dm-thin-metadata.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502
  1. /*
  2. * Copyright (C) 2011 Red Hat, Inc.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "persistent-data/dm-btree.h"
  8. #include "persistent-data/dm-space-map.h"
  9. #include "persistent-data/dm-space-map-disk.h"
  10. #include "persistent-data/dm-transaction-manager.h"
  11. #include <linux/list.h>
  12. #include <linux/device-mapper.h>
  13. #include <linux/workqueue.h>
  14. /*--------------------------------------------------------------------------
  15. * As far as the metadata goes, there is:
  16. *
  17. * - A superblock in block zero, taking up fewer than 512 bytes for
  18. * atomic writes.
  19. *
  20. * - A space map managing the metadata blocks.
  21. *
  22. * - A space map managing the data blocks.
  23. *
  24. * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  25. *
  26. * - A hierarchical btree, with 2 levels which effectively maps (thin
  27. * dev id, virtual block) -> block_time. Block time is a 64-bit
  28. * field holding the time in the low 24 bits, and block in the top 48
  29. * bits.
  30. *
  31. * BTrees consist solely of btree_nodes, that fill a block. Some are
  32. * internal nodes, as such their values are a __le64 pointing to other
  33. * nodes. Leaf nodes can store data of any reasonable size (ie. much
  34. * smaller than the block size). The nodes consist of the header,
  35. * followed by an array of keys, followed by an array of values. We have
  36. * to binary search on the keys so they're all held together to help the
  37. * cpu cache.
  38. *
  39. * Space maps have 2 btrees:
  40. *
  41. * - One maps a uint64_t onto a struct index_entry. Which points to a
  42. * bitmap block, and has some details about how many free entries there
  43. * are etc.
  44. *
  45. * - The bitmap blocks have a header (for the checksum). Then the rest
  46. * of the block is pairs of bits. With the meaning being:
  47. *
  48. * 0 - ref count is 0
  49. * 1 - ref count is 1
  50. * 2 - ref count is 2
  51. * 3 - ref count is higher than 2
  52. *
  53. * - If the count is higher than 2 then the ref count is entered in a
  54. * second btree that directly maps the block_address to a uint32_t ref
  55. * count.
  56. *
  57. * The space map metadata variant doesn't have a bitmaps btree. Instead
  58. * it has one single blocks worth of index_entries. This avoids
  59. * recursive issues with the bitmap btree needing to allocate space in
  60. * order to insert. With a small data block size such as 64k the
  61. * metadata support data devices that are hundreds of terrabytes.
  62. *
  63. * The space maps allocate space linearly from front to back. Space that
  64. * is freed in a transaction is never recycled within that transaction.
  65. * To try and avoid fragmenting _free_ space the allocator always goes
  66. * back and fills in gaps.
  67. *
  68. * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  69. * from the block manager.
  70. *--------------------------------------------------------------------------*/
  71. #define DM_MSG_PREFIX "thin metadata"
  72. #define THIN_SUPERBLOCK_MAGIC 27022010
  73. #define THIN_SUPERBLOCK_LOCATION 0
  74. #define THIN_VERSION 1
  75. #define THIN_METADATA_CACHE_SIZE 64
  76. #define SECTOR_TO_BLOCK_SHIFT 3
  77. /*
  78. * 3 for btree insert +
  79. * 2 for btree lookup used within space map
  80. */
  81. #define THIN_MAX_CONCURRENT_LOCKS 5
  82. /* This should be plenty */
  83. #define SPACE_MAP_ROOT_SIZE 128
  84. /*
  85. * Little endian on-disk superblock and device details.
  86. */
  87. struct thin_disk_superblock {
  88. __le32 csum; /* Checksum of superblock except for this field. */
  89. __le32 flags;
  90. __le64 blocknr; /* This block number, dm_block_t. */
  91. __u8 uuid[16];
  92. __le64 magic;
  93. __le32 version;
  94. __le32 time;
  95. __le64 trans_id;
  96. /*
  97. * Root held by userspace transactions.
  98. */
  99. __le64 held_root;
  100. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  101. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  102. /*
  103. * 2-level btree mapping (dev_id, (dev block, time)) -> data block
  104. */
  105. __le64 data_mapping_root;
  106. /*
  107. * Device detail root mapping dev_id -> device_details
  108. */
  109. __le64 device_details_root;
  110. __le32 data_block_size; /* In 512-byte sectors. */
  111. __le32 metadata_block_size; /* In 512-byte sectors. */
  112. __le64 metadata_nr_blocks;
  113. __le32 compat_flags;
  114. __le32 compat_ro_flags;
  115. __le32 incompat_flags;
  116. } __packed;
  117. struct disk_device_details {
  118. __le64 mapped_blocks;
  119. __le64 transaction_id; /* When created. */
  120. __le32 creation_time;
  121. __le32 snapshotted_time;
  122. } __packed;
  123. struct dm_pool_metadata {
  124. struct hlist_node hash;
  125. struct block_device *bdev;
  126. struct dm_block_manager *bm;
  127. struct dm_space_map *metadata_sm;
  128. struct dm_space_map *data_sm;
  129. struct dm_transaction_manager *tm;
  130. struct dm_transaction_manager *nb_tm;
  131. /*
  132. * Two-level btree.
  133. * First level holds thin_dev_t.
  134. * Second level holds mappings.
