free-space-cache.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155
  1. /*
  2. * Copyright (C) 2008 Red Hat. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/pagemap.h>
  19. #include <linux/sched.h>
  20. #include <linux/slab.h>
  21. #include <linux/math64.h>
  22. #include "ctree.h"
  23. #include "free-space-cache.h"
  24. #include "transaction.h"
  25. #include "disk-io.h"
  26. #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
  27. #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
  28. static void recalculate_thresholds(struct btrfs_block_group_cache
  29. *block_group);
  30. static int link_free_space(struct btrfs_block_group_cache *block_group,
  31. struct btrfs_free_space *info);
  32. struct inode *lookup_free_space_inode(struct btrfs_root *root,
  33. struct btrfs_block_group_cache
  34. *block_group, struct btrfs_path *path)
  35. {
  36. struct btrfs_key key;
  37. struct btrfs_key location;
  38. struct btrfs_disk_key disk_key;
  39. struct btrfs_free_space_header *header;
  40. struct extent_buffer *leaf;
  41. struct inode *inode = NULL;
  42. int ret;
  43. spin_lock(&block_group->lock);
  44. if (block_group->inode)
  45. inode = igrab(block_group->inode);
  46. spin_unlock(&block_group->lock);
  47. if (inode)
  48. return inode;
  49. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  50. key.offset = block_group->key.objectid;
  51. key.type = 0;
  52. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  53. if (ret < 0)
  54. return ERR_PTR(ret);
  55. if (ret > 0) {
  56. btrfs_release_path(root, path);
  57. return ERR_PTR(-ENOENT);
  58. }
  59. leaf = path->nodes[0];
  60. header = btrfs_item_ptr(leaf, path->slots[0],
  61. struct btrfs_free_space_header);
  62. btrfs_free_space_key(leaf, header, &disk_key);
  63. btrfs_disk_key_to_cpu(&location, &disk_key);
  64. btrfs_release_path(root, path);
  65. inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
  66. if (!inode)
  67. return ERR_PTR(-ENOENT);
  68. if (IS_ERR(inode))
  69. return inode;
  70. if (is_bad_inode(inode)) {
  71. iput(inode);
  72. return ERR_PTR(-ENOENT);
  73. }
  74. spin_lock(&block_group->lock);
  75. if (!root->fs_info->closing) {
  76. block_group->inode = igrab(inode);
  77. block_group->iref = 1;
  78. }
  79. spin_unlock(&block_group->lock);
  80. return inode;
  81. }
  82. int create_free_space_inode(struct btrfs_root *root,
  83. struct btrfs_trans_handle *trans,
  84. struct btrfs_block_group_cache *block_group,
  85. struct btrfs_path *path)
  86. {
  87. struct btrfs_key key;
  88. struct btrfs_disk_key disk_key;
  89. struct btrfs_free_space_header *header;
  90. struct btrfs_inode_item *inode_item;
  91. struct extent_buffer *leaf;
  92. u64 objectid;
  93. int ret;
  94. ret = btrfs_find_free_objectid(trans, root, 0, &objectid);
  95. if (ret < 0)
  96. return ret;
  97. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  98. if (ret)
  99. return ret;
  100. leaf = path->nodes[0];
  101. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  102. struct btrfs_inode_item);
  103. btrfs_item_key(leaf, &disk_key, path->slots[0]);
  104. memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
  105. sizeof(*inode_item));
  106. btrfs_set_inode_generation(leaf, inode_item, trans->transid);
  107. btrfs_set_inode_size(leaf, inode_item, 0);
  108. btrfs_set_inode_nbytes(leaf, inode_item, 0);
  109. btrfs_set_inode_uid(leaf, inode_item, 0);
  110. btrfs_set_inode_gid(leaf, inode_item, 0);
  111. btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
  112. btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
  113. BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM);
  114. btrfs_set_inode_nlink(leaf, inode_item, 1);
  115. btrfs_set_inode_transid(leaf, inode_item, trans->transid);
  116. btrfs_set_inode_block_group(leaf, inode_item,
  117. block_group->key.objectid);
  118. btrfs_mark_buffer_dirty(leaf);
  119. btrfs_release_path(root, path);
  120. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  121. key.offset = block_group->key.objectid;
  122. key.type = 0;
  123. ret = btrfs_insert_empty_item(trans, root, path, &key,
  124. sizeof(struct btrfs_free_space_header));
  125. if (ret < 0) {
  126. btrfs_release_path(root, path);
  127. return ret;
  128. }
  129. leaf = path->nodes[0];
  130. header = btrfs_item_ptr(leaf, path->slots[0],
  131. struct btrfs_free_space_header);
  132. memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
  133. btrfs_set_free_space_key(leaf, header, &disk_key);
  134. btrfs_mark_buffer_dirty(leaf);
  135. btrfs_release_path(root, path);
  136. return 0;
  137. }
  138. int btrfs_truncate_free_space_cache(struct btrfs_root *root,
  139. struct btrfs_trans_handle *trans,
  140. struct btrfs_path *path,
  141. struct inode *inode)
  142. {
  143. loff_t oldsize;
  144. int ret = 0;
  145. trans->block_rsv = root->orphan_block_rsv;
  146. ret = btrfs_block_rsv_check(trans, root,
  147. root->orphan_block_rsv,
  148. 0, 5);
  149. if (ret)
  150. return ret;
  151. oldsize = i_size_read(inode);
  152. btrfs_i_size_write(inode, 0);
  153. truncate_pagecache(inode, oldsize, 0);
  154. /*
  155. * We don't need an orphan item because truncating the free space cache
  156. * will never be split across transactions.
  157. */
  158. ret = btrfs_truncate_inode_items(trans, root, inode,
  159. 0, BTRFS_EXTENT_DATA_KEY);
  160. if (ret) {
  161. WARN_ON(1);
  162. return ret;
  163. }
  164. return btrfs_update_inode(trans, root, inode);
  165. }
  166. static int readahead_cache(struct inode *inode)
  167. {
  168. struct file_ra_state *ra;
  169. unsigned long last_index;
  170. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  171. if (!ra)
  172. return -ENOMEM;
  173. file_ra_state_init(ra, inode->i_mapping);
  174. last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
  175. page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
  176. kfree(ra);
  177. return 0;
  178. }
  179. int load_free_space_cache(struct btrfs_fs_info *fs_info,
  180. struct btrfs_block_group_cache *block_group)
  181. {
  182. struct btrfs_root *root = fs_info->tree_root;
  183. struct inode *inode;
  184. struct btrfs_free_space_header *header;
  185. struct extent_buffer *leaf;
  186. struct page *page;
  187. struct btrfs_path *path;
  188. u32 *checksums = NULL, *crc;
  189. char *disk_crcs = NULL;
  190. struct btrfs_key key;
  191. struct list_head bitmaps;
  192. u64 num_entries;
  193. u64 num_bitmaps;
  194. u64 generation;
  195. u32 cur_crc = ~(u32)0;
  196. pgoff_t index = 0;
  197. unsigned long first_page_offset;
  198. int num_checksums;
  199. int ret = 0;
  200. /*
  201. * If we're unmounting then just return, since this does a search on the
  202. * normal root and not the commit root and we could deadlock.
  203. */
  204. smp_mb();
  205. if (fs_info->closing)
  206. return 0;
  207. /*
  208. * If this block group has been marked to be cleared for one reason or
  209. * another then we can't trust the on disk cache, so just return.
