smp.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/irq.h>
  24. #include <linux/percpu.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/completion.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/atomic.h>
  29. #include <asm/smp.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/exception.h>
  34. #include <asm/idmap.h>
  35. #include <asm/topology.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sections.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/ptrace.h>
  43. #include <asm/localtimer.h>
  44. #include <asm/smp_plat.h>
  45. #include <asm/virt.h>
  46. #include <asm/mach/arch.h>
  47. #include <asm/mpu.h>
  48. /*
  49. * as from 2.5, kernels no longer have an init_tasks structure
  50. * so we need some other way of telling a new secondary core
  51. * where to place its SVC stack
  52. */
  53. struct secondary_data secondary_data;
  54. /*
  55. * control for which core is the next to come out of the secondary
  56. * boot "holding pen"
  57. */
  58. volatile int __cpuinitdata pen_release = -1;
  59. enum ipi_msg_type {
  60. IPI_WAKEUP,
  61. IPI_TIMER,
  62. IPI_RESCHEDULE,
  63. IPI_CALL_FUNC,
  64. IPI_CALL_FUNC_SINGLE,
  65. IPI_CPU_STOP,
  66. };
  67. static DECLARE_COMPLETION(cpu_running);
  68. static struct smp_operations smp_ops;
  69. void __init smp_set_ops(struct smp_operations *ops)
  70. {
  71. if (ops)
  72. smp_ops = *ops;
  73. };
  74. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
  75. {
  76. int ret;
  77. /*
  78. * We need to tell the secondary core where to find
  79. * its stack and the page tables.
  80. */
  81. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  82. #ifdef CONFIG_ARM_MPU
  83. secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
  84. #endif
  85. #ifdef CONFIG_MMU
  86. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  87. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  88. #endif
  89. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  90. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  91. /*
  92. * Now bring the CPU into our world.
  93. */
  94. ret = boot_secondary(cpu, idle);
  95. if (ret == 0) {
  96. /*
  97. * CPU was successfully started, wait for it
  98. * to come online or time out.
  99. */
  100. wait_for_completion_timeout(&cpu_running,
  101. msecs_to_jiffies(1000));
  102. if (!cpu_online(cpu)) {
  103. pr_crit("CPU%u: failed to come online\n", cpu);
  104. ret = -EIO;
  105. }
  106. } else {
  107. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  108. }
  109. memset(&secondary_data, 0, sizeof(secondary_data));
  110. return ret;
  111. }
  112. /* platform specific SMP operations */
  113. void __init smp_init_cpus(void)
  114. {
  115. if (smp_ops.smp_init_cpus)
  116. smp_ops.smp_init_cpus();
  117. }
  118. int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
  119. {
  120. if (smp_ops.smp_boot_secondary)
  121. return smp_ops.smp_boot_secondary(cpu, idle);
  122. return -ENOSYS;
  123. }
  124. #ifdef CONFIG_HOTPLUG_CPU
  125. static void percpu_timer_stop(void);
  126. static int platform_cpu_kill(unsigned int cpu)
  127. {
  128. if (smp_ops.cpu_kill)
  129. return smp_ops.cpu_kill(cpu);
  130. return 1;
  131. }
  132. static int platform_cpu_disable(unsigned int cpu)
  133. {
  134. if (smp_ops.cpu_disable)
  135. return smp_ops.cpu_disable(cpu);
  136. /*
  137. * By default, allow disabling all CPUs except the first one,
  138. * since this is special on a lot of platforms, e.g. because
  139. * of clock tick interrupts.
  140. */
  141. return cpu == 0 ? -EPERM : 0;
  142. }
  143. /*
  144. * __cpu_disable runs on the processor to be shutdown.
  145. */
  146. int __cpuinit __cpu_disable(void)
  147. {
  148. unsigned int cpu = smp_processor_id();
  149. int ret;
  150. ret = platform_cpu_disable(cpu);
  151. if (ret)
  152. return ret;
  153. /*
  154. * Take this CPU offline. Once we clear this, we can't return,
  155. * and we must not schedule until we're ready to give up the cpu.
