skbuff.h 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/compiler.h>
  17. #include <linux/time.h>
  18. #include <linux/cache.h>
  19. #include <asm/atomic.h>
  20. #include <asm/types.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/net.h>
  23. #include <linux/textsearch.h>
  24. #include <net/checksum.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/dmaengine.h>
  27. #include <linux/hrtimer.h>
  28. /* Don't change this without changing skb_csum_unnecessary! */
  29. #define CHECKSUM_NONE 0
  30. #define CHECKSUM_UNNECESSARY 1
  31. #define CHECKSUM_COMPLETE 2
  32. #define CHECKSUM_PARTIAL 3
  33. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  34. ~(SMP_CACHE_BYTES - 1))
  35. #define SKB_WITH_OVERHEAD(X) \
  36. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  37. #define SKB_MAX_ORDER(X, ORDER) \
  38. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  39. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  40. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  41. /* A. Checksumming of received packets by device.
  42. *
  43. * NONE: device failed to checksum this packet.
  44. * skb->csum is undefined.
  45. *
  46. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  47. * skb->csum is undefined.
  48. * It is bad option, but, unfortunately, many of vendors do this.
  49. * Apparently with secret goal to sell you new device, when you
  50. * will add new protocol to your host. F.e. IPv6. 8)
  51. *
  52. * COMPLETE: the most generic way. Device supplied checksum of _all_
  53. * the packet as seen by netif_rx in skb->csum.
  54. * NOTE: Even if device supports only some protocols, but
  55. * is able to produce some skb->csum, it MUST use COMPLETE,
  56. * not UNNECESSARY.
  57. *
  58. * PARTIAL: identical to the case for output below. This may occur
  59. * on a packet received directly from another Linux OS, e.g.,
  60. * a virtualised Linux kernel on the same host. The packet can
  61. * be treated in the same way as UNNECESSARY except that on
  62. * output (i.e., forwarding) the checksum must be filled in
  63. * by the OS or the hardware.
  64. *
  65. * B. Checksumming on output.
  66. *
  67. * NONE: skb is checksummed by protocol or csum is not required.
  68. *
  69. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  70. * from skb->csum_start to the end and to record the checksum
  71. * at skb->csum_start + skb->csum_offset.
  72. *
  73. * Device must show its capabilities in dev->features, set
  74. * at device setup time.
  75. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  76. * everything.
  77. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  78. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  79. * TCP/UDP over IPv4. Sigh. Vendors like this
  80. * way by an unknown reason. Though, see comment above
  81. * about CHECKSUM_UNNECESSARY. 8)
  82. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  83. *
  84. * Any questions? No questions, good. --ANK
  85. */
  86. struct net_device;
  87. struct scatterlist;
  88. struct pipe_inode_info;
  89. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  90. struct nf_conntrack {
  91. atomic_t use;
  92. };
  93. #endif
  94. #ifdef CONFIG_BRIDGE_NETFILTER
  95. struct nf_bridge_info {
  96. atomic_t use;
  97. struct net_device *physindev;
  98. struct net_device *physoutdev;
  99. unsigned int mask;
  100. unsigned long data[32 / sizeof(unsigned long)];
  101. };
  102. #endif
  103. struct sk_buff_head {
  104. /* These two members must be first. */
  105. struct sk_buff *next;
  106. struct sk_buff *prev;
  107. __u32 qlen;
  108. spinlock_t lock;
  109. };
  110. struct sk_buff;
  111. /* To allow 64K frame to be packed as single skb without frag_list */
  112. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  113. typedef struct skb_frag_struct skb_frag_t;
  114. struct skb_frag_struct {
  115. struct page *page;
  116. __u32 page_offset;
  117. __u32 size;
  118. };
  119. #define HAVE_HW_TIME_STAMP
  120. /**
  121. * struct skb_shared_hwtstamps - hardware time stamps
  122. * @hwtstamp: hardware time stamp transformed into duration
  123. * since arbitrary point in time
  124. * @syststamp: hwtstamp transformed to system time base
  125. *
  126. * Software time stamps generated by ktime_get_real() are stored in
  127. * skb->tstamp. The relation between the different kinds of time
  128. * stamps is as follows:
  129. *
  130. * syststamp and tstamp can be compared against each other in
  131. * arbitrary combinations. The accuracy of a
  132. * syststamp/tstamp/"syststamp from other device" comparison is
  133. * limited by the accuracy of the transformation into system time
  134. * base. This depends on the device driver and its underlying
  135. * hardware.
  136. *
  137. * hwtstamps can only be compared against other hwtstamps from
  138. * the same device.
  139. *
  140. * This structure is attached to packets as part of the
  141. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  142. */
  143. struct skb_shared_hwtstamps {
  144. ktime_t hwtstamp;
  145. ktime_t syststamp;
  146. };
  147. /**
  148. * struct skb_shared_tx - instructions for time stamping of outgoing packets
  149. * @hardware: generate hardware time stamp
  150. * @software: generate software time stamp
  151. * @in_progress: device driver is going to provide
  152. * hardware time stamp
  153. *
  154. * These flags are attached to packets as part of the
  155. * &skb_shared_info. Use skb_tx() to get a pointer.
  156. */
  157. union skb_shared_tx {
  158. struct {
  159. __u8 hardware:1,
  160. software:1,
  161. in_progress:1;
  162. };
  163. __u8 flags;
  164. };
  165. /* This data is invariant across clones and lives at
  166. * the end of the header data, ie. at skb->end.
  167. */
  168. struct skb_shared_info {
  169. atomic_t dataref;
  170. unsigned short nr_frags;
  171. unsigned short gso_size;
  172. /* Warning: this field is not always filled in (UFO)! */
  173. unsigned short gso_segs;
  174. unsigned short gso_type;
  175. __be32 ip6_frag_id;
  176. union skb_shared_tx tx_flags;
  177. #ifdef CONFIG_HAS_DMA
  178. unsigned int num_dma_maps;
  179. #endif
  180. struct sk_buff *frag_list;
  181. struct skb_shared_hwtstamps hwtstamps;
  182. skb_frag_t frags[MAX_SKB_FRAGS];
  183. #ifdef CONFIG_HAS_DMA
  184. dma_addr_t dma_maps[MAX_SKB_FRAGS + 1];
  185. #endif
  186. };
  187. /* We divide dataref into two halves. The higher 16 bits hold references
  188. * to the payload part of skb->data. The lower 16 bits hold references to
  189. * the entire skb->data. A clone of a headerless skb holds the length of
  190. * the header in skb->hdr_len.
  191. *
  192. * All users must obey the rule that the skb->data reference count must be
  193. * greater than or equal to the payload reference count.
  194. *
  195. * Holding a reference to the payload part means that the user does not
  196. * care about modifications to the header part of skb->data.