  210. */
  211. spin_lock(&block_group->lock);
  212. if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
  213. spin_unlock(&block_group->lock);
  214. return 0;
  215. }
  216. spin_unlock(&block_group->lock);
  217. INIT_LIST_HEAD(&bitmaps);
  218. path = btrfs_alloc_path();
  219. if (!path)
  220. return 0;
  221. inode = lookup_free_space_inode(root, block_group, path);
  222. if (IS_ERR(inode)) {
  223. btrfs_free_path(path);
  224. return 0;
  225. }
  226. /* Nothing in the space cache, goodbye */
  227. if (!i_size_read(inode)) {
  228. btrfs_free_path(path);
  229. goto out;
  230. }
  231. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  232. key.offset = block_group->key.objectid;
  233. key.type = 0;
  234. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  235. if (ret) {
  236. btrfs_free_path(path);
  237. goto out;
  238. }
  239. leaf = path->nodes[0];
  240. header = btrfs_item_ptr(leaf, path->slots[0],
  241. struct btrfs_free_space_header);
  242. num_entries = btrfs_free_space_entries(leaf, header);
  243. num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
  244. generation = btrfs_free_space_generation(leaf, header);
  245. btrfs_free_path(path);
  246. if (BTRFS_I(inode)->generation != generation) {
  247. printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
  248. " not match free space cache generation (%llu) for "
  249. "block group %llu\n",
  250. (unsigned long long)BTRFS_I(inode)->generation,
  251. (unsigned long long)generation,
  252. (unsigned long long)block_group->key.objectid);
  253. goto free_cache;
  254. }
  255. if (!num_entries)
  256. goto out;
  257. /* Setup everything for doing checksumming */
  258. num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
  259. checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
  260. if (!checksums)
  261. goto out;
  262. first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
  263. disk_crcs = kzalloc(first_page_offset, GFP_NOFS);
  264. if (!disk_crcs)
  265. goto out;
  266. ret = readahead_cache(inode);
  267. if (ret) {
  268. ret = 0;
  269. goto out;
  270. }
  271. while (1) {
  272. struct btrfs_free_space_entry *entry;
  273. struct btrfs_free_space *e;
  274. void *addr;
  275. unsigned long offset = 0;
  276. unsigned long start_offset = 0;
  277. int need_loop = 0;
  278. if (!num_entries && !num_bitmaps)
  279. break;
  280. if (index == 0) {
  281. start_offset = first_page_offset;
  282. offset = start_offset;
  283. }
  284. page = grab_cache_page(inode->i_mapping, index);
  285. if (!page) {
  286. ret = 0;
  287. goto free_cache;
  288. }
  289. if (!PageUptodate(page)) {
  290. btrfs_readpage(NULL, page);
  291. lock_page(page);
  292. if (!PageUptodate(page)) {
  293. unlock_page(page);
  294. page_cache_release(page);
  295. printk(KERN_ERR "btrfs: error reading free "
  296. "space cache: %llu\n",
  297. (unsigned long long)
  298. block_group->key.objectid);
  299. goto free_cache;
  300. }
  301. }
  302. addr = kmap(page);
  303. if (index == 0) {
  304. u64 *gen;
  305. memcpy(disk_crcs, addr, first_page_offset);
  306. gen = addr + (sizeof(u32) * num_checksums);
  307. if (*gen != BTRFS_I(inode)->generation) {
  308. printk(KERN_ERR "btrfs: space cache generation"
  309. " (%llu) does not match inode (%llu) "
  310. "for block group %llu\n",
  311. (unsigned long long)*gen,
  312. (unsigned long long)
  313. BTRFS_I(inode)->generation,
  314. (unsigned long long)
  315. block_group->key.objectid);
  316. kunmap(page);
  317. unlock_page(page);
  318. page_cache_release(page);
  319. goto free_cache;
  320. }
  321. crc = (u32 *)disk_crcs;
  322. }
  323. entry = addr + start_offset;
  324. /* First lets check our crc before we do anything fun */
  325. cur_crc = ~(u32)0;
  326. cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc,
  327. PAGE_CACHE_SIZE - start_offset);
  328. btrfs_csum_final(cur_crc, (char *)&cur_crc);
  329. if (cur_crc != *crc) {
  330. printk(KERN_ERR "btrfs: crc mismatch for page %lu in "
  331. "block group %llu\n", index,
  332. (unsigned long long)block_group->key.objectid);
  333. kunmap(page);
  334. unlock_page(page);
  335. page_cache_release(page);
  336. goto free_cache;
  337. }
  338. crc++;
  339. while (1) {
  340. if (!num_entries)
  341. break;
  342. need_loop = 1;
  343. e = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
  344. if (!e) {
  345. kunmap(page);
  346. unlock_page(page);
  347. page_cache_release(page);
  348. goto free_cache;
  349. }
  350. e->offset = le64_to_cpu(entry->offset);
  351. e->bytes = le64_to_cpu(entry->bytes);
  352. if (!e->bytes) {
  353. kunmap(page);
  354. kfree(e);
  355. unlock_page(page);
  356. page_cache_release(page);
  357. goto free_cache;
  358. }
  359. if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
  360. spin_lock(&block_group->tree_lock);
  361. ret = link_free_space(block_group, e);
  362. spin_unlock(&block_group->tree_lock);
  363. BUG_ON(ret);
  364. } else {
  365. e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  366. if (!e->bitmap) {
  367. kunmap(page);
  368. kfree(e);
  369. unlock_page(page);
  370. page_cache_release(page);
  371. goto free_cache;
  372. }
  373. spin_lock(&block_group->tree_lock);
  374. ret = link_free_space(block_group, e);
  375. block_group->total_bitmaps++;
  376. recalculate_thresholds(block_group);
  377. spin_unlock(&block_group->tree_lock);
  378. list_add_tail(&e->list, &bitmaps);
  379. }
  380. num_entries--;
  381. offset += sizeof(struct btrfs_free_space_entry);
  382. if (offset + sizeof(struct btrfs_free_space_entry) >=
  383. PAGE_CACHE_SIZE)
  384. break;
  385. entry++;
  386. }
  387. /*
  388. * We read an entry out of this page, we need to move on to the
  389. * next page.
  390. */
  391. if (need_loop) {
  392. kunmap(page);
  393. goto next;
  394. }
  395. /*
  396. * We add the bitmaps at the end of the entries in order that
  397. * the bitmap entries are added to the cache.
  398. */
  399. e = list_entry(bitmaps.next, struct btrfs_free_space, list);
  400. list_del_init(&e->list);
  401. memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
  402. kunmap(page);
  403. num_bitmaps--;
  404. next:
  405. unlock_page(page);
  406. page_cache_release(page);
  407. index++;
  408. }
  409. ret = 1;
  410. out:
  411. kfree(checksums);
  412. kfree(disk_crcs);
  413. iput(inode);
  414. return ret;
  415. free_cache:
  416. /* This cache is bogus, make sure it gets cleared */
  417. spin_lock(&block_group->lock);
  418. block_group->disk_cache_state = BTRFS_DC_CLEAR;
  419. spin_unlock(&block_group->lock);
  420. btrfs_remove_free_space_cache(block_group);
  421. goto out;
  422. }
  423. int btrfs_write_out_cache(struct btrfs_root *root,
  424. struct btrfs_trans_handle *trans,
  425. struct btrfs_block_group_cache *block_group,
  426. struct btrfs_path *path)
  427. {
  428. struct btrfs_free_space_header *header;
  429. struct extent_buffer *leaf;
  430. struct inode *inode;
  431. struct rb_node *node;
  432. struct list_head *pos, *n;
  433. struct page *page;
  434. struct extent_state *cached_state = NULL;
  435. struct list_head bitmap_list;
  436. struct btrfs_key key;
  437. u64 bytes = 0;
  438. u32 *crc, *checksums;
  439. pgoff_t index = 0, last_index = 0;
  440. unsigned long first_page_offset;
  441. int num_checksums;
  442. int entries = 0;
  443. int bitmaps = 0;
  444. int ret = 0;
  445. root = root->fs_info->tree_root;
  446. INIT_LIST_HEAD(&bitmap_list);
  447. spin_lock(&block_group->lock);
  448. if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
  449. spin_unlock(&block_group->lock);
  450. return 0;
  451. }
  452. spin_unlock(&block_group->lock);
  453. inode = lookup_free_space_inode(root, block_group, path);
  454. if (IS_ERR(inode))
  455. return 0;
  456. if (!i_size_read(inode)) {
  457. iput(inode);
  458. return 0;
  459. }
  460. node = rb_first(&block_group->free_space_offset);
  461. if (!node) {
  462. iput(inode);
  463. return 0;
  464. }
  465. last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
  466. filemap_write_and_wait(inode->i_mapping);
  467. btrfs_wait_ordered_range(inode, inode->i_size &
  468. ~(root->sectorsize - 1), (u64)-1);
  469. /* We need a checksum per page. */
  470. num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
  471. crc = checksums = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
  472. if (!crc) {
  473. iput(inode);
  474. return 0;
  475. }
  476. /* Since the first page has all of our checksums and our generation we
  477. * need to calculate the offset into the page that we can start writing
  478. * our entries.
  479. */
  480. first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
  481. /*
  482. * Lock all pages first so we can lock the extent safely.
  483. *
  484. * NOTE: Because we hold the ref the entire time we're going to write to
  485. * the page find_get_page should never fail, so we don't do a check
  486. * after find_get_page at this point. Just putting this here so people
  487. * know and don't freak out.
