clock.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110
  1. /*
  2. * linux/arch/arm/mach-omap2/clock.c
  3. *
  4. * Copyright (C) 2005 Texas Instruments Inc.
  5. * Richard Woodruff <r-woodruff2@ti.com>
  6. * Created for OMAP2.
  7. *
  8. * Cleaned up and modified to use omap shared clock framework by
  9. * Tony Lindgren <tony@atomide.com>
  10. *
  11. * Based on omap1 clock.c, Copyright (C) 2004 - 2005 Nokia corporation
  12. * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License version 2 as
  16. * published by the Free Software Foundation.
  17. */
  18. #include <linux/module.h>
  19. #include <linux/kernel.h>
  20. #include <linux/device.h>
  21. #include <linux/list.h>
  22. #include <linux/errno.h>
  23. #include <linux/delay.h>
  24. #include <linux/clk.h>
  25. #include <asm/io.h>
  26. #include <asm/arch/clock.h>
  27. #include <asm/arch/sram.h>
  28. #include "prcm-regs.h"
  29. #include "memory.h"
  30. #include "clock.h"
  31. //#define DOWN_VARIABLE_DPLL 1 /* Experimental */
  32. static struct prcm_config *curr_prcm_set;
  33. static u32 curr_perf_level = PRCM_FULL_SPEED;
  34. static struct clk *vclk;
  35. static struct clk *sclk;
  36. /*-------------------------------------------------------------------------
  37. * Omap2 specific clock functions
  38. *-------------------------------------------------------------------------*/
  39. /* Recalculate SYST_CLK */
  40. static void omap2_sys_clk_recalc(struct clk * clk)
  41. {
  42. u32 div = PRCM_CLKSRC_CTRL;
  43. div &= (1 << 7) | (1 << 6); /* Test if ext clk divided by 1 or 2 */
  44. div >>= clk->rate_offset;
  45. clk->rate = (clk->parent->rate / div);
  46. propagate_rate(clk);
  47. }
  48. static u32 omap2_get_dpll_rate(struct clk * tclk)
  49. {
  50. long long dpll_clk;
  51. int dpll_mult, dpll_div, amult;
  52. dpll_mult = (CM_CLKSEL1_PLL >> 12) & 0x03ff; /* 10 bits */
  53. dpll_div = (CM_CLKSEL1_PLL >> 8) & 0x0f; /* 4 bits */
  54. dpll_clk = (long long)tclk->parent->rate * dpll_mult;
  55. do_div(dpll_clk, dpll_div + 1);
  56. amult = CM_CLKSEL2_PLL & 0x3;
  57. dpll_clk *= amult;
  58. return dpll_clk;
  59. }
  60. static void omap2_followparent_recalc(struct clk *clk)
  61. {
  62. followparent_recalc(clk);
  63. }
  64. static void omap2_propagate_rate(struct clk * clk)
  65. {
  66. if (!(clk->flags & RATE_FIXED))
  67. clk->rate = clk->parent->rate;
  68. propagate_rate(clk);
  69. }
  70. /* Enable an APLL if off */
  71. static void omap2_clk_fixed_enable(struct clk *clk)
  72. {
  73. u32 cval, i=0;
  74. if (clk->enable_bit == 0xff) /* Parent will do it */
  75. return;
  76. cval = CM_CLKEN_PLL;
  77. if ((cval & (0x3 << clk->enable_bit)) == (0x3 << clk->enable_bit))
  78. return;
  79. cval &= ~(0x3 << clk->enable_bit);
  80. cval |= (0x3 << clk->enable_bit);
  81. CM_CLKEN_PLL = cval;
  82. if (clk == &apll96_ck)
  83. cval = (1 << 8);
  84. else if (clk == &apll54_ck)
  85. cval = (1 << 6);
  86. while (!(CM_IDLEST_CKGEN & cval)) { /* Wait for lock */
  87. ++i;
  88. udelay(1);
  89. if (i == 100000)
  90. break;
  91. }
  92. }
  93. /* Enables clock without considering parent dependencies or use count
  94. * REVISIT: Maybe change this to use clk->enable like on omap1?