  197. */
  198. #define SKB_DATAREF_SHIFT 16
  199. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  200. enum {
  201. SKB_FCLONE_UNAVAILABLE,
  202. SKB_FCLONE_ORIG,
  203. SKB_FCLONE_CLONE,
  204. };
  205. enum {
  206. SKB_GSO_TCPV4 = 1 << 0,
  207. SKB_GSO_UDP = 1 << 1,
  208. /* This indicates the skb is from an untrusted source. */
  209. SKB_GSO_DODGY = 1 << 2,
  210. /* This indicates the tcp segment has CWR set. */
  211. SKB_GSO_TCP_ECN = 1 << 3,
  212. SKB_GSO_TCPV6 = 1 << 4,
  213. };
  214. #if BITS_PER_LONG > 32
  215. #define NET_SKBUFF_DATA_USES_OFFSET 1
  216. #endif
  217. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  218. typedef unsigned int sk_buff_data_t;
  219. #else
  220. typedef unsigned char *sk_buff_data_t;
  221. #endif
  222. /**
  223. * struct sk_buff - socket buffer
  224. * @next: Next buffer in list
  225. * @prev: Previous buffer in list
  226. * @sk: Socket we are owned by
  227. * @tstamp: Time we arrived
  228. * @dev: Device we arrived on/are leaving by
  229. * @transport_header: Transport layer header
  230. * @network_header: Network layer header
  231. * @mac_header: Link layer header
  232. * @dst: destination entry
  233. * @sp: the security path, used for xfrm
  234. * @cb: Control buffer. Free for use by every layer. Put private vars here
  235. * @len: Length of actual data
  236. * @data_len: Data length
  237. * @mac_len: Length of link layer header
  238. * @hdr_len: writable header length of cloned skb
  239. * @csum: Checksum (must include start/offset pair)
  240. * @csum_start: Offset from skb->head where checksumming should start
  241. * @csum_offset: Offset from csum_start where checksum should be stored
  242. * @local_df: allow local fragmentation
  243. * @cloned: Head may be cloned (check refcnt to be sure)
  244. * @nohdr: Payload reference only, must not modify header
  245. * @pkt_type: Packet class
  246. * @fclone: skbuff clone status
  247. * @ip_summed: Driver fed us an IP checksum
  248. * @priority: Packet queueing priority
  249. * @users: User count - see {datagram,tcp}.c
  250. * @protocol: Packet protocol from driver
  251. * @truesize: Buffer size
  252. * @head: Head of buffer
  253. * @data: Data head pointer
  254. * @tail: Tail pointer
  255. * @end: End pointer
  256. * @destructor: Destruct function
  257. * @mark: Generic packet mark
  258. * @nfct: Associated connection, if any
  259. * @ipvs_property: skbuff is owned by ipvs
  260. * @peeked: this packet has been seen already, so stats have been
  261. * done for it, don't do them again
  262. * @nf_trace: netfilter packet trace flag
  263. * @nfctinfo: Relationship of this skb to the connection
  264. * @nfct_reasm: netfilter conntrack re-assembly pointer
  265. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  266. * @iif: ifindex of device we arrived on
  267. * @queue_mapping: Queue mapping for multiqueue devices
  268. * @tc_index: Traffic control index
  269. * @tc_verd: traffic control verdict
  270. * @ndisc_nodetype: router type (from link layer)
  271. * @do_not_encrypt: set to prevent encryption of this frame
  272. * @requeue: set to indicate that the wireless core should attempt
  273. * a software retry on this frame if we failed to
  274. * receive an ACK for it
  275. * @dma_cookie: a cookie to one of several possible DMA operations
  276. * done by skb DMA functions
  277. * @secmark: security marking
  278. * @vlan_tci: vlan tag control information
  279. */
  280. struct sk_buff {
  281. /* These two members must be first. */
  282. struct sk_buff *next;
  283. struct sk_buff *prev;
  284. struct sock *sk;
  285. ktime_t tstamp;
  286. struct net_device *dev;
  287. union {
  288. struct dst_entry *dst;
  289. struct rtable *rtable;
  290. };
  291. #ifdef CONFIG_XFRM
  292. struct sec_path *sp;
  293. #endif
  294. /*
  295. * This is the control buffer. It is free to use for every
  296. * layer. Please put your private variables there. If you
  297. * want to keep them across layers you have to do a skb_clone()
  298. * first. This is owned by whoever has the skb queued ATM.
  299. */
  300. char cb[48];
  301. unsigned int len,
  302. data_len;
  303. __u16 mac_len,
  304. hdr_len;
  305. union {
  306. __wsum csum;
  307. struct {
  308. __u16 csum_start;
  309. __u16 csum_offset;
  310. };
  311. };
  312. __u32 priority;
  313. __u8 local_df:1,
  314. cloned:1,
  315. ip_summed:2,
  316. nohdr:1,
  317. nfctinfo:3;
  318. __u8 pkt_type:3,
  319. fclone:2,
  320. ipvs_property:1,
  321. peeked:1,
  322. nf_trace:1;
  323. __be16 protocol;
  324. void (*destructor)(struct sk_buff *skb);
  325. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  326. struct nf_conntrack *nfct;
  327. struct sk_buff *nfct_reasm;
  328. #endif
  329. #ifdef CONFIG_BRIDGE_NETFILTER
  330. struct nf_bridge_info *nf_bridge;
  331. #endif
  332. int iif;
  333. __u16 queue_mapping;
  334. #ifdef CONFIG_NET_SCHED
  335. __u16 tc_index; /* traffic control index */
  336. #ifdef CONFIG_NET_CLS_ACT
  337. __u16 tc_verd; /* traffic control verdict */
  338. #endif
  339. #endif
  340. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  341. __u8 ndisc_nodetype:2;
  342. #endif
  343. #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
  344. __u8 do_not_encrypt:1;
  345. __u8 requeue:1;
  346. #endif
  347. /* 0/13/14 bit hole */
  348. #ifdef CONFIG_NET_DMA
  349. dma_cookie_t dma_cookie;
  350. #endif
  351. #ifdef CONFIG_NETWORK_SECMARK
  352. __u32 secmark;
  353. #endif
  354. __u32 mark;
  355. __u16 vlan_tci;
  356. sk_buff_data_t transport_header;
  357. sk_buff_data_t network_header;
  358. sk_buff_data_t mac_header;
  359. /* These elements must be at the end, see alloc_skb() for details. */
  360. sk_buff_data_t tail;
  361. sk_buff_data_t end;
  362. unsigned char *head,
  363. *data;
  364. unsigned int truesize;
  365. atomic_t users;
  366. };
  367. #ifdef __KERNEL__
  368. /*
  369. * Handling routines are only of interest to the kernel
  370. */
  371. #include <linux/slab.h>
  372. #include <asm/system.h>
  373. #ifdef CONFIG_HAS_DMA
  374. #include <linux/dma-mapping.h>
  375. extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
  376. enum dma_data_direction dir);
  377. extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
  378. enum dma_data_direction dir);
  379. #endif
  380. extern void kfree_skb(struct sk_buff *skb);
  381. extern void consume_skb(struct sk_buff *skb);
  382. extern void __kfree_skb(struct sk_buff *skb);
  383. extern struct sk_buff *__alloc_skb(unsigned int size,
  384. gfp_t priority, int fclone, int node);
  385. static inline struct sk_buff *alloc_skb(unsigned int size,
  386. gfp_t priority)
  387. {
  388. return __alloc_skb(size, priority, 0, -1);
  389. }
  390. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  391. gfp_t priority)
  392. {
  393. return __alloc_skb(size, priority, 1, -1);
  394. }
  395. extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
  396. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  397. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  398. gfp_t priority);
  399. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  400. gfp_t priority);
  401. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  402. gfp_t gfp_mask);
  403. extern int pskb_expand_head(struct sk_buff *skb,
  404. int nhead, int ntail,
  405. gfp_t gfp_mask);
  406. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  407. unsigned int headroom);
  408. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  409. int newheadroom, int newtailroom,
  410. gfp_t priority);
  411. extern int skb_to_sgvec(struct sk_buff *skb,
  412. struct scatterlist *sg, int offset,
  413. int len);
  414. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  415. struct sk_buff **trailer);
  416. extern int skb_pad(struct sk_buff *skb, int pad);
  417. #define dev_kfree_skb(a) consume_skb(a)
  418. #define dev_consume_skb(a) kfree_skb_clean(a)
  419. extern void skb_over_panic(struct sk_buff *skb, int len,
  420. void *here);
  421. extern void skb_under_panic(struct sk_buff *skb, int len,
  422. void *here);
  423. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  424. int getfrag(void *from, char *to, int offset,
  425. int len,int odd, struct sk_buff *skb),
  426. void *from, int length);
  427. struct skb_seq_state
  428. {
  429. __u32 lower_offset;
  430. __u32 upper_offset;
  431. __u32 frag_idx;
  432. __u32 stepped_offset;
  433. struct sk_buff *root_skb;
  434. struct sk_buff *cur_skb;
  435. __u8 *frag_data;
  436. };
  437. extern void skb_prepare_seq_read(struct sk_buff *skb,
  438. unsigned int from, unsigned int to,
  439. struct skb_seq_state *st);
  440. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  441. struct skb_seq_state *st);
  442. extern void skb_abort_seq_read(struct skb_seq_state *st);
  443. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  444. unsigned int to, struct ts_config *config,
  445. struct ts_state *state);
  446. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  447. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  448. {
  449. return skb->head + skb->end;
  450. }
  451. #else
  452. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  453. {
  454. return skb->end;
  455. }
  456. #endif
  457. /* Internal */
  458. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  459. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  460. {
  461. return &skb_shinfo(skb)->hwtstamps;
  462. }
  463. static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
  464. {
  465. return &skb_shinfo(skb)->tx_flags;
  466. }
  467. /**
  468. * skb_queue_empty - check if a queue is empty
  469. * @list: queue head
  470. *
  471. * Returns true if the queue is empty, false otherwise.