  488. */
  489. while (index <= last_index) {
  490. page = grab_cache_page(inode->i_mapping, index);
  491. if (!page) {
  492. pgoff_t i = 0;
  493. while (i < index) {
  494. page = find_get_page(inode->i_mapping, i);
  495. unlock_page(page);
  496. page_cache_release(page);
  497. page_cache_release(page);
  498. i++;
  499. }
  500. goto out_free;
  501. }
  502. index++;
  503. }
  504. index = 0;
  505. lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
  506. 0, &cached_state, GFP_NOFS);
  507. /* Write out the extent entries */
  508. do {
  509. struct btrfs_free_space_entry *entry;
  510. void *addr;
  511. unsigned long offset = 0;
  512. unsigned long start_offset = 0;
  513. if (index == 0) {
  514. start_offset = first_page_offset;
  515. offset = start_offset;
  516. }
  517. page = find_get_page(inode->i_mapping, index);
  518. addr = kmap(page);
  519. entry = addr + start_offset;
  520. memset(addr, 0, PAGE_CACHE_SIZE);
  521. while (1) {
  522. struct btrfs_free_space *e;
  523. e = rb_entry(node, struct btrfs_free_space, offset_index);
  524. entries++;
  525. entry->offset = cpu_to_le64(e->offset);
  526. entry->bytes = cpu_to_le64(e->bytes);
  527. if (e->bitmap) {
  528. entry->type = BTRFS_FREE_SPACE_BITMAP;
  529. list_add_tail(&e->list, &bitmap_list);
  530. bitmaps++;
  531. } else {
  532. entry->type = BTRFS_FREE_SPACE_EXTENT;
  533. }
  534. node = rb_next(node);
  535. if (!node)
  536. break;
  537. offset += sizeof(struct btrfs_free_space_entry);
  538. if (offset + sizeof(struct btrfs_free_space_entry) >=
  539. PAGE_CACHE_SIZE)
  540. break;
  541. entry++;
  542. }
  543. *crc = ~(u32)0;
  544. *crc = btrfs_csum_data(root, addr + start_offset, *crc,
  545. PAGE_CACHE_SIZE - start_offset);
  546. kunmap(page);
  547. btrfs_csum_final(*crc, (char *)crc);
  548. crc++;
  549. bytes += PAGE_CACHE_SIZE;
  550. ClearPageChecked(page);
  551. set_page_extent_mapped(page);
  552. SetPageUptodate(page);
  553. set_page_dirty(page);
  554. /*
  555. * We need to release our reference we got for grab_cache_page,
  556. * except for the first page which will hold our checksums, we
  557. * do that below.
  558. */
  559. if (index != 0) {
  560. unlock_page(page);
  561. page_cache_release(page);
  562. }
  563. page_cache_release(page);
  564. index++;
  565. } while (node);
  566. /* Write out the bitmaps */
  567. list_for_each_safe(pos, n, &bitmap_list) {
  568. void *addr;
  569. struct btrfs_free_space *entry =
  570. list_entry(pos, struct btrfs_free_space, list);
  571. page = find_get_page(inode->i_mapping, index);
  572. addr = kmap(page);
  573. memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
  574. *crc = ~(u32)0;
  575. *crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE);
  576. kunmap(page);
  577. btrfs_csum_final(*crc, (char *)crc);
  578. crc++;
  579. bytes += PAGE_CACHE_SIZE;
  580. ClearPageChecked(page);
  581. set_page_extent_mapped(page);
  582. SetPageUptodate(page);
  583. set_page_dirty(page);
  584. unlock_page(page);
  585. page_cache_release(page);
  586. page_cache_release(page);
  587. list_del_init(&entry->list);
  588. index++;
  589. }
  590. /* Zero out the rest of the pages just to make sure */
  591. while (index <= last_index) {
  592. void *addr;
  593. page = find_get_page(inode->i_mapping, index);
  594. addr = kmap(page);
  595. memset(addr, 0, PAGE_CACHE_SIZE);
  596. kunmap(page);
  597. ClearPageChecked(page);
  598. set_page_extent_mapped(page);
  599. SetPageUptodate(page);
  600. set_page_dirty(page);
  601. unlock_page(page);
  602. page_cache_release(page);
  603. page_cache_release(page);
  604. bytes += PAGE_CACHE_SIZE;
  605. index++;
  606. }
  607. btrfs_set_extent_delalloc(inode, 0, bytes - 1, &cached_state);
  608. /* Write the checksums and trans id to the first page */
  609. {
  610. void *addr;
  611. u64 *gen;
  612. page = find_get_page(inode->i_mapping, 0);
  613. addr = kmap(page);
  614. memcpy(addr, checksums, sizeof(u32) * num_checksums);
  615. gen = addr + (sizeof(u32) * num_checksums);
  616. *gen = trans->transid;
  617. kunmap(page);
  618. ClearPageChecked(page);
  619. set_page_extent_mapped(page);
  620. SetPageUptodate(page);
  621. set_page_dirty(page);
  622. unlock_page(page);
  623. page_cache_release(page);
  624. page_cache_release(page);
  625. }
  626. BTRFS_I(inode)->generation = trans->transid;
  627. unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
  628. i_size_read(inode) - 1, &cached_state, GFP_NOFS);
  629. filemap_write_and_wait(inode->i_mapping);
  630. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  631. key.offset = block_group->key.objectid;
  632. key.type = 0;
  633. ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
  634. if (ret < 0) {
  635. ret = 0;
  636. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
  637. EXTENT_DIRTY | EXTENT_DELALLOC |
  638. EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
  639. goto out_free;
  640. }
  641. leaf = path->nodes[0];
  642. if (ret > 0) {
  643. struct btrfs_key found_key;
  644. BUG_ON(!path->slots[0]);
  645. path->slots[0]--;
  646. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  647. if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
  648. found_key.offset != block_group->key.objectid) {
  649. ret = 0;
  650. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
  651. EXTENT_DIRTY | EXTENT_DELALLOC |
  652. EXTENT_DO_ACCOUNTING, 0, 0, NULL,
  653. GFP_NOFS);
  654. btrfs_release_path(root, path);
  655. goto out_free;
  656. }
  657. }
  658. header = btrfs_item_ptr(leaf, path->slots[0],
  659. struct btrfs_free_space_header);
  660. btrfs_set_free_space_entries(leaf, header, entries);
  661. btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
  662. btrfs_set_free_space_generation(leaf, header, trans->transid);
  663. btrfs_mark_buffer_dirty(leaf);
  664. btrfs_release_path(root, path);
  665. ret = 1;
  666. out_free:
  667. if (ret == 0) {
  668. invalidate_inode_pages2_range(inode->i_mapping, 0, index);
  669. spin_lock(&block_group->lock);
  670. block_group->disk_cache_state = BTRFS_DC_ERROR;
  671. spin_unlock(&block_group->lock);
  672. BTRFS_I(inode)->generation = 0;
  673. }
  674. kfree(checksums);
  675. btrfs_update_inode(trans, root, inode);
  676. iput(inode);
  677. return ret;
  678. }
  679. static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize,
  680. u64 offset)
  681. {
  682. BUG_ON(offset < bitmap_start);
  683. offset -= bitmap_start;
  684. return (unsigned long)(div64_u64(offset, sectorsize));
  685. }
  686. static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize)
  687. {
  688. return (unsigned long)(div64_u64(bytes, sectorsize));
  689. }
  690. static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group,
  691. u64 offset)
  692. {
  693. u64 bitmap_start;
  694. u64 bytes_per_bitmap;
  695. bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize;
  696. bitmap_start = offset - block_group->key.objectid;
  697. bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
  698. bitmap_start *= bytes_per_bitmap;
  699. bitmap_start += block_group->key.objectid;
  700. return bitmap_start;
  701. }
  702. static int tree_insert_offset(struct rb_root *root, u64 offset,
  703. struct rb_node *node, int bitmap)
  704. {
  705. struct rb_node **p = &root->rb_node;
  706. struct rb_node *parent = NULL;
  707. struct btrfs_free_space *info;
  708. while (*p) {
  709. parent = *p;
  710. info = rb_entry(parent, struct btrfs_free_space, offset_index);
  711. if (offset < info->offset) {
  712. p = &(*p)->rb_left;
  713. } else if (offset > info->offset) {
  714. p = &(*p)->rb_right;
  715. } else {
  716. /*
  717. * we could have a bitmap entry and an extent entry
  718. * share the same offset. If this is the case, we want
  719. * the extent entry to always be found first if we do a
  720. * linear search through the tree, since we want to have
  721. * the quickest allocation time, and allocating from an
  722. * extent is faster than allocating from a bitmap. So
  723. * if we're inserting a bitmap and we find an entry at
  724. * this offset, we want to go right, or after this entry
  725. * logically. If we are inserting an extent and we've
  726. * found a bitmap, we want to go left, or before
  727. * logically.
