segment.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include <linux/slab.h>
  35. #include "nilfs.h"
  36. #include "btnode.h"
  37. #include "page.h"
  38. #include "segment.h"
  39. #include "sufile.h"
  40. #include "cpfile.h"
  41. #include "ifile.h"
  42. #include "segbuf.h"
  43. /*
  44. * Segment constructor
  45. */
  46. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  47. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  48. appended in collection retry loop */
  49. /* Construction mode */
  50. enum {
  51. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  52. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  53. a logical segment without a super root */
  54. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  55. creating a checkpoint */
  56. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  57. a checkpoint */
  58. };
  59. /* Stage numbers of dirty block collection */
  60. enum {
  61. NILFS_ST_INIT = 0,
  62. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  63. NILFS_ST_FILE,
  64. NILFS_ST_IFILE,
  65. NILFS_ST_CPFILE,
  66. NILFS_ST_SUFILE,
  67. NILFS_ST_DAT,
  68. NILFS_ST_SR, /* Super root */
  69. NILFS_ST_DSYNC, /* Data sync blocks */
  70. NILFS_ST_DONE,
  71. };
  72. /* State flags of collection */
  73. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  74. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  75. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  76. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  77. /* Operations depending on the construction mode and file type */
  78. struct nilfs_sc_operations {
  79. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  80. struct inode *);
  81. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  82. struct inode *);
  83. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  84. struct inode *);
  85. void (*write_data_binfo)(struct nilfs_sc_info *,
  86. struct nilfs_segsum_pointer *,
  87. union nilfs_binfo *);
  88. void (*write_node_binfo)(struct nilfs_sc_info *,
  89. struct nilfs_segsum_pointer *,
  90. union nilfs_binfo *);
  91. };
  92. /*
  93. * Other definitions
  94. */
  95. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  96. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  97. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  98. static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
  99. #define nilfs_cnt32_gt(a, b) \
  100. (typecheck(__u32, a) && typecheck(__u32, b) && \
  101. ((__s32)(b) - (__s32)(a) < 0))
  102. #define nilfs_cnt32_ge(a, b) \
  103. (typecheck(__u32, a) && typecheck(__u32, b) && \
  104. ((__s32)(a) - (__s32)(b) >= 0))
  105. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  106. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  107. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  108. {
  109. struct nilfs_transaction_info *cur_ti = current->journal_info;
  110. void *save = NULL;
  111. if (cur_ti) {
  112. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  113. return ++cur_ti->ti_count;
  114. else {
  115. /*
  116. * If journal_info field is occupied by other FS,
  117. * it is saved and will be restored on
  118. * nilfs_transaction_commit().
  119. */
  120. printk(KERN_WARNING
  121. "NILFS warning: journal info from a different "
  122. "FS\n");
  123. save = current->journal_info;
  124. }
  125. }
  126. if (!ti) {
  127. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  128. if (!ti)
  129. return -ENOMEM;
  130. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  131. } else {
  132. ti->ti_flags = 0;
  133. }
  134. ti->ti_count = 0;
  135. ti->ti_save = save;
  136. ti->ti_magic = NILFS_TI_MAGIC;
  137. current->journal_info = ti;
  138. return 0;
  139. }
  140. /**
  141. * nilfs_transaction_begin - start indivisible file operations.
  142. * @sb: super block
  143. * @ti: nilfs_transaction_info
  144. * @vacancy_check: flags for vacancy rate checks
  145. *
  146. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  147. * the segment semaphore, to make a segment construction and write tasks
  148. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  149. * The region enclosed by these two functions can be nested. To avoid a
  150. * deadlock, the semaphore is only acquired or released in the outermost call.
  151. *
  152. * This function allocates a nilfs_transaction_info struct to keep context
  153. * information on it. It is initialized and hooked onto the current task in
  154. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  155. * instead; otherwise a new struct is assigned from a slab.
  156. *
  157. * When @vacancy_check flag is set, this function will check the amount of
  158. * free space, and will wait for the GC to reclaim disk space if low capacity.
  159. *
  160. * Return Value: On success, 0 is returned. On error, one of the following
  161. * negative error code is returned.
  162. *
  163. * %-ENOMEM - Insufficient memory available.
  164. *
  165. * %-ENOSPC - No space left on device
  166. */
  167. int nilfs_transaction_begin(struct super_block *sb,
  168. struct nilfs_transaction_info *ti,
  169. int vacancy_check)
  170. {
  171. struct the_nilfs *nilfs;
  172. int ret = nilfs_prepare_segment_lock(ti);
  173. if (unlikely(ret < 0))
  174. return ret;
  175. if (ret > 0)
  176. return 0;
  177. vfs_check_frozen(sb, SB_FREEZE_WRITE);
  178. nilfs = sb->s_fs_info;
  179. down_read(&nilfs->ns_segctor_sem);
  180. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  181. up_read(&nilfs->ns_segctor_sem);
  182. ret = -ENOSPC;
  183. goto failed;
  184. }
  185. return 0;
  186. failed:
  187. ti = current->journal_info;
  188. current->journal_info = ti->ti_save;
  189. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  190. kmem_cache_free(nilfs_transaction_cachep, ti);
  191. return ret;
  192. }
  193. /**
  194. * nilfs_transaction_commit - commit indivisible file operations.
  195. * @sb: super block
  196. *
  197. * nilfs_transaction_commit() releases the read semaphore which is
  198. * acquired by nilfs_transaction_begin(). This is only performed
  199. * in outermost call of this function. If a commit flag is set,
  200. * nilfs_transaction_commit() sets a timer to start the segment
  201. * constructor. If a sync flag is set, it starts construction
  202. * directly.
  203. */
  204. int nilfs_transaction_commit(struct super_block *sb)
  205. {
  206. struct nilfs_transaction_info *ti = current->journal_info;
  207. struct the_nilfs *nilfs = sb->s_fs_info;
  208. int err = 0;
  209. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  210. ti->ti_flags |= NILFS_TI_COMMIT;
  211. if (ti->ti_count > 0) {
  212. ti->ti_count--;
  213. return 0;
  214. }
  215. if (nilfs->ns_writer) {
  216. struct nilfs_sc_info *sci = nilfs->ns_writer;
  217. if (ti->ti_flags & NILFS_TI_COMMIT)
  218. nilfs_segctor_start_timer(sci);
  219. if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
  220. nilfs_segctor_do_flush(sci, 0);
  221. }
  222. up_read(&nilfs->ns_segctor_sem);
  223. current->journal_info = ti->ti_save;
  224. if (ti->ti_flags & NILFS_TI_SYNC)
  225. err = nilfs_construct_segment(sb);
  226. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  227. kmem_cache_free(nilfs_transaction_cachep, ti);
  228. return err;
  229. }
  230. void nilfs_transaction_abort(struct super_block *sb)
  231. {
  232. struct nilfs_transaction_info *ti = current->journal_info;
  233. struct the_nilfs *nilfs = sb->s_fs_info;
  234. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  235. if (ti->ti_count > 0) {
  236. ti->ti_count--;
  237. return;
  238. }
  239. up_read(&nilfs->ns_segctor_sem);
  240. current->journal_info = ti->ti_save;
  241. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  242. kmem_cache_free(nilfs_transaction_cachep, ti);
  243. }
  244. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  245. {
  246. struct the_nilfs *nilfs = sb->s_fs_info;
  247. struct nilfs_sc_info *sci = nilfs->ns_writer;
  248. if (!sci || !sci->sc_flush_request)
  249. return;
  250. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  251. up_read(&nilfs->ns_segctor_sem);
  252. down_write(&nilfs->ns_segctor_sem);
  253. if (sci->sc_flush_request &&
  254. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  255. struct nilfs_transaction_info *ti = current->journal_info;
  256. ti->ti_flags |= NILFS_TI_WRITER;
  257. nilfs_segctor_do_immediate_flush(sci);
  258. ti->ti_flags &= ~NILFS_TI_WRITER;
  259. }
  260. downgrade_write(&nilfs->ns_segctor_sem);
  261. }
  262. static void nilfs_transaction_lock(struct super_block *sb,
  263. struct nilfs_transaction_info *ti,
  264. int gcflag)
  265. {
  266. struct nilfs_transaction_info *cur_ti = current->journal_info;
  267. struct the_nilfs *nilfs = sb->s_fs_info;
  268. struct nilfs_sc_info *sci = nilfs->ns_writer;
  269. WARN_ON(cur_ti);
  270. ti->ti_flags = NILFS_TI_WRITER;
  271. ti->ti_count = 0;
  272. ti->ti_save = cur_ti;
  273. ti->ti_magic = NILFS_TI_MAGIC;
  274. INIT_LIST_HEAD(&ti->ti_garbage);
  275. current->journal_info = ti;
  276. for (;;) {
  277. down_write(&nilfs->ns_segctor_sem);
  278. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
  279. break;
  280. nilfs_segctor_do_immediate_flush(sci);
  281. up_write(&nilfs->ns_segctor_sem);
  282. yield();
  283. }
  284. if (gcflag)
  285. ti->ti_flags |= NILFS_TI_GC;
  286. }
  287. static void nilfs_transaction_unlock(struct super_block *sb)
  288. {
  289. struct nilfs_transaction_info *ti = current->journal_info;
  290. struct the_nilfs *nilfs = sb->s_fs_info;
  291. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  292. BUG_ON(ti->ti_count > 0);