  135. */
  136. struct dm_btree_info info;
  137. /*
  138. * Non-blocking version of the above.
  139. */
  140. struct dm_btree_info nb_info;
  141. /*
  142. * Just the top level for deleting whole devices.
  143. */
  144. struct dm_btree_info tl_info;
  145. /*
  146. * Just the bottom level for creating new devices.
  147. */
  148. struct dm_btree_info bl_info;
  149. /*
  150. * Describes the device details btree.
  151. */
  152. struct dm_btree_info details_info;
  153. struct rw_semaphore root_lock;
  154. uint32_t time;
  155. dm_block_t root;
  156. dm_block_t details_root;
  157. struct list_head thin_devices;
  158. uint64_t trans_id;
  159. unsigned long flags;
  160. sector_t data_block_size;
  161. };
  162. struct dm_thin_device {
  163. struct list_head list;
  164. struct dm_pool_metadata *pmd;
  165. dm_thin_id id;
  166. int open_count;
  167. int changed;
  168. uint64_t mapped_blocks;
  169. uint64_t transaction_id;
  170. uint32_t creation_time;
  171. uint32_t snapshotted_time;
  172. };
  173. /*----------------------------------------------------------------
  174. * superblock validator
  175. *--------------------------------------------------------------*/
  176. #define SUPERBLOCK_CSUM_XOR 160774
  177. static void sb_prepare_for_write(struct dm_block_validator *v,
  178. struct dm_block *b,
  179. size_t block_size)
  180. {
  181. struct thin_disk_superblock *disk_super = dm_block_data(b);
  182. disk_super->blocknr = cpu_to_le64(dm_block_location(b));
  183. disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  184. block_size - sizeof(__le32),
  185. SUPERBLOCK_CSUM_XOR));
  186. }
  187. static int sb_check(struct dm_block_validator *v,
  188. struct dm_block *b,
  189. size_t block_size)
  190. {
  191. struct thin_disk_superblock *disk_super = dm_block_data(b);
  192. __le32 csum_le;
  193. if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
  194. DMERR("sb_check failed: blocknr %llu: "
  195. "wanted %llu", le64_to_cpu(disk_super->blocknr),
  196. (unsigned long long)dm_block_location(b));
  197. return -ENOTBLK;
  198. }
  199. if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
  200. DMERR("sb_check failed: magic %llu: "
  201. "wanted %llu", le64_to_cpu(disk_super->magic),
  202. (unsigned long long)THIN_SUPERBLOCK_MAGIC);
  203. return -EILSEQ;
  204. }
  205. csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  206. block_size - sizeof(__le32),
  207. SUPERBLOCK_CSUM_XOR));
  208. if (csum_le != disk_super->csum) {
  209. DMERR("sb_check failed: csum %u: wanted %u",
  210. le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
  211. return -EILSEQ;
  212. }
  213. return 0;
  214. }
  215. static struct dm_block_validator sb_validator = {
  216. .name = "superblock",
  217. .prepare_for_write = sb_prepare_for_write,
  218. .check = sb_check
  219. };
  220. /*----------------------------------------------------------------
  221. * Methods for the btree value types
  222. *--------------------------------------------------------------*/
  223. static uint64_t pack_block_time(dm_block_t b, uint32_t t)
  224. {
  225. return (b << 24) | t;
  226. }
  227. static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
  228. {
  229. *b = v >> 24;
  230. *t = v & ((1 << 24) - 1);
  231. }
  232. static void data_block_inc(void *context, void *value_le)
  233. {
  234. struct dm_space_map *sm = context;
  235. __le64 v_le;
  236. uint64_t b;
  237. uint32_t t;
  238. memcpy(&v_le, value_le, sizeof(v_le));
  239. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  240. dm_sm_inc_block(sm, b);
  241. }
  242. static void data_block_dec(void *context, void *value_le)
  243. {
  244. struct dm_space_map *sm = context;
  245. __le64 v_le;
  246. uint64_t b;
  247. uint32_t t;
  248. memcpy(&v_le, value_le, sizeof(v_le));
  249. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  250. dm_sm_dec_block(sm, b);
  251. }
  252. static int data_block_equal(void *context, void *value1_le, void *value2_le)
  253. {
  254. __le64 v1_le, v2_le;
  255. uint64_t b1, b2;
  256. uint32_t t;
  257. memcpy(&v1_le, value1_le, sizeof(v1_le));
  258. memcpy(&v2_le, value2_le, sizeof(v2_le));
  259. unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
  260. unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
  261. return b1 == b2;
  262. }
  263. static void subtree_inc(void *context, void *value)
  264. {
  265. struct dm_btree_info *info = context;
  266. __le64 root_le;
  267. uint64_t root;
  268. memcpy(&root_le, value, sizeof(root_le));
  269. root = le64_to_cpu(root_le);
  270. dm_tm_inc(info->tm, root);
  271. }
  272. static void subtree_dec(void *context, void *value)
  273. {
  274. struct dm_btree_info *info = context;
  275. __le64 root_le;
  276. uint64_t root;
  277. memcpy(&root_le, value, sizeof(root_le));
  278. root = le64_to_cpu(root_le);
  279. if (dm_btree_del(info, root))
  280. DMERR("btree delete failed\n");
  281. }
  282. static int subtree_equal(void *context, void *value1_le, void *value2_le)
  283. {
  284. __le64 v1_le, v2_le;
  285. memcpy(&v1_le, value1_le, sizeof(v1_le));
  286. memcpy(&v2_le, value2_le, sizeof(v2_le));
  287. return v1_le == v2_le;
  288. }
  289. /*----------------------------------------------------------------*/
  290. static int superblock_all_zeroes(struct dm_block_manager *bm, int *result)
  291. {
  292. int r;
  293. unsigned i;
  294. struct dm_block *b;
  295. __le64 *data_le, zero = cpu_to_le64(0);
  296. unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
  297. /*
  298. * We can't use a validator here - it may be all zeroes.