  728. */
  729. if (bitmap) {
  730. WARN_ON(info->bitmap);
  731. p = &(*p)->rb_right;
  732. } else {
  733. WARN_ON(!info->bitmap);
  734. p = &(*p)->rb_left;
  735. }
  736. }
  737. }
  738. rb_link_node(node, parent, p);
  739. rb_insert_color(node, root);
  740. return 0;
  741. }
  742. /*
  743. * searches the tree for the given offset.
  744. *
  745. * fuzzy - If this is set, then we are trying to make an allocation, and we just
  746. * want a section that has at least bytes size and comes at or after the given
  747. * offset.
  748. */
  749. static struct btrfs_free_space *
  750. tree_search_offset(struct btrfs_block_group_cache *block_group,
  751. u64 offset, int bitmap_only, int fuzzy)
  752. {
  753. struct rb_node *n = block_group->free_space_offset.rb_node;
  754. struct btrfs_free_space *entry, *prev = NULL;
  755. /* find entry that is closest to the 'offset' */
  756. while (1) {
  757. if (!n) {
  758. entry = NULL;
  759. break;
  760. }
  761. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  762. prev = entry;
  763. if (offset < entry->offset)
  764. n = n->rb_left;
  765. else if (offset > entry->offset)
  766. n = n->rb_right;
  767. else
  768. break;
  769. }
  770. if (bitmap_only) {
  771. if (!entry)
  772. return NULL;
  773. if (entry->bitmap)
  774. return entry;
  775. /*
  776. * bitmap entry and extent entry may share same offset,
  777. * in that case, bitmap entry comes after extent entry.
  778. */
  779. n = rb_next(n);
  780. if (!n)
  781. return NULL;
  782. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  783. if (entry->offset != offset)
  784. return NULL;
  785. WARN_ON(!entry->bitmap);
  786. return entry;
  787. } else if (entry) {
  788. if (entry->bitmap) {
  789. /*
  790. * if previous extent entry covers the offset,
  791. * we should return it instead of the bitmap entry
  792. */
  793. n = &entry->offset_index;
  794. while (1) {
  795. n = rb_prev(n);
  796. if (!n)
  797. break;
  798. prev = rb_entry(n, struct btrfs_free_space,
  799. offset_index);
  800. if (!prev->bitmap) {
  801. if (prev->offset + prev->bytes > offset)
  802. entry = prev;
  803. break;
  804. }
  805. }
  806. }
  807. return entry;
  808. }
  809. if (!prev)
  810. return NULL;
  811. /* find last entry before the 'offset' */
  812. entry = prev;
  813. if (entry->offset > offset) {
  814. n = rb_prev(&entry->offset_index);
  815. if (n) {
  816. entry = rb_entry(n, struct btrfs_free_space,
  817. offset_index);
  818. BUG_ON(entry->offset > offset);
  819. } else {
  820. if (fuzzy)
  821. return entry;
  822. else
  823. return NULL;
  824. }
  825. }
  826. if (entry->bitmap) {
  827. n = &entry->offset_index;
  828. while (1) {
  829. n = rb_prev(n);
  830. if (!n)
  831. break;
  832. prev = rb_entry(n, struct btrfs_free_space,
  833. offset_index);
  834. if (!prev->bitmap) {
  835. if (prev->offset + prev->bytes > offset)
  836. return prev;
  837. break;
  838. }
  839. }
  840. if (entry->offset + BITS_PER_BITMAP *
  841. block_group->sectorsize > offset)
  842. return entry;
  843. } else if (entry->offset + entry->bytes > offset)
  844. return entry;
  845. if (!fuzzy)
  846. return NULL;
  847. while (1) {
  848. if (entry->bitmap) {
  849. if (entry->offset + BITS_PER_BITMAP *
  850. block_group->sectorsize > offset)
  851. break;
  852. } else {
  853. if (entry->offset + entry->bytes > offset)
  854. break;
  855. }
  856. n = rb_next(&entry->offset_index);
  857. if (!n)
  858. return NULL;
  859. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  860. }
  861. return entry;
  862. }
  863. static inline void
  864. __unlink_free_space(struct btrfs_block_group_cache *block_group,
  865. struct btrfs_free_space *info)
  866. {
  867. rb_erase(&info->offset_index, &block_group->free_space_offset);
  868. block_group->free_extents--;
  869. }
  870. static void unlink_free_space(struct btrfs_block_group_cache *block_group,
  871. struct btrfs_free_space *info)
  872. {
  873. __unlink_free_space(block_group, info);
  874. block_group->free_space -= info->bytes;
  875. }
  876. static int link_free_space(struct btrfs_block_group_cache *block_group,
  877. struct btrfs_free_space *info)
  878. {
  879. int ret = 0;
  880. BUG_ON(!info->bitmap && !info->bytes);
  881. ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
  882. &info->offset_index, (info->bitmap != NULL));
  883. if (ret)
  884. return ret;
  885. block_group->free_space += info->bytes;
  886. block_group->free_extents++;
  887. return ret;
  888. }
  889. static void recalculate_thresholds(struct btrfs_block_group_cache *block_group)
  890. {
  891. u64 max_bytes;
  892. u64 bitmap_bytes;
  893. u64 extent_bytes;
  894. u64 size = block_group->key.offset;
  895. /*
  896. * The goal is to keep the total amount of memory used per 1gb of space
  897. * at or below 32k, so we need to adjust how much memory we allow to be
  898. * used by extent based free space tracking
  899. */
  900. if (size < 1024 * 1024 * 1024)
  901. max_bytes = MAX_CACHE_BYTES_PER_GIG;
  902. else
  903. max_bytes = MAX_CACHE_BYTES_PER_GIG *
  904. div64_u64(size, 1024 * 1024 * 1024);
  905. /*
  906. * we want to account for 1 more bitmap than what we have so we can make
  907. * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
  908. * we add more bitmaps.
  909. */
  910. bitmap_bytes = (block_group->total_bitmaps + 1) * PAGE_CACHE_SIZE;
  911. if (bitmap_bytes >= max_bytes) {
  912. block_group->extents_thresh = 0;
  913. return;
  914. }
  915. /*
  916. * we want the extent entry threshold to always be at most 1/2 the maxw
  917. * bytes we can have, or whatever is less than that.
