smpboot.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922
  1. /*
  2. * SMP boot-related support
  3. *
  4. * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Copyright (C) 2001, 2004-2005 Intel Corp
  7. * Rohit Seth <rohit.seth@intel.com>
  8. * Suresh Siddha <suresh.b.siddha@intel.com>
  9. * Gordon Jin <gordon.jin@intel.com>
  10. * Ashok Raj <ashok.raj@intel.com>
  11. *
  12. * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
  13. * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
  14. * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
  15. * smp_boot_cpus()/smp_commence() is replaced by
  16. * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
  17. * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  18. * 04/12/26 Jin Gordon <gordon.jin@intel.com>
  19. * 04/12/26 Rohit Seth <rohit.seth@intel.com>
  20. * Add multi-threading and multi-core detection
  21. * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
  22. * Setup cpu_sibling_map and cpu_core_map
  23. */
  24. #include <linux/module.h>
  25. #include <linux/acpi.h>
  26. #include <linux/bootmem.h>
  27. #include <linux/cpu.h>
  28. #include <linux/delay.h>
  29. #include <linux/init.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/irq.h>
  32. #include <linux/kernel.h>
  33. #include <linux/kernel_stat.h>
  34. #include <linux/mm.h>
  35. #include <linux/notifier.h>
  36. #include <linux/smp.h>
  37. #include <linux/smp_lock.h>
  38. #include <linux/spinlock.h>
  39. #include <linux/efi.h>
  40. #include <linux/percpu.h>
  41. #include <linux/bitops.h>
  42. #include <asm/atomic.h>
  43. #include <asm/cache.h>
  44. #include <asm/current.h>
  45. #include <asm/delay.h>
  46. #include <asm/ia32.h>
  47. #include <asm/io.h>
  48. #include <asm/irq.h>
  49. #include <asm/machvec.h>
  50. #include <asm/mca.h>
  51. #include <asm/page.h>
  52. #include <asm/pgalloc.h>
  53. #include <asm/pgtable.h>
  54. #include <asm/processor.h>
  55. #include <asm/ptrace.h>
  56. #include <asm/sal.h>
  57. #include <asm/system.h>
  58. #include <asm/tlbflush.h>
  59. #include <asm/unistd.h>
  60. #define SMP_DEBUG 0
  61. #if SMP_DEBUG
  62. #define Dprintk(x...) printk(x)
  63. #else
  64. #define Dprintk(x...)
  65. #endif
  66. #ifdef CONFIG_HOTPLUG_CPU
  67. #ifdef CONFIG_PERMIT_BSP_REMOVE
  68. #define bsp_remove_ok 1
  69. #else
  70. #define bsp_remove_ok 0
  71. #endif
  72. /*
  73. * Store all idle threads, this can be reused instead of creating
  74. * a new thread. Also avoids complicated thread destroy functionality
  75. * for idle threads.
  76. */
  77. struct task_struct *idle_thread_array[NR_CPUS];
  78. /*
  79. * Global array allocated for NR_CPUS at boot time
  80. */
  81. struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
  82. /*
  83. * start_ap in head.S uses this to store current booting cpu
  84. * info.