  299. */
  300. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
  301. if (r)
  302. return r;
  303. data_le = dm_block_data(b);
  304. *result = 1;
  305. for (i = 0; i < block_size; i++) {
  306. if (data_le[i] != zero) {
  307. *result = 0;
  308. break;
  309. }
  310. }
  311. return dm_bm_unlock(b);
  312. }
  313. static void __setup_btree_details(struct dm_pool_metadata *pmd)
  314. {
  315. pmd->info.tm = pmd->tm;
  316. pmd->info.levels = 2;
  317. pmd->info.value_type.context = pmd->data_sm;
  318. pmd->info.value_type.size = sizeof(__le64);
  319. pmd->info.value_type.inc = data_block_inc;
  320. pmd->info.value_type.dec = data_block_dec;
  321. pmd->info.value_type.equal = data_block_equal;
  322. memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
  323. pmd->nb_info.tm = pmd->nb_tm;
  324. pmd->tl_info.tm = pmd->tm;
  325. pmd->tl_info.levels = 1;
  326. pmd->tl_info.value_type.context = &pmd->info;
  327. pmd->tl_info.value_type.size = sizeof(__le64);
  328. pmd->tl_info.value_type.inc = subtree_inc;
  329. pmd->tl_info.value_type.dec = subtree_dec;
  330. pmd->tl_info.value_type.equal = subtree_equal;
  331. pmd->bl_info.tm = pmd->tm;
  332. pmd->bl_info.levels = 1;
  333. pmd->bl_info.value_type.context = pmd->data_sm;
  334. pmd->bl_info.value_type.size = sizeof(__le64);
  335. pmd->bl_info.value_type.inc = data_block_inc;
  336. pmd->bl_info.value_type.dec = data_block_dec;
  337. pmd->bl_info.value_type.equal = data_block_equal;
  338. pmd->details_info.tm = pmd->tm;
  339. pmd->details_info.levels = 1;
  340. pmd->details_info.value_type.context = NULL;
  341. pmd->details_info.value_type.size = sizeof(struct disk_device_details);
  342. pmd->details_info.value_type.inc = NULL;
  343. pmd->details_info.value_type.dec = NULL;
  344. pmd->details_info.value_type.equal = NULL;
  345. }
  346. static int init_pmd(struct dm_pool_metadata *pmd,
  347. struct dm_block_manager *bm,
  348. dm_block_t nr_blocks, int create)
  349. {
  350. int r;
  351. struct dm_space_map *sm, *data_sm;
  352. struct dm_transaction_manager *tm;
  353. struct dm_block *sblock;
  354. if (create) {
  355. r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
  356. &sb_validator, &tm, &sm, &sblock);
  357. if (r < 0) {
  358. DMERR("tm_create_with_sm failed");
  359. return r;
  360. }
  361. data_sm = dm_sm_disk_create(tm, nr_blocks);
  362. if (IS_ERR(data_sm)) {
  363. DMERR("sm_disk_create failed");
  364. dm_tm_unlock(tm, sblock);
  365. r = PTR_ERR(data_sm);
  366. goto bad;
  367. }
  368. } else {
  369. struct thin_disk_superblock *disk_super = NULL;
  370. size_t space_map_root_offset =
  371. offsetof(struct thin_disk_superblock, metadata_space_map_root);
  372. r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
  373. &sb_validator, space_map_root_offset,
  374. SPACE_MAP_ROOT_SIZE, &tm, &sm, &sblock);
  375. if (r < 0) {
  376. DMERR("tm_open_with_sm failed");
  377. return r;
  378. }
  379. disk_super = dm_block_data(sblock);
  380. data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
  381. sizeof(disk_super->data_space_map_root));
  382. if (IS_ERR(data_sm)) {
  383. DMERR("sm_disk_open failed");
  384. r = PTR_ERR(data_sm);
  385. goto bad;
  386. }
  387. }
  388. r = dm_tm_unlock(tm, sblock);
  389. if (r < 0) {
  390. DMERR("couldn't unlock superblock");
  391. goto bad_data_sm;
  392. }
  393. pmd->bm = bm;
  394. pmd->metadata_sm = sm;
  395. pmd->data_sm = data_sm;
  396. pmd->tm = tm;
  397. pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
  398. if (!pmd->nb_tm) {
  399. DMERR("could not create clone tm");
  400. r = -ENOMEM;
  401. goto bad_data_sm;
  402. }
  403. __setup_btree_details(pmd);
  404. pmd->root = 0;
  405. init_rwsem(&pmd->root_lock);
  406. pmd->time = 0;
  407. pmd->details_root = 0;
  408. pmd->trans_id = 0;
  409. pmd->flags = 0;
  410. INIT_LIST_HEAD(&pmd->thin_devices);
  411. return 0;
  412. bad_data_sm:
  413. dm_sm_destroy(data_sm);
  414. bad:
  415. dm_tm_destroy(tm);
  416. dm_sm_destroy(sm);
  417. return r;
  418. }
  419. static int __begin_transaction(struct dm_pool_metadata *pmd)
  420. {
  421. int r;
  422. u32 features;
  423. struct thin_disk_superblock *disk_super;
  424. struct dm_block *sblock;
  425. /*
  426. * We re-read the superblock every time. Shouldn't need to do this
  427. * really.