  156. */
  157. set_cpu_online(cpu, false);
  158. /*
  159. * OK - migrate IRQs away from this CPU
  160. */
  161. migrate_irqs();
  162. /*
  163. * Stop the local timer for this CPU.
  164. */
  165. percpu_timer_stop();
  166. /*
  167. * Flush user cache and TLB mappings, and then remove this CPU
  168. * from the vm mask set of all processes.
  169. *
  170. * Caches are flushed to the Level of Unification Inner Shareable
  171. * to write-back dirty lines to unified caches shared by all CPUs.
  172. */
  173. flush_cache_louis();
  174. local_flush_tlb_all();
  175. clear_tasks_mm_cpumask(cpu);
  176. return 0;
  177. }
  178. static DECLARE_COMPLETION(cpu_died);
  179. /*
  180. * called on the thread which is asking for a CPU to be shutdown -
  181. * waits until shutdown has completed, or it is timed out.
  182. */
  183. void __cpuinit __cpu_die(unsigned int cpu)
  184. {
  185. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  186. pr_err("CPU%u: cpu didn't die\n", cpu);
  187. return;
  188. }
  189. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  190. /*
  191. * platform_cpu_kill() is generally expected to do the powering off
  192. * and/or cutting of clocks to the dying CPU. Optionally, this may
  193. * be done by the CPU which is dying in preference to supporting
  194. * this call, but that means there is _no_ synchronisation between
  195. * the requesting CPU and the dying CPU actually losing power.
  196. */
  197. if (!platform_cpu_kill(cpu))
  198. printk("CPU%u: unable to kill\n", cpu);
  199. }
  200. /*
  201. * Called from the idle thread for the CPU which has been shutdown.
  202. *
  203. * Note that we disable IRQs here, but do not re-enable them
  204. * before returning to the caller. This is also the behaviour
  205. * of the other hotplug-cpu capable cores, so presumably coming
  206. * out of idle fixes this.
  207. */
  208. void __ref cpu_die(void)
  209. {
  210. unsigned int cpu = smp_processor_id();
  211. idle_task_exit();
  212. local_irq_disable();
  213. /*
  214. * Flush the data out of the L1 cache for this CPU. This must be
  215. * before the completion to ensure that data is safely written out
  216. * before platform_cpu_kill() gets called - which may disable
  217. * *this* CPU and power down its cache.
  218. */
  219. flush_cache_louis();
  220. /*
  221. * Tell __cpu_die() that this CPU is now safe to dispose of. Once
  222. * this returns, power and/or clocks can be removed at any point
  223. * from this CPU and its cache by platform_cpu_kill().
  224. */
  225. complete(&cpu_died);
  226. /*
  227. * Ensure that the cache lines associated with that completion are
  228. * written out. This covers the case where _this_ CPU is doing the
  229. * powering down, to ensure that the completion is visible to the
  230. * CPU waiting for this one.
  231. */
  232. flush_cache_louis();
  233. /*
  234. * The actual CPU shutdown procedure is at least platform (if not
  235. * CPU) specific. This may remove power, or it may simply spin.
  236. *
  237. * Platforms are generally expected *NOT* to return from this call,
  238. * although there are some which do because they have no way to
  239. * power down the CPU. These platforms are the _only_ reason we
  240. * have a return path which uses the fragment of assembly below.
  241. *
  242. * The return path should not be used for platforms which can
  243. * power off the CPU.
  244. */
  245. if (smp_ops.cpu_die)
  246. smp_ops.cpu_die(cpu);
  247. /*
  248. * Do not return to the idle loop - jump back to the secondary
  249. * cpu initialisation. There's some initialisation which needs
  250. * to be repeated to undo the effects of taking the CPU offline.
  251. */
  252. __asm__("mov sp, %0\n"
  253. " mov fp, #0\n"
  254. " b secondary_start_kernel"
  255. :
  256. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  257. }
  258. #endif /* CONFIG_HOTPLUG_CPU */
  259. /*
  260. * Called by both boot and secondaries to move global data into
  261. * per-processor storage.
  262. */
  263. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  264. {
  265. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  266. cpu_info->loops_per_jiffy = loops_per_jiffy;
  267. cpu_info->cpuid = read_cpuid_id();
  268. store_cpu_topology(cpuid);
  269. }
  270. static void percpu_timer_setup(void);
  271. /*
  272. * This is the secondary CPU boot entry. We're using this CPUs
  273. * idle thread stack, but a set of temporary page tables.
