOG_OBJECTID, NULL,
  1185. 0, 0, 0);
  1186. if (IS_ERR(leaf)) {
  1187. kfree(root);
  1188. return ERR_CAST(leaf);
  1189. }
  1190. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1191. btrfs_set_header_bytenr(leaf, leaf->start);
  1192. btrfs_set_header_generation(leaf, trans->transid);
  1193. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1194. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1195. root->node = leaf;
  1196. write_extent_buffer(root->node, root->fs_info->fsid,
  1197. (unsigned long)btrfs_header_fsid(root->node),
  1198. BTRFS_FSID_SIZE);
  1199. btrfs_mark_buffer_dirty(root->node);
  1200. btrfs_tree_unlock(root->node);
  1201. return root;
  1202. }
  1203. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1204. struct btrfs_fs_info *fs_info)
  1205. {
  1206. struct btrfs_root *log_root;
  1207. log_root = alloc_log_tree(trans, fs_info);
  1208. if (IS_ERR(log_root))
  1209. return PTR_ERR(log_root);
  1210. WARN_ON(fs_info->log_root_tree);
  1211. fs_info->log_root_tree = log_root;
  1212. return 0;
  1213. }
  1214. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1215. struct btrfs_root *root)
  1216. {
  1217. struct btrfs_root *log_root;
  1218. struct btrfs_inode_item *inode_item;
  1219. log_root = alloc_log_tree(trans, root->fs_info);
  1220. if (IS_ERR(log_root))
  1221. return PTR_ERR(log_root);
  1222. log_root->last_trans = trans->transid;
  1223. log_root->root_key.offset = root->root_key.objectid;
  1224. inode_item = &log_root->root_item.inode;
  1225. inode_item->generation = cpu_to_le64(1);
  1226. inode_item->size = cpu_to_le64(3);
  1227. inode_item->nlink = cpu_to_le32(1);
  1228. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1229. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1230. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1231. WARN_ON(root->log_root);
  1232. root->log_root = log_root;
  1233. root->log_transid = 0;
  1234. root->last_log_commit = 0;
  1235. return 0;
  1236. }
  1237. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1238. struct btrfs_key *location)
  1239. {
  1240. struct btrfs_root *root;
  1241. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1242. struct btrfs_path *path;
  1243. struct extent_buffer *l;
  1244. u64 generation;
  1245. u32 blocksize;
  1246. int ret = 0;
  1247. int slot;
  1248. root = btrfs_alloc_root(fs_info);
  1249. if (!root)
  1250. return ERR_PTR(-ENOMEM);
  1251. if (location->offset == (u64)-1) {
  1252. ret = find_and_setup_root(tree_root, fs_info,
  1253. location->objectid, root);
  1254. if (ret) {
  1255. kfree(root);
  1256. return ERR_PTR(ret);
  1257. }
  1258. goto out;
  1259. }
  1260. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1261. tree_root->sectorsize, tree_root->stripesize,
  1262. root, fs_info, location->objectid);
  1263. path = btrfs_alloc_path();
  1264. if (!path) {
  1265. kfree(root);
  1266. return ERR_PTR(-ENOMEM);
  1267. }
  1268. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1269. if (ret == 0) {
  1270. l = path->nodes[0];
  1271. slot = path->slots[0];
  1272. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1273. memcpy(&root->root_key, location, sizeof(*location));
  1274. }
  1275. btrfs_free_path(path);
  1276. if (ret) {
  1277. kfree(root);
  1278. if (ret > 0)
  1279. ret = -ENOENT;
  1280. return ERR_PTR(ret);
  1281. }
  1282. generation = btrfs_root_generation(&root->root_item);
  1283. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1284. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1285. blocksize, generation);
  1286. root->commit_root = btrfs_root_node(root);
  1287. BUG_ON(!root->node); /* -ENOMEM */
  1288. out:
  1289. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1290. root->ref_cows = 1;
  1291. btrfs_check_and_init_root_item(&root->root_item);
  1292. }
  1293. return root;
  1294. }
  1295. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1296. struct btrfs_key *location)
  1297. {
  1298. struct btrfs_root *root;
  1299. int ret;
  1300. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1301. return fs_info->tree_root;
  1302. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1303. return fs_info->extent_root;
  1304. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1305. return fs_info->chunk_root;
  1306. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1307. return fs_info->dev_root;
  1308. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1309. return fs_info->csum_root;
  1310. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1311. return fs_info->quota_root ? fs_info->quota_root :
  1312. ERR_PTR(-ENOENT);
  1313. again:
  1314. spin_lock(&fs_info->fs_roots_radix_lock);
  1315. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1316. (unsigned long)location->objectid);
  1317. spin_unlock(&fs_info->fs_roots_radix_lock);
  1318. if (root)
  1319. return root;
  1320. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1321. if (IS_ERR(root))
  1322. return root;
  1323. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1324. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1325. GFP_NOFS);
  1326. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1327. ret = -ENOMEM;
  1328. goto fail;
  1329. }
  1330. btrfs_init_free_ino_ctl(root);
  1331. mutex_init(&root->fs_commit_mutex);
  1332. spin_lock_init(&root->cache_lock);
  1333. init_waitqueue_head(&root->cache_wait);
  1334. ret = get_anon_bdev(&root->anon_dev);
  1335. if (ret)
  1336. goto fail;
  1337. if (btrfs_root_refs(&root->root_item) == 0) {
  1338. ret = -ENOENT;
  1339. goto fail;
  1340. }
  1341. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1342. if (ret < 0)
  1343. goto fail;
  1344. if (ret == 0)
  1345. root->orphan_item_inserted = 1;
  1346. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1347. if (ret)
  1348. goto fail;
  1349. spin_lock(&fs_info->fs_roots_radix_lock);
  1350. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1351. (unsigned long)root->root_key.objectid,
  1352. root);
  1353. if (ret == 0)
  1354. root->in_radix = 1;
  1355. spin_unlock(&fs_info->fs_roots_radix_lock);
  1356. radix_tree_preload_end();
  1357. if (ret) {
  1358. if (ret == -EEXIST) {
  1359. free_fs_root(root);
  1360. goto again;
  1361. }
  1362. goto fail;
  1363. }
  1364. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1365. root->root_key.objectid);
  1366. WARN_ON(ret);
  1367. return root;
  1368. fail:
  1369. free_fs_root(root);
  1370. return ERR_PTR(ret);
  1371. }
  1372. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1373. {
  1374. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1375. int ret = 0;
  1376. struct btrfs_device *device;
  1377. struct backing_dev_info *bdi;
  1378. rcu_read_lock();
  1379. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1380. if (!device->bdev)
  1381. continue;
  1382. bdi = blk_get_backing_dev_info(device->bdev);
  1383. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1384. ret = 1;
  1385. break;
  1386. }
  1387. }
  1388. rcu_read_unlock();
  1389. return ret;
  1390. }
  1391. /*
  1392. * If this fails, caller must call bdi_destroy() to get rid of the
  1393. * bdi again.
  1394. */
  1395. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1396. {
  1397. int err;
  1398. bdi->capabilities = BDI_CAP_MAP_COPY;
  1399. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1400. if (err)
  1401. return err;
  1402. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1403. bdi->congested_fn = btrfs_congested_fn;
  1404. bdi->congested_data = info;
  1405. return 0;
  1406. }
  1407. /*
  1408. * called by the kthread helper functions to finally call the bio end_io
  1409. * functions. This is where read checksum verification actually happens
  1410. */
  1411. static void end_workqueue_fn(struct btrfs_work *work)
  1412. {
  1413. struct bio *bio;
  1414. struct end_io_wq *end_io_wq;
  1415. struct btrfs_fs_info *fs_info;
  1416. int error;
  1417. end_io_wq = container_of(work, struct end_io_wq, work);
  1418. bio = end_io_wq->bio;
  1419. fs_info = end_io_wq->info;
  1420. error = end_io_wq->error;
  1421. bio->bi_private = end_io_wq->private;
  1422. bio->bi_end_io = end_io_wq->end_io;
  1423. kfree(end_io_wq);
  1424. bio_endio(bio, error);
  1425. }
  1426. static int cleaner_kthread(void *arg)
  1427. {
  1428. struct btrfs_root *root = arg;
  1429. do {
  1430. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1431. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1432. btrfs_run_delayed_iputs(root);
  1433. btrfs_clean_old_snapshots(root);
  1434. mutex_unlock(&root->fs_info->cleaner_mutex);
  1435. btrfs_run_defrag_inodes(root->fs_info);
  1436. }
  1437. if (!try_to_freeze()) {
  1438. set_current_state(TASK_INTERRUPTIBLE);
  1439. if (!kthread_should_stop())
  1440. schedule();
  1441. __set_current_state(TASK_RUNNING);
  1442. }
  1443. } while (!kthread_should_stop());
  1444. return 0;
  1445. }
  1446. static int transaction_kthread(void *arg)
  1447. {
  1448. struct btrfs_root *root = arg;
  1449. struct btrfs_trans_handle *trans;
  1450. struct btrfs_transaction *cur;
  1451. u64 transid;
  1452. unsigned long now;
  1453. unsigned long delay;
  1454. bool cannot_commit;
  1455. do {
  1456. cannot_commit = false;
  1457. delay = HZ * 30;
  1458. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1459. spin_lock(&root->fs_info->trans_lock);
  1460. cur = root->fs_info->running_transaction;
  1461. if (!cur) {
  1462. spin_unlock(&root->fs_info->trans_lock);
  1463. goto sleep;
  1464. }
  1465. now = get_seconds();
  1466. if (!cur->blocked &&
  1467. (now < cur->start_time || now - cur->start_time < 30)) {
  1468. spin_unlock(&root->fs_info->trans_lock);
  1469. delay = HZ * 5;
  1470. goto sleep;
  1471. }
  1472. transid = cur->transid;
  1473. spin_unlock(&root->fs_info->trans_lock);
  1474. /* If the file system is aborted, this will always fail. */
  1475. trans = btrfs_attach_transaction(root);
  1476. if (IS_ERR(trans)) {
  1477. if (PTR_ERR(trans) != -ENOENT)
  1478. cannot_commit = true;
  1479. goto sleep;
  1480. }
  1481. if (transid == trans->transid) {
  1482. btrfs_commit_transaction(trans, root);
  1483. } else {
  1484. btrfs_end_transaction(trans, root);
  1485. }
  1486. sleep:
  1487. wake_up_process(root->fs_info->cleaner_kthread);
  1488. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1489. if (!try_to_freeze()) {
  1490. set_current_state(TASK_INTERRUPTIBLE);
  1491. if (!kthread_should_stop() &&
  1492. (!btrfs_transaction_blocked(root->fs_info) ||
  1493. cannot_commit))
  1494. schedule_timeout(delay);
  1495. __set_current_state(TASK_RUNNING);
  1496. }
  1497. } while (!kthread_should_stop());
  1498. return 0;
  1499. }
  1500. /*
  1501. * this will find the highest generation in the array of
  1502. * root backups. The index of the highest array is returned,
  1503. * or -1 if we can't find anything.