  95. */
  96. static int _omap2_clk_enable(struct clk * clk)
  97. {
  98. u32 regval32;
  99. if (clk->flags & ALWAYS_ENABLED)
  100. return 0;
  101. if (unlikely(clk->enable_reg == 0)) {
  102. printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
  103. clk->name);
  104. return 0;
  105. }
  106. if (clk->enable_reg == (void __iomem *)&CM_CLKEN_PLL) {
  107. omap2_clk_fixed_enable(clk);
  108. return 0;
  109. }
  110. regval32 = __raw_readl(clk->enable_reg);
  111. regval32 |= (1 << clk->enable_bit);
  112. __raw_writel(regval32, clk->enable_reg);
  113. wmb();
  114. return 0;
  115. }
  116. /* Stop APLL */
  117. static void omap2_clk_fixed_disable(struct clk *clk)
  118. {
  119. u32 cval;
  120. if(clk->enable_bit == 0xff) /* let parent off do it */
  121. return;
  122. cval = CM_CLKEN_PLL;
  123. cval &= ~(0x3 << clk->enable_bit);
  124. CM_CLKEN_PLL = cval;
  125. }
  126. /* Disables clock without considering parent dependencies or use count */
  127. static void _omap2_clk_disable(struct clk *clk)
  128. {
  129. u32 regval32;
  130. if (clk->enable_reg == 0)
  131. return;
  132. if (clk->enable_reg == (void __iomem *)&CM_CLKEN_PLL) {
  133. omap2_clk_fixed_disable(clk);
  134. return;
  135. }
  136. regval32 = __raw_readl(clk->enable_reg);
  137. regval32 &= ~(1 << clk->enable_bit);
  138. __raw_writel(regval32, clk->enable_reg);
  139. wmb();
  140. }
  141. static int omap2_clk_enable(struct clk *clk)
  142. {
  143. int ret = 0;
  144. if (clk->usecount++ == 0) {
  145. if (likely((u32)clk->parent))
  146. ret = omap2_clk_enable(clk->parent);
  147. if (unlikely(ret != 0)) {
  148. clk->usecount--;
  149. return ret;
  150. }
  151. ret = _omap2_clk_enable(clk);
  152. if (unlikely(ret != 0) && clk->parent) {
  153. omap2_clk_disable(clk->parent);
  154. clk->usecount--;
  155. }
  156. }
  157. return ret;
  158. }
  159. static void omap2_clk_disable(struct clk *clk)
  160. {
  161. if (clk->usecount > 0 && !(--clk->usecount)) {
  162. _omap2_clk_disable(clk);
  163. if (likely((u32)clk->parent))
  164. omap2_clk_disable(clk->parent);
  165. }
  166. }
  167. /*
  168. * Uses the current prcm set to tell if a rate is valid.
  169. * You can go slower, but not faster within a given rate set.
  170. */
  171. static u32 omap2_dpll_round_rate(unsigned long target_rate)
  172. {
  173. u32 high, low;
  174. if ((CM_CLKSEL2_PLL & 0x3) == 1) { /* DPLL clockout */
  175. high = curr_prcm_set->dpll_speed * 2;
  176. low = curr_prcm_set->dpll_speed;
  177. } else { /* DPLL clockout x 2 */
  178. high = curr_prcm_set->dpll_speed;
  179. low = curr_prcm_set->dpll_speed / 2;
  180. }
  181. #ifdef DOWN_VARIABLE_DPLL
  182. if (target_rate > high)
  183. return high;
  184. else
  185. return target_rate;
  186. #else
  187. if (target_rate > low)
  188. return high;
  189. else
  190. return low;
  191. #endif
  192. }
  193. /*
  194. * Used for clocks that are part of CLKSEL_xyz governed clocks.
  195. * REVISIT: Maybe change to use clk->enable() functions like on omap1?
  196. */
  197. static void omap2_clksel_recalc(struct clk * clk)
  198. {
  199. u32 fixed = 0, div = 0;
  200. if (clk == &dpll_ck) {
  201. clk->rate = omap2_get_dpll_rate(clk);
  202. fixed = 1;
  203. div = 0;
  204. }
  205. if (clk == &iva1_mpu_int_ifck) {
  206. div = 2;
  207. fixed = 1;
  208. }
  209. if ((clk == &dss1_fck) && ((CM_CLKSEL1_CORE & (0x1f << 8)) == 0)) {
  210. clk->rate = sys_ck.rate;
  211. return;
  212. }
  213. if (!fixed) {
  214. div = omap2_clksel_get_divisor(clk);
  215. if (div == 0)
  216. return;
  217. }
  218. if (div != 0) {
  219. if (unlikely(clk->rate == clk->parent->rate / div))
  220. return;
  221. clk->rate = clk->parent->rate / div;
  222. }
  223. if (unlikely(clk->flags & RATE_PROPAGATES))
  224. propagate_rate(clk);
  225. }
  226. /*
  227. * Finds best divider value in an array based on the source and target
  228. * rates. The divider array must be sorted with smallest divider first.
  229. */
  230. static inline u32 omap2_divider_from_table(u32 size, u32 *div_array,
  231. u32 src_rate, u32 tgt_rate)
  232. {
  233. int i, test_rate;
  234. if (div_array == NULL)
  235. return ~1;
  236. for (i=0; i < size; i++) {
  237. test_rate = src_rate / *div_array;
  238. if (test_rate <= tgt_rate)
  239. return *div_array;
  240. ++div_array;
  241. }
  242. return ~0; /* No acceptable divider */
  243. }
  244. /*
  245. * Find divisor for the given clock and target rate.
  246. *
  247. * Note that this will not work for clocks which are part of CONFIG_PARTICIPANT,
  248. * they are only settable as part of virtual_prcm set.