  293. up_write(&nilfs->ns_segctor_sem);
  294. current->journal_info = ti->ti_save;
  295. if (!list_empty(&ti->ti_garbage))
  296. nilfs_dispose_list(nilfs, &ti->ti_garbage, 0);
  297. }
  298. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  299. struct nilfs_segsum_pointer *ssp,
  300. unsigned bytes)
  301. {
  302. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  303. unsigned blocksize = sci->sc_super->s_blocksize;
  304. void *p;
  305. if (unlikely(ssp->offset + bytes > blocksize)) {
  306. ssp->offset = 0;
  307. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  308. &segbuf->sb_segsum_buffers));
  309. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  310. }
  311. p = ssp->bh->b_data + ssp->offset;
  312. ssp->offset += bytes;
  313. return p;
  314. }
  315. /**
  316. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  317. * @sci: nilfs_sc_info
  318. */
  319. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  320. {
  321. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  322. struct buffer_head *sumbh;
  323. unsigned sumbytes;
  324. unsigned flags = 0;
  325. int err;
  326. if (nilfs_doing_gc())
  327. flags = NILFS_SS_GC;
  328. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
  329. if (unlikely(err))
  330. return err;
  331. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  332. sumbytes = segbuf->sb_sum.sumbytes;
  333. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  334. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  335. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  336. return 0;
  337. }
  338. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  339. {
  340. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  341. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  342. return -E2BIG; /* The current segment is filled up
  343. (internal code) */
  344. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  345. return nilfs_segctor_reset_segment_buffer(sci);
  346. }
  347. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  348. {
  349. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  350. int err;
  351. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  352. err = nilfs_segctor_feed_segment(sci);
  353. if (err)
  354. return err;
  355. segbuf = sci->sc_curseg;
  356. }
  357. err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
  358. if (likely(!err))
  359. segbuf->sb_sum.flags |= NILFS_SS_SR;
  360. return err;
  361. }
  362. /*
  363. * Functions for making segment summary and payloads
  364. */
  365. static int nilfs_segctor_segsum_block_required(
  366. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  367. unsigned binfo_size)
  368. {
  369. unsigned blocksize = sci->sc_super->s_blocksize;
  370. /* Size of finfo and binfo is enough small against blocksize */
  371. return ssp->offset + binfo_size +
  372. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  373. blocksize;
  374. }
  375. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  376. struct inode *inode)
  377. {
  378. sci->sc_curseg->sb_sum.nfinfo++;
  379. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  380. nilfs_segctor_map_segsum_entry(
  381. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  382. if (NILFS_I(inode)->i_root &&
  383. !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  384. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  385. /* skip finfo */
  386. }
  387. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  388. struct inode *inode)
  389. {
  390. struct nilfs_finfo *finfo;
  391. struct nilfs_inode_info *ii;
  392. struct nilfs_segment_buffer *segbuf;
  393. __u64 cno;
  394. if (sci->sc_blk_cnt == 0)
  395. return;
  396. ii = NILFS_I(inode);
  397. if (test_bit(NILFS_I_GCINODE, &ii->i_state))
  398. cno = ii->i_cno;
  399. else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
  400. cno = 0;
  401. else
  402. cno = sci->sc_cno;
  403. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  404. sizeof(*finfo));
  405. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  406. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  407. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  408. finfo->fi_cno = cpu_to_le64(cno);
  409. segbuf = sci->sc_curseg;
  410. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  411. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  412. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  413. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  414. }
  415. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  416. struct buffer_head *bh,
  417. struct inode *inode,
  418. unsigned binfo_size)
  419. {
  420. struct nilfs_segment_buffer *segbuf;
  421. int required, err = 0;
  422. retry:
  423. segbuf = sci->sc_curseg;
  424. required = nilfs_segctor_segsum_block_required(
  425. sci, &sci->sc_binfo_ptr, binfo_size);
  426. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  427. nilfs_segctor_end_finfo(sci, inode);
  428. err = nilfs_segctor_feed_segment(sci);
  429. if (err)
  430. return err;
  431. goto retry;
  432. }
  433. if (unlikely(required)) {
  434. err = nilfs_segbuf_extend_segsum(segbuf);
  435. if (unlikely(err))
  436. goto failed;
  437. }
  438. if (sci->sc_blk_cnt == 0)
  439. nilfs_segctor_begin_finfo(sci, inode);
  440. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  441. /* Substitution to vblocknr is delayed until update_blocknr() */
  442. nilfs_segbuf_add_file_buffer(segbuf, bh);
  443. sci->sc_blk_cnt++;
  444. failed:
  445. return err;
  446. }
  447. /*
  448. * Callback functions that enumerate, mark, and collect dirty blocks
  449. */
  450. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  451. struct buffer_head *bh, struct inode *inode)
  452. {
  453. int err;
  454. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  455. if (err < 0)
  456. return err;
  457. err = nilfs_segctor_add_file_block(sci, bh, inode,
  458. sizeof(struct nilfs_binfo_v));
  459. if (!err)
  460. sci->sc_datablk_cnt++;
  461. return err;
  462. }
  463. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  464. struct buffer_head *bh,
  465. struct inode *inode)
  466. {
  467. return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  468. }
  469. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  470. struct buffer_head *bh,
  471. struct inode *inode)
  472. {
  473. WARN_ON(!buffer_dirty(bh));
  474. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  475. }
  476. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  477. struct nilfs_segsum_pointer *ssp,
  478. union nilfs_binfo *binfo)
  479. {
  480. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  481. sci, ssp, sizeof(*binfo_v));
  482. *binfo_v = binfo->bi_v;
  483. }
  484. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  485. struct nilfs_segsum_pointer *ssp,
  486. union nilfs_binfo *binfo)
  487. {
  488. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  489. sci, ssp, sizeof(*vblocknr));
  490. *vblocknr = binfo->bi_v.bi_vblocknr;
  491. }
  492. static struct nilfs_sc_operations nilfs_sc_file_ops = {
  493. .collect_data = nilfs_collect_file_data,
  494. .collect_node = nilfs_collect_file_node,
  495. .collect_bmap = nilfs_collect_file_bmap,
  496. .write_data_binfo = nilfs_write_file_data_binfo,
  497. .write_node_binfo = nilfs_write_file_node_binfo,
  498. };
  499. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  500. struct buffer_head *bh, struct inode *inode)
  501. {
  502. int err;
  503. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  504. if (err < 0)
  505. return err;
  506. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  507. if (!err)
  508. sci->sc_datablk_cnt++;
  509. return err;
  510. }
  511. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  512. struct buffer_head *bh, struct inode *inode)
  513. {
  514. WARN_ON(!buffer_dirty(bh));
  515. return nilfs_segctor_add_file_block(sci, bh, inode,
  516. sizeof(struct nilfs_binfo_dat));
  517. }
  518. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  519. struct nilfs_segsum_pointer *ssp,
  520. union nilfs_binfo *binfo)
  521. {
  522. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  523. sizeof(*blkoff));
  524. *blkoff = binfo->bi_dat.bi_blkoff;
  525. }
  526. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  527. struct nilfs_segsum_pointer *ssp,
  528. union nilfs_binfo *binfo)
  529. {
  530. struct nilfs_binfo_dat *binfo_dat =
  531. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  532. *binfo_dat = binfo->bi_dat;
  533. }
  534. static struct nilfs_sc_operations nilfs_sc_dat_ops = {
  535. .collect_data = nilfs_collect_dat_data,
  536. .collect_node = nilfs_collect_file_node,
  537. .collect_bmap = nilfs_collect_dat_bmap,
  538. .write_data_binfo = nilfs_write_dat_data_binfo,
  539. .write_node_binfo = nilfs_write_dat_node_binfo,
  540. };
  541. static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  542. .collect_data = nilfs_collect_file_data,
  543. .collect_node = NULL,
  544. .collect_bmap = NULL,
  545. .write_data_binfo = nilfs_write_file_data_binfo,
  546. .write_node_binfo = NULL,
  547. };
  548. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  549. struct list_head *listp,
  550. size_t nlimit,
  551. loff_t start, loff_t end)
  552. {
  553. struct address_space *mapping = inode->i_mapping;
  554. struct pagevec pvec;
  555. pgoff_t index = 0, last = ULONG_MAX;
  556. size_t ndirties = 0;
  557. int i;
  558. if (unlikely(start != 0 || end != LLONG_MAX)) {
  559. /*
  560. * A valid range is given for sync-ing data pages. The
  561. * range is rounded to per-page; extra dirty buffers
  562. * may be included if blocksize < pagesize.