  472. */
  473. static inline int skb_queue_empty(const struct sk_buff_head *list)
  474. {
  475. return list->next == (struct sk_buff *)list;
  476. }
  477. /**
  478. * skb_queue_is_last - check if skb is the last entry in the queue
  479. * @list: queue head
  480. * @skb: buffer
  481. *
  482. * Returns true if @skb is the last buffer on the list.
  483. */
  484. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  485. const struct sk_buff *skb)
  486. {
  487. return (skb->next == (struct sk_buff *) list);
  488. }
  489. /**
  490. * skb_queue_is_first - check if skb is the first entry in the queue
  491. * @list: queue head
  492. * @skb: buffer
  493. *
  494. * Returns true if @skb is the first buffer on the list.
  495. */
  496. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  497. const struct sk_buff *skb)
  498. {
  499. return (skb->prev == (struct sk_buff *) list);
  500. }
  501. /**
  502. * skb_queue_next - return the next packet in the queue
  503. * @list: queue head
  504. * @skb: current buffer
  505. *
  506. * Return the next packet in @list after @skb. It is only valid to
  507. * call this if skb_queue_is_last() evaluates to false.
  508. */
  509. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  510. const struct sk_buff *skb)
  511. {
  512. /* This BUG_ON may seem severe, but if we just return then we
  513. * are going to dereference garbage.
  514. */
  515. BUG_ON(skb_queue_is_last(list, skb));
  516. return skb->next;
  517. }
  518. /**
  519. * skb_queue_prev - return the prev packet in the queue
  520. * @list: queue head
  521. * @skb: current buffer
  522. *
  523. * Return the prev packet in @list before @skb. It is only valid to
  524. * call this if skb_queue_is_first() evaluates to false.
  525. */
  526. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  527. const struct sk_buff *skb)
  528. {
  529. /* This BUG_ON may seem severe, but if we just return then we
  530. * are going to dereference garbage.
  531. */
  532. BUG_ON(skb_queue_is_first(list, skb));
  533. return skb->prev;
  534. }
  535. /**
  536. * skb_get - reference buffer
  537. * @skb: buffer to reference
  538. *
  539. * Makes another reference to a socket buffer and returns a pointer
  540. * to the buffer.
  541. */
  542. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  543. {
  544. atomic_inc(&skb->users);
  545. return skb;
  546. }
  547. /*
  548. * If users == 1, we are the only owner and are can avoid redundant
  549. * atomic change.
  550. */
  551. /**
  552. * skb_cloned - is the buffer a clone
  553. * @skb: buffer to check
  554. *
  555. * Returns true if the buffer was generated with skb_clone() and is
  556. * one of multiple shared copies of the buffer. Cloned buffers are
  557. * shared data so must not be written to under normal circumstances.
  558. */
  559. static inline int skb_cloned(const struct sk_buff *skb)
  560. {
  561. return skb->cloned &&
  562. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  563. }
  564. /**
  565. * skb_header_cloned - is the header a clone
  566. * @skb: buffer to check
  567. *
  568. * Returns true if modifying the header part of the buffer requires
  569. * the data to be copied.
  570. */
  571. static inline int skb_header_cloned(const struct sk_buff *skb)
  572. {
  573. int dataref;
  574. if (!skb->cloned)
  575. return 0;
  576. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  577. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  578. return dataref != 1;
  579. }
  580. /**
  581. * skb_header_release - release reference to header
  582. * @skb: buffer to operate on
  583. *
  584. * Drop a reference to the header part of the buffer. This is done
  585. * by acquiring a payload reference. You must not read from the header
  586. * part of skb->data after this.
  587. */
  588. static inline void skb_header_release(struct sk_buff *skb)
  589. {
  590. BUG_ON(skb->nohdr);
  591. skb->nohdr = 1;
  592. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  593. }
  594. /**
  595. * skb_shared - is the buffer shared
  596. * @skb: buffer to check
  597. *
  598. * Returns true if more than one person has a reference to this
  599. * buffer.
  600. */
  601. static inline int skb_shared(const struct sk_buff *skb)
  602. {
  603. return atomic_read(&skb->users) != 1;
  604. }
  605. /**
  606. * skb_share_check - check if buffer is shared and if so clone it
  607. * @skb: buffer to check
  608. * @pri: priority for memory allocation
  609. *
  610. * If the buffer is shared the buffer is cloned and the old copy
  611. * drops a reference. A new clone with a single reference is returned.
  612. * If the buffer is not shared the original buffer is returned. When
  613. * being called from interrupt status or with spinlocks held pri must
  614. * be GFP_ATOMIC.
  615. *
  616. * NULL is returned on a memory allocation failure.
  617. */
  618. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  619. gfp_t pri)
  620. {
  621. might_sleep_if(pri & __GFP_WAIT);
  622. if (skb_shared(skb)) {
  623. struct sk_buff *nskb = skb_clone(skb, pri);
  624. kfree_skb(skb);
  625. skb = nskb;
  626. }
  627. return skb;
  628. }
  629. /*
  630. * Copy shared buffers into a new sk_buff. We effectively do COW on
  631. * packets to handle cases where we have a local reader and forward
  632. * and a couple of other messy ones. The normal one is tcpdumping
  633. * a packet thats being forwarded.