  918. */
  919. extent_bytes = max_bytes - bitmap_bytes;
  920. extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
  921. block_group->extents_thresh =
  922. div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
  923. }
  924. static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group,
  925. struct btrfs_free_space *info, u64 offset,
  926. u64 bytes)
  927. {
  928. unsigned long start, end;
  929. unsigned long i;
  930. start = offset_to_bit(info->offset, block_group->sectorsize, offset);
  931. end = start + bytes_to_bits(bytes, block_group->sectorsize);
  932. BUG_ON(end > BITS_PER_BITMAP);
  933. for (i = start; i < end; i++)
  934. clear_bit(i, info->bitmap);
  935. info->bytes -= bytes;
  936. block_group->free_space -= bytes;
  937. }
  938. static void bitmap_set_bits(struct btrfs_block_group_cache *block_group,
  939. struct btrfs_free_space *info, u64 offset,
  940. u64 bytes)
  941. {
  942. unsigned long start, end;
  943. unsigned long i;
  944. start = offset_to_bit(info->offset, block_group->sectorsize, offset);
  945. end = start + bytes_to_bits(bytes, block_group->sectorsize);
  946. BUG_ON(end > BITS_PER_BITMAP);
  947. for (i = start; i < end; i++)
  948. set_bit(i, info->bitmap);
  949. info->bytes += bytes;
  950. block_group->free_space += bytes;
  951. }
  952. static int search_bitmap(struct btrfs_block_group_cache *block_group,
  953. struct btrfs_free_space *bitmap_info, u64 *offset,
  954. u64 *bytes)
  955. {
  956. unsigned long found_bits = 0;
  957. unsigned long bits, i;
  958. unsigned long next_zero;
  959. i = offset_to_bit(bitmap_info->offset, block_group->sectorsize,
  960. max_t(u64, *offset, bitmap_info->offset));
  961. bits = bytes_to_bits(*bytes, block_group->sectorsize);
  962. for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
  963. i < BITS_PER_BITMAP;
  964. i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
  965. next_zero = find_next_zero_bit(bitmap_info->bitmap,
  966. BITS_PER_BITMAP, i);
  967. if ((next_zero - i) >= bits) {
  968. found_bits = next_zero - i;
  969. break;
  970. }
  971. i = next_zero;
  972. }
  973. if (found_bits) {
  974. *offset = (u64)(i * block_group->sectorsize) +
  975. bitmap_info->offset;
  976. *bytes = (u64)(found_bits) * block_group->sectorsize;
  977. return 0;
  978. }
  979. return -1;
  980. }
  981. static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache
  982. *block_group, u64 *offset,
  983. u64 *bytes, int debug)
  984. {
  985. struct btrfs_free_space *entry;
  986. struct rb_node *node;
  987. int ret;
  988. if (!block_group->free_space_offset.rb_node)
  989. return NULL;
  990. entry = tree_search_offset(block_group,
  991. offset_to_bitmap(block_group, *offset),
  992. 0, 1);
  993. if (!entry)
  994. return NULL;
  995. for (node = &entry->offset_index; node; node = rb_next(node)) {
  996. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  997. if (entry->bytes < *bytes)
  998. continue;
  999. if (entry->bitmap) {
  1000. ret = search_bitmap(block_group, entry, offset, bytes);
  1001. if (!ret)
  1002. return entry;
  1003. continue;
  1004. }
  1005. *offset = entry->offset;
  1006. *bytes = entry->bytes;
  1007. return entry;
  1008. }
  1009. return NULL;
  1010. }
  1011. static void add_new_bitmap(struct btrfs_block_group_cache *block_group,
  1012. struct btrfs_free_space *info, u64 offset)
  1013. {
  1014. u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
  1015. int max_bitmaps = (int)div64_u64(block_group->key.offset +
  1016. bytes_per_bg - 1, bytes_per_bg);
  1017. BUG_ON(block_group->total_bitmaps >= max_bitmaps);
  1018. info->offset = offset_to_bitmap(block_group, offset);
  1019. info->bytes = 0;
  1020. link_free_space(block_group, info);
  1021. block_group->total_bitmaps++;
  1022. recalculate_thresholds(block_group);
  1023. }
  1024. static void free_bitmap(struct btrfs_block_group_cache *block_group,
  1025. struct btrfs_free_space *bitmap_info)
  1026. {
  1027. unlink_free_space(block_group, bitmap_info);
  1028. kfree(bitmap_info->bitmap);
  1029. kfree(bitmap_info);
  1030. block_group->total_bitmaps--;
  1031. recalculate_thresholds(block_group);
  1032. }
  1033. static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group,
  1034. struct btrfs_free_space *bitmap_info,
  1035. u64 *offset, u64 *bytes)
  1036. {
  1037. u64 end;
  1038. u64 search_start, search_bytes;
  1039. int ret;
  1040. again:
  1041. end = bitmap_info->offset +
  1042. (u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1;
  1043. /*
  1044. * XXX - this can go away after a few releases.
  1045. *
  1046. * since the only user of btrfs_remove_free_space is the tree logging
  1047. * stuff, and the only way to test that is under crash conditions, we
  1048. * want to have this debug stuff here just in case somethings not
  1049. * working. Search the bitmap for the space we are trying to use to
  1050. * make sure its actually there. If its not there then we need to stop
  1051. * because something has gone wrong.
  1052. */
  1053. search_start = *offset;
  1054. search_bytes = *bytes;
  1055. ret = search_bitmap(block_group, bitmap_info, &search_start,
  1056. &search_bytes);
  1057. BUG_ON(ret < 0 || search_start != *offset);
  1058. if (*offset > bitmap_info->offset && *offset + *bytes > end) {
  1059. bitmap_clear_bits(block_group, bitmap_info, *offset,
  1060. end - *offset + 1);
  1061. *bytes -= end - *offset + 1;
  1062. *offset = end + 1;
  1063. } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
  1064. bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes);
  1065. *bytes = 0;
  1066. }
  1067. if (*bytes) {
  1068. struct rb_node *next = rb_next(&bitmap_info->offset_index);
  1069. if (!bitmap_info->bytes)
  1070. free_bitmap(block_group, bitmap_info);
  1071. /*
  1072. * no entry after this bitmap, but we still have bytes to
  1073. * remove, so something has gone wrong.
  1074. */
  1075. if (!next)
  1076. return -EINVAL;
  1077. bitmap_info = rb_entry(next, struct btrfs_free_space,
  1078. offset_index);
  1079. /*
  1080. * if the next entry isn't a bitmap we need to return to let the
  1081. * extent stuff do its work.
  1082. */
  1083. if (!bitmap_info->bitmap)
  1084. return -EAGAIN;
  1085. /*
  1086. * Ok the next item is a bitmap, but it may not actually hold
  1087. * the information for the rest of this free space stuff, so
  1088. * look for it, and if we don't find it return so we can try
  1089. * everything over again.
  1090. */
  1091. search_start = *offset;
  1092. search_bytes = *bytes;
  1093. ret = search_bitmap(block_group, bitmap_info, &search_start,
  1094. &search_bytes);
  1095. if (ret < 0 || search_start != *offset)
  1096. return -EAGAIN;
  1097. goto again;
  1098. } else if (!bitmap_info->bytes)
  1099. free_bitmap(block_group, bitmap_info);
  1100. return 0;
  1101. }
  1102. static int insert_into_bitmap(struct btrfs_block_group_cache *block_group,
  1103. struct btrfs_free_space *info)
  1104. {
  1105. struct btrfs_free_space *bitmap_info;
  1106. int added = 0;
  1107. u64 bytes, offset, end;
  1108. int ret;
  1109. /*
  1110. * If we are below the extents threshold then we can add this as an
  1111. * extent, and don't have to deal with the bitmap
  1112. */
  1113. if (block_group->free_extents < block_group->extents_thresh &&
  1114. info->bytes > block_group->sectorsize * 4)
  1115. return 0;
  1116. /*
  1117. * some block groups are so tiny they can't be enveloped by a bitmap, so
  1118. * don't even bother to create a bitmap for this
  1119. */
  1120. if (BITS_PER_BITMAP * block_group->sectorsize >
  1121. block_group->key.offset)
  1122. return 0;
  1123. bytes = info->bytes;
  1124. offset = info->offset;
  1125. again:
  1126. bitmap_info = tree_search_offset(block_group,
  1127. offset_to_bitmap(block_group, offset),
  1128. 1, 0);
  1129. if (!bitmap_info) {
  1130. BUG_ON(added);
  1131. goto new_bitmap;
  1132. }
  1133. end = bitmap_info->offset +
  1134. (u64)(BITS_PER_BITMAP * block_group->sectorsize);
  1135. if (offset >= bitmap_info->offset && offset + bytes > end) {
  1136. bitmap_set_bits(block_group, bitmap_info, offset,
  1137. end - offset);
  1138. bytes -= end - offset;
  1139. offset = end;
  1140. added = 0;
  1141. } else if (offset >= bitmap_info->offset && offset + bytes <= end) {
  1142. bitmap_set_bits(block_group, bitmap_info, offset, bytes);
  1143. bytes = 0;
  1144. } else {
  1145. BUG();
  1146. }
  1147. if (!bytes) {
  1148. ret = 1;
  1149. goto out;
  1150. } else
  1151. goto again;
  1152. new_bitmap:
  1153. if (info && info->bitmap) {
  1154. add_new_bitmap(block_group, info, offset);
  1155. added = 1;
  1156. info = NULL;
  1157. goto again;
  1158. } else {
  1159. spin_unlock(&block_group->tree_lock);
  1160. /* no pre-allocated info, allocate a new one */
  1161. if (!info) {
  1162. info = kzalloc(sizeof(struct btrfs_free_space),
  1163. GFP_NOFS);
  1164. if (!info) {
  1165. spin_lock(&block_group->tree_lock);