  85. */
  86. struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
  87. #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
  88. #define get_idle_for_cpu(x) (idle_thread_array[(x)])
  89. #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
  90. #else
  91. #define get_idle_for_cpu(x) (NULL)
  92. #define set_idle_for_cpu(x,p)
  93. #define set_brendez_area(x)
  94. #endif
  95. /*
  96. * ITC synchronization related stuff:
  97. */
  98. #define MASTER (0)
  99. #define SLAVE (SMP_CACHE_BYTES/8)
  100. #define NUM_ROUNDS 64 /* magic value */
  101. #define NUM_ITERS 5 /* likewise */
  102. static DEFINE_SPINLOCK(itc_sync_lock);
  103. static volatile unsigned long go[SLAVE + 1];
  104. #define DEBUG_ITC_SYNC 0
  105. extern void __devinit calibrate_delay (void);
  106. extern void start_ap (void);
  107. extern unsigned long ia64_iobase;
  108. struct task_struct *task_for_booting_cpu;
  109. /*
  110. * State for each CPU
  111. */
  112. DEFINE_PER_CPU(int, cpu_state);
  113. /* Bitmasks of currently online, and possible CPUs */
  114. cpumask_t cpu_online_map;
  115. EXPORT_SYMBOL(cpu_online_map);
  116. cpumask_t cpu_possible_map = CPU_MASK_NONE;
  117. EXPORT_SYMBOL(cpu_possible_map);
  118. cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
  119. cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned;
  120. int smp_num_siblings = 1;
  121. int smp_num_cpucores = 1;
  122. /* which logical CPU number maps to which CPU (physical APIC ID) */
  123. volatile int ia64_cpu_to_sapicid[NR_CPUS];
  124. EXPORT_SYMBOL(ia64_cpu_to_sapicid);
  125. static volatile cpumask_t cpu_callin_map;
  126. struct smp_boot_data smp_boot_data __initdata;
  127. unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
  128. char __initdata no_int_routing;
  129. unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
  130. #ifdef CONFIG_FORCE_CPEI_RETARGET
  131. #define CPEI_OVERRIDE_DEFAULT (1)
  132. #else
  133. #define CPEI_OVERRIDE_DEFAULT (0)
  134. #endif
  135. unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
  136. static int __init
  137. cmdl_force_cpei(char *str)
  138. {
  139. int value=0;
  140. get_option (&str, &value);
  141. force_cpei_retarget = value;
  142. return 1;
  143. }
  144. __setup("force_cpei=", cmdl_force_cpei);
  145. static int __init
  146. nointroute (char *str)
  147. {
  148. no_int_routing = 1;
  149. printk ("no_int_routing on\n");
  150. return 1;
  151. }
  152. __setup("nointroute", nointroute);
  153. static void fix_b0_for_bsp(void)
  154. {
  155. #ifdef CONFIG_HOTPLUG_CPU
  156. int cpuid;
  157. static int fix_bsp_b0 = 1;
  158. cpuid = smp_processor_id();
  159. /*
  160. * Cache the b0 value on the first AP that comes up
  161. */
  162. if (!(fix_bsp_b0 && cpuid))
  163. return;
  164. sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
  165. printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
  166. fix_bsp_b0 = 0;
  167. #endif
  168. }
  169. void
  170. sync_master (void *arg)
  171. {
  172. unsigned long flags, i;
  173. go[MASTER] = 0;
  174. local_irq_save(flags);
  175. {
  176. for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
  177. while (!go[MASTER])
  178. cpu_relax();
  179. go[MASTER] = 0;
  180. go[SLAVE] = ia64_get_itc();
  181. }
  182. }
  183. local_irq_restore(flags);
  184. }
  185. /*
  186. * Return the number of cycles by which our itc differs from the itc on the master
  187. * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
  188. * negative that it is behind.
  189. */
  190. static inline long
  191. get_delta (long *rt, long *master)
  192. {
  193. unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
  194. unsigned long tcenter, t0, t1, tm;
  195. long i;
  196. for (i = 0; i < NUM_ITERS; ++i) {
  197. t0 = ia64_get_itc();
  198. go[MASTER] = 1;
  199. while (!(tm = go[SLAVE]))
  200. cpu_relax();
  201. go[SLAVE] = 0;
  202. t1 = ia64_get_itc();
  203. if (t1 - t0 < best_t1 - best_t0)
  204. best_t0 = t0, best_t1 = t1, best_tm = tm;
  205. }
  206. *rt = best_t1 - best_t0;
  207. *master = best_tm - best_t0;
  208. /* average best_t0 and best_t1 without overflow: */
  209. tcenter = (best_t0/2 + best_t1/2);
  210. if (best_t0 % 2 + best_t1 % 2 == 2)
  211. ++tcenter;
  212. return tcenter - best_tm;
  213. }
  214. /*
  215. * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
  216. * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
  217. * unaccounted-for errors (such as getting a machine check in the middle of a calibration
  218. * step). The basic idea is for the slave to ask the master what itc value it has and to
  219. * read its own itc before and after the master responds. Each iteration gives us three
  220. * timestamps:
  221. *
  222. * slave master
  223. *
  224. * t0 ---\
  225. * ---\
  226. * --->
  227. * tm
  228. * /---
  229. * /---
  230. * t1 <---
  231. *
  232. *
  233. * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
  234. * and t1. If we achieve this, the clocks are synchronized provided the interconnect
  235. * between the slave and the master is symmetric. Even if the interconnect were
  236. * asymmetric, we would still know that the synchronization error is smaller than the
  237. * roundtrip latency (t0 - t1).