  249. */
  250. static u32 omap2_clksel_round_rate(struct clk *tclk, u32 target_rate,
  251. u32 *new_div)
  252. {
  253. u32 gfx_div[] = {2, 3, 4};
  254. u32 sysclkout_div[] = {1, 2, 4, 8, 16};
  255. u32 dss1_div[] = {1, 2, 3, 4, 5, 6, 8, 9, 12, 16};
  256. u32 vylnq_div[] = {1, 2, 3, 4, 6, 8, 9, 12, 16, 18};
  257. u32 best_div = ~0, asize = 0;
  258. u32 *div_array = NULL;
  259. switch (tclk->flags & SRC_RATE_SEL_MASK) {
  260. case CM_GFX_SEL1:
  261. asize = 3;
  262. div_array = gfx_div;
  263. break;
  264. case CM_PLL_SEL1:
  265. return omap2_dpll_round_rate(target_rate);
  266. case CM_SYSCLKOUT_SEL1:
  267. asize = 5;
  268. div_array = sysclkout_div;
  269. break;
  270. case CM_CORE_SEL1:
  271. if(tclk == &dss1_fck){
  272. if(tclk->parent == &core_ck){
  273. asize = 10;
  274. div_array = dss1_div;
  275. } else {
  276. *new_div = 0; /* fixed clk */
  277. return(tclk->parent->rate);
  278. }
  279. } else if((tclk == &vlynq_fck) && cpu_is_omap2420()){
  280. if(tclk->parent == &core_ck){
  281. asize = 10;
  282. div_array = vylnq_div;
  283. } else {
  284. *new_div = 0; /* fixed clk */
  285. return(tclk->parent->rate);
  286. }
  287. }
  288. break;
  289. }
  290. best_div = omap2_divider_from_table(asize, div_array,
  291. tclk->parent->rate, target_rate);
  292. if (best_div == ~0){
  293. *new_div = 1;
  294. return best_div; /* signal error */
  295. }
  296. *new_div = best_div;
  297. return (tclk->parent->rate / best_div);
  298. }
  299. /* Given a clock and a rate apply a clock specific rounding function */
  300. static long omap2_clk_round_rate(struct clk *clk, unsigned long rate)
  301. {
  302. u32 new_div = 0;
  303. int valid_rate;
  304. if (clk->flags & RATE_FIXED)
  305. return clk->rate;
  306. if (clk->flags & RATE_CKCTL) {
  307. valid_rate = omap2_clksel_round_rate(clk, rate, &new_div);
  308. return valid_rate;
  309. }
  310. if (clk->round_rate != 0)
  311. return clk->round_rate(clk, rate);
  312. return clk->rate;
  313. }
  314. /*
  315. * Check the DLL lock state, and return tue if running in unlock mode.
  316. * This is needed to compenste for the shifted DLL value in unlock mode.
  317. */
  318. static u32 omap2_dll_force_needed(void)
  319. {
  320. u32 dll_state = SDRC_DLLA_CTRL; /* dlla and dllb are a set */
  321. if ((dll_state & (1 << 2)) == (1 << 2))
  322. return 1;
  323. else
  324. return 0;
  325. }
  326. static u32 omap2_reprogram_sdrc(u32 level, u32 force)
  327. {
  328. u32 slow_dll_ctrl, fast_dll_ctrl, m_type;
  329. u32 prev = curr_perf_level, flags;
  330. if ((curr_perf_level == level) && !force)
  331. return prev;
  332. m_type = omap2_memory_get_type();
  333. slow_dll_ctrl = omap2_memory_get_slow_dll_ctrl();
  334. fast_dll_ctrl = omap2_memory_get_fast_dll_ctrl();
  335. if (level == PRCM_HALF_SPEED) {
  336. local_irq_save(flags);
  337. PRCM_VOLTSETUP = 0xffff;
  338. omap2_sram_reprogram_sdrc(PRCM_HALF_SPEED,
  339. slow_dll_ctrl, m_type);
  340. curr_perf_level = PRCM_HALF_SPEED;
  341. local_irq_restore(flags);
  342. }
  343. if (level == PRCM_FULL_SPEED) {
  344. local_irq_save(flags);
  345. PRCM_VOLTSETUP = 0xffff;
  346. omap2_sram_reprogram_sdrc(PRCM_FULL_SPEED,
  347. fast_dll_ctrl, m_type);
  348. curr_perf_level = PRCM_FULL_SPEED;
  349. local_irq_restore(flags);
  350. }
  351. return prev;
  352. }
  353. static int omap2_reprogram_dpll(struct clk * clk, unsigned long rate)
  354. {
  355. u32 flags, cur_rate, low, mult, div, valid_rate, done_rate;
  356. u32 bypass = 0;
  357. struct prcm_config tmpset;
  358. int ret = -EINVAL;
  359. local_irq_save(flags);
  360. cur_rate = omap2_get_dpll_rate(&dpll_ck);
  361. mult = CM_CLKSEL2_PLL & 0x3;
  362. if ((rate == (cur_rate / 2)) && (mult == 2)) {
  363. omap2_reprogram_sdrc(PRCM_HALF_SPEED, 1);