  1504. *
  1505. * We check to make sure the array is valid by comparing the
  1506. * generation of the latest root in the array with the generation
  1507. * in the super block. If they don't match we pitch it.
  1508. */
  1509. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1510. {
  1511. u64 cur;
  1512. int newest_index = -1;
  1513. struct btrfs_root_backup *root_backup;
  1514. int i;
  1515. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1516. root_backup = info->super_copy->super_roots + i;
  1517. cur = btrfs_backup_tree_root_gen(root_backup);
  1518. if (cur == newest_gen)
  1519. newest_index = i;
  1520. }
  1521. /* check to see if we actually wrapped around */
  1522. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1523. root_backup = info->super_copy->super_roots;
  1524. cur = btrfs_backup_tree_root_gen(root_backup);
  1525. if (cur == newest_gen)
  1526. newest_index = 0;
  1527. }
  1528. return newest_index;
  1529. }
  1530. /*
  1531. * find the oldest backup so we know where to store new entries
  1532. * in the backup array. This will set the backup_root_index
  1533. * field in the fs_info struct
  1534. */
  1535. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1536. u64 newest_gen)
  1537. {
  1538. int newest_index = -1;
  1539. newest_index = find_newest_super_backup(info, newest_gen);
  1540. /* if there was garbage in there, just move along */
  1541. if (newest_index == -1) {
  1542. info->backup_root_index = 0;
  1543. } else {
  1544. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1545. }
  1546. }
  1547. /*
  1548. * copy all the root pointers into the super backup array.
  1549. * this will bump the backup pointer by one when it is
  1550. * done
  1551. */
  1552. static void backup_super_roots(struct btrfs_fs_info *info)
  1553. {
  1554. int next_backup;
  1555. struct btrfs_root_backup *root_backup;
  1556. int last_backup;
  1557. next_backup = info->backup_root_index;
  1558. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1559. BTRFS_NUM_BACKUP_ROOTS;
  1560. /*
  1561. * just overwrite the last backup if we're at the same generation
  1562. * this happens only at umount
  1563. */
  1564. root_backup = info->super_for_commit->super_roots + last_backup;
  1565. if (btrfs_backup_tree_root_gen(root_backup) ==
  1566. btrfs_header_generation(info->tree_root->node))
  1567. next_backup = last_backup;
  1568. root_backup = info->super_for_commit->super_roots + next_backup;
  1569. /*
  1570. * make sure all of our padding and empty slots get zero filled
  1571. * regardless of which ones we use today
  1572. */
  1573. memset(root_backup, 0, sizeof(*root_backup));
  1574. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1575. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1576. btrfs_set_backup_tree_root_gen(root_backup,
  1577. btrfs_header_generation(info->tree_root->node));
  1578. btrfs_set_backup_tree_root_level(root_backup,
  1579. btrfs_header_level(info->tree_root->node));
  1580. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1581. btrfs_set_backup_chunk_root_gen(root_backup,
  1582. btrfs_header_generation(info->chunk_root->node));
  1583. btrfs_set_backup_chunk_root_level(root_backup,
  1584. btrfs_header_level(info->chunk_root->node));
  1585. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1586. btrfs_set_backup_extent_root_gen(root_backup,
  1587. btrfs_header_generation(info->extent_root->node));
  1588. btrfs_set_backup_extent_root_level(root_backup,
  1589. btrfs_header_level(info->extent_root->node));
  1590. /*
  1591. * we might commit during log recovery, which happens before we set
  1592. * the fs_root. Make sure it is valid before we fill it in.
  1593. */
  1594. if (info->fs_root && info->fs_root->node) {
  1595. btrfs_set_backup_fs_root(root_backup,
  1596. info->fs_root->node->start);
  1597. btrfs_set_backup_fs_root_gen(root_backup,
  1598. btrfs_header_generation(info->fs_root->node));
  1599. btrfs_set_backup_fs_root_level(root_backup,
  1600. btrfs_header_level(info->fs_root->node));
  1601. }
  1602. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1603. btrfs_set_backup_dev_root_gen(root_backup,
  1604. btrfs_header_generation(info->dev_root->node));
  1605. btrfs_set_backup_dev_root_level(root_backup,
  1606. btrfs_header_level(info->dev_root->node));
  1607. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1608. btrfs_set_backup_csum_root_gen(root_backup,
  1609. btrfs_header_generation(info->csum_root->node));
  1610. btrfs_set_backup_csum_root_level(root_backup,
  1611. btrfs_header_level(info->csum_root->node));
  1612. btrfs_set_backup_total_bytes(root_backup,
  1613. btrfs_super_total_bytes(info->super_copy));
  1614. btrfs_set_backup_bytes_used(root_backup,
  1615. btrfs_super_bytes_used(info->super_copy));
  1616. btrfs_set_backup_num_devices(root_backup,
  1617. btrfs_super_num_devices(info->super_copy));
  1618. /*
  1619. * if we don't copy this out to the super_copy, it won't get remembered
  1620. * for the next commit
  1621. */
  1622. memcpy(&info->super_copy->super_roots,
  1623. &info->super_for_commit->super_roots,
  1624. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1625. }
  1626. /*
  1627. * this copies info out of the root backup array and back into
  1628. * the in-memory super block. It is meant to help iterate through
  1629. * the array, so you send it the number of backups you've already
  1630. * tried and the last backup index you used.
  1631. *
  1632. * this returns -1 when it has tried all the backups
  1633. */
  1634. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1635. struct btrfs_super_block *super,
  1636. int *num_backups_tried, int *backup_index)
  1637. {
  1638. struct btrfs_root_backup *root_backup;
  1639. int newest = *backup_index;
  1640. if (*num_backups_tried == 0) {
  1641. u64 gen = btrfs_super_generation(super);
  1642. newest = find_newest_super_backup(info, gen);
  1643. if (newest == -1)
  1644. return -1;
  1645. *backup_index = newest;
  1646. *num_backups_tried = 1;
  1647. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1648. /* we've tried all the backups, all done */
  1649. return -1;
  1650. } else {
  1651. /* jump to the next oldest backup */
  1652. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1653. BTRFS_NUM_BACKUP_ROOTS;
  1654. *backup_index = newest;
  1655. *num_backups_tried += 1;
  1656. }
  1657. root_backup = super->super_roots + newest;
  1658. btrfs_set_super_generation(super,
  1659. btrfs_backup_tree_root_gen(root_backup));
  1660. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1661. btrfs_set_super_root_level(super,
  1662. btrfs_backup_tree_root_level(root_backup));
  1663. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1664. /*
  1665. * fixme: the total bytes and num_devices need to match or we should
  1666. * need a fsck
  1667. */
  1668. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1669. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1670. return 0;
  1671. }
  1672. /* helper to cleanup tree roots */
  1673. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1674. {
  1675. free_extent_buffer(info->tree_root->node);
  1676. free_extent_buffer(info->tree_root->commit_root);
  1677. free_extent_buffer(info->dev_root->node);
  1678. free_extent_buffer(info->dev_root->commit_root);
  1679. free_extent_buffer(info->extent_root->node);
  1680. free_extent_buffer(info->extent_root->commit_root);
  1681. free_extent_buffer(info->csum_root->node);
  1682. free_extent_buffer(info->csum_root->commit_root);
  1683. if (info->quota_root) {
  1684. free_extent_buffer(info->quota_root->node);
  1685. free_extent_buffer(info->quota_root->commit_root);
  1686. }
  1687. info->tree_root->node = NULL;
  1688. info->tree_root->commit_root = NULL;
  1689. info->dev_root->node = NULL;
  1690. info->dev_root->commit_root = NULL;
  1691. info->extent_root->node = NULL;
  1692. info->extent_root->commit_root = NULL;
  1693. info->csum_root->node = NULL;
  1694. info->csum_root->commit_root = NULL;
  1695. if (info->quota_root) {
  1696. info->quota_root->node = NULL;
  1697. info->quota_root->commit_root = NULL;
  1698. }
  1699. if (chunk_root) {
  1700. free_extent_buffer(info->chunk_root->node);
  1701. free_extent_buffer(info->chunk_root->commit_root);
  1702. info->chunk_root->node = NULL;
  1703. info->chunk_root->commit_root = NULL;
  1704. }
  1705. }
  1706. int open_ctree(struct super_block *sb,
  1707. struct btrfs_fs_devices *fs_devices,
  1708. char *options)
  1709. {
  1710. u32 sectorsize;
  1711. u32 nodesize;
  1712. u32 leafsize;
  1713. u32 blocksize;
  1714. u32 stripesize;
  1715. u64 generation;
  1716. u64 features;
  1717. struct btrfs_key location;
  1718. struct buffer_head *bh;
  1719. struct btrfs_super_block *disk_super;
  1720. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1721. struct btrfs_root *tree_root;
  1722. struct btrfs_root *extent_root;
  1723. struct btrfs_root *csum_root;
  1724. struct btrfs_root *chunk_root;
  1725. struct btrfs_root *dev_root;
  1726. struct btrfs_root *quota_root;
  1727. struct btrfs_root *log_tree_root;
  1728. int ret;
  1729. int err = -EINVAL;
  1730. int num_backups_tried = 0;
  1731. int backup_index = 0;