  238. *
  239. * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
  240. * within one or two cycles. However, we can only *guarantee* that the synchronization is
  241. * accurate to within a round-trip time, which is typically in the range of several
  242. * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
  243. * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
  244. * than half a micro second or so.
  245. */
  246. void
  247. ia64_sync_itc (unsigned int master)
  248. {
  249. long i, delta, adj, adjust_latency = 0, done = 0;
  250. unsigned long flags, rt, master_time_stamp, bound;
  251. #if DEBUG_ITC_SYNC
  252. struct {
  253. long rt; /* roundtrip time */
  254. long master; /* master's timestamp */
  255. long diff; /* difference between midpoint and master's timestamp */
  256. long lat; /* estimate of itc adjustment latency */
  257. } t[NUM_ROUNDS];
  258. #endif
  259. /*
  260. * Make sure local timer ticks are disabled while we sync. If
  261. * they were enabled, we'd have to worry about nasty issues
  262. * like setting the ITC ahead of (or a long time before) the
  263. * next scheduled tick.
  264. */
  265. BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
  266. go[MASTER] = 1;
  267. if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
  268. printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
  269. return;
  270. }
  271. while (go[MASTER])
  272. cpu_relax(); /* wait for master to be ready */
  273. spin_lock_irqsave(&itc_sync_lock, flags);
  274. {
  275. for (i = 0; i < NUM_ROUNDS; ++i) {
  276. delta = get_delta(&rt, &master_time_stamp);
  277. if (delta == 0) {
  278. done = 1; /* let's lock on to this... */
  279. bound = rt;
  280. }
  281. if (!done) {
  282. if (i > 0) {
  283. adjust_latency += -delta;
  284. adj = -delta + adjust_latency/4;
  285. } else
  286. adj = -delta;
  287. ia64_set_itc(ia64_get_itc() + adj);
  288. }
  289. #if DEBUG_ITC_SYNC
  290. t[i].rt = rt;
  291. t[i].master = master_time_stamp;
  292. t[i].diff = delta;
  293. t[i].lat = adjust_latency/4;
  294. #endif
  295. }
  296. }
  297. spin_unlock_irqrestore(&itc_sync_lock, flags);
  298. #if DEBUG_ITC_SYNC
  299. for (i = 0; i < NUM_ROUNDS; ++i)
  300. printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
  301. t[i].rt, t[i].master, t[i].diff, t[i].lat);
  302. #endif
  303. printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
  304. "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
  305. }
  306. /*
  307. * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
  308. */
  309. static inline void __devinit
  310. smp_setup_percpu_timer (void)
  311. {
  312. }
  313. static void __devinit
  314. smp_callin (void)
  315. {
  316. int cpuid, phys_id, itc_master;
  317. struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
  318. extern void ia64_init_itm(void);
  319. extern volatile int time_keeper_id;
  320. #ifdef CONFIG_PERFMON
  321. extern void pfm_init_percpu(void);
  322. #endif
  323. cpuid = smp_processor_id();
  324. phys_id = hard_smp_processor_id();
  325. itc_master = time_keeper_id;
  326. if (cpu_online(cpuid)) {
  327. printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
  328. phys_id, cpuid);
  329. BUG();
  330. }
  331. fix_b0_for_bsp();
  332. lock_ipi_calllock();
  333. cpu_set(cpuid, cpu_online_map);
  334. unlock_ipi_calllock();
  335. per_cpu(cpu_state, cpuid) = CPU_ONLINE;
  336. smp_setup_percpu_timer();
  337. ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
  338. #ifdef CONFIG_PERFMON
  339. pfm_init_percpu();
  340. #endif
  341. local_irq_enable();
  342. if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
  343. /*
  344. * Synchronize the ITC with the BP. Need to do this after irqs are
  345. * enabled because ia64_sync_itc() calls smp_call_function_single(), which
  346. * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
  347. * local_bh_enable(), which bugs out if irqs are not enabled...