  364. } else if ((rate == (cur_rate * 2)) && (mult == 1)) {
  365. omap2_reprogram_sdrc(PRCM_FULL_SPEED, 1);
  366. } else if (rate != cur_rate) {
  367. valid_rate = omap2_dpll_round_rate(rate);
  368. if (valid_rate != rate)
  369. goto dpll_exit;
  370. if ((CM_CLKSEL2_PLL & 0x3) == 1)
  371. low = curr_prcm_set->dpll_speed;
  372. else
  373. low = curr_prcm_set->dpll_speed / 2;
  374. tmpset.cm_clksel1_pll = CM_CLKSEL1_PLL;
  375. tmpset.cm_clksel1_pll &= ~(0x3FFF << 8);
  376. div = ((curr_prcm_set->xtal_speed / 1000000) - 1);
  377. tmpset.cm_clksel2_pll = CM_CLKSEL2_PLL;
  378. tmpset.cm_clksel2_pll &= ~0x3;
  379. if (rate > low) {
  380. tmpset.cm_clksel2_pll |= 0x2;
  381. mult = ((rate / 2) / 1000000);
  382. done_rate = PRCM_FULL_SPEED;
  383. } else {
  384. tmpset.cm_clksel2_pll |= 0x1;
  385. mult = (rate / 1000000);
  386. done_rate = PRCM_HALF_SPEED;
  387. }
  388. tmpset.cm_clksel1_pll |= ((div << 8) | (mult << 12));
  389. /* Worst case */
  390. tmpset.base_sdrc_rfr = V24XX_SDRC_RFR_CTRL_BYPASS;
  391. if (rate == curr_prcm_set->xtal_speed) /* If asking for 1-1 */
  392. bypass = 1;
  393. omap2_reprogram_sdrc(PRCM_FULL_SPEED, 1); /* For init_mem */
  394. /* Force dll lock mode */
  395. omap2_set_prcm(tmpset.cm_clksel1_pll, tmpset.base_sdrc_rfr,
  396. bypass);
  397. /* Errata: ret dll entry state */
  398. omap2_init_memory_params(omap2_dll_force_needed());
  399. omap2_reprogram_sdrc(done_rate, 0);
  400. }
  401. omap2_clksel_recalc(&dpll_ck);
  402. ret = 0;
  403. dpll_exit:
  404. local_irq_restore(flags);
  405. return(ret);
  406. }
  407. /* Just return the MPU speed */
  408. static void omap2_mpu_recalc(struct clk * clk)
  409. {
  410. clk->rate = curr_prcm_set->mpu_speed;
  411. }
  412. /*
  413. * Look for a rate equal or less than the target rate given a configuration set.
  414. *
  415. * What's not entirely clear is "which" field represents the key field.
  416. * Some might argue L3-DDR, others ARM, others IVA. This code is simple and
  417. * just uses the ARM rates.
  418. */
  419. static long omap2_round_to_table_rate(struct clk * clk, unsigned long rate)
  420. {
  421. struct prcm_config * ptr;
  422. long highest_rate;
  423. if (clk != &virt_prcm_set)
  424. return -EINVAL;
  425. highest_rate = -EINVAL;
  426. for (ptr = rate_table; ptr->mpu_speed; ptr++) {
  427. if (ptr->xtal_speed != sys_ck.rate)
  428. continue;
  429. highest_rate = ptr->mpu_speed;
  430. /* Can check only after xtal frequency check */
  431. if (ptr->mpu_speed <= rate)
  432. break;
  433. }
  434. return highest_rate;
  435. }
  436. /*
  437. * omap2_convert_field_to_div() - turn field value into integer divider
  438. */
  439. static u32 omap2_clksel_to_divisor(u32 div_sel, u32 field_val)
  440. {
  441. u32 i;
  442. u32 clkout_array[] = {1, 2, 4, 8, 16};
  443. if ((div_sel & SRC_RATE_SEL_MASK) == CM_SYSCLKOUT_SEL1) {
  444. for (i = 0; i < 5; i++) {
  445. if (field_val == i)
  446. return clkout_array[i];
  447. }
  448. return ~0;
  449. } else
  450. return field_val;
  451. }
  452. /*
  453. * Returns the CLKSEL divider register value
  454. * REVISIT: This should be cleaned up to work nicely with void __iomem *
  455. */
  456. static u32 omap2_get_clksel(u32 *div_sel, u32 *field_mask,
  457. struct clk *clk)
  458. {
  459. int ret = ~0;
  460. u32 reg_val, div_off;
  461. u32 div_addr = 0;
  462. u32 mask = ~0;
  463. div_off = clk->rate_offset;
  464. switch ((*div_sel & SRC_RATE_SEL_MASK)) {
  465. case CM_MPU_SEL1:
  466. div_addr = (u32)&CM_CLKSEL_MPU;
  467. mask = 0x1f;
  468. break;
  469. case CM_DSP_SEL1:
  470. div_addr = (u32)&CM_CLKSEL_DSP;
  471. if (cpu_is_omap2420()) {
  472. if ((div_off == 0) || (div_off == 8))
  473. mask = 0x1f;
  474. else if (div_off == 5)