  428. */
  429. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  430. &sb_validator, &sblock);
  431. if (r)
  432. return r;
  433. disk_super = dm_block_data(sblock);
  434. pmd->time = le32_to_cpu(disk_super->time);
  435. pmd->root = le64_to_cpu(disk_super->data_mapping_root);
  436. pmd->details_root = le64_to_cpu(disk_super->device_details_root);
  437. pmd->trans_id = le64_to_cpu(disk_super->trans_id);
  438. pmd->flags = le32_to_cpu(disk_super->flags);
  439. pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
  440. features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
  441. if (features) {
  442. DMERR("could not access metadata due to "
  443. "unsupported optional features (%lx).",
  444. (unsigned long)features);
  445. r = -EINVAL;
  446. goto out;
  447. }
  448. /*
  449. * Check for read-only metadata to skip the following RDWR checks.
  450. */
  451. if (get_disk_ro(pmd->bdev->bd_disk))
  452. goto out;
  453. features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
  454. if (features) {
  455. DMERR("could not access metadata RDWR due to "
  456. "unsupported optional features (%lx).",
  457. (unsigned long)features);
  458. r = -EINVAL;
  459. }
  460. out:
  461. dm_bm_unlock(sblock);
  462. return r;
  463. }
  464. static int __write_changed_details(struct dm_pool_metadata *pmd)
  465. {
  466. int r;
  467. struct dm_thin_device *td, *tmp;
  468. struct disk_device_details details;
  469. uint64_t key;
  470. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  471. if (!td->changed)
  472. continue;
  473. key = td->id;
  474. details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
  475. details.transaction_id = cpu_to_le64(td->transaction_id);
  476. details.creation_time = cpu_to_le32(td->creation_time);
  477. details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
  478. __dm_bless_for_disk(&details);
  479. r = dm_btree_insert(&pmd->details_info, pmd->details_root,
  480. &key, &details, &pmd->details_root);
  481. if (r)
  482. return r;
  483. if (td->open_count)
  484. td->changed = 0;
  485. else {
  486. list_del(&td->list);
  487. kfree(td);
  488. }
  489. }
  490. return 0;
  491. }
  492. static int __commit_transaction(struct dm_pool_metadata *pmd)
  493. {
  494. /*
  495. * FIXME: Associated pool should be made read-only on failure.
  496. */
  497. int r;
  498. size_t metadata_len, data_len;
  499. struct thin_disk_superblock *disk_super;
  500. struct dm_block *sblock;
  501. /*
  502. * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
  503. */
  504. BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
  505. r = __write_changed_details(pmd);
  506. if (r < 0)
  507. return r;
  508. r = dm_sm_commit(pmd->data_sm);
  509. if (r < 0)
  510. return r;
  511. r = dm_tm_pre_commit(pmd->tm);
  512. if (r < 0)
  513. return r;
  514. r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
  515. if (r < 0)
  516. return r;
  517. r = dm_sm_root_size(pmd->data_sm, &data_len);
  518. if (r < 0)
  519. return r;
  520. r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  521. &sb_validator, &sblock);
  522. if (r)
  523. return r;
  524. disk_super = dm_block_data(sblock);
  525. disk_super->time = cpu_to_le32(pmd->time);
  526. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  527. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  528. disk_super->trans_id = cpu_to_le64(pmd->trans_id);
  529. disk_super->flags = cpu_to_le32(pmd->flags);
  530. r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
  531. metadata_len);
  532. if (r < 0)
  533. goto out_locked;
  534. r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
  535. data_len);
  536. if (r < 0)
  537. goto out_locked;
  538. return dm_tm_commit(pmd->tm, sblock);
  539. out_locked:
  540. dm_bm_unlock(sblock);
  541. return r;
  542. }
  543. struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
  544. sector_t data_block_size)
  545. {
  546. int r;
  547. struct thin_disk_superblock *disk_super;
  548. struct dm_pool_metadata *pmd;
  549. sector_t bdev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
  550. struct dm_block_manager *bm;
  551. int create;
  552. struct dm_block *sblock;
  553. pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
  554. if (!pmd) {
  555. DMERR("could not allocate metadata struct");
  556. return ERR_PTR(-ENOMEM);
  557. }
  558. bm = dm_block_manager_create(bdev, THIN_METADATA_BLOCK_SIZE,
  559. THIN_METADATA_CACHE_SIZE,
  560. THIN_MAX_CONCURRENT_LOCKS);
  561. if (IS_ERR(bm)) {
  562. r = PTR_ERR(bm);
  563. DMERR("could not create block manager");
  564. kfree(pmd);
  565. return ERR_PTR(r);
  566. }
  567. r = superblock_all_zeroes(bm, &create);
  568. if (r) {
  569. dm_block_manager_destroy(bm);
  570. kfree(pmd);
  571. return ERR_PTR(r);
  572. }
  573. r = init_pmd(pmd, bm, 0, create);
  574. if (r) {
  575. dm_block_manager_destroy(bm);
  576. kfree(pmd);
  577. return ERR_PTR(r);
  578. }
  579. pmd->bdev = bdev;
  580. if (!create) {
  581. r = __begin_transaction(pmd);
  582. if (r < 0)
  583. goto bad;
  584. return pmd;
  585. }
  586. /*
  587. * Create.