  348. */
  349. Dprintk("Going to syncup ITC with ITC Master.\n");
  350. ia64_sync_itc(itc_master);
  351. }
  352. /*
  353. * Get our bogomips.
  354. */
  355. ia64_init_itm();
  356. /*
  357. * Delay calibration can be skipped if new processor is identical to the
  358. * previous processor.
  359. */
  360. last_cpuinfo = cpu_data(cpuid - 1);
  361. this_cpuinfo = local_cpu_data;
  362. if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
  363. last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
  364. last_cpuinfo->features != this_cpuinfo->features ||
  365. last_cpuinfo->revision != this_cpuinfo->revision ||
  366. last_cpuinfo->family != this_cpuinfo->family ||
  367. last_cpuinfo->archrev != this_cpuinfo->archrev ||
  368. last_cpuinfo->model != this_cpuinfo->model)
  369. calibrate_delay();
  370. local_cpu_data->loops_per_jiffy = loops_per_jiffy;
  371. #ifdef CONFIG_IA32_SUPPORT
  372. ia32_gdt_init();
  373. #endif
  374. /*
  375. * Allow the master to continue.
  376. */
  377. cpu_set(cpuid, cpu_callin_map);
  378. Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
  379. }
  380. /*
  381. * Activate a secondary processor. head.S calls this.
  382. */
  383. int __devinit
  384. start_secondary (void *unused)
  385. {
  386. /* Early console may use I/O ports */
  387. ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
  388. Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
  389. efi_map_pal_code();
  390. cpu_init();
  391. preempt_disable();
  392. smp_callin();
  393. cpu_idle();
  394. return 0;
  395. }
  396. struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
  397. {
  398. return NULL;
  399. }
  400. struct create_idle {
  401. struct work_struct work;
  402. struct task_struct *idle;
  403. struct completion done;
  404. int cpu;
  405. };
  406. void
  407. do_fork_idle(struct work_struct *work)
  408. {
  409. struct create_idle *c_idle =
  410. container_of(work, struct create_idle, work);
  411. c_idle->idle = fork_idle(c_idle->cpu);
  412. complete(&c_idle->done);
  413. }
  414. static int __devinit
  415. do_boot_cpu (int sapicid, int cpu)
  416. {
  417. int timeout;
  418. struct create_idle c_idle = {
  419. .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
  420. .cpu = cpu,
  421. .done = COMPLETION_INITIALIZER(c_idle.done),
  422. };
  423. c_idle.idle = get_idle_for_cpu(cpu);
  424. if (c_idle.idle) {
  425. init_idle(c_idle.idle, cpu);
  426. goto do_rest;
  427. }
  428. /*
  429. * We can't use kernel_thread since we must avoid to reschedule the child.