  475. mask = 0x3;
  476. } else if (cpu_is_omap2430()) {
  477. if (div_off == 0)
  478. mask = 0x1f;
  479. else if (div_off == 5)
  480. mask = 0x3;
  481. }
  482. break;
  483. case CM_GFX_SEL1:
  484. div_addr = (u32)&CM_CLKSEL_GFX;
  485. if (div_off == 0)
  486. mask = 0x7;
  487. break;
  488. case CM_MODEM_SEL1:
  489. div_addr = (u32)&CM_CLKSEL_MDM;
  490. if (div_off == 0)
  491. mask = 0xf;
  492. break;
  493. case CM_SYSCLKOUT_SEL1:
  494. div_addr = (u32)&PRCM_CLKOUT_CTRL;
  495. if ((div_off == 3) || (div_off = 11))
  496. mask= 0x3;
  497. break;
  498. case CM_CORE_SEL1:
  499. div_addr = (u32)&CM_CLKSEL1_CORE;
  500. switch (div_off) {
  501. case 0: /* l3 */
  502. case 8: /* dss1 */
  503. case 15: /* vylnc-2420 */
  504. case 20: /* ssi */
  505. mask = 0x1f; break;
  506. case 5: /* l4 */
  507. mask = 0x3; break;
  508. case 13: /* dss2 */
  509. mask = 0x1; break;
  510. case 25: /* usb */
  511. mask = 0x7; break;
  512. }
  513. }
  514. *field_mask = mask;
  515. if (unlikely(mask == ~0))
  516. div_addr = 0;
  517. *div_sel = div_addr;
  518. if (unlikely(div_addr == 0))
  519. return ret;
  520. /* Isolate field */
  521. reg_val = __raw_readl((void __iomem *)div_addr) & (mask << div_off);
  522. /* Normalize back to divider value */
  523. reg_val >>= div_off;
  524. return reg_val;
  525. }
  526. /*
  527. * Return divider to be applied to parent clock.
  528. * Return 0 on error.
  529. */
  530. static u32 omap2_clksel_get_divisor(struct clk *clk)
  531. {
  532. int ret = 0;
  533. u32 div, div_sel, div_off, field_mask, field_val;
  534. /* isolate control register */
  535. div_sel = (SRC_RATE_SEL_MASK & clk->flags);
  536. div_off = clk->rate_offset;
  537. field_val = omap2_get_clksel(&div_sel, &field_mask, clk);
  538. if (div_sel == 0)
  539. return ret;
  540. div_sel = (SRC_RATE_SEL_MASK & clk->flags);
  541. div = omap2_clksel_to_divisor(div_sel, field_val);
  542. return div;
  543. }
  544. /* Set the clock rate for a clock source */
  545. static int omap2_clk_set_rate(struct clk *clk, unsigned long rate)
  546. {
  547. int ret = -EINVAL;
  548. void __iomem * reg;
  549. u32 div_sel, div_off, field_mask, field_val, reg_val, validrate;
  550. u32 new_div = 0;
  551. if (!(clk->flags & CONFIG_PARTICIPANT) && (clk->flags & RATE_CKCTL)) {
  552. if (clk == &dpll_ck)
  553. return omap2_reprogram_dpll(clk, rate);
  554. /* Isolate control register */
  555. div_sel = (SRC_RATE_SEL_MASK & clk->flags);
  556. div_off = clk->rate_offset;
  557. validrate = omap2_clksel_round_rate(clk, rate, &new_div);
  558. if (validrate != rate)
  559. return(ret);
  560. field_val = omap2_get_clksel(&div_sel, &field_mask, clk);
  561. if (div_sel == 0)
  562. return ret;
  563. if (clk->flags & CM_SYSCLKOUT_SEL1) {
  564. switch (new_div) {
  565. case 16:
  566. field_val = 4;
  567. break;
  568. case 8:
  569. field_val = 3;
  570. break;
  571. case 4:
  572. field_val = 2;
  573. break;
  574. case 2:
  575. field_val = 1;
  576. break;
  577. case 1:
  578. field_val = 0;
  579. break;
  580. }
  581. } else
  582. field_val = new_div;
  583. reg = (void __iomem *)div_sel;
  584. reg_val = __raw_readl(reg);
  585. reg_val &= ~(field_mask << div_off);
  586. reg_val |= (field_val << div_off);
  587. __raw_writel(reg_val, reg);
  588. wmb();
  589. clk->rate = clk->parent->rate / field_val;
  590. if (clk->flags & DELAYED_APP) {
  591. __raw_writel(0x1, (void __iomem *)&PRCM_CLKCFG_CTRL);
  592. wmb();
  593. }
  594. ret = 0;
  595. } else if (clk->set_rate != 0)
  596. ret = clk->set_rate(clk, rate);
  597. if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
  598. propagate_rate(clk);
  599. return ret;
  600. }
  601. /* Converts encoded control register address into a full address */