  588. */
  589. r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  590. &sb_validator, &sblock);
  591. if (r)
  592. goto bad;
  593. if (bdev_size > THIN_METADATA_MAX_SECTORS)
  594. bdev_size = THIN_METADATA_MAX_SECTORS;
  595. disk_super = dm_block_data(sblock);
  596. disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
  597. disk_super->version = cpu_to_le32(THIN_VERSION);
  598. disk_super->time = 0;
  599. disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
  600. disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
  601. disk_super->data_block_size = cpu_to_le32(data_block_size);
  602. r = dm_bm_unlock(sblock);
  603. if (r < 0)
  604. goto bad;
  605. r = dm_btree_empty(&pmd->info, &pmd->root);
  606. if (r < 0)
  607. goto bad;
  608. r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
  609. if (r < 0) {
  610. DMERR("couldn't create devices root");
  611. goto bad;
  612. }
  613. pmd->flags = 0;
  614. r = dm_pool_commit_metadata(pmd);
  615. if (r < 0) {
  616. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  617. __func__, r);
  618. goto bad;
  619. }
  620. return pmd;
  621. bad:
  622. if (dm_pool_metadata_close(pmd) < 0)
  623. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  624. return ERR_PTR(r);
  625. }
  626. int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
  627. {
  628. int r;
  629. unsigned open_devices = 0;
  630. struct dm_thin_device *td, *tmp;
  631. down_read(&pmd->root_lock);
  632. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  633. if (td->open_count)
  634. open_devices++;
  635. else {
  636. list_del(&td->list);
  637. kfree(td);
  638. }
  639. }
  640. up_read(&pmd->root_lock);
  641. if (open_devices) {
  642. DMERR("attempt to close pmd when %u device(s) are still open",
  643. open_devices);
  644. return -EBUSY;
  645. }
  646. r = __commit_transaction(pmd);
  647. if (r < 0)
  648. DMWARN("%s: __commit_transaction() failed, error = %d",
  649. __func__, r);
  650. dm_tm_destroy(pmd->tm);
  651. dm_tm_destroy(pmd->nb_tm);
  652. dm_block_manager_destroy(pmd->bm);
  653. dm_sm_destroy(pmd->metadata_sm);
  654. dm_sm_destroy(pmd->data_sm);
  655. kfree(pmd);
  656. return 0;
  657. }
  658. /*
  659. * __open_device: Returns @td corresponding to device with id @dev,
  660. * creating it if @create is set and incrementing @td->open_count.
  661. * On failure, @td is undefined.
  662. */
  663. static int __open_device(struct dm_pool_metadata *pmd,
  664. dm_thin_id dev, int create,
  665. struct dm_thin_device **td)
  666. {
  667. int r, changed = 0;
  668. struct dm_thin_device *td2;
  669. uint64_t key = dev;
  670. struct disk_device_details details_le;
  671. /*
  672. * If the device is already open, return it.
  673. */
  674. list_for_each_entry(td2, &pmd->thin_devices, list)
  675. if (td2->id == dev) {
  676. /*
  677. * May not create an already-open device.
  678. */
  679. if (create)
  680. return -EEXIST;
  681. td2->open_count++;
  682. *td = td2;
  683. return 0;
  684. }
  685. /*
  686. * Check the device exists.
  687. */
  688. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  689. &key, &details_le);
  690. if (r) {
  691. if (r != -ENODATA || !create)
  692. return r;
  693. /*
  694. * Create new device.
  695. */
  696. changed = 1;
  697. details_le.mapped_blocks = 0;
  698. details_le.transaction_id = cpu_to_le64(pmd->trans_id);
  699. details_le.creation_time = cpu_to_le32(pmd->time);
  700. details_le.snapshotted_time = cpu_to_le32(pmd->time);
  701. }
  702. *td = kmalloc(sizeof(**td), GFP_NOIO);
  703. if (!*td)
  704. return -ENOMEM;
  705. (*td)->pmd = pmd;
  706. (*td)->id = dev;
  707. (*td)->open_count = 1;
  708. (*td)->changed = changed;
  709. (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
  710. (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
  711. (*td)->creation_time = le32_to_cpu(details_le.creation_time);
  712. (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
  713. list_add(&(*td)->list, &pmd->thin_devices);
  714. return 0;
  715. }
  716. static void __close_device(struct dm_thin_device *td)
  717. {
  718. --td->open_count;
  719. }
  720. static int __create_thin(struct dm_pool_metadata *pmd,
  721. dm_thin_id dev)
  722. {
  723. int r;
  724. dm_block_t dev_root;
  725. uint64_t key = dev;
  726. struct disk_device_details details_le;
  727. struct dm_thin_device *td;
  728. __le64 value;
  729. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  730. &key, &details_le);
  731. if (!r)
  732. return -EEXIST;
  733. /*
  734. * Create an empty btree for the mappings.