  430. */
  431. if (!keventd_up() || current_is_keventd())
  432. c_idle.work.func(&c_idle.work);
  433. else {
  434. schedule_work(&c_idle.work);
  435. wait_for_completion(&c_idle.done);
  436. }
  437. if (IS_ERR(c_idle.idle))
  438. panic("failed fork for CPU %d", cpu);
  439. set_idle_for_cpu(cpu, c_idle.idle);
  440. do_rest:
  441. task_for_booting_cpu = c_idle.idle;
  442. Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
  443. set_brendez_area(cpu);
  444. platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
  445. /*
  446. * Wait 10s total for the AP to start
  447. */
  448. Dprintk("Waiting on callin_map ...");
  449. for (timeout = 0; timeout < 100000; timeout++) {
  450. if (cpu_isset(cpu, cpu_callin_map))
  451. break; /* It has booted */
  452. udelay(100);
  453. }
  454. Dprintk("\n");
  455. if (!cpu_isset(cpu, cpu_callin_map)) {
  456. printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
  457. ia64_cpu_to_sapicid[cpu] = -1;
  458. cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
  459. return -EINVAL;
  460. }
  461. return 0;
  462. }
  463. static int __init
  464. decay (char *str)
  465. {
  466. int ticks;
  467. get_option (&str, &ticks);
  468. return 1;
  469. }
  470. __setup("decay=", decay);
  471. /*
  472. * Initialize the logical CPU number to SAPICID mapping
  473. */
  474. void __init
  475. smp_build_cpu_map (void)
  476. {
  477. int sapicid, cpu, i;
  478. int boot_cpu_id = hard_smp_processor_id();
  479. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  480. ia64_cpu_to_sapicid[cpu] = -1;
  481. }
  482. ia64_cpu_to_sapicid[0] = boot_cpu_id;
  483. cpus_clear(cpu_present_map);
  484. cpu_set(0, cpu_present_map);
  485. cpu_set(0, cpu_possible_map);
  486. for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
  487. sapicid = smp_boot_data.cpu_phys_id[i];
  488. if (sapicid == boot_cpu_id)
  489. continue;
  490. cpu_set(cpu, cpu_present_map);
  491. cpu_set(cpu, cpu_possible_map);
  492. ia64_cpu_to_sapicid[cpu] = sapicid;
  493. cpu++;
  494. }
  495. }
  496. /*
  497. * Cycle through the APs sending Wakeup IPIs to boot each.
  498. */
  499. void __init
  500. smp_prepare_cpus (unsigned int max_cpus)
  501. {
  502. int boot_cpu_id = hard_smp_processor_id();
  503. /*
  504. * Initialize the per-CPU profiling counter/multiplier
  505. */
  506. smp_setup_percpu_timer();
  507. /*
  508. * We have the boot CPU online for sure.
  509. */
  510. cpu_set(0, cpu_online_map);
  511. cpu_set(0, cpu_callin_map);
  512. local_cpu_data->loops_per_jiffy = loops_per_jiffy;
  513. ia64_cpu_to_sapicid[0] = boot_cpu_id;
  514. printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
  515. current_thread_info()->cpu = 0;
  516. /*
  517. * If SMP should be disabled, then really disable it!
  518. */
  519. if (!max_cpus) {
  520. printk(KERN_INFO "SMP mode deactivated.\n");
  521. cpus_clear(cpu_online_map);
  522. cpus_clear(cpu_present_map);
  523. cpus_clear(cpu_possible_map);
  524. cpu_set(0, cpu_online_map);
  525. cpu_set(0, cpu_present_map);
  526. cpu_set(0, cpu_possible_map);
  527. return;
  528. }
  529. }
  530. void __devinit smp_prepare_boot_cpu(void)
  531. {
  532. cpu_set(smp_processor_id(), cpu_online_map);
  533. cpu_set(smp_processor_id(), cpu_callin_map);
  534. per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
  535. }
  536. #ifdef CONFIG_HOTPLUG_CPU
  537. static inline void
  538. clear_cpu_sibling_map(int cpu)
  539. {
  540. int i;
  541. for_each_cpu_mask(i, cpu_sibling_map[cpu])
  542. cpu_clear(cpu, cpu_sibling_map[i]);
  543. for_each_cpu_mask(i, cpu_core_map[cpu])
  544. cpu_clear(cpu, cpu_core_map[i]);
  545. cpu_sibling_map[cpu] = cpu_core_map[cpu] = CPU_MASK_NONE;
  546. }
  547. static void
  548. remove_siblinginfo(int cpu)
  549. {
  550. int last = 0;
  551. if (cpu_data(cpu)->threads_per_core == 1 &&
  552. cpu_data(cpu)->cores_per_socket == 1) {
  553. cpu_clear(cpu, cpu_core_map[cpu]);
  554. cpu_clear(cpu, cpu_sibling_map[cpu]);
  555. return;
  556. }
  557. last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
  558. /* remove it from all sibling map's */
  559. clear_cpu_sibling_map(cpu);
  560. }
  561. extern void fixup_irqs(void);
  562. int migrate_platform_irqs(unsigned int cpu)
  563. {
  564. int new_cpei_cpu;
  565. irq_desc_t *desc = NULL;
  566. cpumask_t mask;
  567. int retval = 0;
  568. /*
  569. * dont permit CPEI target to removed.