  563. */
  564. index = start >> PAGE_SHIFT;
  565. last = end >> PAGE_SHIFT;
  566. }
  567. pagevec_init(&pvec, 0);
  568. repeat:
  569. if (unlikely(index > last) ||
  570. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  571. min_t(pgoff_t, last - index,
  572. PAGEVEC_SIZE - 1) + 1))
  573. return ndirties;
  574. for (i = 0; i < pagevec_count(&pvec); i++) {
  575. struct buffer_head *bh, *head;
  576. struct page *page = pvec.pages[i];
  577. if (unlikely(page->index > last))
  578. break;
  579. if (mapping->host) {
  580. lock_page(page);
  581. if (!page_has_buffers(page))
  582. create_empty_buffers(page,
  583. 1 << inode->i_blkbits, 0);
  584. unlock_page(page);
  585. }
  586. bh = head = page_buffers(page);
  587. do {
  588. if (!buffer_dirty(bh))
  589. continue;
  590. get_bh(bh);
  591. list_add_tail(&bh->b_assoc_buffers, listp);
  592. ndirties++;
  593. if (unlikely(ndirties >= nlimit)) {
  594. pagevec_release(&pvec);
  595. cond_resched();
  596. return ndirties;
  597. }
  598. } while (bh = bh->b_this_page, bh != head);
  599. }
  600. pagevec_release(&pvec);
  601. cond_resched();
  602. goto repeat;
  603. }
  604. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  605. struct list_head *listp)
  606. {
  607. struct nilfs_inode_info *ii = NILFS_I(inode);
  608. struct address_space *mapping = &ii->i_btnode_cache;
  609. struct pagevec pvec;
  610. struct buffer_head *bh, *head;
  611. unsigned int i;
  612. pgoff_t index = 0;
  613. pagevec_init(&pvec, 0);
  614. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  615. PAGEVEC_SIZE)) {
  616. for (i = 0; i < pagevec_count(&pvec); i++) {
  617. bh = head = page_buffers(pvec.pages[i]);
  618. do {
  619. if (buffer_dirty(bh)) {
  620. get_bh(bh);
  621. list_add_tail(&bh->b_assoc_buffers,
  622. listp);
  623. }
  624. bh = bh->b_this_page;
  625. } while (bh != head);
  626. }
  627. pagevec_release(&pvec);
  628. cond_resched();
  629. }
  630. }
  631. static void nilfs_dispose_list(struct the_nilfs *nilfs,
  632. struct list_head *head, int force)
  633. {
  634. struct nilfs_inode_info *ii, *n;
  635. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  636. unsigned nv = 0;
  637. while (!list_empty(head)) {
  638. spin_lock(&nilfs->ns_inode_lock);
  639. list_for_each_entry_safe(ii, n, head, i_dirty) {
  640. list_del_init(&ii->i_dirty);
  641. if (force) {
  642. if (unlikely(ii->i_bh)) {
  643. brelse(ii->i_bh);
  644. ii->i_bh = NULL;
  645. }
  646. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  647. set_bit(NILFS_I_QUEUED, &ii->i_state);
  648. list_add_tail(&ii->i_dirty,
  649. &nilfs->ns_dirty_files);
  650. continue;
  651. }
  652. ivec[nv++] = ii;
  653. if (nv == SC_N_INODEVEC)
  654. break;
  655. }
  656. spin_unlock(&nilfs->ns_inode_lock);
  657. for (pii = ivec; nv > 0; pii++, nv--)
  658. iput(&(*pii)->vfs_inode);
  659. }
  660. }
  661. static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
  662. struct nilfs_root *root)
  663. {
  664. int ret = 0;
  665. if (nilfs_mdt_fetch_dirty(root->ifile))
  666. ret++;
  667. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  668. ret++;
  669. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  670. ret++;
  671. if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
  672. ret++;
  673. return ret;
  674. }
  675. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  676. {
  677. return list_empty(&sci->sc_dirty_files) &&
  678. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  679. sci->sc_nfreesegs == 0 &&
  680. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  681. }
  682. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  683. {
  684. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  685. int ret = 0;
  686. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  687. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  688. spin_lock(&nilfs->ns_inode_lock);
  689. if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
  690. ret++;
  691. spin_unlock(&nilfs->ns_inode_lock);
  692. return ret;
  693. }
  694. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  695. {
  696. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  697. nilfs_mdt_clear_dirty(sci->sc_root->ifile);
  698. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  699. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  700. nilfs_mdt_clear_dirty(nilfs->ns_dat);
  701. }
  702. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  703. {
  704. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  705. struct buffer_head *bh_cp;
  706. struct nilfs_checkpoint *raw_cp;
  707. int err;
  708. /* XXX: this interface will be changed */
  709. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  710. &raw_cp, &bh_cp);
  711. if (likely(!err)) {
  712. /* The following code is duplicated with cpfile. But, it is
  713. needed to collect the checkpoint even if it was not newly
  714. created */
  715. nilfs_mdt_mark_buffer_dirty(bh_cp);
  716. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  717. nilfs_cpfile_put_checkpoint(
  718. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  719. } else
  720. WARN_ON(err == -EINVAL || err == -ENOENT);
  721. return err;
  722. }
  723. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  724. {
  725. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  726. struct buffer_head *bh_cp;
  727. struct nilfs_checkpoint *raw_cp;
  728. int err;
  729. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  730. &raw_cp, &bh_cp);
  731. if (unlikely(err)) {
  732. WARN_ON(err == -EINVAL || err == -ENOENT);
  733. goto failed_ibh;
  734. }
  735. raw_cp->cp_snapshot_list.ssl_next = 0;
  736. raw_cp->cp_snapshot_list.ssl_prev = 0;
  737. raw_cp->cp_inodes_count =
  738. cpu_to_le64(atomic_read(&sci->sc_root->inodes_count));
  739. raw_cp->cp_blocks_count =
  740. cpu_to_le64(atomic_read(&sci->sc_root->blocks_count));
  741. raw_cp->cp_nblk_inc =
  742. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  743. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  744. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  745. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  746. nilfs_checkpoint_clear_minor(raw_cp);
  747. else
  748. nilfs_checkpoint_set_minor(raw_cp);
  749. nilfs_write_inode_common(sci->sc_root->ifile,
  750. &raw_cp->cp_ifile_inode, 1);
  751. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  752. return 0;
  753. failed_ibh:
  754. return err;
  755. }
  756. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  757. struct nilfs_inode_info *ii)
  758. {
  759. struct buffer_head *ibh;
  760. struct nilfs_inode *raw_inode;
  761. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  762. ibh = ii->i_bh;
  763. BUG_ON(!ibh);
  764. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  765. ibh);
  766. nilfs_bmap_write(ii->i_bmap, raw_inode);
  767. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  768. }
  769. }
  770. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
  771. {
  772. struct nilfs_inode_info *ii;
  773. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  774. nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
  775. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  776. }
  777. }
  778. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  779. struct the_nilfs *nilfs)
  780. {
  781. struct buffer_head *bh_sr;
  782. struct nilfs_super_root *raw_sr;
  783. unsigned isz = nilfs->ns_inode_size;
  784. bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
  785. raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
  786. raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
  787. raw_sr->sr_nongc_ctime
  788. = cpu_to_le64(nilfs_doing_gc() ?
  789. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  790. raw_sr->sr_flags = 0;
  791. nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
  792. NILFS_SR_DAT_OFFSET(isz), 1);
  793. nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
  794. NILFS_SR_CPFILE_OFFSET(isz), 1);
  795. nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
  796. NILFS_SR_SUFILE_OFFSET(isz), 1);
  797. }
  798. static void nilfs_redirty_inodes(struct list_head *head)
  799. {
  800. struct nilfs_inode_info *ii;
  801. list_for_each_entry(ii, head, i_dirty) {
  802. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  803. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  804. }
  805. }
  806. static void nilfs_drop_collected_inodes(struct list_head *head)
  807. {
  808. struct nilfs_inode_info *ii;
  809. list_for_each_entry(ii, head, i_dirty) {
  810. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  811. continue;
  812. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  813. set_bit(NILFS_I_UPDATED, &ii->i_state);
  814. }
  815. }
  816. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  817. struct inode *inode,
  818. struct list_head *listp,
  819. int (*collect)(struct nilfs_sc_info *,
  820. struct buffer_head *,
  821. struct inode *))
  822. {
  823. struct buffer_head *bh, *n;
  824. int err = 0;
  825. if (collect) {
  826. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  827. list_del_init(&bh->b_assoc_buffers);
  828. err = collect(sci, bh, inode);
  829. brelse(bh);
  830. if (unlikely(err))
  831. goto dispose_buffers;
  832. }
  833. return 0;
  834. }
  835. dispose_buffers:
  836. while (!list_empty(listp)) {
  837. bh = list_entry(listp->next, struct buffer_head,
  838. b_assoc_buffers);
  839. list_del_init(&bh->b_assoc_buffers);
  840. brelse(bh);
  841. }
  842. return err;
  843. }
  844. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  845. {
  846. /* Remaining number of blocks within segment buffer */
  847. return sci->sc_segbuf_nblocks -
  848. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  849. }
  850. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  851. struct inode *inode,
  852. struct nilfs_sc_operations *sc_ops)
  853. {
  854. LIST_HEAD(data_buffers);
  855. LIST_HEAD(node_buffers);
  856. int err;
  857. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  858. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  859. n = nilfs_lookup_dirty_data_buffers(
  860. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  861. if (n > rest) {
  862. err = nilfs_segctor_apply_buffers(
  863. sci, inode, &data_buffers,
  864. sc_ops->collect_data);
  865. BUG_ON(!err); /* always receive -E2BIG or true error */
  866. goto break_or_fail;
  867. }
  868. }
  869. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  870. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  871. err = nilfs_segctor_apply_buffers(
  872. sci, inode, &data_buffers, sc_ops->collect_data);
  873. if (unlikely(err)) {
  874. /* dispose node list */
  875. nilfs_segctor_apply_buffers(
  876. sci, inode, &node_buffers, NULL);
  877. goto break_or_fail;
  878. }
  879. sci->sc_stage.flags |= NILFS_CF_NODE;
  880. }