  735. */
  736. r = dm_btree_empty(&pmd->bl_info, &dev_root);
  737. if (r)
  738. return r;
  739. /*
  740. * Insert it into the main mapping tree.
  741. */
  742. value = cpu_to_le64(dev_root);
  743. __dm_bless_for_disk(&value);
  744. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  745. if (r) {
  746. dm_btree_del(&pmd->bl_info, dev_root);
  747. return r;
  748. }
  749. r = __open_device(pmd, dev, 1, &td);
  750. if (r) {
  751. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  752. dm_btree_del(&pmd->bl_info, dev_root);
  753. return r;
  754. }
  755. __close_device(td);
  756. return r;
  757. }
  758. int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
  759. {
  760. int r;
  761. down_write(&pmd->root_lock);
  762. r = __create_thin(pmd, dev);
  763. up_write(&pmd->root_lock);
  764. return r;
  765. }
  766. static int __set_snapshot_details(struct dm_pool_metadata *pmd,
  767. struct dm_thin_device *snap,
  768. dm_thin_id origin, uint32_t time)
  769. {
  770. int r;
  771. struct dm_thin_device *td;
  772. r = __open_device(pmd, origin, 0, &td);
  773. if (r)
  774. return r;
  775. td->changed = 1;
  776. td->snapshotted_time = time;
  777. snap->mapped_blocks = td->mapped_blocks;
  778. snap->snapshotted_time = time;
  779. __close_device(td);
  780. return 0;
  781. }
  782. static int __create_snap(struct dm_pool_metadata *pmd,
  783. dm_thin_id dev, dm_thin_id origin)
  784. {
  785. int r;
  786. dm_block_t origin_root;
  787. uint64_t key = origin, dev_key = dev;
  788. struct dm_thin_device *td;
  789. struct disk_device_details details_le;
  790. __le64 value;
  791. /* check this device is unused */
  792. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  793. &dev_key, &details_le);
  794. if (!r)
  795. return -EEXIST;
  796. /* find the mapping tree for the origin */
  797. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
  798. if (r)
  799. return r;
  800. origin_root = le64_to_cpu(value);
  801. /* clone the origin, an inc will do */
  802. dm_tm_inc(pmd->tm, origin_root);
  803. /* insert into the main mapping tree */
  804. value = cpu_to_le64(origin_root);
  805. __dm_bless_for_disk(&value);
  806. key = dev;
  807. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  808. if (r) {
  809. dm_tm_dec(pmd->tm, origin_root);
  810. return r;
  811. }
  812. pmd->time++;
  813. r = __open_device(pmd, dev, 1, &td);
  814. if (r)
  815. goto bad;
  816. r = __set_snapshot_details(pmd, td, origin, pmd->time);
  817. __close_device(td);
  818. if (r)
  819. goto bad;
  820. return 0;
  821. bad:
  822. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  823. dm_btree_remove(&pmd->details_info, pmd->details_root,
  824. &key, &pmd->details_root);
  825. return r;
  826. }
  827. int dm_pool_create_snap(struct dm_pool_metadata *pmd,
  828. dm_thin_id dev,
  829. dm_thin_id origin)
  830. {
  831. int r;
  832. down_write(&pmd->root_lock);
  833. r = __create_snap(pmd, dev, origin);
  834. up_write(&pmd->root_lock);
  835. return r;
  836. }
  837. static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
  838. {
  839. int r;
  840. uint64_t key = dev;
  841. struct dm_thin_device *td;
  842. /* TODO: failure should mark the transaction invalid */
  843. r = __open_device(pmd, dev, 0, &td);
  844. if (r)
  845. return r;
  846. if (td->open_count > 1) {
  847. __close_device(td);
  848. return -EBUSY;
  849. }
  850. list_del(&td->list);
  851. kfree(td);
  852. r = dm_btree_remove(&pmd->details_info, pmd->details_root,
  853. &key, &pmd->details_root);
  854. if (r)
  855. return r;
  856. r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  857. if (r)
  858. return r;
  859. return 0;
  860. }
  861. int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
  862. dm_thin_id dev)
  863. {
  864. int r;
  865. down_write(&pmd->root_lock);
  866. r = __delete_device(pmd, dev);
  867. up_write(&pmd->root_lock);
  868. return r;
  869. }
  870. int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
  871. uint64_t current_id,
  872. uint64_t new_id)
  873. {
  874. down_write(&pmd->root_lock);
  875. if (pmd->trans_id != current_id) {
  876. up_write(&pmd->root_lock);
  877. DMERR("mismatched transaction id");
  878. return -EINVAL;
  879. }
  880. pmd->trans_id = new_id;
  881. up_write(&pmd->root_lock);
  882. return 0;
  883. }
  884. int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
  885. uint64_t *result)
  886. {
  887. down_read(&pmd->root_lock);
  888. *result = pmd->trans_id;
  889. up_read(&pmd->root_lock);
  890. return 0;
  891. }
  892. static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
  893. {
  894. int r, inc;
  895. struct thin_disk_superblock *disk_super;
  896. struct dm_block *copy, *sblock;
  897. dm_block_t held_root;
  898. /*
  899. * Copy the superblock.