  570. */
  571. if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
  572. printk ("CPU (%d) is CPEI Target\n", cpu);
  573. if (can_cpei_retarget()) {
  574. /*
  575. * Now re-target the CPEI to a different processor
  576. */
  577. new_cpei_cpu = any_online_cpu(cpu_online_map);
  578. mask = cpumask_of_cpu(new_cpei_cpu);
  579. set_cpei_target_cpu(new_cpei_cpu);
  580. desc = irq_desc + ia64_cpe_irq;
  581. /*
  582. * Switch for now, immediatly, we need to do fake intr
  583. * as other interrupts, but need to study CPEI behaviour with
  584. * polling before making changes.
  585. */
  586. if (desc) {
  587. desc->chip->disable(ia64_cpe_irq);
  588. desc->chip->set_affinity(ia64_cpe_irq, mask);
  589. desc->chip->enable(ia64_cpe_irq);
  590. printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu);
  591. }
  592. }
  593. if (!desc) {
  594. printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
  595. retval = -EBUSY;
  596. }
  597. }
  598. return retval;
  599. }
  600. /* must be called with cpucontrol mutex held */
  601. int __cpu_disable(void)
  602. {
  603. int cpu = smp_processor_id();
  604. /*
  605. * dont permit boot processor for now
  606. */
  607. if (cpu == 0 && !bsp_remove_ok) {
  608. printk ("Your platform does not support removal of BSP\n");
  609. return (-EBUSY);
  610. }
  611. cpu_clear(cpu, cpu_online_map);
  612. if (migrate_platform_irqs(cpu)) {
  613. cpu_set(cpu, cpu_online_map);
  614. return (-EBUSY);
  615. }
  616. remove_siblinginfo(cpu);
  617. cpu_clear(cpu, cpu_online_map);
  618. fixup_irqs();
  619. local_flush_tlb_all();
  620. cpu_clear(cpu, cpu_callin_map);
  621. return 0;
  622. }
  623. void __cpu_die(unsigned int cpu)
  624. {
  625. unsigned int i;
  626. for (i = 0; i < 100; i++) {
  627. /* They ack this in play_dead by setting CPU_DEAD */
  628. if (per_cpu(cpu_state, cpu) == CPU_DEAD)
  629. {
  630. printk ("CPU %d is now offline\n", cpu);
  631. return;
  632. }
  633. msleep(100);
  634. }
  635. printk(KERN_ERR "CPU %u didn't die...\n", cpu);
  636. }
  637. #else /* !CONFIG_HOTPLUG_CPU */
  638. int __cpu_disable(void)
  639. {
  640. return -ENOSYS;
  641. }
  642. void __cpu_die(unsigned int cpu)
  643. {
  644. /* We said "no" in __cpu_disable */
  645. BUG();
  646. }
  647. #endif /* CONFIG_HOTPLUG_CPU */
  648. void
  649. smp_cpus_done (unsigned int dummy)
  650. {
  651. int cpu;
  652. unsigned long bogosum = 0;
  653. /*
  654. * Allow the user to impress friends.