  1732. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1733. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1734. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1735. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1736. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1737. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1738. if (!tree_root || !extent_root || !csum_root ||
  1739. !chunk_root || !dev_root || !quota_root) {
  1740. err = -ENOMEM;
  1741. goto fail;
  1742. }
  1743. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1744. if (ret) {
  1745. err = ret;
  1746. goto fail;
  1747. }
  1748. ret = setup_bdi(fs_info, &fs_info->bdi);
  1749. if (ret) {
  1750. err = ret;
  1751. goto fail_srcu;
  1752. }
  1753. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1754. if (ret) {
  1755. err = ret;
  1756. goto fail_bdi;
  1757. }
  1758. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1759. (1 + ilog2(nr_cpu_ids));
  1760. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1761. if (ret) {
  1762. err = ret;
  1763. goto fail_dirty_metadata_bytes;
  1764. }
  1765. fs_info->btree_inode = new_inode(sb);
  1766. if (!fs_info->btree_inode) {
  1767. err = -ENOMEM;
  1768. goto fail_delalloc_bytes;
  1769. }
  1770. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1771. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1772. INIT_LIST_HEAD(&fs_info->trans_list);
  1773. INIT_LIST_HEAD(&fs_info->dead_roots);
  1774. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1775. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1776. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1777. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1778. spin_lock_init(&fs_info->delalloc_lock);
  1779. spin_lock_init(&fs_info->trans_lock);
  1780. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1781. spin_lock_init(&fs_info->delayed_iput_lock);
  1782. spin_lock_init(&fs_info->defrag_inodes_lock);
  1783. spin_lock_init(&fs_info->free_chunk_lock);
  1784. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1785. rwlock_init(&fs_info->tree_mod_log_lock);
  1786. mutex_init(&fs_info->reloc_mutex);
  1787. seqlock_init(&fs_info->profiles_lock);
  1788. init_completion(&fs_info->kobj_unregister);
  1789. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1790. INIT_LIST_HEAD(&fs_info->space_info);
  1791. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1792. btrfs_mapping_init(&fs_info->mapping_tree);
  1793. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1794. BTRFS_BLOCK_RSV_GLOBAL);
  1795. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1796. BTRFS_BLOCK_RSV_DELALLOC);
  1797. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1798. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1799. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1800. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1801. BTRFS_BLOCK_RSV_DELOPS);
  1802. atomic_set(&fs_info->nr_async_submits, 0);
  1803. atomic_set(&fs_info->async_delalloc_pages, 0);
  1804. atomic_set(&fs_info->async_submit_draining, 0);
  1805. atomic_set(&fs_info->nr_async_bios, 0);
  1806. atomic_set(&fs_info->defrag_running, 0);
  1807. atomic_set(&fs_info->tree_mod_seq, 0);
  1808. fs_info->sb = sb;
  1809. fs_info->max_inline = 8192 * 1024;
  1810. fs_info->metadata_ratio = 0;
  1811. fs_info->defrag_inodes = RB_ROOT;
  1812. fs_info->trans_no_join = 0;
  1813. fs_info->free_chunk_space = 0;
  1814. fs_info->tree_mod_log = RB_ROOT;
  1815. /* readahead state */
  1816. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1817. spin_lock_init(&fs_info->reada_lock);
  1818. fs_info->thread_pool_size = min_t(unsigned long,
  1819. num_online_cpus() + 2, 8);
  1820. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1821. spin_lock_init(&fs_info->ordered_extent_lock);
  1822. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1823. GFP_NOFS);
  1824. if (!fs_info->delayed_root) {
  1825. err = -ENOMEM;
  1826. goto fail_iput;
  1827. }
  1828. btrfs_init_delayed_root(fs_info->delayed_root);
  1829. mutex_init(&fs_info->scrub_lock);
  1830. atomic_set(&fs_info->scrubs_running, 0);
  1831. atomic_set(&fs_info->scrub_pause_req, 0);
  1832. atomic_set(&fs_info->scrubs_paused, 0);
  1833. atomic_set(&fs_info->scrub_cancel_req, 0);
  1834. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1835. init_rwsem(&fs_info->scrub_super_lock);
  1836. fs_info->scrub_workers_refcnt = 0;
  1837. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1838. fs_info->check_integrity_print_mask = 0;
  1839. #endif
  1840. spin_lock_init(&fs_info->balance_lock);
  1841. mutex_init(&fs_info->balance_mutex);
  1842. atomic_set(&fs_info->balance_running, 0);
  1843. atomic_set(&fs_info->balance_pause_req, 0);
  1844. atomic_set(&fs_info->balance_cancel_req, 0);
  1845. fs_info->balance_ctl = NULL;
  1846. init_waitqueue_head(&fs_info->balance_wait_q);
  1847. sb->s_blocksize = 4096;
  1848. sb->s_blocksize_bits = blksize_bits(4096);
  1849. sb->s_bdi = &fs_info->bdi;
  1850. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1851. set_nlink(fs_info->btree_inode, 1);
  1852. /*
  1853. * we set the i_size on the btree inode to the max possible int.
  1854. * the real end of the address space is determined by all of
  1855. * the devices in the system
  1856. */
  1857. fs_info->btree_inode->i_size = OFFSET_MAX;
  1858. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1859. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1860. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1861. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1862. fs_info->btree_inode->i_mapping);
  1863. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1864. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1865. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1866. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1867. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1868. sizeof(struct btrfs_key));
  1869. set_bit(BTRFS_INODE_DUMMY,
  1870. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1871. insert_inode_hash(fs_info->btree_inode);
  1872. spin_lock_init(&fs_info->block_group_cache_lock);
  1873. fs_info->block_group_cache_tree = RB_ROOT;
  1874. fs_info->first_logical_byte = (u64)-1;
  1875. extent_io_tree_init(&fs_info->freed_extents[0],
  1876. fs_info->btree_inode->i_mapping);
  1877. extent_io_tree_init(&fs_info->freed_extents[1],
  1878. fs_info->btree_inode->i_mapping);
  1879. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1880. fs_info->do_barriers = 1;
  1881. mutex_init(&fs_info->ordered_operations_mutex);
  1882. mutex_init(&fs_info->tree_log_mutex);
  1883. mutex_init(&fs_info->chunk_mutex);
  1884. mutex_init(&fs_info->transaction_kthread_mutex);
  1885. mutex_init(&fs_info->cleaner_mutex);
  1886. mutex_init(&fs_info->volume_mutex);
  1887. init_rwsem(&fs_info->extent_commit_sem);
  1888. init_rwsem(&fs_info->cleanup_work_sem);
  1889. init_rwsem(&fs_info->subvol_sem);
  1890. fs_info->dev_replace.lock_owner = 0;
  1891. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1892. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1893. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1894. mutex_init(&fs_info->dev_replace.lock);
  1895. spin_lock_init(&fs_info->qgroup_lock);
  1896. fs_info->qgroup_tree = RB_ROOT;
  1897. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1898. fs_info->qgroup_seq = 1;
  1899. fs_info->quota_enabled = 0;
  1900. fs_info->pending_quota_state = 0;
  1901. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1902. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1903. init_waitqueue_head(&fs_info->transaction_throttle);
  1904. init_waitqueue_head(&fs_info->transaction_wait);
  1905. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1906. init_waitqueue_head(&fs_info->async_submit_wait);
  1907. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1908. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1909. invalidate_bdev(fs_devices->latest_bdev);
  1910. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1911. if (!bh) {
  1912. err = -EINVAL;
  1913. goto fail_alloc;
  1914. }
  1915. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1916. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1917. sizeof(*fs_info->super_for_commit));
  1918. brelse(bh);
  1919. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1920. disk_super = fs_info->super_copy;
  1921. if (!btrfs_super_root(disk_super))
  1922. goto fail_alloc;
  1923. /* check FS state, whether FS is broken. */
  1924. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  1925. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  1926. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1927. if (ret) {
  1928. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1929. err = ret;
  1930. goto fail_alloc;
  1931. }
  1932. /*
  1933. * run through our array of backup supers and setup
  1934. * our ring pointer to the oldest one
  1935. */
  1936. generation = btrfs_super_generation(disk_super);
  1937. find_oldest_super_backup(fs_info, generation);
  1938. /*
  1939. * In the long term, we'll store the compression type in the super
  1940. * block, and it'll be used for per file compression control.