  602. static u32 omap2_get_src_field(u32 *type_to_addr, u32 reg_offset,
  603. struct clk *src_clk, u32 *field_mask)
  604. {
  605. u32 val = ~0, src_reg_addr = 0, mask = 0;
  606. /* Find target control register.*/
  607. switch ((*type_to_addr & SRC_RATE_SEL_MASK)) {
  608. case CM_CORE_SEL1:
  609. src_reg_addr = (u32)&CM_CLKSEL1_CORE;
  610. if (reg_offset == 13) { /* DSS2_fclk */
  611. mask = 0x1;
  612. if (src_clk == &sys_ck)
  613. val = 0;
  614. if (src_clk == &func_48m_ck)
  615. val = 1;
  616. } else if (reg_offset == 8) { /* DSS1_fclk */
  617. mask = 0x1f;
  618. if (src_clk == &sys_ck)
  619. val = 0;
  620. else if (src_clk == &core_ck) /* divided clock */
  621. val = 0x10; /* rate needs fixing */
  622. } else if ((reg_offset == 15) && cpu_is_omap2420()){ /*vlnyq*/
  623. mask = 0x1F;
  624. if(src_clk == &func_96m_ck)
  625. val = 0;
  626. else if (src_clk == &core_ck)
  627. val = 0x10;
  628. }
  629. break;
  630. case CM_CORE_SEL2:
  631. src_reg_addr = (u32)&CM_CLKSEL2_CORE;
  632. mask = 0x3;
  633. if (src_clk == &func_32k_ck)
  634. val = 0x0;
  635. if (src_clk == &sys_ck)
  636. val = 0x1;
  637. if (src_clk == &alt_ck)
  638. val = 0x2;
  639. break;
  640. case CM_WKUP_SEL1:
  641. src_reg_addr = (u32)&CM_CLKSEL_WKUP;
  642. mask = 0x3;
  643. if (src_clk == &func_32k_ck)
  644. val = 0x0;
  645. if (src_clk == &sys_ck)
  646. val = 0x1;
  647. if (src_clk == &alt_ck)
  648. val = 0x2;
  649. break;
  650. case CM_PLL_SEL1:
  651. src_reg_addr = (u32)&CM_CLKSEL1_PLL;
  652. mask = 0x1;
  653. if (reg_offset == 0x3) {
  654. if (src_clk == &apll96_ck)
  655. val = 0;
  656. if (src_clk == &alt_ck)
  657. val = 1;
  658. }
  659. else if (reg_offset == 0x5) {
  660. if (src_clk == &apll54_ck)
  661. val = 0;
  662. if (src_clk == &alt_ck)
  663. val = 1;
  664. }
  665. break;
  666. case CM_PLL_SEL2:
  667. src_reg_addr = (u32)&CM_CLKSEL2_PLL;
  668. mask = 0x3;
  669. if (src_clk == &func_32k_ck)
  670. val = 0x0;
  671. if (src_clk == &dpll_ck)
  672. val = 0x2;
  673. break;
  674. case CM_SYSCLKOUT_SEL1:
  675. src_reg_addr = (u32)&PRCM_CLKOUT_CTRL;
  676. mask = 0x3;
  677. if (src_clk == &dpll_ck)
  678. val = 0;
  679. if (src_clk == &sys_ck)
  680. val = 1;
  681. if (src_clk == &func_96m_ck)
  682. val = 2;
  683. if (src_clk == &func_54m_ck)
  684. val = 3;
  685. break;
  686. }
  687. if (val == ~0) /* Catch errors in offset */
  688. *type_to_addr = 0;
  689. else
  690. *type_to_addr = src_reg_addr;
  691. *field_mask = mask;
  692. return val;
  693. }
  694. static int omap2_clk_set_parent(struct clk *clk, struct clk *new_parent)
  695. {
  696. void __iomem * reg;
  697. u32 src_sel, src_off, field_val, field_mask, reg_val, rate;
  698. int ret = -EINVAL;
  699. if (unlikely(clk->flags & CONFIG_PARTICIPANT))
  700. return ret;
  701. if (clk->flags & SRC_SEL_MASK) { /* On-chip SEL collection */
  702. src_sel = (SRC_RATE_SEL_MASK & clk->flags);
  703. src_off = clk->src_offset;
  704. if (src_sel == 0)
  705. goto set_parent_error;
  706. field_val = omap2_get_src_field(&src_sel, src_off, new_parent,
  707. &field_mask);
  708. reg = (void __iomem *)src_sel;
  709. if (clk->usecount > 0)
  710. _omap2_clk_disable(clk);
  711. /* Set new source value (previous dividers if any in effect) */
  712. reg_val = __raw_readl(reg) & ~(field_mask << src_off);
  713. reg_val |= (field_val << src_off);
  714. __raw_writel(reg_val, reg);
  715. wmb();
  716. if (clk->flags & DELAYED_APP) {
  717. __raw_writel(0x1, (void __iomem *)&PRCM_CLKCFG_CTRL);
  718. wmb();
  719. }
  720. if (clk->usecount > 0)
  721. _omap2_clk_enable(clk);
  722. clk->parent = new_parent;
  723. /* SRC_RATE_SEL_MASK clocks follow their parents rates.*/
  724. if ((new_parent == &core_ck) && (clk == &dss1_fck))