  881. /* Collect node */
  882. err = nilfs_segctor_apply_buffers(
  883. sci, inode, &node_buffers, sc_ops->collect_node);
  884. if (unlikely(err))
  885. goto break_or_fail;
  886. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  887. err = nilfs_segctor_apply_buffers(
  888. sci, inode, &node_buffers, sc_ops->collect_bmap);
  889. if (unlikely(err))
  890. goto break_or_fail;
  891. nilfs_segctor_end_finfo(sci, inode);
  892. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  893. break_or_fail:
  894. return err;
  895. }
  896. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  897. struct inode *inode)
  898. {
  899. LIST_HEAD(data_buffers);
  900. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  901. int err;
  902. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  903. sci->sc_dsync_start,
  904. sci->sc_dsync_end);
  905. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  906. nilfs_collect_file_data);
  907. if (!err) {
  908. nilfs_segctor_end_finfo(sci, inode);
  909. BUG_ON(n > rest);
  910. /* always receive -E2BIG or true error if n > rest */
  911. }
  912. return err;
  913. }
  914. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  915. {
  916. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  917. struct list_head *head;
  918. struct nilfs_inode_info *ii;
  919. size_t ndone;
  920. int err = 0;
  921. switch (sci->sc_stage.scnt) {
  922. case NILFS_ST_INIT:
  923. /* Pre-processes */
  924. sci->sc_stage.flags = 0;
  925. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  926. sci->sc_nblk_inc = 0;
  927. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  928. if (mode == SC_LSEG_DSYNC) {
  929. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  930. goto dsync_mode;
  931. }
  932. }
  933. sci->sc_stage.dirty_file_ptr = NULL;
  934. sci->sc_stage.gc_inode_ptr = NULL;
  935. if (mode == SC_FLUSH_DAT) {
  936. sci->sc_stage.scnt = NILFS_ST_DAT;
  937. goto dat_stage;
  938. }
  939. sci->sc_stage.scnt++; /* Fall through */
  940. case NILFS_ST_GC:
  941. if (nilfs_doing_gc()) {
  942. head = &sci->sc_gc_inodes;
  943. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  944. head, i_dirty);
  945. list_for_each_entry_continue(ii, head, i_dirty) {
  946. err = nilfs_segctor_scan_file(
  947. sci, &ii->vfs_inode,
  948. &nilfs_sc_file_ops);
  949. if (unlikely(err)) {
  950. sci->sc_stage.gc_inode_ptr = list_entry(
  951. ii->i_dirty.prev,
  952. struct nilfs_inode_info,
  953. i_dirty);
  954. goto break_or_fail;
  955. }
  956. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  957. }
  958. sci->sc_stage.gc_inode_ptr = NULL;
  959. }
  960. sci->sc_stage.scnt++; /* Fall through */
  961. case NILFS_ST_FILE:
  962. head = &sci->sc_dirty_files;
  963. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  964. i_dirty);
  965. list_for_each_entry_continue(ii, head, i_dirty) {
  966. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  967. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  968. &nilfs_sc_file_ops);
  969. if (unlikely(err)) {
  970. sci->sc_stage.dirty_file_ptr =
  971. list_entry(ii->i_dirty.prev,
  972. struct nilfs_inode_info,
  973. i_dirty);
  974. goto break_or_fail;
  975. }
  976. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  977. /* XXX: required ? */
  978. }
  979. sci->sc_stage.dirty_file_ptr = NULL;
  980. if (mode == SC_FLUSH_FILE) {
  981. sci->sc_stage.scnt = NILFS_ST_DONE;
  982. return 0;
  983. }
  984. sci->sc_stage.scnt++;
  985. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  986. /* Fall through */
  987. case NILFS_ST_IFILE:
  988. err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
  989. &nilfs_sc_file_ops);
  990. if (unlikely(err))
  991. break;
  992. sci->sc_stage.scnt++;
  993. /* Creating a checkpoint */
  994. err = nilfs_segctor_create_checkpoint(sci);
  995. if (unlikely(err))
  996. break;
  997. /* Fall through */
  998. case NILFS_ST_CPFILE:
  999. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1000. &nilfs_sc_file_ops);
  1001. if (unlikely(err))
  1002. break;
  1003. sci->sc_stage.scnt++; /* Fall through */
  1004. case NILFS_ST_SUFILE:
  1005. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1006. sci->sc_nfreesegs, &ndone);
  1007. if (unlikely(err)) {
  1008. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1009. sci->sc_freesegs, ndone,
  1010. NULL);
  1011. break;
  1012. }
  1013. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1014. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1015. &nilfs_sc_file_ops);
  1016. if (unlikely(err))
  1017. break;
  1018. sci->sc_stage.scnt++; /* Fall through */
  1019. case NILFS_ST_DAT:
  1020. dat_stage:
  1021. err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
  1022. &nilfs_sc_dat_ops);
  1023. if (unlikely(err))
  1024. break;
  1025. if (mode == SC_FLUSH_DAT) {
  1026. sci->sc_stage.scnt = NILFS_ST_DONE;
  1027. return 0;
  1028. }
  1029. sci->sc_stage.scnt++; /* Fall through */
  1030. case NILFS_ST_SR:
  1031. if (mode == SC_LSEG_SR) {
  1032. /* Appending a super root */
  1033. err = nilfs_segctor_add_super_root(sci);
  1034. if (unlikely(err))
  1035. break;
  1036. }
  1037. /* End of a logical segment */
  1038. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1039. sci->sc_stage.scnt = NILFS_ST_DONE;
  1040. return 0;
  1041. case NILFS_ST_DSYNC:
  1042. dsync_mode:
  1043. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1044. ii = sci->sc_dsync_inode;
  1045. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1046. break;
  1047. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1048. if (unlikely(err))
  1049. break;
  1050. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1051. sci->sc_stage.scnt = NILFS_ST_DONE;
  1052. return 0;
  1053. case NILFS_ST_DONE:
  1054. return 0;
  1055. default:
  1056. BUG();
  1057. }
  1058. break_or_fail:
  1059. return err;
  1060. }
  1061. /**
  1062. * nilfs_segctor_begin_construction - setup segment buffer to make a new log
  1063. * @sci: nilfs_sc_info
  1064. * @nilfs: nilfs object
  1065. */
  1066. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1067. struct the_nilfs *nilfs)
  1068. {
  1069. struct nilfs_segment_buffer *segbuf, *prev;
  1070. __u64 nextnum;
  1071. int err, alloc = 0;
  1072. segbuf = nilfs_segbuf_new(sci->sc_super);
  1073. if (unlikely(!segbuf))
  1074. return -ENOMEM;
  1075. if (list_empty(&sci->sc_write_logs)) {
  1076. nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1077. nilfs->ns_pseg_offset, nilfs);
  1078. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1079. nilfs_shift_to_next_segment(nilfs);
  1080. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1081. }
  1082. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1083. nextnum = nilfs->ns_nextnum;
  1084. if (nilfs->ns_segnum == nilfs->ns_nextnum)
  1085. /* Start from the head of a new full segment */
  1086. alloc++;
  1087. } else {
  1088. /* Continue logs */
  1089. prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1090. nilfs_segbuf_map_cont(segbuf, prev);
  1091. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
  1092. nextnum = prev->sb_nextnum;
  1093. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1094. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1095. segbuf->sb_sum.seg_seq++;
  1096. alloc++;
  1097. }
  1098. }
  1099. err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
  1100. if (err)
  1101. goto failed;
  1102. if (alloc) {
  1103. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1104. if (err)
  1105. goto failed;
  1106. }
  1107. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1108. BUG_ON(!list_empty(&sci->sc_segbufs));
  1109. list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
  1110. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1111. return 0;
  1112. failed:
  1113. nilfs_segbuf_free(segbuf);
  1114. return err;
  1115. }
  1116. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1117. struct the_nilfs *nilfs, int nadd)
  1118. {
  1119. struct nilfs_segment_buffer *segbuf, *prev;
  1120. struct inode *sufile = nilfs->ns_sufile;
  1121. __u64 nextnextnum;
  1122. LIST_HEAD(list);
  1123. int err, ret, i;
  1124. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1125. /*
  1126. * Since the segment specified with nextnum might be allocated during
  1127. * the previous construction, the buffer including its segusage may
  1128. * not be dirty. The following call ensures that the buffer is dirty
  1129. * and will pin the buffer on memory until the sufile is written.
  1130. */
  1131. err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
  1132. if (unlikely(err))
  1133. return err;
  1134. for (i = 0; i < nadd; i++) {
  1135. /* extend segment info */
  1136. err = -ENOMEM;
  1137. segbuf = nilfs_segbuf_new(sci->sc_super);
  1138. if (unlikely(!segbuf))
  1139. goto failed;
  1140. /* map this buffer to region of segment on-disk */
  1141. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1142. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1143. /* allocate the next next full segment */
  1144. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1145. if (unlikely(err))
  1146. goto failed_segbuf;
  1147. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1148. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1149. list_add_tail(&segbuf->sb_list, &list);
  1150. prev = segbuf;
  1151. }
  1152. list_splice_tail(&list, &sci->sc_segbufs);
  1153. return 0;
  1154. failed_segbuf:
  1155. nilfs_segbuf_free(segbuf);
  1156. failed:
  1157. list_for_each_entry(segbuf, &list, sb_list) {
  1158. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1159. WARN_ON(ret); /* never fails */
  1160. }
  1161. nilfs_destroy_logs(&list);
  1162. return err;
  1163. }
  1164. static void nilfs_free_incomplete_logs(struct list_head *logs,
  1165. struct the_nilfs *nilfs)
  1166. {
  1167. struct nilfs_segment_buffer *segbuf, *prev;
  1168. struct inode *sufile = nilfs->ns_sufile;
  1169. int ret;
  1170. segbuf = NILFS_FIRST_SEGBUF(logs);
  1171. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1172. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1173. WARN_ON(ret); /* never fails */
  1174. }
  1175. if (atomic_read(&segbuf->sb_err)) {
  1176. /* Case 1: The first segment failed */
  1177. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1178. /* Case 1a: Partial segment appended into an existing
  1179. segment */
  1180. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1181. segbuf->sb_fseg_end);
  1182. else /* Case 1b: New full segment */
  1183. set_nilfs_discontinued(nilfs);
  1184. }
  1185. prev = segbuf;
  1186. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1187. if (prev->sb_nextnum != segbuf->sb_nextnum) {
  1188. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1189. WARN_ON(ret); /* never fails */
  1190. }
  1191. if (atomic_read(&segbuf->sb_err) &&
  1192. segbuf->sb_segnum != nilfs->ns_nextnum)