  1941. */
  1942. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1943. ret = btrfs_parse_options(tree_root, options);
  1944. if (ret) {
  1945. err = ret;
  1946. goto fail_alloc;
  1947. }
  1948. features = btrfs_super_incompat_flags(disk_super) &
  1949. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1950. if (features) {
  1951. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1952. "unsupported optional features (%Lx).\n",
  1953. (unsigned long long)features);
  1954. err = -EINVAL;
  1955. goto fail_alloc;
  1956. }
  1957. if (btrfs_super_leafsize(disk_super) !=
  1958. btrfs_super_nodesize(disk_super)) {
  1959. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1960. "blocksizes don't match. node %d leaf %d\n",
  1961. btrfs_super_nodesize(disk_super),
  1962. btrfs_super_leafsize(disk_super));
  1963. err = -EINVAL;
  1964. goto fail_alloc;
  1965. }
  1966. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1967. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1968. "blocksize (%d) was too large\n",
  1969. btrfs_super_leafsize(disk_super));
  1970. err = -EINVAL;
  1971. goto fail_alloc;
  1972. }
  1973. features = btrfs_super_incompat_flags(disk_super);
  1974. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1975. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  1976. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1977. /*
  1978. * flag our filesystem as having big metadata blocks if
  1979. * they are bigger than the page size
  1980. */
  1981. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1982. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1983. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1984. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1985. }
  1986. nodesize = btrfs_super_nodesize(disk_super);
  1987. leafsize = btrfs_super_leafsize(disk_super);
  1988. sectorsize = btrfs_super_sectorsize(disk_super);
  1989. stripesize = btrfs_super_stripesize(disk_super);
  1990. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  1991. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  1992. /*
  1993. * mixed block groups end up with duplicate but slightly offset
  1994. * extent buffers for the same range. It leads to corruptions
  1995. */
  1996. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  1997. (sectorsize != leafsize)) {
  1998. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  1999. "are not allowed for mixed block groups on %s\n",
  2000. sb->s_id);
  2001. goto fail_alloc;
  2002. }
  2003. btrfs_set_super_incompat_flags(disk_super, features);
  2004. features = btrfs_super_compat_ro_flags(disk_super) &
  2005. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2006. if (!(sb->s_flags & MS_RDONLY) && features) {
  2007. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2008. "unsupported option features (%Lx).\n",
  2009. (unsigned long long)features);
  2010. err = -EINVAL;
  2011. goto fail_alloc;
  2012. }
  2013. btrfs_init_workers(&fs_info->generic_worker,
  2014. "genwork", 1, NULL);
  2015. btrfs_init_workers(&fs_info->workers, "worker",
  2016. fs_info->thread_pool_size,
  2017. &fs_info->generic_worker);
  2018. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2019. fs_info->thread_pool_size,
  2020. &fs_info->generic_worker);
  2021. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2022. fs_info->thread_pool_size,
  2023. &fs_info->generic_worker);
  2024. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2025. min_t(u64, fs_devices->num_devices,
  2026. fs_info->thread_pool_size),
  2027. &fs_info->generic_worker);
  2028. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2029. 2, &fs_info->generic_worker);
  2030. /* a higher idle thresh on the submit workers makes it much more
  2031. * likely that bios will be send down in a sane order to the
  2032. * devices
  2033. */
  2034. fs_info->submit_workers.idle_thresh = 64;
  2035. fs_info->workers.idle_thresh = 16;
  2036. fs_info->workers.ordered = 1;
  2037. fs_info->delalloc_workers.idle_thresh = 2;
  2038. fs_info->delalloc_workers.ordered = 1;
  2039. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2040. &fs_info->generic_worker);
  2041. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2042. fs_info->thread_pool_size,
  2043. &fs_info->generic_worker);
  2044. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2045. fs_info->thread_pool_size,
  2046. &fs_info->generic_worker);
  2047. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2048. "endio-meta-write", fs_info->thread_pool_size,
  2049. &fs_info->generic_worker);
  2050. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2051. fs_info->thread_pool_size,
  2052. &fs_info->generic_worker);
  2053. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2054. 1, &fs_info->generic_worker);
  2055. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2056. fs_info->thread_pool_size,
  2057. &fs_info->generic_worker);
  2058. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2059. fs_info->thread_pool_size,
  2060. &fs_info->generic_worker);
  2061. /*
  2062. * endios are largely parallel and should have a very
  2063. * low idle thresh
  2064. */
  2065. fs_info->endio_workers.idle_thresh = 4;
  2066. fs_info->endio_meta_workers.idle_thresh = 4;
  2067. fs_info->endio_write_workers.idle_thresh = 2;
  2068. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2069. fs_info->readahead_workers.idle_thresh = 2;
  2070. /*
  2071. * btrfs_start_workers can really only fail because of ENOMEM so just
  2072. * return -ENOMEM if any of these fail.
  2073. */
  2074. ret = btrfs_start_workers(&fs_info->workers);
  2075. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2076. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2077. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2078. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2079. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2080. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2081. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2082. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2083. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2084. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2085. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2086. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2087. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2088. if (ret) {
  2089. err = -ENOMEM;
  2090. goto fail_sb_buffer;
  2091. }
  2092. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2093. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2094. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2095. tree_root->nodesize = nodesize;
  2096. tree_root->leafsize = leafsize;
  2097. tree_root->sectorsize = sectorsize;
  2098. tree_root->stripesize = stripesize;
  2099. sb->s_blocksize = sectorsize;
  2100. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2101. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  2102. sizeof(disk_super->magic))) {
  2103. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2104. goto fail_sb_buffer;
  2105. }
  2106. if (sectorsize != PAGE_SIZE) {
  2107. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2108. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2109. goto fail_sb_buffer;
  2110. }
  2111. mutex_lock(&fs_info->chunk_mutex);
  2112. ret = btrfs_read_sys_array(tree_root);
  2113. mutex_unlock(&fs_info->chunk_mutex);
  2114. if (ret) {
  2115. printk(KERN_WARNING "btrfs: failed to read the system "
  2116. "array on %s\n", sb->s_id);
  2117. goto fail_sb_buffer;
  2118. }
  2119. blocksize = btrfs_level_size(tree_root,
  2120. btrfs_super_chunk_root_level(disk_super));
  2121. generation = btrfs_super_chunk_root_generation(disk_super);
  2122. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2123. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2124. chunk_root->node = read_tree_block(chunk_root,
  2125. btrfs_super_chunk_root(disk_super),
  2126. blocksize, generation);
  2127. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2128. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2129. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2130. sb->s_id);
  2131. goto fail_tree_roots;
  2132. }
  2133. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2134. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2135. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2136. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2137. BTRFS_UUID_SIZE);
  2138. ret = btrfs_read_chunk_tree(chunk_root);
  2139. if (ret) {
  2140. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2141. sb->s_id);
  2142. goto fail_tree_roots;
  2143. }
  2144. /*
  2145. * keep the device that is marked to be the target device for the
  2146. * dev_replace procedure
  2147. */
  2148. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2149. if (!fs_devices->latest_bdev) {
  2150. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2151. sb->s_id);
  2152. goto fail_tree_roots;
  2153. }
  2154. retry_root_backup:
  2155. blocksize = btrfs_level_size(tree_root,
  2156. btrfs_super_root_level(disk_super));
  2157. generation = btrfs_super_generation(disk_super);
  2158. tree_root->node = read_tree_block(tree_root,
  2159. btrfs_super_root(disk_super),
  2160. blocksize, generation);
  2161. if (!tree_root->node ||
  2162. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2163. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2164. sb->s_id);
  2165. goto recovery_tree_root;
  2166. }
  2167. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2168. tree_root->commit_root = btrfs_root_node(tree_root);
  2169. ret = find_and_setup_root(tree_root, fs_info,
  2170. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2171. if (ret)
  2172. goto recovery_tree_root;
  2173. extent_root->track_dirty = 1;
  2174. ret = find_and_setup_root(tree_root, fs_info,
  2175. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2176. if (ret)
  2177. goto recovery_tree_root;
  2178. dev_root->track_dirty = 1;
  2179. ret = find_and_setup_root(tree_root, fs_info,
  2180. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2181. if (ret)
  2182. goto recovery_tree_root;
  2183. csum_root->track_dirty = 1;
  2184. ret = find_and_setup_root(tree_root, fs_info,
  2185. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2186. if (ret) {
  2187. kfree(quota_root);
  2188. quota_root = fs_info->quota_root = NULL;
  2189. } else {
  2190. quota_root->track_dirty = 1;
  2191. fs_info->quota_enabled = 1;
  2192. fs_info->pending_quota_state = 1;
  2193. }
  2194. fs_info->generation = generation;
  2195. fs_info->last_trans_committed = generation;
  2196. ret = btrfs_recover_balance(fs_info);
  2197. if (ret) {
  2198. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2199. goto fail_block_groups;
  2200. }
  2201. ret = btrfs_init_dev_stats(fs_info);
  2202. if (ret) {
  2203. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2204. ret);
  2205. goto fail_block_groups;
  2206. }
  2207. ret = btrfs_init_dev_replace(fs_info);
  2208. if (ret) {
  2209. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2210. goto fail_block_groups;
  2211. }
  2212. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2213. ret = btrfs_init_space_info(fs_info);
  2214. if (ret) {
  2215. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2216. goto fail_block_groups;
  2217. }
  2218. ret = btrfs_read_block_groups(extent_root);
  2219. if (ret) {
  2220. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2221. goto fail_block_groups;
  2222. }
  2223. fs_info->num_tolerated_disk_barrier_failures =