  634. */
  635. /**
  636. * skb_unshare - make a copy of a shared buffer
  637. * @skb: buffer to check
  638. * @pri: priority for memory allocation
  639. *
  640. * If the socket buffer is a clone then this function creates a new
  641. * copy of the data, drops a reference count on the old copy and returns
  642. * the new copy with the reference count at 1. If the buffer is not a clone
  643. * the original buffer is returned. When called with a spinlock held or
  644. * from interrupt state @pri must be %GFP_ATOMIC
  645. *
  646. * %NULL is returned on a memory allocation failure.
  647. */
  648. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  649. gfp_t pri)
  650. {
  651. might_sleep_if(pri & __GFP_WAIT);
  652. if (skb_cloned(skb)) {
  653. struct sk_buff *nskb = skb_copy(skb, pri);
  654. kfree_skb(skb); /* Free our shared copy */
  655. skb = nskb;
  656. }
  657. return skb;
  658. }
  659. /**
  660. * skb_peek
  661. * @list_: list to peek at
  662. *
  663. * Peek an &sk_buff. Unlike most other operations you _MUST_
  664. * be careful with this one. A peek leaves the buffer on the
  665. * list and someone else may run off with it. You must hold
  666. * the appropriate locks or have a private queue to do this.
  667. *
  668. * Returns %NULL for an empty list or a pointer to the head element.
  669. * The reference count is not incremented and the reference is therefore
  670. * volatile. Use with caution.
  671. */
  672. static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
  673. {
  674. struct sk_buff *list = ((struct sk_buff *)list_)->next;
  675. if (list == (struct sk_buff *)list_)
  676. list = NULL;
  677. return list;
  678. }
  679. /**
  680. * skb_peek_tail
  681. * @list_: list to peek at
  682. *
  683. * Peek an &sk_buff. Unlike most other operations you _MUST_
  684. * be careful with this one. A peek leaves the buffer on the
  685. * list and someone else may run off with it. You must hold
  686. * the appropriate locks or have a private queue to do this.
  687. *
  688. * Returns %NULL for an empty list or a pointer to the tail element.
  689. * The reference count is not incremented and the reference is therefore
  690. * volatile. Use with caution.
  691. */
  692. static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
  693. {
  694. struct sk_buff *list = ((struct sk_buff *)list_)->prev;
  695. if (list == (struct sk_buff *)list_)
  696. list = NULL;
  697. return list;
  698. }
  699. /**
  700. * skb_queue_len - get queue length
  701. * @list_: list to measure
  702. *
  703. * Return the length of an &sk_buff queue.
  704. */
  705. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  706. {
  707. return list_->qlen;
  708. }
  709. /**
  710. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  711. * @list: queue to initialize
  712. *
  713. * This initializes only the list and queue length aspects of
  714. * an sk_buff_head object. This allows to initialize the list
  715. * aspects of an sk_buff_head without reinitializing things like
  716. * the spinlock. It can also be used for on-stack sk_buff_head
  717. * objects where the spinlock is known to not be used.
  718. */
  719. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  720. {
  721. list->prev = list->next = (struct sk_buff *)list;
  722. list->qlen = 0;
  723. }
  724. /*
  725. * This function creates a split out lock class for each invocation;
  726. * this is needed for now since a whole lot of users of the skb-queue
  727. * infrastructure in drivers have different locking usage (in hardirq)
  728. * than the networking core (in softirq only). In the long run either the
  729. * network layer or drivers should need annotation to consolidate the
  730. * main types of usage into 3 classes.
  731. */
  732. static inline void skb_queue_head_init(struct sk_buff_head *list)
  733. {
  734. spin_lock_init(&list->lock);
  735. __skb_queue_head_init(list);
  736. }
  737. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  738. struct lock_class_key *class)
  739. {
  740. skb_queue_head_init(list);
  741. lockdep_set_class(&list->lock, class);
  742. }
  743. /*
  744. * Insert an sk_buff on a list.
  745. *
  746. * The "__skb_xxxx()" functions are the non-atomic ones that
  747. * can only be called with interrupts disabled.
  748. */
  749. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  750. static inline void __skb_insert(struct sk_buff *newsk,
  751. struct sk_buff *prev, struct sk_buff *next,
  752. struct sk_buff_head *list)
  753. {
  754. newsk->next = next;
  755. newsk->prev = prev;
  756. next->prev = prev->next = newsk;
  757. list->qlen++;
  758. }
  759. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  760. struct sk_buff *prev,
  761. struct sk_buff *next)
  762. {
  763. struct sk_buff *first = list->next;
  764. struct sk_buff *last = list->prev;
  765. first->prev = prev;
  766. prev->next = first;
  767. last->next = next;
  768. next->prev = last;
  769. }
  770. /**
  771. * skb_queue_splice - join two skb lists, this is designed for stacks
  772. * @list: the new list to add
  773. * @head: the place to add it in the first list
  774. */
  775. static inline void skb_queue_splice(const struct sk_buff_head *list,
  776. struct sk_buff_head *head)
  777. {
  778. if (!skb_queue_empty(list)) {
  779. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  780. head->qlen += list->qlen;
  781. }
  782. }
  783. /**
  784. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  785. * @list: the new list to add
  786. * @head: the place to add it in the first list
  787. *
  788. * The list at @list is reinitialised
  789. */
  790. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  791. struct sk_buff_head *head)
  792. {
  793. if (!skb_queue_empty(list)) {
  794. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  795. head->qlen += list->qlen;
  796. __skb_queue_head_init(list);
  797. }
  798. }
  799. /**
  800. * skb_queue_splice_tail - join two skb lists, each list being a queue
  801. * @list: the new list to add
  802. * @head: the place to add it in the first list
  803. */
  804. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  805. struct sk_buff_head *head)
  806. {
  807. if (!skb_queue_empty(list)) {
  808. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  809. head->qlen += list->qlen;
  810. }
  811. }
  812. /**
  813. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  814. * @list: the new list to add
  815. * @head: the place to add it in the first list
  816. *
  817. * Each of the lists is a queue.
  818. * The list at @list is reinitialised
  819. */
  820. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  821. struct sk_buff_head *head)
  822. {
  823. if (!skb_queue_empty(list)) {
  824. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  825. head->qlen += list->qlen;
  826. __skb_queue_head_init(list);
  827. }
  828. }
  829. /**
  830. * __skb_queue_after - queue a buffer at the list head
  831. * @list: list to use
  832. * @prev: place after this buffer
  833. * @newsk: buffer to queue
  834. *
  835. * Queue a buffer int the middle of a list. This function takes no locks
  836. * and you must therefore hold required locks before calling it.
  837. *
  838. * A buffer cannot be placed on two lists at the same time.
  839. */
  840. static inline void __skb_queue_after(struct sk_buff_head *list,
  841. struct sk_buff *prev,
  842. struct sk_buff *newsk)
  843. {
  844. __skb_insert(newsk, prev, prev->next, list);
  845. }
  846. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  847. struct sk_buff_head *list);
  848. static inline void __skb_queue_before(struct sk_buff_head *list,
  849. struct sk_buff *next,
  850. struct sk_buff *newsk)
  851. {
  852. __skb_insert(newsk, next->prev, next, list);
  853. }
  854. /**
  855. * __skb_queue_head - queue a buffer at the list head
  856. * @list: list to use
  857. * @newsk: buffer to queue
  858. *
  859. * Queue a buffer at the start of a list. This function takes no locks
  860. * and you must therefore hold required locks before calling it.