  1193. /* Case 2: extended segment (!= next) failed */
  1194. nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
  1195. prev = segbuf;
  1196. }
  1197. }
  1198. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1199. struct inode *sufile)
  1200. {
  1201. struct nilfs_segment_buffer *segbuf;
  1202. unsigned long live_blocks;
  1203. int ret;
  1204. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1205. live_blocks = segbuf->sb_sum.nblocks +
  1206. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1207. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1208. live_blocks,
  1209. sci->sc_seg_ctime);
  1210. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1211. }
  1212. }
  1213. static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
  1214. {
  1215. struct nilfs_segment_buffer *segbuf;
  1216. int ret;
  1217. segbuf = NILFS_FIRST_SEGBUF(logs);
  1218. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1219. segbuf->sb_pseg_start -
  1220. segbuf->sb_fseg_start, 0);
  1221. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1222. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1223. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1224. 0, 0);
  1225. WARN_ON(ret); /* always succeed */
  1226. }
  1227. }
  1228. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1229. struct nilfs_segment_buffer *last,
  1230. struct inode *sufile)
  1231. {
  1232. struct nilfs_segment_buffer *segbuf = last;
  1233. int ret;
  1234. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1235. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1236. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1237. WARN_ON(ret);
  1238. }
  1239. nilfs_truncate_logs(&sci->sc_segbufs, last);
  1240. }
  1241. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1242. struct the_nilfs *nilfs, int mode)
  1243. {
  1244. struct nilfs_cstage prev_stage = sci->sc_stage;
  1245. int err, nadd = 1;
  1246. /* Collection retry loop */
  1247. for (;;) {
  1248. sci->sc_nblk_this_inc = 0;
  1249. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1250. err = nilfs_segctor_reset_segment_buffer(sci);
  1251. if (unlikely(err))
  1252. goto failed;
  1253. err = nilfs_segctor_collect_blocks(sci, mode);
  1254. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1255. if (!err)
  1256. break;
  1257. if (unlikely(err != -E2BIG))
  1258. goto failed;
  1259. /* The current segment is filled up */
  1260. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1261. break;
  1262. nilfs_clear_logs(&sci->sc_segbufs);
  1263. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1264. if (unlikely(err))
  1265. return err;
  1266. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1267. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1268. sci->sc_freesegs,
  1269. sci->sc_nfreesegs,
  1270. NULL);
  1271. WARN_ON(err); /* do not happen */
  1272. }
  1273. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1274. sci->sc_stage = prev_stage;
  1275. }
  1276. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1277. return 0;
  1278. failed:
  1279. return err;
  1280. }
  1281. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1282. struct buffer_head *new_bh)
  1283. {
  1284. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1285. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1286. /* The caller must release old_bh */
  1287. }
  1288. static int
  1289. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1290. struct nilfs_segment_buffer *segbuf,
  1291. int mode)
  1292. {
  1293. struct inode *inode = NULL;
  1294. sector_t blocknr;
  1295. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1296. unsigned long nblocks = 0, ndatablk = 0;
  1297. struct nilfs_sc_operations *sc_op = NULL;
  1298. struct nilfs_segsum_pointer ssp;
  1299. struct nilfs_finfo *finfo = NULL;
  1300. union nilfs_binfo binfo;
  1301. struct buffer_head *bh, *bh_org;
  1302. ino_t ino = 0;
  1303. int err = 0;
  1304. if (!nfinfo)
  1305. goto out;
  1306. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1307. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1308. ssp.offset = sizeof(struct nilfs_segment_summary);
  1309. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1310. if (bh == segbuf->sb_super_root)
  1311. break;
  1312. if (!finfo) {
  1313. finfo = nilfs_segctor_map_segsum_entry(
  1314. sci, &ssp, sizeof(*finfo));
  1315. ino = le64_to_cpu(finfo->fi_ino);
  1316. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1317. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1318. if (buffer_nilfs_node(bh))
  1319. inode = NILFS_BTNC_I(bh->b_page->mapping);
  1320. else
  1321. inode = NILFS_AS_I(bh->b_page->mapping);
  1322. if (mode == SC_LSEG_DSYNC)
  1323. sc_op = &nilfs_sc_dsync_ops;
  1324. else if (ino == NILFS_DAT_INO)
  1325. sc_op = &nilfs_sc_dat_ops;
  1326. else /* file blocks */
  1327. sc_op = &nilfs_sc_file_ops;
  1328. }
  1329. bh_org = bh;
  1330. get_bh(bh_org);
  1331. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1332. &binfo);
  1333. if (bh != bh_org)
  1334. nilfs_list_replace_buffer(bh_org, bh);
  1335. brelse(bh_org);
  1336. if (unlikely(err))
  1337. goto failed_bmap;
  1338. if (ndatablk > 0)
  1339. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1340. else
  1341. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1342. blocknr++;
  1343. if (--nblocks == 0) {
  1344. finfo = NULL;
  1345. if (--nfinfo == 0)
  1346. break;
  1347. } else if (ndatablk > 0)
  1348. ndatablk--;
  1349. }
  1350. out:
  1351. return 0;
  1352. failed_bmap:
  1353. return err;
  1354. }
  1355. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1356. {
  1357. struct nilfs_segment_buffer *segbuf;
  1358. int err;
  1359. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1360. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1361. if (unlikely(err))
  1362. return err;
  1363. nilfs_segbuf_fill_in_segsum(segbuf);
  1364. }
  1365. return 0;
  1366. }
  1367. static int
  1368. nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
  1369. {
  1370. struct page *clone_page;
  1371. struct buffer_head *bh, *head, *bh2;
  1372. void *kaddr;
  1373. bh = head = page_buffers(page);
  1374. clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
  1375. if (unlikely(!clone_page))
  1376. return -ENOMEM;
  1377. bh2 = page_buffers(clone_page);
  1378. kaddr = kmap_atomic(page, KM_USER0);
  1379. do {
  1380. if (list_empty(&bh->b_assoc_buffers))
  1381. continue;
  1382. get_bh(bh2);
  1383. page_cache_get(clone_page); /* for each bh */
  1384. memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
  1385. bh2->b_blocknr = bh->b_blocknr;
  1386. list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
  1387. list_add_tail(&bh->b_assoc_buffers, out);
  1388. } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
  1389. kunmap_atomic(kaddr, KM_USER0);
  1390. if (!TestSetPageWriteback(clone_page))
  1391. account_page_writeback(clone_page);
  1392. unlock_page(clone_page);
  1393. return 0;
  1394. }
  1395. static int nilfs_test_page_to_be_frozen(struct page *page)
  1396. {
  1397. struct address_space *mapping = page->mapping;
  1398. if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
  1399. return 0;
  1400. if (page_mapped(page)) {
  1401. ClearPageChecked(page);
  1402. return 1;
  1403. }
  1404. return PageChecked(page);
  1405. }
  1406. static int nilfs_begin_page_io(struct page *page, struct list_head *out)
  1407. {
  1408. if (!page || PageWriteback(page))
  1409. /* For split b-tree node pages, this function may be called
  1410. twice. We ignore the 2nd or later calls by this check. */
  1411. return 0;
  1412. lock_page(page);
  1413. clear_page_dirty_for_io(page);
  1414. set_page_writeback(page);
  1415. unlock_page(page);
  1416. if (nilfs_test_page_to_be_frozen(page)) {
  1417. int err = nilfs_copy_replace_page_buffers(page, out);
  1418. if (unlikely(err))
  1419. return err;
  1420. }
  1421. return 0;
  1422. }
  1423. static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
  1424. struct page **failed_page)
  1425. {
  1426. struct nilfs_segment_buffer *segbuf;
  1427. struct page *bd_page = NULL, *fs_page = NULL;
  1428. struct list_head *list = &sci->sc_copied_buffers;
  1429. int err;
  1430. *failed_page = NULL;
  1431. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1432. struct buffer_head *bh;
  1433. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1434. b_assoc_buffers) {
  1435. if (bh->b_page != bd_page) {
  1436. if (bd_page) {
  1437. lock_page(bd_page);
  1438. clear_page_dirty_for_io(bd_page);
  1439. set_page_writeback(bd_page);
  1440. unlock_page(bd_page);
  1441. }
  1442. bd_page = bh->b_page;
  1443. }
  1444. }
  1445. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1446. b_assoc_buffers) {
  1447. if (bh == segbuf->sb_super_root) {
  1448. if (bh->b_page != bd_page) {
  1449. lock_page(bd_page);
  1450. clear_page_dirty_for_io(bd_page);
  1451. set_page_writeback(bd_page);
  1452. unlock_page(bd_page);
  1453. bd_page = bh->b_page;
  1454. }
  1455. break;
  1456. }
  1457. if (bh->b_page != fs_page) {
  1458. err = nilfs_begin_page_io(fs_page, list);
  1459. if (unlikely(err)) {
  1460. *failed_page = fs_page;
  1461. goto out;
  1462. }
  1463. fs_page = bh->b_page;
  1464. }
  1465. }
  1466. }
  1467. if (bd_page) {
  1468. lock_page(bd_page);
  1469. clear_page_dirty_for_io(bd_page);
  1470. set_page_writeback(bd_page);
  1471. unlock_page(bd_page);
  1472. }
  1473. err = nilfs_begin_page_io(fs_page, list);
  1474. if (unlikely(err))
  1475. *failed_page = fs_page;
  1476. out:
  1477. return err;
  1478. }
  1479. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1480. struct the_nilfs *nilfs)
  1481. {
  1482. int ret;
  1483. ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
  1484. list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
  1485. return ret;
  1486. }
  1487. static void __nilfs_end_page_io(struct page *page, int err)
  1488. {
  1489. if (!err) {
  1490. if (!nilfs_page_buffers_clean(page))
  1491. __set_page_dirty_nobuffers(page);
  1492. ClearPageError(page);
  1493. } else {
  1494. __set_page_dirty_nobuffers(page);
  1495. SetPageError(page);
  1496. }
  1497. if (buffer_nilfs_allocated(page_buffers(page))) {
  1498. if (TestClearPageWriteback(page))
  1499. dec_zone_page_state(page, NR_WRITEBACK);
  1500. } else
  1501. end_page_writeback(page);
  1502. }
  1503. static void nilfs_end_page_io(struct page *page, int err)
  1504. {
  1505. if (!page)
  1506. return;
  1507. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1508. /*
  1509. * For b-tree node pages, this function may be called twice
  1510. * or more because they might be split in a segment.
  1511. */
  1512. if (PageDirty(page)) {
  1513. /*
  1514. * For pages holding split b-tree node buffers, dirty
  1515. * flag on the buffers may be cleared discretely.