  274. */
  275. asmlinkage void __cpuinit secondary_start_kernel(void)
  276. {
  277. struct mm_struct *mm = &init_mm;
  278. unsigned int cpu;
  279. /*
  280. * The identity mapping is uncached (strongly ordered), so
  281. * switch away from it before attempting any exclusive accesses.
  282. */
  283. cpu_switch_mm(mm->pgd, mm);
  284. local_flush_bp_all();
  285. enter_lazy_tlb(mm, current);
  286. local_flush_tlb_all();
  287. /*
  288. * All kernel threads share the same mm context; grab a
  289. * reference and switch to it.
  290. */
  291. cpu = smp_processor_id();
  292. atomic_inc(&mm->mm_count);
  293. current->active_mm = mm;
  294. cpumask_set_cpu(cpu, mm_cpumask(mm));
  295. cpu_init();
  296. printk("CPU%u: Booted secondary processor\n", cpu);
  297. preempt_disable();
  298. trace_hardirqs_off();
  299. /*
  300. * Give the platform a chance to do its own initialisation.
  301. */
  302. if (smp_ops.smp_secondary_init)
  303. smp_ops.smp_secondary_init(cpu);
  304. notify_cpu_starting(cpu);
  305. calibrate_delay();
  306. smp_store_cpu_info(cpu);
  307. /*
  308. * OK, now it's safe to let the boot CPU continue. Wait for
  309. * the CPU migration code to notice that the CPU is online
  310. * before we continue - which happens after __cpu_up returns.
  311. */
  312. set_cpu_online(cpu, true);
  313. complete(&cpu_running);
  314. /*
  315. * Setup the percpu timer for this CPU.
  316. */
  317. percpu_timer_setup();
  318. local_irq_enable();
  319. local_fiq_enable();
  320. /*
  321. * OK, it's off to the idle thread for us
  322. */
  323. cpu_startup_entry(CPUHP_ONLINE);
  324. }
  325. void __init smp_cpus_done(unsigned int max_cpus)
  326. {
  327. int cpu;
  328. unsigned long bogosum = 0;
  329. for_each_online_cpu(cpu)
  330. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  331. printk(KERN_INFO "SMP: Total of %d processors activated "
  332. "(%lu.%02lu BogoMIPS).\n",
  333. num_online_cpus(),
  334. bogosum / (500000/HZ),
  335. (bogosum / (5000/HZ)) % 100);
  336. hyp_mode_check();
  337. }
  338. void __init smp_prepare_boot_cpu(void)
  339. {
  340. set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
  341. }
  342. void __init smp_prepare_cpus(unsigned int max_cpus)
  343. {
  344. unsigned int ncores = num_possible_cpus();
  345. init_cpu_topology();
  346. smp_store_cpu_info(smp_processor_id());
  347. /*
  348. * are we trying to boot more cores than exist?
  349. */
  350. if (max_cpus > ncores)
  351. max_cpus = ncores;
  352. if (ncores > 1 && max_cpus) {
  353. /*
  354. * Enable the local timer or broadcast device for the
  355. * boot CPU, but only if we have more than one CPU.
  356. */
  357. percpu_timer_setup();
  358. /*
  359. * Initialise the present map, which describes the set of CPUs
  360. * actually populated at the present time. A platform should
  361. * re-initialize the map in the platforms smp_prepare_cpus()
  362. * if present != possible (e.g. physical hotplug).
  363. */
  364. init_cpu_present(cpu_possible_mask);
  365. /*
  366. * Initialise the SCU if there are more than one CPU
  367. * and let them know where to start.