  861. *
  862. * A buffer cannot be placed on two lists at the same time.
  863. */
  864. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  865. static inline void __skb_queue_head(struct sk_buff_head *list,
  866. struct sk_buff *newsk)
  867. {
  868. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  869. }
  870. /**
  871. * __skb_queue_tail - queue a buffer at the list tail
  872. * @list: list to use
  873. * @newsk: buffer to queue
  874. *
  875. * Queue a buffer at the end of a list. This function takes no locks
  876. * and you must therefore hold required locks before calling it.
  877. *
  878. * A buffer cannot be placed on two lists at the same time.
  879. */
  880. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  881. static inline void __skb_queue_tail(struct sk_buff_head *list,
  882. struct sk_buff *newsk)
  883. {
  884. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  885. }
  886. /*
  887. * remove sk_buff from list. _Must_ be called atomically, and with
  888. * the list known..
  889. */
  890. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  891. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  892. {
  893. struct sk_buff *next, *prev;
  894. list->qlen--;
  895. next = skb->next;
  896. prev = skb->prev;
  897. skb->next = skb->prev = NULL;
  898. next->prev = prev;
  899. prev->next = next;
  900. }
  901. /**
  902. * __skb_dequeue - remove from the head of the queue
  903. * @list: list to dequeue from
  904. *
  905. * Remove the head of the list. This function does not take any locks
  906. * so must be used with appropriate locks held only. The head item is
  907. * returned or %NULL if the list is empty.
  908. */
  909. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  910. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  911. {
  912. struct sk_buff *skb = skb_peek(list);
  913. if (skb)
  914. __skb_unlink(skb, list);
  915. return skb;
  916. }
  917. /**
  918. * __skb_dequeue_tail - remove from the tail of the queue
  919. * @list: list to dequeue from
  920. *
  921. * Remove the tail of the list. This function does not take any locks
  922. * so must be used with appropriate locks held only. The tail item is
  923. * returned or %NULL if the list is empty.
  924. */
  925. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  926. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  927. {
  928. struct sk_buff *skb = skb_peek_tail(list);
  929. if (skb)
  930. __skb_unlink(skb, list);
  931. return skb;
  932. }
  933. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  934. {
  935. return skb->data_len;
  936. }
  937. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  938. {
  939. return skb->len - skb->data_len;
  940. }
  941. static inline int skb_pagelen(const struct sk_buff *skb)
  942. {
  943. int i, len = 0;
  944. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  945. len += skb_shinfo(skb)->frags[i].size;
  946. return len + skb_headlen(skb);
  947. }
  948. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  949. struct page *page, int off, int size)
  950. {
  951. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  952. frag->page = page;
  953. frag->page_offset = off;
  954. frag->size = size;
  955. skb_shinfo(skb)->nr_frags = i + 1;
  956. }
  957. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  958. int off, int size);
  959. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  960. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
  961. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  962. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  963. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  964. {
  965. return skb->head + skb->tail;
  966. }
  967. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  968. {
  969. skb->tail = skb->data - skb->head;
  970. }
  971. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  972. {
  973. skb_reset_tail_pointer(skb);
  974. skb->tail += offset;
  975. }
  976. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  977. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  978. {
  979. return skb->tail;
  980. }
  981. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  982. {
  983. skb->tail = skb->data;
  984. }
  985. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  986. {
  987. skb->tail = skb->data + offset;
  988. }
  989. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  990. /*
  991. * Add data to an sk_buff
  992. */
  993. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  994. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  995. {
  996. unsigned char *tmp = skb_tail_pointer(skb);
  997. SKB_LINEAR_ASSERT(skb);
  998. skb->tail += len;
  999. skb->len += len;
  1000. return tmp;
  1001. }
  1002. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1003. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1004. {
  1005. skb->data -= len;
  1006. skb->len += len;
  1007. return skb->data;
  1008. }
  1009. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1010. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1011. {
  1012. skb->len -= len;
  1013. BUG_ON(skb->len < skb->data_len);
  1014. return skb->data += len;
  1015. }
  1016. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1017. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1018. {
  1019. if (len > skb_headlen(skb) &&
  1020. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1021. return NULL;
  1022. skb->len -= len;
  1023. return skb->data += len;
  1024. }
  1025. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1026. {
  1027. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1028. }
  1029. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1030. {
  1031. if (likely(len <= skb_headlen(skb)))
  1032. return 1;
  1033. if (unlikely(len > skb->len))
  1034. return 0;
  1035. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1036. }
  1037. /**
  1038. * skb_headroom - bytes at buffer head
  1039. * @skb: buffer to check
  1040. *
  1041. * Return the number of bytes of free space at the head of an &sk_buff.
  1042. */
  1043. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1044. {
  1045. return skb->data - skb->head;
  1046. }
  1047. /**
  1048. * skb_tailroom - bytes at buffer end
  1049. * @skb: buffer to check
  1050. *
  1051. * Return the number of bytes of free space at the tail of an sk_buff
  1052. */
  1053. static inline int skb_tailroom(const struct sk_buff *skb)
  1054. {
  1055. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1056. }
  1057. /**
  1058. * skb_reserve - adjust headroom
  1059. * @skb: buffer to alter
  1060. * @len: bytes to move
  1061. *
  1062. * Increase the headroom of an empty &sk_buff by reducing the tail
  1063. * room. This is only allowed for an empty buffer.
  1064. */
  1065. static inline void skb_reserve(struct sk_buff *skb, int len)
  1066. {
  1067. skb->data += len;
  1068. skb->tail += len;
  1069. }
  1070. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1071. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1072. {
  1073. return skb->head + skb->transport_header;
  1074. }
  1075. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1076. {
  1077. skb->transport_header = skb->data - skb->head;
  1078. }
  1079. static inline void skb_set_transport_header(struct sk_buff *skb,
  1080. const int offset)
  1081. {
  1082. skb_reset_transport_header(skb);
  1083. skb->transport_header += offset;
  1084. }
  1085. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1086. {
  1087. return skb->head + skb->network_header;
  1088. }
  1089. static inline void skb_reset_network_header(struct sk_buff *skb)
  1090. {
  1091. skb->network_header = skb->data - skb->head;
  1092. }
  1093. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1094. {
  1095. skb_reset_network_header(skb);
  1096. skb->network_header += offset;
  1097. }
  1098. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1099. {
  1100. return skb->head + skb->mac_header;
  1101. }
  1102. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1103. {
  1104. return skb->mac_header != ~0U;
  1105. }
  1106. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1107. {
  1108. skb->mac_header = skb->data - skb->head;
  1109. }
  1110. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1111. {
  1112. skb_reset_mac_header(skb);
  1113. skb->mac_header += offset;
  1114. }
  1115. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1116. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1117. {
  1118. return skb->transport_header;
  1119. }
  1120. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1121. {
  1122. skb->transport_header = skb->data;
  1123. }
  1124. static inline void skb_set_transport_header(struct sk_buff *skb,
  1125. const int offset)
  1126. {
  1127. skb->transport_header = skb->data + offset;
  1128. }
  1129. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1130. {
  1131. return skb->network_header;
  1132. }
  1133. static inline void skb_reset_network_header(struct sk_buff *skb)
  1134. {
  1135. skb->network_header = skb->data;
  1136. }
  1137. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1138. {
  1139. skb->network_header = skb->data + offset;
  1140. }
  1141. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1142. {
  1143. return skb->mac_header;
  1144. }
  1145. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1146. {
  1147. return skb->mac_header != NULL;
  1148. }
  1149. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1150. {
  1151. skb->mac_header = skb->data;
  1152. }
  1153. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1154. {
  1155. skb->mac_header = skb->data + offset;
  1156. }
  1157. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1158. static inline int skb_transport_offset(const struct sk_buff *skb)
  1159. {
  1160. return skb_transport_header(skb) - skb->data;
  1161. }
  1162. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1163. {
  1164. return skb->transport_header - skb->network_header;
  1165. }
  1166. static inline int skb_network_offset(const struct sk_buff *skb)
  1167. {
  1168. return skb_network_header(skb) - skb->data;
  1169. }
  1170. /*
  1171. * CPUs often take a performance hit when accessing unaligned memory
  1172. * locations. The actual performance hit varies, it can be small if the
  1173. * hardware handles it or large if we have to take an exception and fix it
  1174. * in software.