  1516. * In that case, the page is once redirtied for
  1517. * remaining buffers, and it must be cancelled if
  1518. * all the buffers get cleaned later.
  1519. */
  1520. lock_page(page);
  1521. if (nilfs_page_buffers_clean(page))
  1522. __nilfs_clear_page_dirty(page);
  1523. unlock_page(page);
  1524. }
  1525. return;
  1526. }
  1527. __nilfs_end_page_io(page, err);
  1528. }
  1529. static void nilfs_clear_copied_buffers(struct list_head *list, int err)
  1530. {
  1531. struct buffer_head *bh, *head;
  1532. struct page *page;
  1533. while (!list_empty(list)) {
  1534. bh = list_entry(list->next, struct buffer_head,
  1535. b_assoc_buffers);
  1536. page = bh->b_page;
  1537. page_cache_get(page);
  1538. head = bh = page_buffers(page);
  1539. do {
  1540. if (!list_empty(&bh->b_assoc_buffers)) {
  1541. list_del_init(&bh->b_assoc_buffers);
  1542. if (!err) {
  1543. set_buffer_uptodate(bh);
  1544. clear_buffer_dirty(bh);
  1545. clear_buffer_delay(bh);
  1546. clear_buffer_nilfs_volatile(bh);
  1547. }
  1548. brelse(bh); /* for b_assoc_buffers */
  1549. }
  1550. } while ((bh = bh->b_this_page) != head);
  1551. __nilfs_end_page_io(page, err);
  1552. page_cache_release(page);
  1553. }
  1554. }
  1555. static void nilfs_abort_logs(struct list_head *logs, struct page *failed_page,
  1556. int err)
  1557. {
  1558. struct nilfs_segment_buffer *segbuf;
  1559. struct page *bd_page = NULL, *fs_page = NULL;
  1560. struct buffer_head *bh;
  1561. if (list_empty(logs))
  1562. return;
  1563. list_for_each_entry(segbuf, logs, sb_list) {
  1564. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1565. b_assoc_buffers) {
  1566. if (bh->b_page != bd_page) {
  1567. if (bd_page)
  1568. end_page_writeback(bd_page);
  1569. bd_page = bh->b_page;
  1570. }
  1571. }
  1572. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1573. b_assoc_buffers) {
  1574. if (bh == segbuf->sb_super_root) {
  1575. if (bh->b_page != bd_page) {
  1576. end_page_writeback(bd_page);
  1577. bd_page = bh->b_page;
  1578. }
  1579. break;
  1580. }
  1581. if (bh->b_page != fs_page) {
  1582. nilfs_end_page_io(fs_page, err);
  1583. if (fs_page && fs_page == failed_page)
  1584. return;
  1585. fs_page = bh->b_page;
  1586. }
  1587. }
  1588. }
  1589. if (bd_page)
  1590. end_page_writeback(bd_page);
  1591. nilfs_end_page_io(fs_page, err);
  1592. }
  1593. static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
  1594. struct the_nilfs *nilfs, int err)
  1595. {
  1596. LIST_HEAD(logs);
  1597. int ret;
  1598. list_splice_tail_init(&sci->sc_write_logs, &logs);
  1599. ret = nilfs_wait_on_logs(&logs);
  1600. nilfs_abort_logs(&logs, NULL, ret ? : err);
  1601. list_splice_tail_init(&sci->sc_segbufs, &logs);
  1602. nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
  1603. nilfs_free_incomplete_logs(&logs, nilfs);
  1604. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
  1605. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1606. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1607. sci->sc_freesegs,
  1608. sci->sc_nfreesegs,
  1609. NULL);
  1610. WARN_ON(ret); /* do not happen */
  1611. }
  1612. nilfs_destroy_logs(&logs);
  1613. }
  1614. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1615. struct nilfs_segment_buffer *segbuf)
  1616. {
  1617. nilfs->ns_segnum = segbuf->sb_segnum;
  1618. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1619. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1620. + segbuf->sb_sum.nblocks;
  1621. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1622. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1623. }
  1624. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1625. {
  1626. struct nilfs_segment_buffer *segbuf;
  1627. struct page *bd_page = NULL, *fs_page = NULL;
  1628. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1629. int update_sr = false;
  1630. list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
  1631. struct buffer_head *bh;
  1632. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1633. b_assoc_buffers) {
  1634. set_buffer_uptodate(bh);
  1635. clear_buffer_dirty(bh);
  1636. if (bh->b_page != bd_page) {
  1637. if (bd_page)
  1638. end_page_writeback(bd_page);
  1639. bd_page = bh->b_page;
  1640. }
  1641. }
  1642. /*
  1643. * We assume that the buffers which belong to the same page
  1644. * continue over the buffer list.
  1645. * Under this assumption, the last BHs of pages is
  1646. * identifiable by the discontinuity of bh->b_page
  1647. * (page != fs_page).
  1648. *
  1649. * For B-tree node blocks, however, this assumption is not
  1650. * guaranteed. The cleanup code of B-tree node pages needs
  1651. * special care.
  1652. */
  1653. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1654. b_assoc_buffers) {
  1655. set_buffer_uptodate(bh);
  1656. clear_buffer_dirty(bh);
  1657. clear_buffer_delay(bh);
  1658. clear_buffer_nilfs_volatile(bh);
  1659. clear_buffer_nilfs_redirected(bh);
  1660. if (bh == segbuf->sb_super_root) {
  1661. if (bh->b_page != bd_page) {
  1662. end_page_writeback(bd_page);
  1663. bd_page = bh->b_page;
  1664. }
  1665. update_sr = true;
  1666. break;
  1667. }
  1668. if (bh->b_page != fs_page) {
  1669. nilfs_end_page_io(fs_page, 0);
  1670. fs_page = bh->b_page;
  1671. }
  1672. }
  1673. if (!nilfs_segbuf_simplex(segbuf)) {
  1674. if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
  1675. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1676. sci->sc_lseg_stime = jiffies;
  1677. }
  1678. if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
  1679. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1680. }
  1681. }
  1682. /*
  1683. * Since pages may continue over multiple segment buffers,
  1684. * end of the last page must be checked outside of the loop.
  1685. */
  1686. if (bd_page)
  1687. end_page_writeback(bd_page);
  1688. nilfs_end_page_io(fs_page, 0);
  1689. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
  1690. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1691. if (nilfs_doing_gc())
  1692. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1693. else
  1694. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1695. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1696. segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1697. nilfs_set_next_segment(nilfs, segbuf);
  1698. if (update_sr) {
  1699. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1700. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1701. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1702. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1703. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1704. nilfs_segctor_clear_metadata_dirty(sci);
  1705. } else
  1706. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1707. }
  1708. static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
  1709. {
  1710. int ret;
  1711. ret = nilfs_wait_on_logs(&sci->sc_write_logs);
  1712. if (!ret) {
  1713. nilfs_segctor_complete_write(sci);
  1714. nilfs_destroy_logs(&sci->sc_write_logs);
  1715. }
  1716. return ret;
  1717. }
  1718. static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
  1719. struct the_nilfs *nilfs)
  1720. {
  1721. struct nilfs_inode_info *ii, *n;
  1722. struct inode *ifile = sci->sc_root->ifile;
  1723. spin_lock(&nilfs->ns_inode_lock);
  1724. retry:
  1725. list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
  1726. if (!ii->i_bh) {
  1727. struct buffer_head *ibh;
  1728. int err;
  1729. spin_unlock(&nilfs->ns_inode_lock);
  1730. err = nilfs_ifile_get_inode_block(
  1731. ifile, ii->vfs_inode.i_ino, &ibh);
  1732. if (unlikely(err)) {
  1733. nilfs_warning(sci->sc_super, __func__,
  1734. "failed to get inode block.\n");
  1735. return err;
  1736. }
  1737. nilfs_mdt_mark_buffer_dirty(ibh);
  1738. nilfs_mdt_mark_dirty(ifile);
  1739. spin_lock(&nilfs->ns_inode_lock);
  1740. if (likely(!ii->i_bh))
  1741. ii->i_bh = ibh;
  1742. else
  1743. brelse(ibh);
  1744. goto retry;
  1745. }
  1746. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1747. set_bit(NILFS_I_BUSY, &ii->i_state);
  1748. list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1749. }
  1750. spin_unlock(&nilfs->ns_inode_lock);
  1751. return 0;
  1752. }
  1753. static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
  1754. struct the_nilfs *nilfs)
  1755. {
  1756. struct nilfs_transaction_info *ti = current->journal_info;
  1757. struct nilfs_inode_info *ii, *n;
  1758. spin_lock(&nilfs->ns_inode_lock);
  1759. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1760. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1761. test_bit(NILFS_I_DIRTY, &ii->i_state))
  1762. continue;
  1763. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1764. brelse(ii->i_bh);
  1765. ii->i_bh = NULL;
  1766. list_move_tail(&ii->i_dirty, &ti->ti_garbage);
  1767. }
  1768. spin_unlock(&nilfs->ns_inode_lock);
  1769. }
  1770. /*
  1771. * Main procedure of segment constructor
  1772. */
  1773. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1774. {
  1775. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1776. struct page *failed_page;
  1777. int err;
  1778. sci->sc_stage.scnt = NILFS_ST_INIT;
  1779. sci->sc_cno = nilfs->ns_cno;
  1780. err = nilfs_segctor_collect_dirty_files(sci, nilfs);
  1781. if (unlikely(err))
  1782. goto out;
  1783. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  1784. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1785. if (nilfs_segctor_clean(sci))
  1786. goto out;
  1787. do {
  1788. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1789. err = nilfs_segctor_begin_construction(sci, nilfs);
  1790. if (unlikely(err))
  1791. goto out;
  1792. /* Update time stamp */
  1793. sci->sc_seg_ctime = get_seconds();
  1794. err = nilfs_segctor_collect(sci, nilfs, mode);
  1795. if (unlikely(err))
  1796. goto failed;
  1797. /* Avoid empty segment */
  1798. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  1799. nilfs_segbuf_empty(sci->sc_curseg)) {
  1800. nilfs_segctor_abort_construction(sci, nilfs, 1);
  1801. goto out;
  1802. }
  1803. err = nilfs_segctor_assign(sci, mode);
  1804. if (unlikely(err))
  1805. goto failed;
  1806. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1807. nilfs_segctor_fill_in_file_bmap(sci);
  1808. if (mode == SC_LSEG_SR &&
  1809. sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
  1810. err = nilfs_segctor_fill_in_checkpoint(sci);
  1811. if (unlikely(err))
  1812. goto failed_to_write;
  1813. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1814. }
  1815. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1816. /* Write partial segments */
  1817. err = nilfs_segctor_prepare_write(sci, &failed_page);
  1818. if (err) {
  1819. nilfs_abort_logs(&sci->sc_segbufs, failed_page, err);
  1820. goto failed_to_write;
  1821. }
  1822. nilfs_add_checksums_on_logs(&sci->sc_segbufs,
  1823. nilfs->ns_crc_seed);
  1824. err = nilfs_segctor_write(sci, nilfs);
  1825. if (unlikely(err))
  1826. goto failed_to_write;
  1827. if (sci->sc_stage.scnt == NILFS_ST_DONE ||
  1828. nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
  1829. /*
  1830. * At this point, we avoid double buffering
  1831. * for blocksize < pagesize because page dirty
  1832. * flag is turned off during write and dirty
  1833. * buffers are not properly collected for
  1834. * pages crossing over segments.