  368. */
  369. if (smp_ops.smp_prepare_cpus)
  370. smp_ops.smp_prepare_cpus(max_cpus);
  371. }
  372. }
  373. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  374. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  375. {
  376. if (!smp_cross_call)
  377. smp_cross_call = fn;
  378. }
  379. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  380. {
  381. smp_cross_call(mask, IPI_CALL_FUNC);
  382. }
  383. void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
  384. {
  385. smp_cross_call(mask, IPI_WAKEUP);
  386. }
  387. void arch_send_call_function_single_ipi(int cpu)
  388. {
  389. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  390. }
  391. static const char *ipi_types[NR_IPI] = {
  392. #define S(x,s) [x] = s
  393. S(IPI_WAKEUP, "CPU wakeup interrupts"),
  394. S(IPI_TIMER, "Timer broadcast interrupts"),
  395. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  396. S(IPI_CALL_FUNC, "Function call interrupts"),
  397. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  398. S(IPI_CPU_STOP, "CPU stop interrupts"),
  399. };
  400. void show_ipi_list(struct seq_file *p, int prec)
  401. {
  402. unsigned int cpu, i;
  403. for (i = 0; i < NR_IPI; i++) {
  404. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  405. for_each_online_cpu(cpu)
  406. seq_printf(p, "%10u ",
  407. __get_irq_stat(cpu, ipi_irqs[i]));
  408. seq_printf(p, " %s\n", ipi_types[i]);
  409. }
  410. }
  411. u64 smp_irq_stat_cpu(unsigned int cpu)
  412. {
  413. u64 sum = 0;
  414. int i;
  415. for (i = 0; i < NR_IPI; i++)
  416. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  417. return sum;
  418. }
  419. /*
  420. * Timer (local or broadcast) support
  421. */
  422. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  423. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  424. void tick_broadcast(const struct cpumask *mask)
  425. {
  426. smp_cross_call(mask, IPI_TIMER);
  427. }
  428. #endif
  429. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  430. struct clock_event_device *evt)
  431. {
  432. }
  433. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  434. {
  435. evt->name = "dummy_timer";
  436. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  437. CLOCK_EVT_FEAT_PERIODIC |
  438. CLOCK_EVT_FEAT_DUMMY;
  439. evt->rating = 100;
  440. evt->mult = 1;
  441. evt->set_mode = broadcast_timer_set_mode;
  442. clockevents_register_device(evt);
  443. }
  444. static struct local_timer_ops *lt_ops;
  445. #ifdef CONFIG_LOCAL_TIMERS
  446. int local_timer_register(struct local_timer_ops *ops)
  447. {
  448. if (!is_smp() || !setup_max_cpus)
  449. return -ENXIO;
  450. if (lt_ops)
  451. return -EBUSY;
  452. lt_ops = ops;
  453. return 0;
  454. }
  455. #endif
  456. static void __cpuinit percpu_timer_setup(void)
  457. {
  458. unsigned int cpu = smp_processor_id();
  459. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  460. evt->cpumask = cpumask_of(cpu);
  461. if (!lt_ops || lt_ops->setup(evt))
  462. broadcast_timer_setup(evt);
  463. }
  464. #ifdef CONFIG_HOTPLUG_CPU
  465. /*
  466. * The generic clock events code purposely does not stop the local timer
  467. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  468. * manually here.
  469. */
  470. static void percpu_timer_stop(void)
  471. {
  472. unsigned int cpu = smp_processor_id();
  473. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  474. if (lt_ops)
  475. lt_ops->stop(evt);
  476. }
  477. #endif
  478. static DEFINE_RAW_SPINLOCK(stop_lock);
  479. /*
  480. * ipi_cpu_stop - handle IPI from smp_send_stop()
  481. */
  482. static void ipi_cpu_stop(unsigned int cpu)
  483. {
  484. if (system_state == SYSTEM_BOOTING ||
  485. system_state == SYSTEM_RUNNING) {
  486. raw_spin_lock(&stop_lock);
  487. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  488. dump_stack();
  489. raw_spin_unlock(&stop_lock);
  490. }
  491. set_cpu_online(cpu, false);
  492. local_fiq_disable();
  493. local_irq_disable();
  494. while (1)