  1166. ret = -ENOMEM;
  1167. goto out;
  1168. }
  1169. }
  1170. /* allocate the bitmap */
  1171. info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  1172. spin_lock(&block_group->tree_lock);
  1173. if (!info->bitmap) {
  1174. ret = -ENOMEM;
  1175. goto out;
  1176. }
  1177. goto again;
  1178. }
  1179. out:
  1180. if (info) {
  1181. if (info->bitmap)
  1182. kfree(info->bitmap);
  1183. kfree(info);
  1184. }
  1185. return ret;
  1186. }
  1187. bool try_merge_free_space(struct btrfs_block_group_cache *block_group,
  1188. struct btrfs_free_space *info, bool update_stat)
  1189. {
  1190. struct btrfs_free_space *left_info;
  1191. struct btrfs_free_space *right_info;
  1192. bool merged = false;
  1193. u64 offset = info->offset;
  1194. u64 bytes = info->bytes;
  1195. /*
  1196. * first we want to see if there is free space adjacent to the range we
  1197. * are adding, if there is remove that struct and add a new one to
  1198. * cover the entire range
  1199. */
  1200. right_info = tree_search_offset(block_group, offset + bytes, 0, 0);
  1201. if (right_info && rb_prev(&right_info->offset_index))
  1202. left_info = rb_entry(rb_prev(&right_info->offset_index),
  1203. struct btrfs_free_space, offset_index);
  1204. else
  1205. left_info = tree_search_offset(block_group, offset - 1, 0, 0);
  1206. if (right_info && !right_info->bitmap) {
  1207. if (update_stat)
  1208. unlink_free_space(block_group, right_info);
  1209. else
  1210. __unlink_free_space(block_group, right_info);
  1211. info->bytes += right_info->bytes;
  1212. kfree(right_info);
  1213. merged = true;
  1214. }
  1215. if (left_info && !left_info->bitmap &&
  1216. left_info->offset + left_info->bytes == offset) {
  1217. if (update_stat)
  1218. unlink_free_space(block_group, left_info);
  1219. else
  1220. __unlink_free_space(block_group, left_info);
  1221. info->offset = left_info->offset;
  1222. info->bytes += left_info->bytes;
  1223. kfree(left_info);
  1224. merged = true;
  1225. }
  1226. return merged;
  1227. }
  1228. int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
  1229. u64 offset, u64 bytes)
  1230. {
  1231. struct btrfs_free_space *info;
  1232. int ret = 0;
  1233. info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
  1234. if (!info)
  1235. return -ENOMEM;
  1236. info->offset = offset;
  1237. info->bytes = bytes;
  1238. spin_lock(&block_group->tree_lock);
  1239. if (try_merge_free_space(block_group, info, true))
  1240. goto link;
  1241. /*
  1242. * There was no extent directly to the left or right of this new
  1243. * extent then we know we're going to have to allocate a new extent, so
  1244. * before we do that see if we need to drop this into a bitmap
  1245. */
  1246. ret = insert_into_bitmap(block_group, info);
  1247. if (ret < 0) {
  1248. goto out;
  1249. } else if (ret) {
  1250. ret = 0;
  1251. goto out;
  1252. }
  1253. link:
  1254. ret = link_free_space(block_group, info);
  1255. if (ret)
  1256. kfree(info);
  1257. out:
  1258. spin_unlock(&block_group->tree_lock);
  1259. if (ret) {
  1260. printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
  1261. BUG_ON(ret == -EEXIST);
  1262. }
  1263. return ret;
  1264. }
  1265. int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
  1266. u64 offset, u64 bytes)
  1267. {
  1268. struct btrfs_free_space *info;
  1269. struct btrfs_free_space *next_info = NULL;
  1270. int ret = 0;
  1271. spin_lock(&block_group->tree_lock);
  1272. again:
  1273. info = tree_search_offset(block_group, offset, 0, 0);
  1274. if (!info) {
  1275. /*
  1276. * oops didn't find an extent that matched the space we wanted
  1277. * to remove, look for a bitmap instead
  1278. */
  1279. info = tree_search_offset(block_group,
  1280. offset_to_bitmap(block_group, offset),
  1281. 1, 0);
  1282. if (!info) {
  1283. WARN_ON(1);
  1284. goto out_lock;
  1285. }
  1286. }
  1287. if (info->bytes < bytes && rb_next(&info->offset_index)) {
  1288. u64 end;
  1289. next_info = rb_entry(rb_next(&info->offset_index),
  1290. struct btrfs_free_space,
  1291. offset_index);
  1292. if (next_info->bitmap)
  1293. end = next_info->offset + BITS_PER_BITMAP *
  1294. block_group->sectorsize - 1;
  1295. else
  1296. end = next_info->offset + next_info->bytes;
  1297. if (next_info->bytes < bytes ||
  1298. next_info->offset > offset || offset > end) {
  1299. printk(KERN_CRIT "Found free space at %llu, size %llu,"
  1300. " trying to use %llu\n",
  1301. (unsigned long long)info->offset,
  1302. (unsigned long long)info->bytes,
  1303. (unsigned long long)bytes);
  1304. WARN_ON(1);
  1305. ret = -EINVAL;
  1306. goto out_lock;
  1307. }
  1308. info = next_info;
  1309. }
  1310. if (info->bytes == bytes) {
  1311. unlink_free_space(block_group, info);
  1312. if (info->bitmap) {
  1313. kfree(info->bitmap);
  1314. block_group->total_bitmaps--;
  1315. }
  1316. kfree(info);
  1317. goto out_lock;
  1318. }
  1319. if (!info->bitmap && info->offset == offset) {
  1320. unlink_free_space(block_group, info);
  1321. info->offset += bytes;
  1322. info->bytes -= bytes;
  1323. link_free_space(block_group, info);
  1324. goto out_lock;
  1325. }
  1326. if (!info->bitmap && info->offset <= offset &&
  1327. info->offset + info->bytes >= offset + bytes) {
  1328. u64 old_start = info->offset;
  1329. /*
  1330. * we're freeing space in the middle of the info,
  1331. * this can happen during tree log replay
  1332. *
  1333. * first unlink the old info and then
  1334. * insert it again after the hole we're creating
  1335. */
  1336. unlink_free_space(block_group, info);
  1337. if (offset + bytes < info->offset + info->bytes) {
  1338. u64 old_end = info->offset + info->bytes;
  1339. info->offset = offset + bytes;
  1340. info->bytes = old_end - info->offset;
  1341. ret = link_free_space(block_group, info);
  1342. WARN_ON(ret);
  1343. if (ret)
  1344. goto out_lock;
  1345. } else {
  1346. /* the hole we're creating ends at the end
  1347. * of the info struct, just free the info
  1348. */
  1349. kfree(info);
  1350. }
  1351. spin_unlock(&block_group->tree_lock);
  1352. /* step two, insert a new info struct to cover
  1353. * anything before the hole
  1354. */
  1355. ret = btrfs_add_free_space(block_group, old_start,
  1356. offset - old_start);
  1357. WARN_ON(ret);
  1358. goto out;
  1359. }
  1360. ret = remove_from_bitmap(block_group, info, &offset, &bytes);
  1361. if (ret == -EAGAIN)
  1362. goto again;
  1363. BUG_ON(ret);
  1364. out_lock:
  1365. spin_unlock(&block_group->tree_lock);
  1366. out:
  1367. return ret;
  1368. }
  1369. void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
  1370. u64 bytes)
  1371. {
  1372. struct btrfs_free_space *info;
  1373. struct rb_node *n;
  1374. int count = 0;
  1375. for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
  1376. info = rb_entry(n, struct btrfs_free_space, offset_index);
  1377. if (info->bytes >= bytes)
  1378. count++;
  1379. printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
  1380. (unsigned long long)info->offset,
  1381. (unsigned long long)info->bytes,
  1382. (info->bitmap) ? "yes" : "no");
  1383. }
  1384. printk(KERN_INFO "block group has cluster?: %s\n",
  1385. list_empty(&block_group->cluster_list) ? "no" : "yes");
  1386. printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
  1387. "\n", count);
  1388. }
  1389. u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
  1390. {
  1391. struct btrfs_free_space *info;
  1392. struct rb_node *n;
  1393. u64 ret = 0;
  1394. for (n = rb_first(&block_group->free_space_offset); n;
  1395. n = rb_next(n)) {
  1396. info = rb_entry(n, struct btrfs_free_space, offset_index);
  1397. ret += info->bytes;
  1398. }
  1399. return ret;
  1400. }
  1401. /*
  1402. * for a given cluster, put all of its extents back into the free
  1403. * space cache. If the block group passed doesn't match the block group
  1404. * pointed to by the cluster, someone else raced in and freed the
  1405. * cluster already. In that case, we just return without changing anything
  1406. */
  1407. static int
  1408. __btrfs_return_cluster_to_free_space(
  1409. struct btrfs_block_group_cache *block_group,
  1410. struct btrfs_free_cluster *cluster)
  1411. {
  1412. struct btrfs_free_space *entry;
  1413. struct rb_node *node;
  1414. bool bitmap;
  1415. spin_lock(&cluster->lock);
  1416. if (cluster->block_group != block_group)
  1417. goto out;
  1418. bitmap = cluster->points_to_bitmap;
  1419. cluster->block_group = NULL;
  1420. cluster->window_start = 0;
  1421. list_del_init(&cluster->block_group_list);
  1422. cluster->points_to_bitmap = false;
  1423. if (bitmap)
  1424. goto out;
  1425. node = rb_first(&cluster->root);
  1426. while (node) {
  1427. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1428. node = rb_next(&entry->offset_index);
  1429. rb_erase(&entry->offset_index, &cluster->root);
  1430. BUG_ON(entry->bitmap);