  1835. */
  1836. err = nilfs_segctor_wait(sci);
  1837. if (err)
  1838. goto failed_to_write;
  1839. }
  1840. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  1841. out:
  1842. nilfs_segctor_drop_written_files(sci, nilfs);
  1843. return err;
  1844. failed_to_write:
  1845. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1846. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1847. failed:
  1848. if (nilfs_doing_gc())
  1849. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1850. nilfs_segctor_abort_construction(sci, nilfs, err);
  1851. goto out;
  1852. }
  1853. /**
  1854. * nilfs_segctor_start_timer - set timer of background write
  1855. * @sci: nilfs_sc_info
  1856. *
  1857. * If the timer has already been set, it ignores the new request.
  1858. * This function MUST be called within a section locking the segment
  1859. * semaphore.
  1860. */
  1861. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1862. {
  1863. spin_lock(&sci->sc_state_lock);
  1864. if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1865. sci->sc_timer.expires = jiffies + sci->sc_interval;
  1866. add_timer(&sci->sc_timer);
  1867. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1868. }
  1869. spin_unlock(&sci->sc_state_lock);
  1870. }
  1871. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1872. {
  1873. spin_lock(&sci->sc_state_lock);
  1874. if (!(sci->sc_flush_request & (1 << bn))) {
  1875. unsigned long prev_req = sci->sc_flush_request;
  1876. sci->sc_flush_request |= (1 << bn);
  1877. if (!prev_req)
  1878. wake_up(&sci->sc_wait_daemon);
  1879. }
  1880. spin_unlock(&sci->sc_state_lock);
  1881. }
  1882. /**
  1883. * nilfs_flush_segment - trigger a segment construction for resource control
  1884. * @sb: super block
  1885. * @ino: inode number of the file to be flushed out.
  1886. */
  1887. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1888. {
  1889. struct the_nilfs *nilfs = sb->s_fs_info;
  1890. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1891. if (!sci || nilfs_doing_construction())
  1892. return;
  1893. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1894. /* assign bit 0 to data files */
  1895. }
  1896. struct nilfs_segctor_wait_request {
  1897. wait_queue_t wq;
  1898. __u32 seq;
  1899. int err;
  1900. atomic_t done;
  1901. };
  1902. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  1903. {
  1904. struct nilfs_segctor_wait_request wait_req;
  1905. int err = 0;
  1906. spin_lock(&sci->sc_state_lock);
  1907. init_wait(&wait_req.wq);
  1908. wait_req.err = 0;
  1909. atomic_set(&wait_req.done, 0);
  1910. wait_req.seq = ++sci->sc_seq_request;
  1911. spin_unlock(&sci->sc_state_lock);
  1912. init_waitqueue_entry(&wait_req.wq, current);
  1913. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  1914. set_current_state(TASK_INTERRUPTIBLE);
  1915. wake_up(&sci->sc_wait_daemon);
  1916. for (;;) {
  1917. if (atomic_read(&wait_req.done)) {
  1918. err = wait_req.err;
  1919. break;
  1920. }
  1921. if (!signal_pending(current)) {
  1922. schedule();
  1923. continue;
  1924. }
  1925. err = -ERESTARTSYS;
  1926. break;
  1927. }
  1928. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  1929. return err;
  1930. }
  1931. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  1932. {
  1933. struct nilfs_segctor_wait_request *wrq, *n;
  1934. unsigned long flags;
  1935. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  1936. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  1937. wq.task_list) {
  1938. if (!atomic_read(&wrq->done) &&
  1939. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  1940. wrq->err = err;
  1941. atomic_set(&wrq->done, 1);
  1942. }
  1943. if (atomic_read(&wrq->done)) {
  1944. wrq->wq.func(&wrq->wq,
  1945. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  1946. 0, NULL);
  1947. }
  1948. }
  1949. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  1950. }
  1951. /**
  1952. * nilfs_construct_segment - construct a logical segment
  1953. * @sb: super block
  1954. *
  1955. * Return Value: On success, 0 is retured. On errors, one of the following
  1956. * negative error code is returned.
  1957. *
  1958. * %-EROFS - Read only filesystem.
  1959. *
  1960. * %-EIO - I/O error
  1961. *
  1962. * %-ENOSPC - No space left on device (only in a panic state).
  1963. *
  1964. * %-ERESTARTSYS - Interrupted.
  1965. *
  1966. * %-ENOMEM - Insufficient memory available.
  1967. */
  1968. int nilfs_construct_segment(struct super_block *sb)
  1969. {
  1970. struct the_nilfs *nilfs = sb->s_fs_info;
  1971. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1972. struct nilfs_transaction_info *ti;
  1973. int err;
  1974. if (!sci)
  1975. return -EROFS;
  1976. /* A call inside transactions causes a deadlock. */
  1977. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  1978. err = nilfs_segctor_sync(sci);
  1979. return err;
  1980. }
  1981. /**
  1982. * nilfs_construct_dsync_segment - construct a data-only logical segment
  1983. * @sb: super block
  1984. * @inode: inode whose data blocks should be written out
  1985. * @start: start byte offset
  1986. * @end: end byte offset (inclusive)
  1987. *
  1988. * Return Value: On success, 0 is retured. On errors, one of the following
  1989. * negative error code is returned.
  1990. *
  1991. * %-EROFS - Read only filesystem.
  1992. *
  1993. * %-EIO - I/O error
  1994. *
  1995. * %-ENOSPC - No space left on device (only in a panic state).
  1996. *
  1997. * %-ERESTARTSYS - Interrupted.
  1998. *
  1999. * %-ENOMEM - Insufficient memory available.