  725. clk->rate = new_parent->rate / 0x10;
  726. else
  727. clk->rate = new_parent->rate;
  728. if (unlikely(clk->flags & RATE_PROPAGATES))
  729. propagate_rate(clk);
  730. return 0;
  731. } else {
  732. clk->parent = new_parent;
  733. rate = new_parent->rate;
  734. omap2_clk_set_rate(clk, rate);
  735. ret = 0;
  736. }
  737. set_parent_error:
  738. return ret;
  739. }
  740. /* Sets basic clocks based on the specified rate */
  741. static int omap2_select_table_rate(struct clk * clk, unsigned long rate)
  742. {
  743. u32 flags, cur_rate, done_rate, bypass = 0;
  744. u8 cpu_mask = 0;
  745. struct prcm_config *prcm;
  746. unsigned long found_speed = 0;
  747. if (clk != &virt_prcm_set)
  748. return -EINVAL;
  749. /* FIXME: Change cpu_is_omap2420() to cpu_is_omap242x() */
  750. if (cpu_is_omap2420())
  751. cpu_mask = RATE_IN_242X;
  752. else if (cpu_is_omap2430())
  753. cpu_mask = RATE_IN_243X;
  754. for (prcm = rate_table; prcm->mpu_speed; prcm++) {
  755. if (!(prcm->flags & cpu_mask))
  756. continue;
  757. if (prcm->xtal_speed != sys_ck.rate)
  758. continue;
  759. if (prcm->mpu_speed <= rate) {
  760. found_speed = prcm->mpu_speed;
  761. break;
  762. }
  763. }
  764. if (!found_speed) {
  765. printk(KERN_INFO "Could not set MPU rate to %luMHz\n",
  766. rate / 1000000);
  767. return -EINVAL;
  768. }
  769. curr_prcm_set = prcm;
  770. cur_rate = omap2_get_dpll_rate(&dpll_ck);
  771. if (prcm->dpll_speed == cur_rate / 2) {
  772. omap2_reprogram_sdrc(PRCM_HALF_SPEED, 1);
  773. } else if (prcm->dpll_speed == cur_rate * 2) {
  774. omap2_reprogram_sdrc(PRCM_FULL_SPEED, 1);
  775. } else if (prcm->dpll_speed != cur_rate) {
  776. local_irq_save(flags);
  777. if (prcm->dpll_speed == prcm->xtal_speed)
  778. bypass = 1;
  779. if ((prcm->cm_clksel2_pll & 0x3) == 2)
  780. done_rate = PRCM_FULL_SPEED;
  781. else
  782. done_rate = PRCM_HALF_SPEED;
  783. /* MPU divider */
  784. CM_CLKSEL_MPU = prcm->cm_clksel_mpu;
  785. /* dsp + iva1 div(2420), iva2.1(2430) */
  786. CM_CLKSEL_DSP = prcm->cm_clksel_dsp;
  787. CM_CLKSEL_GFX = prcm->cm_clksel_gfx;
  788. /* Major subsystem dividers */
  789. CM_CLKSEL1_CORE = prcm->cm_clksel1_core;
  790. if (cpu_is_omap2430())
  791. CM_CLKSEL_MDM = prcm->cm_clksel_mdm;
  792. /* x2 to enter init_mem */
  793. omap2_reprogram_sdrc(PRCM_FULL_SPEED, 1);
  794. omap2_set_prcm(prcm->cm_clksel1_pll, prcm->base_sdrc_rfr,
  795. bypass);
  796. omap2_init_memory_params(omap2_dll_force_needed());
  797. omap2_reprogram_sdrc(done_rate, 0);
  798. local_irq_restore(flags);
  799. }
  800. omap2_clksel_recalc(&dpll_ck);
  801. return 0;
  802. }
  803. /*-------------------------------------------------------------------------
  804. * Omap2 clock reset and init functions
  805. *-------------------------------------------------------------------------*/
  806. static struct clk_functions omap2_clk_functions = {
  807. .clk_enable = omap2_clk_enable,
  808. .clk_disable = omap2_clk_disable,
  809. .clk_round_rate = omap2_clk_round_rate,
  810. .clk_set_rate = omap2_clk_set_rate,
  811. .clk_set_parent = omap2_clk_set_parent,
  812. };
  813. static void __init omap2_get_crystal_rate(struct clk *osc, struct clk *sys)
  814. {
  815. u32 div, aplls, sclk = 13000000;
  816. aplls = CM_CLKSEL1_PLL;
  817. aplls &= ((1 << 23) | (1 << 24) | (1 << 25));
  818. aplls >>= 23; /* Isolate field, 0,2,3 */
  819. if (aplls == 0)
  820. sclk = 19200000;
  821. else if (aplls == 2)
  822. sclk = 13000000;
  823. else if (aplls == 3)
  824. sclk = 12000000;
  825. div = PRCM_CLKSRC_CTRL;
  826. div &= ((1 << 7) | (1 << 6));
  827. div >>= sys->rate_offset;
  828. osc->rate = sclk * div;
  829. sys->rate = sclk;
  830. }
  831. /*
  832. * Set clocks for bypass mode for reboot to work.