  1431. try_merge_free_space(block_group, entry, false);
  1432. tree_insert_offset(&block_group->free_space_offset,
  1433. entry->offset, &entry->offset_index, 0);
  1434. }
  1435. cluster->root = RB_ROOT;
  1436. out:
  1437. spin_unlock(&cluster->lock);
  1438. btrfs_put_block_group(block_group);
  1439. return 0;
  1440. }
  1441. void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
  1442. {
  1443. struct btrfs_free_space *info;
  1444. struct rb_node *node;
  1445. struct btrfs_free_cluster *cluster;
  1446. struct list_head *head;
  1447. spin_lock(&block_group->tree_lock);
  1448. while ((head = block_group->cluster_list.next) !=
  1449. &block_group->cluster_list) {
  1450. cluster = list_entry(head, struct btrfs_free_cluster,
  1451. block_group_list);
  1452. WARN_ON(cluster->block_group != block_group);
  1453. __btrfs_return_cluster_to_free_space(block_group, cluster);
  1454. if (need_resched()) {
  1455. spin_unlock(&block_group->tree_lock);
  1456. cond_resched();
  1457. spin_lock(&block_group->tree_lock);
  1458. }
  1459. }
  1460. while ((node = rb_last(&block_group->free_space_offset)) != NULL) {
  1461. info = rb_entry(node, struct btrfs_free_space, offset_index);
  1462. unlink_free_space(block_group, info);
  1463. if (info->bitmap)
  1464. kfree(info->bitmap);
  1465. kfree(info);
  1466. if (need_resched()) {
  1467. spin_unlock(&block_group->tree_lock);
  1468. cond_resched();
  1469. spin_lock(&block_group->tree_lock);
  1470. }
  1471. }
  1472. spin_unlock(&block_group->tree_lock);
  1473. }
  1474. u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
  1475. u64 offset, u64 bytes, u64 empty_size)
  1476. {
  1477. struct btrfs_free_space *entry = NULL;
  1478. u64 bytes_search = bytes + empty_size;
  1479. u64 ret = 0;
  1480. spin_lock(&block_group->tree_lock);
  1481. entry = find_free_space(block_group, &offset, &bytes_search, 0);
  1482. if (!entry)
  1483. goto out;
  1484. ret = offset;
  1485. if (entry->bitmap) {
  1486. bitmap_clear_bits(block_group, entry, offset, bytes);
  1487. if (!entry->bytes)
  1488. free_bitmap(block_group, entry);
  1489. } else {
  1490. unlink_free_space(block_group, entry);
  1491. entry->offset += bytes;
  1492. entry->bytes -= bytes;
  1493. if (!entry->bytes)
  1494. kfree(entry);
  1495. else
  1496. link_free_space(block_group, entry);
  1497. }
  1498. out:
  1499. spin_unlock(&block_group->tree_lock);
  1500. return ret;
  1501. }
  1502. /*
  1503. * given a cluster, put all of its extents back into the free space
  1504. * cache. If a block group is passed, this function will only free
  1505. * a cluster that belongs to the passed block group.
  1506. *
  1507. * Otherwise, it'll get a reference on the block group pointed to by the
  1508. * cluster and remove the cluster from it.
  1509. */
  1510. int btrfs_return_cluster_to_free_space(
  1511. struct btrfs_block_group_cache *block_group,
  1512. struct btrfs_free_cluster *cluster)
  1513. {
  1514. int ret;
  1515. /* first, get a safe pointer to the block group */
  1516. spin_lock(&cluster->lock);
  1517. if (!block_group) {
  1518. block_group = cluster->block_group;
  1519. if (!block_group) {
  1520. spin_unlock(&cluster->lock);
  1521. return 0;
  1522. }
  1523. } else if (cluster->block_group != block_group) {
  1524. /* someone else has already freed it don't redo their work */
  1525. spin_unlock(&cluster->lock);
  1526. return 0;
  1527. }
  1528. atomic_inc(&block_group->count);
  1529. spin_unlock(&cluster->lock);
  1530. /* now return any extents the cluster had on it */
  1531. spin_lock(&block_group->tree_lock);
  1532. ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
  1533. spin_unlock(&block_group->tree_lock);
  1534. /* finally drop our ref */
  1535. btrfs_put_block_group(block_group);
  1536. return ret;
  1537. }
  1538. static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
  1539. struct btrfs_free_cluster *cluster,
  1540. u64 bytes, u64 min_start)
  1541. {
  1542. struct btrfs_free_space *entry;
  1543. int err;
  1544. u64 search_start = cluster->window_start;
  1545. u64 search_bytes = bytes;
  1546. u64 ret = 0;
  1547. spin_lock(&block_group->tree_lock);
  1548. spin_lock(&cluster->lock);
  1549. if (!cluster->points_to_bitmap)
  1550. goto out;
  1551. if (cluster->block_group != block_group)
  1552. goto out;
  1553. /*
  1554. * search_start is the beginning of the bitmap, but at some point it may
  1555. * be a good idea to point to the actual start of the free area in the
  1556. * bitmap, so do the offset_to_bitmap trick anyway, and set bitmap_only
  1557. * to 1 to make sure we get the bitmap entry
  1558. */
  1559. entry = tree_search_offset(block_group,
  1560. offset_to_bitmap(block_group, search_start),
  1561. 1, 0);
  1562. if (!entry || !entry->bitmap)
  1563. goto out;
  1564. search_start = min_start;
  1565. search_bytes = bytes;
  1566. err = search_bitmap(block_group, entry, &search_start,
  1567. &search_bytes);
  1568. if (err)
  1569. goto out;
  1570. ret = search_start;
  1571. bitmap_clear_bits(block_group, entry, ret, bytes);
  1572. if (entry->bytes == 0)
  1573. free_bitmap(block_group, entry);
  1574. out:
  1575. spin_unlock(&cluster->lock);
  1576. spin_unlock(&block_group->tree_lock);
  1577. return ret;
  1578. }
  1579. /*
  1580. * given a cluster, try to allocate 'bytes' from it, returns 0
  1581. * if it couldn't find anything suitably large, or a logical disk offset
  1582. * if things worked out
  1583. */
  1584. u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
  1585. struct btrfs_free_cluster *cluster, u64 bytes,
  1586. u64 min_start)
  1587. {
  1588. struct btrfs_free_space *entry = NULL;
  1589. struct rb_node *node;
  1590. u64 ret = 0;
  1591. if (cluster->points_to_bitmap)
  1592. return btrfs_alloc_from_bitmap(block_group, cluster, bytes,
  1593. min_start);
  1594. spin_lock(&cluster->lock);
  1595. if (bytes > cluster->max_size)
  1596. goto out;
  1597. if (cluster->block_group != block_group)
  1598. goto out;
  1599. node = rb_first(&cluster->root);
  1600. if (!node)
  1601. goto out;
  1602. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1603. while(1) {
  1604. if (entry->bytes < bytes || entry->offset < min_start) {
  1605. struct rb_node *node;
  1606. node = rb_next(&entry->offset_index);
  1607. if (!node)
  1608. break;
  1609. entry = rb_entry(node, struct btrfs_free_space,
  1610. offset_index);
  1611. continue;
  1612. }
  1613. ret = entry->offset;
  1614. entry->offset += bytes;
  1615. entry->bytes -= bytes;
  1616. if (entry->bytes == 0)
  1617. rb_erase(&entry->offset_index, &cluster->root);
  1618. break;
  1619. }
  1620. out:
  1621. spin_unlock(&cluster->lock);
  1622. if (!ret)
  1623. return 0;
  1624. spin_lock(&block_group->tree_lock);
  1625. block_group->free_space -= bytes;
  1626. if (entry->bytes == 0) {
  1627. block_group->free_extents--;
  1628. kfree(entry);
  1629. }
  1630. spin_unlock(&block_group->tree_lock);
  1631. return ret;
  1632. }
  1633. static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
  1634. struct btrfs_free_space *entry,
  1635. struct btrfs_free_cluster *cluster,
  1636. u64 offset, u64 bytes, u64 min_bytes)
  1637. {
  1638. unsigned long next_zero;
  1639. unsigned long i;
  1640. unsigned long search_bits;
  1641. unsigned long total_bits;
  1642. unsigned long found_bits;
  1643. unsigned long start = 0;
  1644. unsigned long total_found = 0;
  1645. bool found = false;
  1646. i = offset_to_bit(entry->offset, block_group->sectorsize,
  1647. max_t(u64, offset, entry->offset));
  1648. search_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
  1649. total_bits = bytes_to_bits(bytes, block_group->sectorsize);
  1650. again:
  1651. found_bits = 0;
  1652. for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
  1653. i < BITS_PER_BITMAP;
  1654. i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
  1655. next_zero = find_next_zero_bit(entry->bitmap,
  1656. BITS_PER_BITMAP, i);
  1657. if (next_zero - i >= search_bits) {
  1658. found_bits = next_zero - i;
  1659. break;
  1660. }
  1661. i = next_zero;
  1662. }
  1663. if (!found_bits)
  1664. return -1;
  1665. if (!found) {
  1666. start = i;
  1667. found = true;
  1668. }
  1669. total_found += found_bits;
  1670. if (cluster->max_size < found_bits * block_group->sectorsize)
  1671. cluster->max_size = found_bits * block_group->sectorsize;
  1672. if (total_found < total_bits) {
  1673. i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
  1674. if (i - start > total_bits * 2) {
  1675. total_found = 0;
  1676. cluster->max_size = 0;
  1677. found = false;
  1678. }
  1679. goto again;
  1680. }
  1681. cluster->window_start = start * block_group->sectorsize +
  1682. entry->offset;
  1683. cluster->points_to_bitmap = true;
  1684. return 0;
  1685. }
  1686. /*
  1687. * here we try to find a cluster of blocks in a block group. The goal
  1688. * is to find at least bytes free and up to empty_size + bytes free.