  2224. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2225. if (fs_info->fs_devices->missing_devices >
  2226. fs_info->num_tolerated_disk_barrier_failures &&
  2227. !(sb->s_flags & MS_RDONLY)) {
  2228. printk(KERN_WARNING
  2229. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2230. goto fail_block_groups;
  2231. }
  2232. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2233. "btrfs-cleaner");
  2234. if (IS_ERR(fs_info->cleaner_kthread))
  2235. goto fail_block_groups;
  2236. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2237. tree_root,
  2238. "btrfs-transaction");
  2239. if (IS_ERR(fs_info->transaction_kthread))
  2240. goto fail_cleaner;
  2241. if (!btrfs_test_opt(tree_root, SSD) &&
  2242. !btrfs_test_opt(tree_root, NOSSD) &&
  2243. !fs_info->fs_devices->rotating) {
  2244. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2245. "mode\n");
  2246. btrfs_set_opt(fs_info->mount_opt, SSD);
  2247. }
  2248. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2249. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2250. ret = btrfsic_mount(tree_root, fs_devices,
  2251. btrfs_test_opt(tree_root,
  2252. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2253. 1 : 0,
  2254. fs_info->check_integrity_print_mask);
  2255. if (ret)
  2256. printk(KERN_WARNING "btrfs: failed to initialize"
  2257. " integrity check module %s\n", sb->s_id);
  2258. }
  2259. #endif
  2260. ret = btrfs_read_qgroup_config(fs_info);
  2261. if (ret)
  2262. goto fail_trans_kthread;
  2263. /* do not make disk changes in broken FS */
  2264. if (btrfs_super_log_root(disk_super) != 0) {
  2265. u64 bytenr = btrfs_super_log_root(disk_super);
  2266. if (fs_devices->rw_devices == 0) {
  2267. printk(KERN_WARNING "Btrfs log replay required "
  2268. "on RO media\n");
  2269. err = -EIO;
  2270. goto fail_qgroup;
  2271. }
  2272. blocksize =
  2273. btrfs_level_size(tree_root,
  2274. btrfs_super_log_root_level(disk_super));
  2275. log_tree_root = btrfs_alloc_root(fs_info);
  2276. if (!log_tree_root) {
  2277. err = -ENOMEM;
  2278. goto fail_qgroup;
  2279. }
  2280. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2281. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2282. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2283. blocksize,
  2284. generation + 1);
  2285. /* returns with log_tree_root freed on success */
  2286. ret = btrfs_recover_log_trees(log_tree_root);
  2287. if (ret) {
  2288. btrfs_error(tree_root->fs_info, ret,
  2289. "Failed to recover log tree");
  2290. free_extent_buffer(log_tree_root->node);
  2291. kfree(log_tree_root);
  2292. goto fail_trans_kthread;
  2293. }
  2294. if (sb->s_flags & MS_RDONLY) {
  2295. ret = btrfs_commit_super(tree_root);
  2296. if (ret)
  2297. goto fail_trans_kthread;
  2298. }
  2299. }
  2300. ret = btrfs_find_orphan_roots(tree_root);
  2301. if (ret)
  2302. goto fail_trans_kthread;
  2303. if (!(sb->s_flags & MS_RDONLY)) {
  2304. ret = btrfs_cleanup_fs_roots(fs_info);
  2305. if (ret)
  2306. goto fail_trans_kthread;
  2307. ret = btrfs_recover_relocation(tree_root);
  2308. if (ret < 0) {
  2309. printk(KERN_WARNING
  2310. "btrfs: failed to recover relocation\n");
  2311. err = -EINVAL;
  2312. goto fail_qgroup;
  2313. }
  2314. }
  2315. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2316. location.type = BTRFS_ROOT_ITEM_KEY;
  2317. location.offset = (u64)-1;
  2318. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2319. if (!fs_info->fs_root)
  2320. goto fail_qgroup;
  2321. if (IS_ERR(fs_info->fs_root)) {
  2322. err = PTR_ERR(fs_info->fs_root);
  2323. goto fail_qgroup;
  2324. }
  2325. if (sb->s_flags & MS_RDONLY)
  2326. return 0;
  2327. down_read(&fs_info->cleanup_work_sem);
  2328. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2329. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2330. up_read(&fs_info->cleanup_work_sem);
  2331. close_ctree(tree_root);
  2332. return ret;
  2333. }
  2334. up_read(&fs_info->cleanup_work_sem);
  2335. ret = btrfs_resume_balance_async(fs_info);
  2336. if (ret) {
  2337. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2338. close_ctree(tree_root);
  2339. return ret;
  2340. }
  2341. ret = btrfs_resume_dev_replace_async(fs_info);
  2342. if (ret) {
  2343. pr_warn("btrfs: failed to resume dev_replace\n");
  2344. close_ctree(tree_root);
  2345. return ret;
  2346. }
  2347. return 0;
  2348. fail_qgroup:
  2349. btrfs_free_qgroup_config(fs_info);
  2350. fail_trans_kthread:
  2351. kthread_stop(fs_info->transaction_kthread);
  2352. fail_cleaner:
  2353. kthread_stop(fs_info->cleaner_kthread);
  2354. /*
  2355. * make sure we're done with the btree inode before we stop our
  2356. * kthreads
  2357. */
  2358. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2359. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2360. fail_block_groups:
  2361. btrfs_free_block_groups(fs_info);
  2362. fail_tree_roots:
  2363. free_root_pointers(fs_info, 1);
  2364. fail_sb_buffer:
  2365. btrfs_stop_workers(&fs_info->generic_worker);
  2366. btrfs_stop_workers(&fs_info->readahead_workers);
  2367. btrfs_stop_workers(&fs_info->fixup_workers);
  2368. btrfs_stop_workers(&fs_info->delalloc_workers);
  2369. btrfs_stop_workers(&fs_info->workers);
  2370. btrfs_stop_workers(&fs_info->endio_workers);
  2371. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2372. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2373. btrfs_stop_workers(&fs_info->endio_write_workers);
  2374. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2375. btrfs_stop_workers(&fs_info->submit_workers);
  2376. btrfs_stop_workers(&fs_info->delayed_workers);
  2377. btrfs_stop_workers(&fs_info->caching_workers);
  2378. btrfs_stop_workers(&fs_info->flush_workers);
  2379. fail_alloc:
  2380. fail_iput:
  2381. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2382. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2383. iput(fs_info->btree_inode);
  2384. fail_delalloc_bytes:
  2385. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2386. fail_dirty_metadata_bytes:
  2387. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2388. fail_bdi:
  2389. bdi_destroy(&fs_info->bdi);
  2390. fail_srcu:
  2391. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2392. fail:
  2393. btrfs_close_devices(fs_info->fs_devices);
  2394. return err;
  2395. recovery_tree_root:
  2396. if (!btrfs_test_opt(tree_root, RECOVERY))
  2397. goto fail_tree_roots;
  2398. free_root_pointers(fs_info, 0);
  2399. /* don't use the log in recovery mode, it won't be valid */
  2400. btrfs_set_super_log_root(disk_super, 0);
  2401. /* we can't trust the free space cache either */
  2402. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2403. ret = next_root_backup(fs_info, fs_info->super_copy,
  2404. &num_backups_tried, &backup_index);
  2405. if (ret == -1)
  2406. goto fail_block_groups;
  2407. goto retry_root_backup;
  2408. }
  2409. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2410. {
  2411. if (uptodate) {
  2412. set_buffer_uptodate(bh);
  2413. } else {
  2414. struct btrfs_device *device = (struct btrfs_device *)
  2415. bh->b_private;
  2416. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2417. "I/O error on %s\n",
  2418. rcu_str_deref(device->name));
  2419. /* note, we dont' set_buffer_write_io_error because we have
  2420. * our own ways of dealing with the IO errors
  2421. */
  2422. clear_buffer_uptodate(bh);
  2423. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2424. }
  2425. unlock_buffer(bh);
  2426. put_bh(bh);
  2427. }
  2428. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2429. {
  2430. struct buffer_head *bh;
  2431. struct buffer_head *latest = NULL;
  2432. struct btrfs_super_block *super;
  2433. int i;
  2434. u64 transid = 0;
  2435. u64 bytenr;
  2436. /* we would like to check all the supers, but that would make
  2437. * a btrfs mount succeed after a mkfs from a different FS.
  2438. * So, we need to add a special mount option to scan for
  2439. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2440. */
  2441. for (i = 0; i < 1; i++) {
  2442. bytenr = btrfs_sb_offset(i);
  2443. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2444. break;
  2445. bh = __bread(bdev, bytenr / 4096, 4096);
  2446. if (!bh)
  2447. continue;
  2448. super = (struct btrfs_super_block *)bh->b_data;
  2449. if (btrfs_super_bytenr(super) != bytenr ||
  2450. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2451. sizeof(super->magic))) {
  2452. brelse(bh);
  2453. continue;
  2454. }
  2455. if (!latest || btrfs_super_generation(super) > transid) {
  2456. brelse(latest);
  2457. latest = bh;
  2458. transid = btrfs_super_generation(super);
  2459. } else {
  2460. brelse(bh);
  2461. }
  2462. }
  2463. return latest;
  2464. }
  2465. /*
  2466. * this should be called twice, once with wait == 0 and
  2467. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2468. * we write are pinned.
  2469. *
  2470. * They are released when wait == 1 is done.
  2471. * max_mirrors must be the same for both runs, and it indicates how
  2472. * many supers on this one device should be written.
  2473. *
  2474. * max_mirrors == 0 means to write them all.
  2475. */
  2476. static int write_dev_supers(struct btrfs_device *device,
  2477. struct btrfs_super_block *sb,
  2478. int do_barriers, int wait, int max_mirrors)
  2479. {
  2480. struct buffer_head *bh;
  2481. int i;
  2482. int ret;
  2483. int errors = 0;
  2484. u32 crc;
  2485. u64 bytenr;
  2486. if (max_mirrors == 0)
  2487. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2488. for (i = 0; i < max_mirrors; i++) {
  2489. bytenr = btrfs_sb_offset(i);
  2490. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2491. break;
  2492. if (wait) {
  2493. bh = __find_get_block(device->bdev, bytenr / 4096,
  2494. BTRFS_SUPER_INFO_SIZE);
  2495. BUG_ON(!bh);
  2496. wait_on_buffer(bh);
  2497. if (!buffer_uptodate(bh))
  2498. errors++;
  2499. /* drop our reference */
  2500. brelse(bh);
  2501. /* drop the reference from the wait == 0 run */
  2502. brelse(bh);
  2503. continue;
  2504. } else {
  2505. btrfs_set_super_bytenr(sb, bytenr);
  2506. crc = ~(u32)0;
  2507. crc = btrfs_csum_data(NULL, (char *)sb +
  2508. BTRFS_CSUM_SIZE, crc,
  2509. BTRFS_SUPER_INFO_SIZE -
  2510. BTRFS_CSUM_SIZE);
  2511. btrfs_csum_final(crc, sb->csum);
  2512. /*
  2513. * one reference for us, and we leave it for the
  2514. * caller
  2515. */
  2516. bh = __getblk(device->bdev, bytenr / 4096,
  2517. BTRFS_SUPER_INFO_SIZE);
  2518. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2519. /* one reference for submit_bh */
  2520. get_bh(bh);
  2521. set_buffer_uptodate(bh);
  2522. lock_buffer(bh);
  2523. bh->b_end_io = btrfs_end_buffer_write_sync;
  2524. bh->b_private = device;
  2525. }
  2526. /*
  2527. * we fua the first super. The others we allow
  2528. * to go down lazy.
  2529. */
  2530. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2531. if (ret)
  2532. errors++;
  2533. }
  2534. return errors < i ? 0 : -1;
  2535. }
  2536. /*
  2537. * endio for the write_dev_flush, this will wake anyone waiting
  2538. * for the barrier when it is done
  2539. */
  2540. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2541. {
  2542. if (err) {
  2543. if (err == -EOPNOTSUPP)
  2544. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2545. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2546. }
  2547. if (bio->bi_private)
  2548. complete(bio->bi_private);
  2549. bio_put(bio);
  2550. }
  2551. /*
  2552. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2553. * sent down. With wait == 1, it waits for the previous flush.