  900. */
  901. dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
  902. r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
  903. &sb_validator, &copy, &inc);
  904. if (r)
  905. return r;
  906. BUG_ON(!inc);
  907. held_root = dm_block_location(copy);
  908. disk_super = dm_block_data(copy);
  909. if (le64_to_cpu(disk_super->held_root)) {
  910. DMWARN("Pool metadata snapshot already exists: release this before taking another.");
  911. dm_tm_dec(pmd->tm, held_root);
  912. dm_tm_unlock(pmd->tm, copy);
  913. return -EBUSY;
  914. }
  915. /*
  916. * Wipe the spacemap since we're not publishing this.
  917. */
  918. memset(&disk_super->data_space_map_root, 0,
  919. sizeof(disk_super->data_space_map_root));
  920. memset(&disk_super->metadata_space_map_root, 0,
  921. sizeof(disk_super->metadata_space_map_root));
  922. /*
  923. * Increment the data structures that need to be preserved.
  924. */
  925. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
  926. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
  927. dm_tm_unlock(pmd->tm, copy);
  928. /*
  929. * Write the held root into the superblock.
  930. */
  931. r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  932. &sb_validator, &sblock);
  933. if (r) {
  934. dm_tm_dec(pmd->tm, held_root);
  935. return r;
  936. }
  937. disk_super = dm_block_data(sblock);
  938. disk_super->held_root = cpu_to_le64(held_root);
  939. dm_bm_unlock(sblock);
  940. return 0;
  941. }
  942. int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
  943. {
  944. int r;
  945. down_write(&pmd->root_lock);
  946. r = __reserve_metadata_snap(pmd);
  947. up_write(&pmd->root_lock);
  948. return r;
  949. }
  950. static int __release_metadata_snap(struct dm_pool_metadata *pmd)
  951. {
  952. int r;
  953. struct thin_disk_superblock *disk_super;
  954. struct dm_block *sblock, *copy;
  955. dm_block_t held_root;
  956. r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  957. &sb_validator, &sblock);
  958. if (r)
  959. return r;
  960. disk_super = dm_block_data(sblock);
  961. held_root = le64_to_cpu(disk_super->held_root);
  962. disk_super->held_root = cpu_to_le64(0);
  963. dm_bm_unlock(sblock);
  964. if (!held_root) {
  965. DMWARN("No pool metadata snapshot found: nothing to release.");
  966. return -EINVAL;
  967. }
  968. r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
  969. if (r)
  970. return r;
  971. disk_super = dm_block_data(copy);
  972. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
  973. dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
  974. dm_sm_dec_block(pmd->metadata_sm, held_root);
  975. return dm_tm_unlock(pmd->tm, copy);
  976. }
  977. int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
  978. {
  979. int r;
  980. down_write(&pmd->root_lock);
  981. r = __release_metadata_snap(pmd);
  982. up_write(&pmd->root_lock);
  983. return r;
  984. }
  985. static int __get_metadata_snap(struct dm_pool_metadata *pmd,
  986. dm_block_t *result)
  987. {
  988. int r;
  989. struct thin_disk_superblock *disk_super;
  990. struct dm_block *sblock;
  991. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  992. &sb_validator, &sblock);
  993. if (r)
  994. return r;
  995. disk_super = dm_block_data(sblock);
  996. *result = le64_to_cpu(disk_super->held_root);
  997. return dm_bm_unlock(sblock);
  998. }
  999. int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
  1000. dm_block_t *result)
  1001. {
  1002. int r;
  1003. down_read(&pmd->root_lock);
  1004. r = __get_metadata_snap(pmd, result);
  1005. up_read(&pmd->root_lock);
  1006. return r;
  1007. }
  1008. int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
  1009. struct dm_thin_device **td)
  1010. {
  1011. int r;
  1012. down_write(&pmd->root_lock);
  1013. r = __open_device(pmd, dev, 0, td);
  1014. up_write(&pmd->root_lock);
  1015. return r;
  1016. }
  1017. int dm_pool_close_thin_device(struct dm_thin_device *td)
  1018. {
  1019. down_write(&td->pmd->root_lock);
  1020. __close_device(td);
  1021. up_write(&td->pmd->root_lock);
  1022. return 0;
  1023. }
  1024. dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
  1025. {
  1026. return td->id;
  1027. }
  1028. static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
  1029. {
  1030. return td->snapshotted_time > time;
  1031. }
  1032. int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
  1033. int can_block, struct dm_thin_lookup_result *result)
  1034. {
  1035. int r;
  1036. uint64_t block_time = 0;
  1037. __le64 value;
  1038. struct dm_pool_metadata *pmd = td->pmd;
  1039. dm_block_t keys[2] = { td->id, block };
  1040. if (can_block) {
  1041. down_read(&pmd->root_lock);
  1042. r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
  1043. if (!r)
  1044. block_time = le64_to_cpu(value);
  1045. up_read(&pmd->root_lock);
  1046. } else if (down_read_trylock(&pmd->root_lock)) {
  1047. r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
  1048. if (!r)
  1049. block_time = le64_to_cpu(value);
  1050. up_read(&pmd->root_lock);
  1051. } else
  1052. return -EWOULDBLOCK;
  1053. if (!r) {
  1054. dm_block_t exception_block;
  1055. uint32_t exception_time;