  833. */
  834. void omap2_clk_prepare_for_reboot(void)
  835. {
  836. u32 rate;
  837. if (vclk == NULL || sclk == NULL)
  838. return;
  839. rate = clk_get_rate(sclk);
  840. clk_set_rate(vclk, rate);
  841. }
  842. #ifdef CONFIG_OMAP_RESET_CLOCKS
  843. static void __init omap2_disable_unused_clocks(void)
  844. {
  845. struct clk *ck;
  846. u32 regval32;
  847. list_for_each_entry(ck, &clocks, node) {
  848. if (ck->usecount > 0 || (ck->flags & ALWAYS_ENABLED) ||
  849. ck->enable_reg == 0)
  850. continue;
  851. regval32 = __raw_readl(ck->enable_reg);
  852. if ((regval32 & (1 << ck->enable_bit)) == 0)
  853. continue;
  854. printk(KERN_INFO "Disabling unused clock \"%s\"\n", ck->name);
  855. _omap2_clk_disable(ck);
  856. }
  857. }
  858. late_initcall(omap2_disable_unused_clocks);
  859. #endif
  860. /*
  861. * Switch the MPU rate if specified on cmdline.
  862. * We cannot do this early until cmdline is parsed.
  863. */
  864. static int __init omap2_clk_arch_init(void)
  865. {
  866. if (!mpurate)
  867. return -EINVAL;
  868. if (omap2_select_table_rate(&virt_prcm_set, mpurate))
  869. printk(KERN_ERR "Could not find matching MPU rate\n");
  870. propagate_rate(&osc_ck); /* update main root fast */
  871. propagate_rate(&func_32k_ck); /* update main root slow */
  872. printk(KERN_INFO "Switched to new clocking rate (Crystal/DPLL/MPU): "
  873. "%ld.%01ld/%ld/%ld MHz\n",
  874. (sys_ck.rate / 1000000), (sys_ck.rate / 100000) % 10,
  875. (dpll_ck.rate / 1000000), (mpu_ck.rate / 1000000)) ;
  876. return 0;
  877. }
  878. arch_initcall(omap2_clk_arch_init);
  879. int __init omap2_clk_init(void)
  880. {
  881. struct prcm_config *prcm;
  882. struct clk ** clkp;
  883. u32 clkrate;
  884. clk_init(&omap2_clk_functions);
  885. omap2_get_crystal_rate(&osc_ck, &sys_ck);
  886. for (clkp = onchip_clks; clkp < onchip_clks + ARRAY_SIZE(onchip_clks);
  887. clkp++) {
  888. if ((*clkp)->flags & CLOCK_IN_OMAP242X && cpu_is_omap2420()) {
  889. clk_register(*clkp);
  890. continue;
  891. }
  892. if ((*clkp)->flags & CLOCK_IN_OMAP243X && cpu_is_omap2430()) {
  893. clk_register(*clkp);
  894. continue;
  895. }
  896. }
  897. /* Check the MPU rate set by bootloader */
  898. clkrate = omap2_get_dpll_rate(&dpll_ck);
  899. for (prcm = rate_table; prcm->mpu_speed; prcm++) {
  900. if (prcm->xtal_speed != sys_ck.rate)
  901. continue;
  902. if (prcm->dpll_speed <= clkrate)
  903. break;
  904. }
  905. curr_prcm_set = prcm;
  906. propagate_rate(&osc_ck); /* update main root fast */
  907. propagate_rate(&func_32k_ck); /* update main root slow */
  908. printk(KERN_INFO "Clocking rate (Crystal/DPLL/MPU): "
  909. "%ld.%01ld/%ld/%ld MHz\n",
  910. (sys_ck.rate / 1000000), (sys_ck.rate / 100000) % 10,
  911. (dpll_ck.rate / 1000000), (mpu_ck.rate / 1000000)) ;
  912. /*
  913. * Only enable those clocks we will need, let the drivers
  914. * enable other clocks as necessary
  915. */
  916. clk_enable(&sync_32k_ick);
  917. clk_enable(&omapctrl_ick);
  918. if (cpu_is_omap2430())
  919. clk_enable(&sdrc_ick);
  920. /* Avoid sleeping sleeping during omap2_clk_prepare_for_reboot() */
  921. vclk = clk_get(NULL, "virt_prcm_set");
  922. sclk = clk_get(NULL, "sys_ck");
  923. return 0;
  924. }