  2554. *
  2555. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2556. * capable
  2557. */
  2558. static int write_dev_flush(struct btrfs_device *device, int wait)
  2559. {
  2560. struct bio *bio;
  2561. int ret = 0;
  2562. if (device->nobarriers)
  2563. return 0;
  2564. if (wait) {
  2565. bio = device->flush_bio;
  2566. if (!bio)
  2567. return 0;
  2568. wait_for_completion(&device->flush_wait);
  2569. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2570. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2571. rcu_str_deref(device->name));
  2572. device->nobarriers = 1;
  2573. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2574. ret = -EIO;
  2575. btrfs_dev_stat_inc_and_print(device,
  2576. BTRFS_DEV_STAT_FLUSH_ERRS);
  2577. }
  2578. /* drop the reference from the wait == 0 run */
  2579. bio_put(bio);
  2580. device->flush_bio = NULL;
  2581. return ret;
  2582. }
  2583. /*
  2584. * one reference for us, and we leave it for the
  2585. * caller
  2586. */
  2587. device->flush_bio = NULL;
  2588. bio = bio_alloc(GFP_NOFS, 0);
  2589. if (!bio)
  2590. return -ENOMEM;
  2591. bio->bi_end_io = btrfs_end_empty_barrier;
  2592. bio->bi_bdev = device->bdev;
  2593. init_completion(&device->flush_wait);
  2594. bio->bi_private = &device->flush_wait;
  2595. device->flush_bio = bio;
  2596. bio_get(bio);
  2597. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2598. return 0;
  2599. }
  2600. /*
  2601. * send an empty flush down to each device in parallel,
  2602. * then wait for them
  2603. */
  2604. static int barrier_all_devices(struct btrfs_fs_info *info)
  2605. {
  2606. struct list_head *head;
  2607. struct btrfs_device *dev;
  2608. int errors_send = 0;
  2609. int errors_wait = 0;
  2610. int ret;
  2611. /* send down all the barriers */
  2612. head = &info->fs_devices->devices;
  2613. list_for_each_entry_rcu(dev, head, dev_list) {
  2614. if (!dev->bdev) {
  2615. errors_send++;
  2616. continue;
  2617. }
  2618. if (!dev->in_fs_metadata || !dev->writeable)
  2619. continue;
  2620. ret = write_dev_flush(dev, 0);
  2621. if (ret)
  2622. errors_send++;
  2623. }
  2624. /* wait for all the barriers */
  2625. list_for_each_entry_rcu(dev, head, dev_list) {
  2626. if (!dev->bdev) {
  2627. errors_wait++;
  2628. continue;
  2629. }
  2630. if (!dev->in_fs_metadata || !dev->writeable)
  2631. continue;
  2632. ret = write_dev_flush(dev, 1);
  2633. if (ret)
  2634. errors_wait++;
  2635. }
  2636. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2637. errors_wait > info->num_tolerated_disk_barrier_failures)
  2638. return -EIO;
  2639. return 0;
  2640. }
  2641. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2642. struct btrfs_fs_info *fs_info)
  2643. {
  2644. struct btrfs_ioctl_space_info space;
  2645. struct btrfs_space_info *sinfo;
  2646. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2647. BTRFS_BLOCK_GROUP_SYSTEM,
  2648. BTRFS_BLOCK_GROUP_METADATA,
  2649. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2650. int num_types = 4;
  2651. int i;
  2652. int c;
  2653. int num_tolerated_disk_barrier_failures =
  2654. (int)fs_info->fs_devices->num_devices;
  2655. for (i = 0; i < num_types; i++) {
  2656. struct btrfs_space_info *tmp;
  2657. sinfo = NULL;
  2658. rcu_read_lock();
  2659. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2660. if (tmp->flags == types[i]) {
  2661. sinfo = tmp;
  2662. break;
  2663. }
  2664. }
  2665. rcu_read_unlock();
  2666. if (!sinfo)
  2667. continue;
  2668. down_read(&sinfo->groups_sem);
  2669. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2670. if (!list_empty(&sinfo->block_groups[c])) {
  2671. u64 flags;
  2672. btrfs_get_block_group_info(
  2673. &sinfo->block_groups[c], &space);
  2674. if (space.total_bytes == 0 ||
  2675. space.used_bytes == 0)
  2676. continue;
  2677. flags = space.flags;
  2678. /*
  2679. * return
  2680. * 0: if dup, single or RAID0 is configured for
  2681. * any of metadata, system or data, else
  2682. * 1: if RAID5 is configured, or if RAID1 or
  2683. * RAID10 is configured and only two mirrors
  2684. * are used, else
  2685. * 2: if RAID6 is configured, else
  2686. * num_mirrors - 1: if RAID1 or RAID10 is
  2687. * configured and more than
  2688. * 2 mirrors are used.
  2689. */
  2690. if (num_tolerated_disk_barrier_failures > 0 &&
  2691. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2692. BTRFS_BLOCK_GROUP_RAID0)) ||
  2693. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2694. == 0)))
  2695. num_tolerated_disk_barrier_failures = 0;
  2696. else if (num_tolerated_disk_barrier_failures > 1
  2697. &&
  2698. (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2699. BTRFS_BLOCK_GROUP_RAID10)))
  2700. num_tolerated_disk_barrier_failures = 1;
  2701. }
  2702. }
  2703. up_read(&sinfo->groups_sem);
  2704. }
  2705. return num_tolerated_disk_barrier_failures;
  2706. }
  2707. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2708. {
  2709. struct list_head *head;
  2710. struct btrfs_device *dev;
  2711. struct btrfs_super_block *sb;
  2712. struct btrfs_dev_item *dev_item;
  2713. int ret;
  2714. int do_barriers;
  2715. int max_errors;
  2716. int total_errors = 0;
  2717. u64 flags;
  2718. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2719. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2720. backup_super_roots(root->fs_info);
  2721. sb = root->fs_info->super_for_commit;
  2722. dev_item = &sb->dev_item;
  2723. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2724. head = &root->fs_info->fs_devices->devices;
  2725. if (do_barriers) {
  2726. ret = barrier_all_devices(root->fs_info);
  2727. if (ret) {
  2728. mutex_unlock(
  2729. &root->fs_info->fs_devices->device_list_mutex);
  2730. btrfs_error(root->fs_info, ret,
  2731. "errors while submitting device barriers.");
  2732. return ret;
  2733. }
  2734. }
  2735. list_for_each_entry_rcu(dev, head, dev_list) {
  2736. if (!dev->bdev) {
  2737. total_errors++;
  2738. continue;
  2739. }
  2740. if (!dev->in_fs_metadata || !dev->writeable)
  2741. continue;
  2742. btrfs_set_stack_device_generation(dev_item, 0);
  2743. btrfs_set_stack_device_type(dev_item, dev->type);
  2744. btrfs_set_stack_device_id(dev_item, dev->devid);
  2745. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2746. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2747. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2748. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2749. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2750. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2751. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2752. flags = btrfs_super_flags(sb);
  2753. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2754. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2755. if (ret)
  2756. total_errors++;
  2757. }
  2758. if (total_errors > max_errors) {
  2759. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2760. total_errors);
  2761. /* This shouldn't happen. FUA is masked off if unsupported */
  2762. BUG();
  2763. }
  2764. total_errors = 0;
  2765. list_for_each_entry_rcu(dev, head, dev_list) {
  2766. if (!dev->bdev)
  2767. continue;
  2768. if (!dev->in_fs_metadata || !dev->writeable)
  2769. continue;
  2770. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2771. if (ret)
  2772. total_errors++;
  2773. }
  2774. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2775. if (total_errors > max_errors) {
  2776. btrfs_error(root->fs_info, -EIO,
  2777. "%d errors while writing supers", total_errors);
  2778. return -EIO;
  2779. }
  2780. return 0;
  2781. }
  2782. int write_ctree_super(struct btrfs_trans_handle *trans,
  2783. struct btrfs_root *root, int max_mirrors)
  2784. {
  2785. int ret;
  2786. ret = write_all_supers(root, max_mirrors);
  2787. return ret;
  2788. }
  2789. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2790. {
  2791. spin_lock(&fs_info->fs_roots_radix_lock);
  2792. radix_tree_delete(&fs_info->fs_roots_radix,
  2793. (unsigned long)root->root_key.objectid);
  2794. spin_unlock(&fs_info->fs_roots_radix_lock);
  2795. if (btrfs_root_refs(&root->root_item) == 0)
  2796. synchronize_srcu(&fs_info->subvol_srcu);
  2797. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2798. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2799. free_fs_root(root);
  2800. }
  2801. static void free_fs_root(struct btrfs_root *root)
  2802. {
  2803. iput(root->cache_inode);
  2804. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2805. if (root->anon_dev)
  2806. free_anon_bdev(root->anon_dev);
  2807. free_extent_buffer(root->node);
  2808. free_extent_buffer(root->commit_root);
  2809. kfree(root->free_ino_ctl);
  2810. kfree(root->free_ino_pinned);
  2811. kfree(root->name);
  2812. kfree(root);
  2813. }
  2814. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2815. {
  2816. int ret;
  2817. struct btrfs_root *gang[8];
  2818. int i;
  2819. while (!list_empty(&fs_info->dead_roots)) {
  2820. gang[0] = list_entry(fs_info->dead_roots.next,
  2821. struct btrfs_root, root_list);
  2822. list_del(&gang[0]->root_list);
  2823. if (gang[0]->in_radix) {
  2824. btrfs_free_fs_root(fs_info, gang[0]);
  2825. } else {
  2826. free_extent_buffer(gang[0]->node);
  2827. free_extent_buffer(gang[0]->commit_root);
  2828. kfree(gang[0]);
  2829. }
  2830. }
  2831. while (1) {
  2832. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2833. (void **)gang, 0,
  2834. ARRAY_SIZE(gang));
  2835. if (!ret)
  2836. break;
  2837. for (i = 0; i < ret; i++)