  1175. *
  1176. * Since an ethernet header is 14 bytes network drivers often end up with
  1177. * the IP header at an unaligned offset. The IP header can be aligned by
  1178. * shifting the start of the packet by 2 bytes. Drivers should do this
  1179. * with:
  1180. *
  1181. * skb_reserve(NET_IP_ALIGN);
  1182. *
  1183. * The downside to this alignment of the IP header is that the DMA is now
  1184. * unaligned. On some architectures the cost of an unaligned DMA is high
  1185. * and this cost outweighs the gains made by aligning the IP header.
  1186. *
  1187. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1188. * to be overridden.
  1189. */
  1190. #ifndef NET_IP_ALIGN
  1191. #define NET_IP_ALIGN 2
  1192. #endif
  1193. /*
  1194. * The networking layer reserves some headroom in skb data (via
  1195. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1196. * the header has to grow. In the default case, if the header has to grow
  1197. * 32 bytes or less we avoid the reallocation.
  1198. *
  1199. * Unfortunately this headroom changes the DMA alignment of the resulting
  1200. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1201. * on some architectures. An architecture can override this value,
  1202. * perhaps setting it to a cacheline in size (since that will maintain
  1203. * cacheline alignment of the DMA). It must be a power of 2.
  1204. *
  1205. * Various parts of the networking layer expect at least 32 bytes of
  1206. * headroom, you should not reduce this.
  1207. */
  1208. #ifndef NET_SKB_PAD
  1209. #define NET_SKB_PAD 32
  1210. #endif
  1211. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1212. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1213. {
  1214. if (unlikely(skb->data_len)) {
  1215. WARN_ON(1);
  1216. return;
  1217. }
  1218. skb->len = len;
  1219. skb_set_tail_pointer(skb, len);
  1220. }
  1221. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1222. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1223. {
  1224. if (skb->data_len)
  1225. return ___pskb_trim(skb, len);
  1226. __skb_trim(skb, len);
  1227. return 0;
  1228. }
  1229. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1230. {
  1231. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1232. }
  1233. /**
  1234. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1235. * @skb: buffer to alter
  1236. * @len: new length
  1237. *
  1238. * This is identical to pskb_trim except that the caller knows that
  1239. * the skb is not cloned so we should never get an error due to out-
  1240. * of-memory.
  1241. */
  1242. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1243. {
  1244. int err = pskb_trim(skb, len);
  1245. BUG_ON(err);
  1246. }
  1247. /**
  1248. * skb_orphan - orphan a buffer
  1249. * @skb: buffer to orphan
  1250. *
  1251. * If a buffer currently has an owner then we call the owner's
  1252. * destructor function and make the @skb unowned. The buffer continues
  1253. * to exist but is no longer charged to its former owner.
  1254. */
  1255. static inline void skb_orphan(struct sk_buff *skb)
  1256. {
  1257. if (skb->destructor)
  1258. skb->destructor(skb);
  1259. skb->destructor = NULL;
  1260. skb->sk = NULL;
  1261. }
  1262. /**
  1263. * __skb_queue_purge - empty a list
  1264. * @list: list to empty
  1265. *
  1266. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1267. * the list and one reference dropped. This function does not take the
  1268. * list lock and the caller must hold the relevant locks to use it.
  1269. */
  1270. extern void skb_queue_purge(struct sk_buff_head *list);
  1271. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1272. {
  1273. struct sk_buff *skb;
  1274. while ((skb = __skb_dequeue(list)) != NULL)
  1275. kfree_skb(skb);
  1276. }
  1277. /**
  1278. * __dev_alloc_skb - allocate an skbuff for receiving
  1279. * @length: length to allocate
  1280. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1281. *
  1282. * Allocate a new &sk_buff and assign it a usage count of one. The
  1283. * buffer has unspecified headroom built in. Users should allocate
  1284. * the headroom they think they need without accounting for the
  1285. * built in space. The built in space is used for optimisations.
  1286. *
  1287. * %NULL is returned if there is no free memory.
  1288. */
  1289. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1290. gfp_t gfp_mask)
  1291. {
  1292. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1293. if (likely(skb))
  1294. skb_reserve(skb, NET_SKB_PAD);
  1295. return skb;
  1296. }
  1297. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1298. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1299. unsigned int length, gfp_t gfp_mask);
  1300. /**
  1301. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1302. * @dev: network device to receive on
  1303. * @length: length to allocate
  1304. *
  1305. * Allocate a new &sk_buff and assign it a usage count of one. The
  1306. * buffer has unspecified headroom built in. Users should allocate
  1307. * the headroom they think they need without accounting for the
  1308. * built in space. The built in space is used for optimisations.
  1309. *
  1310. * %NULL is returned if there is no free memory. Although this function
  1311. * allocates memory it can be called from an interrupt.
  1312. */
  1313. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1314. unsigned int length)
  1315. {
  1316. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1317. }
  1318. extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
  1319. /**
  1320. * netdev_alloc_page - allocate a page for ps-rx on a specific device
  1321. * @dev: network device to receive on
  1322. *
  1323. * Allocate a new page node local to the specified device.
  1324. *
  1325. * %NULL is returned if there is no free memory.
  1326. */
  1327. static inline struct page *netdev_alloc_page(struct net_device *dev)
  1328. {
  1329. return __netdev_alloc_page(dev, GFP_ATOMIC);
  1330. }
  1331. static inline void netdev_free_page(struct net_device *dev, struct page *page)
  1332. {
  1333. __free_page(page);
  1334. }
  1335. /**
  1336. * skb_clone_writable - is the header of a clone writable
  1337. * @skb: buffer to check
  1338. * @len: length up to which to write
  1339. *
  1340. * Returns true if modifying the header part of the cloned buffer
  1341. * does not requires the data to be copied.