  655. */
  656. for_each_online_cpu(cpu) {
  657. bogosum += cpu_data(cpu)->loops_per_jiffy;
  658. }
  659. printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
  660. (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
  661. }
  662. static inline void __devinit
  663. set_cpu_sibling_map(int cpu)
  664. {
  665. int i;
  666. for_each_online_cpu(i) {
  667. if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
  668. cpu_set(i, cpu_core_map[cpu]);
  669. cpu_set(cpu, cpu_core_map[i]);
  670. if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
  671. cpu_set(i, cpu_sibling_map[cpu]);
  672. cpu_set(cpu, cpu_sibling_map[i]);
  673. }
  674. }
  675. }
  676. }
  677. int __devinit
  678. __cpu_up (unsigned int cpu)
  679. {
  680. int ret;
  681. int sapicid;
  682. sapicid = ia64_cpu_to_sapicid[cpu];
  683. if (sapicid == -1)
  684. return -EINVAL;
  685. /*
  686. * Already booted cpu? not valid anymore since we dont
  687. * do idle loop tightspin anymore.
  688. */
  689. if (cpu_isset(cpu, cpu_callin_map))
  690. return -EINVAL;
  691. per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
  692. /* Processor goes to start_secondary(), sets online flag */
  693. ret = do_boot_cpu(sapicid, cpu);
  694. if (ret < 0)
  695. return ret;
  696. if (cpu_data(cpu)->threads_per_core == 1 &&
  697. cpu_data(cpu)->cores_per_socket == 1) {
  698. cpu_set(cpu, cpu_sibling_map[cpu]);
  699. cpu_set(cpu, cpu_core_map[cpu]);
  700. return 0;
  701. }
  702. set_cpu_sibling_map(cpu);
  703. return 0;
  704. }
  705. /*
  706. * Assume that CPU's have been discovered by some platform-dependent interface. For
  707. * SoftSDV/Lion, that would be ACPI.
  708. *
  709. * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
  710. */
  711. void __init
  712. init_smp_config(void)
  713. {
  714. struct fptr {
  715. unsigned long fp;
  716. unsigned long gp;
  717. } *ap_startup;
  718. long sal_ret;
  719. /* Tell SAL where to drop the AP's. */
  720. ap_startup = (struct fptr *) start_ap;
  721. sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
  722. ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
  723. if (sal_ret < 0)
  724. printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
  725. ia64_sal_strerror(sal_ret));
  726. }
  727. /*
  728. * identify_siblings(cpu) gets called from identify_cpu. This populates the
  729. * information related to logical execution units in per_cpu_data structure.
  730. */
  731. void __devinit
  732. identify_siblings(struct cpuinfo_ia64 *c)
  733. {
  734. s64 status;
  735. u16 pltid;
  736. pal_logical_to_physical_t info;
  737. if (smp_num_cpucores == 1 && smp_num_siblings == 1)
  738. return;
  739. if ((status = ia64_pal_logical_to_phys(-1, &info)) != PAL_STATUS_SUCCESS) {
  740. printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
  741. status);
  742. return;
  743. }
  744. if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) {
  745. printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status);
  746. return;
  747. }
  748. c->socket_id = (pltid << 8) | info.overview_ppid;
  749. c->cores_per_socket = info.overview_cpp;
  750. c->threads_per_core = info.overview_tpc;
  751. c->num_log = info.overview_num_log;
  752. c->core_id = info.log1_cid;
  753. c->thread_id = info.log1_tid;
  754. }
  755. /*
  756. * returns non zero, if multi-threading is enabled
  757. * on at least one physical package. Due to hotplug cpu
  758. * and (maxcpus=), all threads may not necessarily be enabled
  759. * even though the processor supports multi-threading.
  760. */
  761. int is_multithreading_enabled(void)
  762. {
  763. int i, j;
  764. for_each_present_cpu(i) {
  765. for_each_present_cpu(j) {
  766. if (j == i)
  767. continue;
  768. if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
  769. if (cpu_data(j)->core_id == cpu_data(i)->core_id)
  770. return 1;
  771. }
  772. }
  773. }
  774. return 0;
  775. }
  776. EXPORT_SYMBOL_GPL(is_multithreading_enabled);