  495. cpu_relax();
  496. }
  497. /*
  498. * Main handler for inter-processor interrupts
  499. */
  500. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  501. {
  502. handle_IPI(ipinr, regs);
  503. }
  504. void handle_IPI(int ipinr, struct pt_regs *regs)
  505. {
  506. unsigned int cpu = smp_processor_id();
  507. struct pt_regs *old_regs = set_irq_regs(regs);
  508. if (ipinr < NR_IPI)
  509. __inc_irq_stat(cpu, ipi_irqs[ipinr]);
  510. switch (ipinr) {
  511. case IPI_WAKEUP:
  512. break;
  513. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  514. case IPI_TIMER:
  515. irq_enter();
  516. tick_receive_broadcast();
  517. irq_exit();
  518. break;
  519. #endif
  520. case IPI_RESCHEDULE:
  521. scheduler_ipi();
  522. break;
  523. case IPI_CALL_FUNC:
  524. irq_enter();
  525. generic_smp_call_function_interrupt();
  526. irq_exit();
  527. break;
  528. case IPI_CALL_FUNC_SINGLE:
  529. irq_enter();
  530. generic_smp_call_function_single_interrupt();
  531. irq_exit();
  532. break;
  533. case IPI_CPU_STOP:
  534. irq_enter();
  535. ipi_cpu_stop(cpu);
  536. irq_exit();
  537. break;
  538. default:
  539. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  540. cpu, ipinr);
  541. break;
  542. }
  543. set_irq_regs(old_regs);
  544. }
  545. void smp_send_reschedule(int cpu)
  546. {
  547. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  548. }
  549. #ifdef CONFIG_HOTPLUG_CPU
  550. static void smp_kill_cpus(cpumask_t *mask)
  551. {
  552. unsigned int cpu;
  553. for_each_cpu(cpu, mask)
  554. platform_cpu_kill(cpu);
  555. }
  556. #else
  557. static void smp_kill_cpus(cpumask_t *mask) { }
  558. #endif
  559. void smp_send_stop(void)
  560. {
  561. unsigned long timeout;
  562. struct cpumask mask;
  563. cpumask_copy(&mask, cpu_online_mask);
  564. cpumask_clear_cpu(smp_processor_id(), &mask);
  565. if (!cpumask_empty(&mask))
  566. smp_cross_call(&mask, IPI_CPU_STOP);
  567. /* Wait up to one second for other CPUs to stop */
  568. timeout = USEC_PER_SEC;
  569. while (num_online_cpus() > 1 && timeout--)
  570. udelay(1);
  571. if (num_online_cpus() > 1)
  572. pr_warning("SMP: failed to stop secondary CPUs\n");
  573. smp_kill_cpus(&mask);
  574. }
  575. /*
  576. * not supported here
  577. */
  578. int setup_profiling_timer(unsigned int multiplier)
  579. {
  580. return -EINVAL;
  581. }
  582. #ifdef CONFIG_CPU_FREQ
  583. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  584. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  585. static unsigned long global_l_p_j_ref;
  586. static unsigned long global_l_p_j_ref_freq;
  587. static int cpufreq_callback(struct notifier_block *nb,
  588. unsigned long val, void *data)
  589. {
  590. struct cpufreq_freqs *freq = data;
  591. int cpu = freq->cpu;
  592. if (freq->flags & CPUFREQ_CONST_LOOPS)
  593. return NOTIFY_OK;
  594. if (!per_cpu(l_p_j_ref, cpu)) {
  595. per_cpu(l_p_j_ref, cpu) =
  596. per_cpu(cpu_data, cpu).loops_per_jiffy;
  597. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  598. if (!global_l_p_j_ref) {
  599. global_l_p_j_ref = loops_per_jiffy;
  600. global_l_p_j_ref_freq = freq->old;
  601. }
  602. }
  603. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  604. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  605. (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
  606. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  607. global_l_p_j_ref_freq,
  608. freq->new);
  609. per_cpu(cpu_data, cpu).loops_per_jiffy =
  610. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  611. per_cpu(l_p_j_ref_freq, cpu),
  612. freq->new);
  613. }
  614. return NOTIFY_OK;
  615. }
  616. static struct notifier_block cpufreq_notifier = {
  617. .notifier_call = cpufreq_callback,
  618. };
  619. static int __init register_cpufreq_notifier(void)
  620. {
  621. return cpufreq_register_notifier(&cpufreq_notifier,
  622. CPUFREQ_TRANSITION_NOTIFIER);
  623. }
  624. core_initcall(register_cpufreq_notifier);
  625. #endif