  1342. */
  1343. static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
  1344. {
  1345. return !skb_header_cloned(skb) &&
  1346. skb_headroom(skb) + len <= skb->hdr_len;
  1347. }
  1348. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1349. int cloned)
  1350. {
  1351. int delta = 0;
  1352. if (headroom < NET_SKB_PAD)
  1353. headroom = NET_SKB_PAD;
  1354. if (headroom > skb_headroom(skb))
  1355. delta = headroom - skb_headroom(skb);
  1356. if (delta || cloned)
  1357. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1358. GFP_ATOMIC);
  1359. return 0;
  1360. }
  1361. /**
  1362. * skb_cow - copy header of skb when it is required
  1363. * @skb: buffer to cow
  1364. * @headroom: needed headroom
  1365. *
  1366. * If the skb passed lacks sufficient headroom or its data part
  1367. * is shared, data is reallocated. If reallocation fails, an error
  1368. * is returned and original skb is not changed.
  1369. *
  1370. * The result is skb with writable area skb->head...skb->tail
  1371. * and at least @headroom of space at head.
  1372. */
  1373. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1374. {
  1375. return __skb_cow(skb, headroom, skb_cloned(skb));
  1376. }
  1377. /**
  1378. * skb_cow_head - skb_cow but only making the head writable
  1379. * @skb: buffer to cow
  1380. * @headroom: needed headroom
  1381. *
  1382. * This function is identical to skb_cow except that we replace the
  1383. * skb_cloned check by skb_header_cloned. It should be used when
  1384. * you only need to push on some header and do not need to modify
  1385. * the data.
  1386. */
  1387. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1388. {
  1389. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1390. }
  1391. /**
  1392. * skb_padto - pad an skbuff up to a minimal size
  1393. * @skb: buffer to pad
  1394. * @len: minimal length
  1395. *
  1396. * Pads up a buffer to ensure the trailing bytes exist and are
  1397. * blanked. If the buffer already contains sufficient data it
  1398. * is untouched. Otherwise it is extended. Returns zero on
  1399. * success. The skb is freed on error.
  1400. */
  1401. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1402. {
  1403. unsigned int size = skb->len;
  1404. if (likely(size >= len))
  1405. return 0;
  1406. return skb_pad(skb, len - size);
  1407. }
  1408. static inline int skb_add_data(struct sk_buff *skb,
  1409. char __user *from, int copy)
  1410. {
  1411. const int off = skb->len;
  1412. if (skb->ip_summed == CHECKSUM_NONE) {
  1413. int err = 0;
  1414. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1415. copy, 0, &err);
  1416. if (!err) {
  1417. skb->csum = csum_block_add(skb->csum, csum, off);
  1418. return 0;
  1419. }
  1420. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1421. return 0;
  1422. __skb_trim(skb, off);
  1423. return -EFAULT;
  1424. }
  1425. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1426. struct page *page, int off)
  1427. {
  1428. if (i) {
  1429. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1430. return page == frag->page &&
  1431. off == frag->page_offset + frag->size;
  1432. }
  1433. return 0;
  1434. }
  1435. static inline int __skb_linearize(struct sk_buff *skb)
  1436. {
  1437. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1438. }
  1439. /**
  1440. * skb_linearize - convert paged skb to linear one
  1441. * @skb: buffer to linarize
  1442. *
  1443. * If there is no free memory -ENOMEM is returned, otherwise zero
  1444. * is returned and the old skb data released.
  1445. */
  1446. static inline int skb_linearize(struct sk_buff *skb)
  1447. {
  1448. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1449. }
  1450. /**
  1451. * skb_linearize_cow - make sure skb is linear and writable
  1452. * @skb: buffer to process
  1453. *
  1454. * If there is no free memory -ENOMEM is returned, otherwise zero
  1455. * is returned and the old skb data released.
  1456. */
  1457. static inline int skb_linearize_cow(struct sk_buff *skb)
  1458. {
  1459. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1460. __skb_linearize(skb) : 0;
  1461. }
  1462. /**
  1463. * skb_postpull_rcsum - update checksum for received skb after pull
  1464. * @skb: buffer to update
  1465. * @start: start of data before pull
  1466. * @len: length of data pulled
  1467. *
  1468. * After doing a pull on a received packet, you need to call this to
  1469. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1470. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1471. */
  1472. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1473. const void *start, unsigned int len)
  1474. {
  1475. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1476. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1477. }
  1478. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1479. /**
  1480. * pskb_trim_rcsum - trim received skb and update checksum
  1481. * @skb: buffer to trim
  1482. * @len: new length
  1483. *
  1484. * This is exactly the same as pskb_trim except that it ensures the
  1485. * checksum of received packets are still valid after the operation.
  1486. */
  1487. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1488. {
  1489. if (likely(len >= skb->len))
  1490. return 0;
  1491. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1492. skb->ip_summed = CHECKSUM_NONE;
  1493. return __pskb_trim(skb, len);
  1494. }
  1495. #define skb_queue_walk(queue, skb) \
  1496. for (skb = (queue)->next; \
  1497. prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1498. skb = skb->next)
  1499. #define skb_queue_walk_safe(queue, skb, tmp) \
  1500. for (skb = (queue)->next, tmp = skb->next; \
  1501. skb != (struct sk_buff *)(queue); \
  1502. skb = tmp, tmp = skb->next)
  1503. #define skb_queue_walk_from(queue, skb) \
  1504. for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1505. skb = skb->next)
  1506. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1507. for (tmp = skb->next; \
  1508. skb != (struct sk_buff *)(queue); \
  1509. skb = tmp, tmp = skb->next)
  1510. #define skb_queue_reverse_walk(queue, skb) \
  1511. for (skb = (queue)->prev; \
  1512. prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
  1513. skb = skb->prev)
  1514. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1515. int *peeked, int *err);
  1516. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1517. int noblock, int *err);
  1518. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1519. struct poll_table_struct *wait);
  1520. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1521. int offset, struct iovec *to,
  1522. int size);
  1523. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1524. int hlen,
  1525. struct iovec *iov);
  1526. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1527. int offset,
  1528. struct iovec *from,
  1529. int len);
  1530. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1531. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1532. unsigned int flags);
  1533. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1534. int len, __wsum csum);
  1535. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1536. void *to, int len);
  1537. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1538. const void *from, int len);
  1539. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1540. int offset, u8 *to, int len,
  1541. __wsum csum);
  1542. extern int skb_splice_bits(struct sk_buff *skb,
  1543. unsigned int offset,
  1544. struct pipe_inode_info *pipe,
  1545. unsigned int len,
  1546. unsigned int flags);
  1547. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1548. extern void skb_split(struct sk_buff *skb,
  1549. struct sk_buff *skb1, const u32 len);
  1550. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1551. int shiftlen);
  1552. extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
  1553. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1554. int len, void *buffer)
  1555. {
  1556. int hlen = skb_headlen(skb);
  1557. if (hlen - offset >= len)
  1558. return skb->data + offset;
  1559. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1560. return NULL;
  1561. return buffer;
  1562. }
  1563. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1564. void *to,
  1565. const unsigned int len)
  1566. {
  1567. memcpy(to, skb->data, len);
  1568. }
  1569. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1570. const int offset, void *to,
  1571. const unsigned int len)
  1572. {
  1573. memcpy(to, skb->data + offset, len);
  1574. }
  1575. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1576. const void *from,
  1577. const unsigned int len)
  1578. {
  1579. memcpy(skb->data, from, len);
  1580. }
  1581. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1582. const int offset,
  1583. const void *from,
  1584. const unsigned int len)
  1585. {
  1586. memcpy(skb->data + offset, from, len);
  1587. }
  1588. extern void skb_init(void);
  1589. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1590. {
  1591. return skb->tstamp;
  1592. }
  1593. /**
  1594. * skb_get_timestamp - get timestamp from a skb
  1595. * @skb: skb to get stamp from
  1596. * @stamp: pointer to struct timeval to store stamp in
  1597. *
  1598. * Timestamps are stored in the skb as offsets to a base timestamp.