  1689. * We might not find them all in one contiguous area.
  1690. *
  1691. * returns zero and sets up cluster if things worked out, otherwise
  1692. * it returns -enospc
  1693. */
  1694. int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
  1695. struct btrfs_root *root,
  1696. struct btrfs_block_group_cache *block_group,
  1697. struct btrfs_free_cluster *cluster,
  1698. u64 offset, u64 bytes, u64 empty_size)
  1699. {
  1700. struct btrfs_free_space *entry = NULL;
  1701. struct rb_node *node;
  1702. struct btrfs_free_space *next;
  1703. struct btrfs_free_space *last = NULL;
  1704. u64 min_bytes;
  1705. u64 window_start;
  1706. u64 window_free;
  1707. u64 max_extent = 0;
  1708. bool found_bitmap = false;
  1709. int ret;
  1710. /* for metadata, allow allocates with more holes */
  1711. if (btrfs_test_opt(root, SSD_SPREAD)) {
  1712. min_bytes = bytes + empty_size;
  1713. } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
  1714. /*
  1715. * we want to do larger allocations when we are
  1716. * flushing out the delayed refs, it helps prevent
  1717. * making more work as we go along.
  1718. */
  1719. if (trans->transaction->delayed_refs.flushing)
  1720. min_bytes = max(bytes, (bytes + empty_size) >> 1);
  1721. else
  1722. min_bytes = max(bytes, (bytes + empty_size) >> 4);
  1723. } else
  1724. min_bytes = max(bytes, (bytes + empty_size) >> 2);
  1725. spin_lock(&block_group->tree_lock);
  1726. spin_lock(&cluster->lock);
  1727. /* someone already found a cluster, hooray */
  1728. if (cluster->block_group) {
  1729. ret = 0;
  1730. goto out;
  1731. }
  1732. again:
  1733. entry = tree_search_offset(block_group, offset, found_bitmap, 1);
  1734. if (!entry) {
  1735. ret = -ENOSPC;
  1736. goto out;
  1737. }
  1738. /*
  1739. * If found_bitmap is true, we exhausted our search for extent entries,
  1740. * and we just want to search all of the bitmaps that we can find, and
  1741. * ignore any extent entries we find.
  1742. */
  1743. while (entry->bitmap || found_bitmap ||
  1744. (!entry->bitmap && entry->bytes < min_bytes)) {
  1745. struct rb_node *node = rb_next(&entry->offset_index);
  1746. if (entry->bitmap && entry->bytes > bytes + empty_size) {
  1747. ret = btrfs_bitmap_cluster(block_group, entry, cluster,
  1748. offset, bytes + empty_size,
  1749. min_bytes);
  1750. if (!ret)
  1751. goto got_it;
  1752. }
  1753. if (!node) {
  1754. ret = -ENOSPC;
  1755. goto out;
  1756. }
  1757. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1758. }
  1759. /*
  1760. * We already searched all the extent entries from the passed in offset
  1761. * to the end and didn't find enough space for the cluster, and we also
  1762. * didn't find any bitmaps that met our criteria, just go ahead and exit
  1763. */
  1764. if (found_bitmap) {
  1765. ret = -ENOSPC;
  1766. goto out;
  1767. }
  1768. cluster->points_to_bitmap = false;
  1769. window_start = entry->offset;
  1770. window_free = entry->bytes;
  1771. last = entry;
  1772. max_extent = entry->bytes;
  1773. while (1) {
  1774. /* out window is just right, lets fill it */
  1775. if (window_free >= bytes + empty_size)
  1776. break;
  1777. node = rb_next(&last->offset_index);
  1778. if (!node) {
  1779. if (found_bitmap)
  1780. goto again;
  1781. ret = -ENOSPC;
  1782. goto out;
  1783. }
  1784. next = rb_entry(node, struct btrfs_free_space, offset_index);
  1785. /*
  1786. * we found a bitmap, so if this search doesn't result in a
  1787. * cluster, we know to go and search again for the bitmaps and
  1788. * start looking for space there
  1789. */
  1790. if (next->bitmap) {
  1791. if (!found_bitmap)
  1792. offset = next->offset;
  1793. found_bitmap = true;
  1794. last = next;
  1795. continue;
  1796. }
  1797. /*
  1798. * we haven't filled the empty size and the window is
  1799. * very large. reset and try again
  1800. */
  1801. if (next->offset - (last->offset + last->bytes) > 128 * 1024 ||
  1802. next->offset - window_start > (bytes + empty_size) * 2) {
  1803. entry = next;
  1804. window_start = entry->offset;
  1805. window_free = entry->bytes;
  1806. last = entry;
  1807. max_extent = entry->bytes;
  1808. } else {
  1809. last = next;
  1810. window_free += next->bytes;
  1811. if (entry->bytes > max_extent)
  1812. max_extent = entry->bytes;
  1813. }
  1814. }
  1815. cluster->window_start = entry->offset;
  1816. /*
  1817. * now we've found our entries, pull them out of the free space
  1818. * cache and put them into the cluster rbtree
  1819. *
  1820. * The cluster includes an rbtree, but only uses the offset index
  1821. * of each free space cache entry.
  1822. */
  1823. while (1) {
  1824. node = rb_next(&entry->offset_index);
  1825. if (entry->bitmap && node) {
  1826. entry = rb_entry(node, struct btrfs_free_space,
  1827. offset_index);
  1828. continue;
  1829. } else if (entry->bitmap && !node) {
  1830. break;
  1831. }
  1832. rb_erase(&entry->offset_index, &block_group->free_space_offset);
  1833. ret = tree_insert_offset(&cluster->root, entry->offset,
  1834. &entry->offset_index, 0);
  1835. BUG_ON(ret);
  1836. if (!node || entry == last)
  1837. break;
  1838. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1839. }
  1840. cluster->max_size = max_extent;
  1841. got_it:
  1842. ret = 0;
  1843. atomic_inc(&block_group->count);
  1844. list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
  1845. cluster->block_group = block_group;
  1846. out:
  1847. spin_unlock(&cluster->lock);
  1848. spin_unlock(&block_group->tree_lock);
  1849. return ret;
  1850. }
  1851. /*
  1852. * simple code to zero out a cluster
  1853. */
  1854. void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
  1855. {
  1856. spin_lock_init(&cluster->lock);
  1857. spin_lock_init(&cluster->refill_lock);
  1858. cluster->root = RB_ROOT;
  1859. cluster->max_size = 0;
  1860. cluster->points_to_bitmap = false;
  1861. INIT_LIST_HEAD(&cluster->block_group_list);
  1862. cluster->block_group = NULL;
  1863. }