  2838. btrfs_free_fs_root(fs_info, gang[i]);
  2839. }
  2840. }
  2841. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2842. {
  2843. u64 root_objectid = 0;
  2844. struct btrfs_root *gang[8];
  2845. int i;
  2846. int ret;
  2847. while (1) {
  2848. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2849. (void **)gang, root_objectid,
  2850. ARRAY_SIZE(gang));
  2851. if (!ret)
  2852. break;
  2853. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2854. for (i = 0; i < ret; i++) {
  2855. int err;
  2856. root_objectid = gang[i]->root_key.objectid;
  2857. err = btrfs_orphan_cleanup(gang[i]);
  2858. if (err)
  2859. return err;
  2860. }
  2861. root_objectid++;
  2862. }
  2863. return 0;
  2864. }
  2865. int btrfs_commit_super(struct btrfs_root *root)
  2866. {
  2867. struct btrfs_trans_handle *trans;
  2868. int ret;
  2869. mutex_lock(&root->fs_info->cleaner_mutex);
  2870. btrfs_run_delayed_iputs(root);
  2871. btrfs_clean_old_snapshots(root);
  2872. mutex_unlock(&root->fs_info->cleaner_mutex);
  2873. /* wait until ongoing cleanup work done */
  2874. down_write(&root->fs_info->cleanup_work_sem);
  2875. up_write(&root->fs_info->cleanup_work_sem);
  2876. trans = btrfs_join_transaction(root);
  2877. if (IS_ERR(trans))
  2878. return PTR_ERR(trans);
  2879. ret = btrfs_commit_transaction(trans, root);
  2880. if (ret)
  2881. return ret;
  2882. /* run commit again to drop the original snapshot */
  2883. trans = btrfs_join_transaction(root);
  2884. if (IS_ERR(trans))
  2885. return PTR_ERR(trans);
  2886. ret = btrfs_commit_transaction(trans, root);
  2887. if (ret)
  2888. return ret;
  2889. ret = btrfs_write_and_wait_transaction(NULL, root);
  2890. if (ret) {
  2891. btrfs_error(root->fs_info, ret,
  2892. "Failed to sync btree inode to disk.");
  2893. return ret;
  2894. }
  2895. ret = write_ctree_super(NULL, root, 0);
  2896. return ret;
  2897. }
  2898. int close_ctree(struct btrfs_root *root)
  2899. {
  2900. struct btrfs_fs_info *fs_info = root->fs_info;
  2901. int ret;
  2902. fs_info->closing = 1;
  2903. smp_mb();
  2904. /* pause restriper - we want to resume on mount */
  2905. btrfs_pause_balance(fs_info);
  2906. btrfs_dev_replace_suspend_for_unmount(fs_info);
  2907. btrfs_scrub_cancel(fs_info);
  2908. /* wait for any defraggers to finish */
  2909. wait_event(fs_info->transaction_wait,
  2910. (atomic_read(&fs_info->defrag_running) == 0));
  2911. /* clear out the rbtree of defraggable inodes */
  2912. btrfs_cleanup_defrag_inodes(fs_info);
  2913. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2914. ret = btrfs_commit_super(root);
  2915. if (ret)
  2916. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2917. }
  2918. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  2919. btrfs_error_commit_super(root);
  2920. btrfs_put_block_group_cache(fs_info);
  2921. kthread_stop(fs_info->transaction_kthread);
  2922. kthread_stop(fs_info->cleaner_kthread);
  2923. fs_info->closing = 2;
  2924. smp_mb();
  2925. btrfs_free_qgroup_config(root->fs_info);
  2926. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  2927. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  2928. percpu_counter_sum(&fs_info->delalloc_bytes));
  2929. }
  2930. free_extent_buffer(fs_info->extent_root->node);
  2931. free_extent_buffer(fs_info->extent_root->commit_root);
  2932. free_extent_buffer(fs_info->tree_root->node);
  2933. free_extent_buffer(fs_info->tree_root->commit_root);
  2934. free_extent_buffer(fs_info->chunk_root->node);
  2935. free_extent_buffer(fs_info->chunk_root->commit_root);
  2936. free_extent_buffer(fs_info->dev_root->node);
  2937. free_extent_buffer(fs_info->dev_root->commit_root);
  2938. free_extent_buffer(fs_info->csum_root->node);
  2939. free_extent_buffer(fs_info->csum_root->commit_root);
  2940. if (fs_info->quota_root) {
  2941. free_extent_buffer(fs_info->quota_root->node);
  2942. free_extent_buffer(fs_info->quota_root->commit_root);
  2943. }
  2944. btrfs_free_block_groups(fs_info);
  2945. del_fs_roots(fs_info);
  2946. iput(fs_info->btree_inode);
  2947. btrfs_stop_workers(&fs_info->generic_worker);
  2948. btrfs_stop_workers(&fs_info->fixup_workers);
  2949. btrfs_stop_workers(&fs_info->delalloc_workers);
  2950. btrfs_stop_workers(&fs_info->workers);
  2951. btrfs_stop_workers(&fs_info->endio_workers);
  2952. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2953. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2954. btrfs_stop_workers(&fs_info->endio_write_workers);
  2955. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2956. btrfs_stop_workers(&fs_info->submit_workers);
  2957. btrfs_stop_workers(&fs_info->delayed_workers);
  2958. btrfs_stop_workers(&fs_info->caching_workers);
  2959. btrfs_stop_workers(&fs_info->readahead_workers);
  2960. btrfs_stop_workers(&fs_info->flush_workers);
  2961. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2962. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2963. btrfsic_unmount(root, fs_info->fs_devices);
  2964. #endif
  2965. btrfs_close_devices(fs_info->fs_devices);
  2966. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2967. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2968. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2969. bdi_destroy(&fs_info->bdi);
  2970. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2971. return 0;
  2972. }
  2973. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  2974. int atomic)
  2975. {
  2976. int ret;
  2977. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2978. ret = extent_buffer_uptodate(buf);
  2979. if (!ret)
  2980. return ret;
  2981. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2982. parent_transid, atomic);
  2983. if (ret == -EAGAIN)
  2984. return ret;
  2985. return !ret;
  2986. }
  2987. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2988. {
  2989. return set_extent_buffer_uptodate(buf);
  2990. }
  2991. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2992. {
  2993. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2994. u64 transid = btrfs_header_generation(buf);
  2995. int was_dirty;
  2996. btrfs_assert_tree_locked(buf);
  2997. if (transid != root->fs_info->generation)
  2998. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2999. "found %llu running %llu\n",
  3000. (unsigned long long)buf->start,
  3001. (unsigned long long)transid,
  3002. (unsigned long long)root->fs_info->generation);
  3003. was_dirty = set_extent_buffer_dirty(buf);
  3004. if (!was_dirty)
  3005. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3006. buf->len,
  3007. root->fs_info->dirty_metadata_batch);
  3008. }
  3009. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3010. int flush_delayed)
  3011. {
  3012. /*
  3013. * looks as though older kernels can get into trouble with
  3014. * this code, they end up stuck in balance_dirty_pages forever
  3015. */
  3016. int ret;
  3017. if (current->flags & PF_MEMALLOC)
  3018. return;
  3019. if (flush_delayed)
  3020. btrfs_balance_delayed_items(root);
  3021. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3022. BTRFS_DIRTY_METADATA_THRESH);
  3023. if (ret > 0) {
  3024. balance_dirty_pages_ratelimited_nr(
  3025. root->fs_info->btree_inode->i_mapping, 1);
  3026. }
  3027. return;
  3028. }
  3029. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3030. {
  3031. __btrfs_btree_balance_dirty(root, 1);
  3032. }
  3033. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3034. {
  3035. __btrfs_btree_balance_dirty(root, 0);
  3036. }
  3037. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3038. {
  3039. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3040. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3041. }
  3042. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3043. int read_only)
  3044. {
  3045. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  3046. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  3047. return -EINVAL;
  3048. }
  3049. if (read_only)
  3050. return 0;
  3051. return 0;
  3052. }
  3053. void btrfs_error_commit_super(struct btrfs_root *root)
  3054. {
  3055. mutex_lock(&root->fs_info->cleaner_mutex);
  3056. btrfs_run_delayed_iputs(root);
  3057. mutex_unlock(&root->fs_info->cleaner_mutex);
  3058. down_write(&root->fs_info->cleanup_work_sem);
  3059. up_write(&root->fs_info->cleanup_work_sem);
  3060. /* cleanup FS via transaction */
  3061. btrfs_cleanup_transaction(root);
  3062. }
  3063. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  3064. {
  3065. struct btrfs_inode *btrfs_inode;
  3066. struct list_head splice;
  3067. INIT_LIST_HEAD(&splice);
  3068. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3069. spin_lock(&root->fs_info->ordered_extent_lock);
  3070. list_splice_init(&root->fs_info->ordered_operations, &splice);
  3071. while (!list_empty(&splice)) {
  3072. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3073. ordered_operations);
  3074. list_del_init(&btrfs_inode->ordered_operations);
  3075. btrfs_invalidate_inodes(btrfs_inode->root);
  3076. }
  3077. spin_unlock(&root->fs_info->ordered_extent_lock);
  3078. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3079. }
  3080. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3081. {
  3082. struct list_head splice;
  3083. struct btrfs_ordered_extent *ordered;
  3084. struct inode *inode;
  3085. INIT_LIST_HEAD(&splice);
  3086. spin_lock(&root->fs_info->ordered_extent_lock);
  3087. list_splice_init(&root->fs_info->ordered_extents, &splice);
  3088. while (!list_empty(&splice)) {