  1599. * This function converts the offset back to a struct timeval and stores
  1600. * it in stamp.
  1601. */
  1602. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1603. struct timeval *stamp)
  1604. {
  1605. *stamp = ktime_to_timeval(skb->tstamp);
  1606. }
  1607. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1608. struct timespec *stamp)
  1609. {
  1610. *stamp = ktime_to_timespec(skb->tstamp);
  1611. }
  1612. static inline void __net_timestamp(struct sk_buff *skb)
  1613. {
  1614. skb->tstamp = ktime_get_real();
  1615. }
  1616. static inline ktime_t net_timedelta(ktime_t t)
  1617. {
  1618. return ktime_sub(ktime_get_real(), t);
  1619. }
  1620. static inline ktime_t net_invalid_timestamp(void)
  1621. {
  1622. return ktime_set(0, 0);
  1623. }
  1624. /**
  1625. * skb_tstamp_tx - queue clone of skb with send time stamps
  1626. * @orig_skb: the original outgoing packet
  1627. * @hwtstamps: hardware time stamps, may be NULL if not available
  1628. *
  1629. * If the skb has a socket associated, then this function clones the
  1630. * skb (thus sharing the actual data and optional structures), stores
  1631. * the optional hardware time stamping information (if non NULL) or
  1632. * generates a software time stamp (otherwise), then queues the clone
  1633. * to the error queue of the socket. Errors are silently ignored.
  1634. */
  1635. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  1636. struct skb_shared_hwtstamps *hwtstamps);
  1637. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1638. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1639. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  1640. {
  1641. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  1642. }
  1643. /**
  1644. * skb_checksum_complete - Calculate checksum of an entire packet
  1645. * @skb: packet to process
  1646. *
  1647. * This function calculates the checksum over the entire packet plus
  1648. * the value of skb->csum. The latter can be used to supply the
  1649. * checksum of a pseudo header as used by TCP/UDP. It returns the
  1650. * checksum.
  1651. *
  1652. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  1653. * this function can be used to verify that checksum on received
  1654. * packets. In that case the function should return zero if the
  1655. * checksum is correct. In particular, this function will return zero
  1656. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  1657. * hardware has already verified the correctness of the checksum.
  1658. */
  1659. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  1660. {
  1661. return skb_csum_unnecessary(skb) ?
  1662. 0 : __skb_checksum_complete(skb);
  1663. }
  1664. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1665. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  1666. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  1667. {
  1668. if (nfct && atomic_dec_and_test(&nfct->use))
  1669. nf_conntrack_destroy(nfct);
  1670. }
  1671. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  1672. {
  1673. if (nfct)
  1674. atomic_inc(&nfct->use);
  1675. }
  1676. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  1677. {
  1678. if (skb)
  1679. atomic_inc(&skb->users);
  1680. }
  1681. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  1682. {
  1683. if (skb)
  1684. kfree_skb(skb);
  1685. }
  1686. #endif
  1687. #ifdef CONFIG_BRIDGE_NETFILTER
  1688. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  1689. {
  1690. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  1691. kfree(nf_bridge);
  1692. }
  1693. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  1694. {
  1695. if (nf_bridge)
  1696. atomic_inc(&nf_bridge->use);
  1697. }
  1698. #endif /* CONFIG_BRIDGE_NETFILTER */
  1699. static inline void nf_reset(struct sk_buff *skb)
  1700. {
  1701. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1702. nf_conntrack_put(skb->nfct);
  1703. skb->nfct = NULL;
  1704. nf_conntrack_put_reasm(skb->nfct_reasm);
  1705. skb->nfct_reasm = NULL;
  1706. #endif
  1707. #ifdef CONFIG_BRIDGE_NETFILTER
  1708. nf_bridge_put(skb->nf_bridge);
  1709. skb->nf_bridge = NULL;
  1710. #endif
  1711. }
  1712. /* Note: This doesn't put any conntrack and bridge info in dst. */
  1713. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1714. {
  1715. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1716. dst->nfct = src->nfct;
  1717. nf_conntrack_get(src->nfct);
  1718. dst->nfctinfo = src->nfctinfo;
  1719. dst->nfct_reasm = src->nfct_reasm;
  1720. nf_conntrack_get_reasm(src->nfct_reasm);
  1721. #endif
  1722. #ifdef CONFIG_BRIDGE_NETFILTER
  1723. dst->nf_bridge = src->nf_bridge;
  1724. nf_bridge_get(src->nf_bridge);
  1725. #endif
  1726. }
  1727. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1728. {
  1729. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1730. nf_conntrack_put(dst->nfct);
  1731. nf_conntrack_put_reasm(dst->nfct_reasm);
  1732. #endif
  1733. #ifdef CONFIG_BRIDGE_NETFILTER
  1734. nf_bridge_put(dst->nf_bridge);
  1735. #endif
  1736. __nf_copy(dst, src);
  1737. }
  1738. #ifdef CONFIG_NETWORK_SECMARK
  1739. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1740. {
  1741. to->secmark = from->secmark;
  1742. }
  1743. static inline void skb_init_secmark(struct sk_buff *skb)
  1744. {
  1745. skb->secmark = 0;
  1746. }
  1747. #else
  1748. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1749. { }
  1750. static inline void skb_init_secmark(struct sk_buff *skb)
  1751. { }
  1752. #endif
  1753. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  1754. {
  1755. skb->queue_mapping = queue_mapping;
  1756. }
  1757. static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
  1758. {
  1759. return skb->queue_mapping;
  1760. }
  1761. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  1762. {
  1763. to->queue_mapping = from->queue_mapping;
  1764. }
  1765. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  1766. {
  1767. skb->queue_mapping = rx_queue + 1;
  1768. }
  1769. static inline u16 skb_get_rx_queue(struct sk_buff *skb)
  1770. {
  1771. return skb->queue_mapping - 1;
  1772. }
  1773. static inline bool skb_rx_queue_recorded(struct sk_buff *skb)
  1774. {
  1775. return (skb->queue_mapping != 0);
  1776. }
  1777. #ifdef CONFIG_XFRM
  1778. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  1779. {
  1780. return skb->sp;
  1781. }
  1782. #else
  1783. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  1784. {
  1785. return NULL;
  1786. }
  1787. #endif
  1788. static inline int skb_is_gso(const struct sk_buff *skb)
  1789. {
  1790. return skb_shinfo(skb)->gso_size;
  1791. }
  1792. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  1793. {
  1794. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  1795. }
  1796. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  1797. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  1798. {
  1799. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  1800. * wanted then gso_type will be set. */
  1801. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1802. if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
  1803. __skb_warn_lro_forwarding(skb);
  1804. return true;
  1805. }
  1806. return false;
  1807. }
  1808. static inline void skb_forward_csum(struct sk_buff *skb)
  1809. {
  1810. /* Unfortunately we don't support this one. Any brave souls? */
  1811. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1812. skb->ip_summed = CHECKSUM_NONE;
  1813. }
  1814. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  1815. #endif /* __KERNEL__ */
  1816. #endif /* _LINUX_SKBUFF_H */