  1056. unpack_block_time(block_time, &exception_block,
  1057. &exception_time);
  1058. result->block = exception_block;
  1059. result->shared = __snapshotted_since(td, exception_time);
  1060. }
  1061. return r;
  1062. }
  1063. static int __insert(struct dm_thin_device *td, dm_block_t block,
  1064. dm_block_t data_block)
  1065. {
  1066. int r, inserted;
  1067. __le64 value;
  1068. struct dm_pool_metadata *pmd = td->pmd;
  1069. dm_block_t keys[2] = { td->id, block };
  1070. value = cpu_to_le64(pack_block_time(data_block, pmd->time));
  1071. __dm_bless_for_disk(&value);
  1072. r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
  1073. &pmd->root, &inserted);
  1074. if (r)
  1075. return r;
  1076. if (inserted) {
  1077. td->mapped_blocks++;
  1078. td->changed = 1;
  1079. }
  1080. return 0;
  1081. }
  1082. int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
  1083. dm_block_t data_block)
  1084. {
  1085. int r;
  1086. down_write(&td->pmd->root_lock);
  1087. r = __insert(td, block, data_block);
  1088. up_write(&td->pmd->root_lock);
  1089. return r;
  1090. }
  1091. static int __remove(struct dm_thin_device *td, dm_block_t block)
  1092. {
  1093. int r;
  1094. struct dm_pool_metadata *pmd = td->pmd;
  1095. dm_block_t keys[2] = { td->id, block };
  1096. r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
  1097. if (r)
  1098. return r;
  1099. td->mapped_blocks--;
  1100. td->changed = 1;
  1101. return 0;
  1102. }
  1103. int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
  1104. {
  1105. int r;
  1106. down_write(&td->pmd->root_lock);
  1107. r = __remove(td, block);
  1108. up_write(&td->pmd->root_lock);
  1109. return r;
  1110. }
  1111. int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
  1112. {
  1113. int r;
  1114. down_write(&pmd->root_lock);
  1115. r = dm_sm_new_block(pmd->data_sm, result);
  1116. up_write(&pmd->root_lock);
  1117. return r;
  1118. }
  1119. int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
  1120. {
  1121. int r;
  1122. down_write(&pmd->root_lock);
  1123. r = __commit_transaction(pmd);
  1124. if (r <= 0)
  1125. goto out;
  1126. /*
  1127. * Open the next transaction.
  1128. */
  1129. r = __begin_transaction(pmd);
  1130. out:
  1131. up_write(&pmd->root_lock);
  1132. return r;
  1133. }
  1134. int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
  1135. {
  1136. int r;
  1137. down_read(&pmd->root_lock);
  1138. r = dm_sm_get_nr_free(pmd->data_sm, result);
  1139. up_read(&pmd->root_lock);
  1140. return r;
  1141. }
  1142. int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
  1143. dm_block_t *result)
  1144. {
  1145. int r;
  1146. down_read(&pmd->root_lock);
  1147. r = dm_sm_get_nr_free(pmd->metadata_sm, result);
  1148. up_read(&pmd->root_lock);
  1149. return r;
  1150. }
  1151. int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
  1152. dm_block_t *result)
  1153. {
  1154. int r;
  1155. down_read(&pmd->root_lock);
  1156. r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
  1157. up_read(&pmd->root_lock);
  1158. return r;
  1159. }
  1160. int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
  1161. {
  1162. down_read(&pmd->root_lock);
  1163. *result = pmd->data_block_size;
  1164. up_read(&pmd->root_lock);
  1165. return 0;
  1166. }
  1167. int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
  1168. {
  1169. int r;
  1170. down_read(&pmd->root_lock);
  1171. r = dm_sm_get_nr_blocks(pmd->data_sm, result);
  1172. up_read(&pmd->root_lock);
  1173. return r;
  1174. }
  1175. int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
  1176. {
  1177. struct dm_pool_metadata *pmd = td->pmd;
  1178. down_read(&pmd->root_lock);
  1179. *result = td->mapped_blocks;
  1180. up_read(&pmd->root_lock);
  1181. return 0;
  1182. }
  1183. static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
  1184. {
  1185. int r;
  1186. __le64 value_le;
  1187. dm_block_t thin_root;
  1188. struct dm_pool_metadata *pmd = td->pmd;
  1189. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
  1190. if (r)
  1191. return r;
  1192. thin_root = le64_to_cpu(value_le);
  1193. return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
  1194. }
  1195. int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
  1196. dm_block_t *result)
  1197. {
  1198. int r;
  1199. struct dm_pool_metadata *pmd = td->pmd;
  1200. down_read(&pmd->root_lock);
  1201. r = __highest_block(td, result);
  1202. up_read(&pmd->root_lock);
  1203. return r;
  1204. }
  1205. static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1206. {
  1207. int r;
  1208. dm_block_t old_count;
  1209. r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
  1210. if (r)
  1211. return r;
  1212. if (new_count == old_count)
  1213. return 0;
  1214. if (new_count < old_count) {
  1215. DMERR("cannot reduce size of data device");
  1216. return -EINVAL;
  1217. }
  1218. return dm_sm_extend(pmd->data_sm, new_count - old_count);
  1219. }
  1220. int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1221. {
  1222. int r;
  1223. down_write(&pmd->root_lock);
  1224. r = __resize_data_dev(pmd, new_count);
  1225. up_write(&pmd->root_lock);
  1226. return r;
  1227. }