  3089. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  3090. root_extent_list);
  3091. list_del_init(&ordered->root_extent_list);
  3092. atomic_inc(&ordered->refs);
  3093. /* the inode may be getting freed (in sys_unlink path). */
  3094. inode = igrab(ordered->inode);
  3095. spin_unlock(&root->fs_info->ordered_extent_lock);
  3096. if (inode)
  3097. iput(inode);
  3098. atomic_set(&ordered->refs, 1);
  3099. btrfs_put_ordered_extent(ordered);
  3100. spin_lock(&root->fs_info->ordered_extent_lock);
  3101. }
  3102. spin_unlock(&root->fs_info->ordered_extent_lock);
  3103. }
  3104. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3105. struct btrfs_root *root)
  3106. {
  3107. struct rb_node *node;
  3108. struct btrfs_delayed_ref_root *delayed_refs;
  3109. struct btrfs_delayed_ref_node *ref;
  3110. int ret = 0;
  3111. delayed_refs = &trans->delayed_refs;
  3112. spin_lock(&delayed_refs->lock);
  3113. if (delayed_refs->num_entries == 0) {
  3114. spin_unlock(&delayed_refs->lock);
  3115. printk(KERN_INFO "delayed_refs has NO entry\n");
  3116. return ret;
  3117. }
  3118. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3119. struct btrfs_delayed_ref_head *head = NULL;
  3120. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3121. atomic_set(&ref->refs, 1);
  3122. if (btrfs_delayed_ref_is_head(ref)) {
  3123. head = btrfs_delayed_node_to_head(ref);
  3124. if (!mutex_trylock(&head->mutex)) {
  3125. atomic_inc(&ref->refs);
  3126. spin_unlock(&delayed_refs->lock);
  3127. /* Need to wait for the delayed ref to run */
  3128. mutex_lock(&head->mutex);
  3129. mutex_unlock(&head->mutex);
  3130. btrfs_put_delayed_ref(ref);
  3131. spin_lock(&delayed_refs->lock);
  3132. continue;
  3133. }
  3134. btrfs_free_delayed_extent_op(head->extent_op);
  3135. delayed_refs->num_heads--;
  3136. if (list_empty(&head->cluster))
  3137. delayed_refs->num_heads_ready--;
  3138. list_del_init(&head->cluster);
  3139. }
  3140. ref->in_tree = 0;
  3141. rb_erase(&ref->rb_node, &delayed_refs->root);
  3142. delayed_refs->num_entries--;
  3143. if (head)
  3144. mutex_unlock(&head->mutex);
  3145. spin_unlock(&delayed_refs->lock);
  3146. btrfs_put_delayed_ref(ref);
  3147. cond_resched();
  3148. spin_lock(&delayed_refs->lock);
  3149. }
  3150. spin_unlock(&delayed_refs->lock);
  3151. return ret;
  3152. }
  3153. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  3154. {
  3155. struct btrfs_pending_snapshot *snapshot;
  3156. struct list_head splice;
  3157. INIT_LIST_HEAD(&splice);
  3158. list_splice_init(&t->pending_snapshots, &splice);
  3159. while (!list_empty(&splice)) {
  3160. snapshot = list_entry(splice.next,
  3161. struct btrfs_pending_snapshot,
  3162. list);
  3163. list_del_init(&snapshot->list);
  3164. kfree(snapshot);
  3165. }
  3166. }
  3167. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3168. {
  3169. struct btrfs_inode *btrfs_inode;
  3170. struct list_head splice;
  3171. INIT_LIST_HEAD(&splice);
  3172. spin_lock(&root->fs_info->delalloc_lock);
  3173. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3174. while (!list_empty(&splice)) {
  3175. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3176. delalloc_inodes);
  3177. list_del_init(&btrfs_inode->delalloc_inodes);
  3178. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3179. &btrfs_inode->runtime_flags);
  3180. btrfs_invalidate_inodes(btrfs_inode->root);
  3181. }
  3182. spin_unlock(&root->fs_info->delalloc_lock);
  3183. }
  3184. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3185. struct extent_io_tree *dirty_pages,
  3186. int mark)
  3187. {
  3188. int ret;
  3189. struct page *page;
  3190. struct inode *btree_inode = root->fs_info->btree_inode;
  3191. struct extent_buffer *eb;
  3192. u64 start = 0;
  3193. u64 end;
  3194. u64 offset;
  3195. unsigned long index;
  3196. while (1) {
  3197. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3198. mark, NULL);
  3199. if (ret)
  3200. break;
  3201. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3202. while (start <= end) {
  3203. index = start >> PAGE_CACHE_SHIFT;
  3204. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3205. page = find_get_page(btree_inode->i_mapping, index);
  3206. if (!page)
  3207. continue;
  3208. offset = page_offset(page);
  3209. spin_lock(&dirty_pages->buffer_lock);
  3210. eb = radix_tree_lookup(
  3211. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3212. offset >> PAGE_CACHE_SHIFT);
  3213. spin_unlock(&dirty_pages->buffer_lock);
  3214. if (eb)
  3215. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3216. &eb->bflags);
  3217. if (PageWriteback(page))
  3218. end_page_writeback(page);
  3219. lock_page(page);
  3220. if (PageDirty(page)) {
  3221. clear_page_dirty_for_io(page);
  3222. spin_lock_irq(&page->mapping->tree_lock);
  3223. radix_tree_tag_clear(&page->mapping->page_tree,
  3224. page_index(page),
  3225. PAGECACHE_TAG_DIRTY);
  3226. spin_unlock_irq(&page->mapping->tree_lock);
  3227. }
  3228. unlock_page(page);
  3229. page_cache_release(page);
  3230. }
  3231. }
  3232. return ret;
  3233. }
  3234. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3235. struct extent_io_tree *pinned_extents)
  3236. {
  3237. struct extent_io_tree *unpin;
  3238. u64 start;
  3239. u64 end;
  3240. int ret;
  3241. bool loop = true;
  3242. unpin = pinned_extents;
  3243. again:
  3244. while (1) {
  3245. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3246. EXTENT_DIRTY, NULL);
  3247. if (ret)
  3248. break;
  3249. /* opt_discard */
  3250. if (btrfs_test_opt(root, DISCARD))
  3251. ret = btrfs_error_discard_extent(root, start,
  3252. end + 1 - start,
  3253. NULL);
  3254. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3255. btrfs_error_unpin_extent_range(root, start, end);
  3256. cond_resched();
  3257. }
  3258. if (loop) {
  3259. if (unpin == &root->fs_info->freed_extents[0])
  3260. unpin = &root->fs_info->freed_extents[1];
  3261. else
  3262. unpin = &root->fs_info->freed_extents[0];
  3263. loop = false;
  3264. goto again;
  3265. }
  3266. return 0;
  3267. }
  3268. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3269. struct btrfs_root *root)
  3270. {
  3271. btrfs_destroy_delayed_refs(cur_trans, root);
  3272. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3273. cur_trans->dirty_pages.dirty_bytes);
  3274. /* FIXME: cleanup wait for commit */
  3275. cur_trans->in_commit = 1;
  3276. cur_trans->blocked = 1;
  3277. wake_up(&root->fs_info->transaction_blocked_wait);
  3278. cur_trans->blocked = 0;
  3279. wake_up(&root->fs_info->transaction_wait);
  3280. cur_trans->commit_done = 1;
  3281. wake_up(&cur_trans->commit_wait);
  3282. btrfs_destroy_delayed_inodes(root);
  3283. btrfs_assert_delayed_root_empty(root);
  3284. btrfs_destroy_pending_snapshots(cur_trans);
  3285. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3286. EXTENT_DIRTY);
  3287. btrfs_destroy_pinned_extent(root,
  3288. root->fs_info->pinned_extents);
  3289. /*
  3290. memset(cur_trans, 0, sizeof(*cur_trans));
  3291. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3292. */
  3293. }
  3294. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3295. {
  3296. struct btrfs_transaction *t;
  3297. LIST_HEAD(list);
  3298. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3299. spin_lock(&root->fs_info->trans_lock);
  3300. list_splice_init(&root->fs_info->trans_list, &list);
  3301. root->fs_info->trans_no_join = 1;
  3302. spin_unlock(&root->fs_info->trans_lock);
  3303. while (!list_empty(&list)) {
  3304. t = list_entry(list.next, struct btrfs_transaction, list);
  3305. btrfs_destroy_ordered_operations(root);
  3306. btrfs_destroy_ordered_extents(root);
  3307. btrfs_destroy_delayed_refs(t, root);
  3308. btrfs_block_rsv_release(root,
  3309. &root->fs_info->trans_block_rsv,
  3310. t->dirty_pages.dirty_bytes);
  3311. /* FIXME: cleanup wait for commit */
  3312. t->in_commit = 1;
  3313. t->blocked = 1;
  3314. smp_mb();
  3315. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3316. wake_up(&root->fs_info->transaction_blocked_wait);
  3317. t->blocked = 0;
  3318. smp_mb();
  3319. if (waitqueue_active(&root->fs_info->transaction_wait))
  3320. wake_up(&root->fs_info->transaction_wait);
  3321. t->commit_done = 1;
  3322. smp_mb();
  3323. if (waitqueue_active(&t->commit_wait))
  3324. wake_up(&t->commit_wait);
  3325. btrfs_destroy_delayed_inodes(root);
  3326. btrfs_assert_delayed_root_empty(root);
  3327. btrfs_destroy_pending_snapshots(t);
  3328. btrfs_destroy_delalloc_inodes(root);
  3329. spin_lock(&root->fs_info->trans_lock);
  3330. root->fs_info->running_transaction = NULL;
  3331. spin_unlock(&root->fs_info->trans_lock);
  3332. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3333. EXTENT_DIRTY);
  3334. btrfs_destroy_pinned_extent(root,
  3335. root->fs_info->pinned_extents);
  3336. atomic_set(&t->use_count, 0);
  3337. list_del_init(&t->list);
  3338. memset(t, 0, sizeof(*t));
  3339. kmem_cache_free(btrfs_transaction_cachep, t);
  3340. }
  3341. spin_lock(&root->fs_info->trans_lock);
  3342. root->fs_info->trans_no_join = 0;
  3343. spin_unlock(&root->fs_info->trans_lock);
  3344. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3345. return 0;
  3346. }
  3347. static struct extent_io_ops btree_extent_io_ops = {
  3348. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3349. .readpage_io_failed_hook = btree_io_failed_hook,
  3350. .submit_bio_hook = btree_submit_bio_hook,
  3351. /* note we're sharing with inode.c for the merge bio hook */
  3352. .merge_bio_hook = btrfs_merge_bio_hook,
  3353. };