  2000. */
  2001. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  2002. loff_t start, loff_t end)
  2003. {
  2004. struct the_nilfs *nilfs = sb->s_fs_info;
  2005. struct nilfs_sc_info *sci = nilfs->ns_writer;
  2006. struct nilfs_inode_info *ii;
  2007. struct nilfs_transaction_info ti;
  2008. int err = 0;
  2009. if (!sci)
  2010. return -EROFS;
  2011. nilfs_transaction_lock(sb, &ti, 0);
  2012. ii = NILFS_I(inode);
  2013. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  2014. nilfs_test_opt(nilfs, STRICT_ORDER) ||
  2015. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2016. nilfs_discontinued(nilfs)) {
  2017. nilfs_transaction_unlock(sb);
  2018. err = nilfs_segctor_sync(sci);
  2019. return err;
  2020. }
  2021. spin_lock(&nilfs->ns_inode_lock);
  2022. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  2023. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  2024. spin_unlock(&nilfs->ns_inode_lock);
  2025. nilfs_transaction_unlock(sb);
  2026. return 0;
  2027. }
  2028. spin_unlock(&nilfs->ns_inode_lock);
  2029. sci->sc_dsync_inode = ii;
  2030. sci->sc_dsync_start = start;
  2031. sci->sc_dsync_end = end;
  2032. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2033. nilfs_transaction_unlock(sb);
  2034. return err;
  2035. }
  2036. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2037. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  2038. /**
  2039. * nilfs_segctor_accept - record accepted sequence count of log-write requests
  2040. * @sci: segment constructor object
  2041. */
  2042. static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
  2043. {
  2044. spin_lock(&sci->sc_state_lock);
  2045. sci->sc_seq_accepted = sci->sc_seq_request;
  2046. spin_unlock(&sci->sc_state_lock);
  2047. del_timer_sync(&sci->sc_timer);
  2048. }
  2049. /**
  2050. * nilfs_segctor_notify - notify the result of request to caller threads
  2051. * @sci: segment constructor object
  2052. * @mode: mode of log forming
  2053. * @err: error code to be notified
  2054. */
  2055. static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
  2056. {
  2057. /* Clear requests (even when the construction failed) */
  2058. spin_lock(&sci->sc_state_lock);
  2059. if (mode == SC_LSEG_SR) {
  2060. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2061. sci->sc_seq_done = sci->sc_seq_accepted;
  2062. nilfs_segctor_wakeup(sci, err);
  2063. sci->sc_flush_request = 0;
  2064. } else {
  2065. if (mode == SC_FLUSH_FILE)
  2066. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2067. else if (mode == SC_FLUSH_DAT)
  2068. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2069. /* re-enable timer if checkpoint creation was not done */
  2070. if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2071. time_before(jiffies, sci->sc_timer.expires))
  2072. add_timer(&sci->sc_timer);
  2073. }
  2074. spin_unlock(&sci->sc_state_lock);
  2075. }
  2076. /**
  2077. * nilfs_segctor_construct - form logs and write them to disk
  2078. * @sci: segment constructor object
  2079. * @mode: mode of log forming
  2080. */
  2081. static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
  2082. {
  2083. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2084. struct nilfs_super_block **sbp;
  2085. int err = 0;
  2086. nilfs_segctor_accept(sci);
  2087. if (nilfs_discontinued(nilfs))
  2088. mode = SC_LSEG_SR;
  2089. if (!nilfs_segctor_confirm(sci))
  2090. err = nilfs_segctor_do_construct(sci, mode);
  2091. if (likely(!err)) {
  2092. if (mode != SC_FLUSH_DAT)
  2093. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2094. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2095. nilfs_discontinued(nilfs)) {
  2096. down_write(&nilfs->ns_sem);
  2097. err = -EIO;
  2098. sbp = nilfs_prepare_super(sci->sc_super,
  2099. nilfs_sb_will_flip(nilfs));
  2100. if (likely(sbp)) {
  2101. nilfs_set_log_cursor(sbp[0], nilfs);
  2102. err = nilfs_commit_super(sci->sc_super,
  2103. NILFS_SB_COMMIT);
  2104. }
  2105. up_write(&nilfs->ns_sem);
  2106. }
  2107. }
  2108. nilfs_segctor_notify(sci, mode, err);
  2109. return err;
  2110. }
  2111. static void nilfs_construction_timeout(unsigned long data)
  2112. {
  2113. struct task_struct *p = (struct task_struct *)data;
  2114. wake_up_process(p);
  2115. }
  2116. static void
  2117. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2118. {
  2119. struct nilfs_inode_info *ii, *n;
  2120. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2121. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2122. continue;
  2123. list_del_init(&ii->i_dirty);
  2124. iput(&ii->vfs_inode);
  2125. }
  2126. }
  2127. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2128. void **kbufs)
  2129. {
  2130. struct the_nilfs *nilfs = sb->s_fs_info;
  2131. struct nilfs_sc_info *sci = nilfs->ns_writer;
  2132. struct nilfs_transaction_info ti;
  2133. int err;
  2134. if (unlikely(!sci))
  2135. return -EROFS;
  2136. nilfs_transaction_lock(sb, &ti, 1);
  2137. err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
  2138. if (unlikely(err))
  2139. goto out_unlock;
  2140. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2141. if (unlikely(err)) {
  2142. nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
  2143. goto out_unlock;
  2144. }
  2145. sci->sc_freesegs = kbufs[4];
  2146. sci->sc_nfreesegs = argv[4].v_nmembs;
  2147. list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
  2148. for (;;) {
  2149. err = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2150. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2151. if (likely(!err))
  2152. break;
  2153. nilfs_warning(sb, __func__,
  2154. "segment construction failed. (err=%d)", err);
  2155. set_current_state(TASK_INTERRUPTIBLE);
  2156. schedule_timeout(sci->sc_interval);
  2157. }
  2158. if (nilfs_test_opt(nilfs, DISCARD)) {
  2159. int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
  2160. sci->sc_nfreesegs);
  2161. if (ret) {
  2162. printk(KERN_WARNING
  2163. "NILFS warning: error %d on discard request, "
  2164. "turning discards off for the device\n", ret);
  2165. nilfs_clear_opt(nilfs, DISCARD);
  2166. }
  2167. }
  2168. out_unlock:
  2169. sci->sc_freesegs = NULL;
  2170. sci->sc_nfreesegs = 0;
  2171. nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
  2172. nilfs_transaction_unlock(sb);
  2173. return err;
  2174. }
  2175. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2176. {
  2177. struct nilfs_transaction_info ti;
  2178. nilfs_transaction_lock(sci->sc_super, &ti, 0);
  2179. nilfs_segctor_construct(sci, mode);
  2180. /*
  2181. * Unclosed segment should be retried. We do this using sc_timer.
  2182. * Timeout of sc_timer will invoke complete construction which leads
  2183. * to close the current logical segment.
  2184. */
  2185. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2186. nilfs_segctor_start_timer(sci);
  2187. nilfs_transaction_unlock(sci->sc_super);
  2188. }
  2189. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2190. {
  2191. int mode = 0;
  2192. int err;
  2193. spin_lock(&sci->sc_state_lock);
  2194. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2195. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2196. spin_unlock(&sci->sc_state_lock);
  2197. if (mode) {
  2198. err = nilfs_segctor_do_construct(sci, mode);
  2199. spin_lock(&sci->sc_state_lock);
  2200. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2201. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2202. spin_unlock(&sci->sc_state_lock);
  2203. }
  2204. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2205. }
  2206. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2207. {
  2208. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2209. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2210. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2211. return SC_FLUSH_FILE;
  2212. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2213. return SC_FLUSH_DAT;
  2214. }
  2215. return SC_LSEG_SR;
  2216. }
  2217. /**
  2218. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2219. * @arg: pointer to a struct nilfs_sc_info.
  2220. *
  2221. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2222. * to execute segment constructions.
  2223. */
  2224. static int nilfs_segctor_thread(void *arg)
  2225. {
  2226. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2227. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2228. int timeout = 0;
  2229. sci->sc_timer.data = (unsigned long)current;
  2230. sci->sc_timer.function = nilfs_construction_timeout;
  2231. /* start sync. */
  2232. sci->sc_task = current;
  2233. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2234. printk(KERN_INFO
  2235. "segctord starting. Construction interval = %lu seconds, "
  2236. "CP frequency < %lu seconds\n",
  2237. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2238. spin_lock(&sci->sc_state_lock);
  2239. loop:
  2240. for (;;) {
  2241. int mode;
  2242. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2243. goto end_thread;
  2244. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2245. mode = SC_LSEG_SR;
  2246. else if (!sci->sc_flush_request)
  2247. break;
  2248. else
  2249. mode = nilfs_segctor_flush_mode(sci);
  2250. spin_unlock(&sci->sc_state_lock);
  2251. nilfs_segctor_thread_construct(sci, mode);
  2252. spin_lock(&sci->sc_state_lock);
  2253. timeout = 0;
  2254. }
  2255. if (freezing(current)) {
  2256. spin_unlock(&sci->sc_state_lock);
  2257. refrigerator();
  2258. spin_lock(&sci->sc_state_lock);
  2259. } else {
  2260. DEFINE_WAIT(wait);
  2261. int should_sleep = 1;
  2262. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2263. TASK_INTERRUPTIBLE);
  2264. if (sci->sc_seq_request != sci->sc_seq_done)
  2265. should_sleep = 0;
  2266. else if (sci->sc_flush_request)
  2267. should_sleep = 0;
  2268. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2269. should_sleep = time_before(jiffies,
  2270. sci->sc_timer.expires);
  2271. if (should_sleep) {
  2272. spin_unlock(&sci->sc_state_lock);
  2273. schedule();
  2274. spin_lock(&sci->sc_state_lock);
  2275. }
  2276. finish_wait(&sci->sc_wait_daemon, &wait);
  2277. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2278. time_after_eq(jiffies, sci->sc_timer.expires));
  2279. if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
  2280. set_nilfs_discontinued(nilfs);
  2281. }
  2282. goto loop;
  2283. end_thread:
  2284. spin_unlock(&sci->sc_state_lock);
  2285. /* end sync. */
  2286. sci->sc_task = NULL;
  2287. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2288. return 0;
  2289. }
  2290. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2291. {
  2292. struct task_struct *t;
  2293. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2294. if (IS_ERR(t)) {
  2295. int err = PTR_ERR(t);
  2296. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2297. err);
  2298. return err;
  2299. }
  2300. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2301. return 0;
  2302. }
  2303. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2304. __acquires(&sci->sc_state_lock)
  2305. __releases(&sci->sc_state_lock)
  2306. {
  2307. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2308. while (sci->sc_task) {
  2309. wake_up(&sci->sc_wait_daemon);
  2310. spin_unlock(&sci->sc_state_lock);
  2311. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2312. spin_lock(&sci->sc_state_lock);
  2313. }
  2314. }
  2315. /*
  2316. * Setup & clean-up functions
  2317. */
  2318. static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
  2319. struct nilfs_root *root)
  2320. {
  2321. struct the_nilfs *nilfs = sb->s_fs_info;
  2322. struct nilfs_sc_info *sci;
  2323. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2324. if (!sci)
  2325. return NULL;
  2326. sci->sc_super = sb;
  2327. nilfs_get_root(root);
  2328. sci->sc_root = root;
  2329. init_waitqueue_head(&sci->sc_wait_request);
  2330. init_waitqueue_head(&sci->sc_wait_daemon);
  2331. init_waitqueue_head(&sci->sc_wait_task);
  2332. spin_lock_init(&sci->sc_state_lock);
  2333. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2334. INIT_LIST_HEAD(&sci->sc_segbufs);
  2335. INIT_LIST_HEAD(&sci->sc_write_logs);
  2336. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2337. INIT_LIST_HEAD(&sci->sc_copied_buffers);
  2338. init_timer(&sci->sc_timer);
  2339. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2340. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2341. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2342. if (nilfs->ns_interval)
  2343. sci->sc_interval = nilfs->ns_interval;
  2344. if (nilfs->ns_watermark)
  2345. sci->sc_watermark = nilfs->ns_watermark;
  2346. return sci;
  2347. }
  2348. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2349. {
  2350. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2351. /* The segctord thread was stopped and its timer was removed.
  2352. But some tasks remain. */
  2353. do {
  2354. struct nilfs_transaction_info ti;
  2355. nilfs_transaction_lock(sci->sc_super, &ti, 0);
  2356. ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2357. nilfs_transaction_unlock(sci->sc_super);
  2358. } while (ret && retrycount-- > 0);
  2359. }
  2360. /**
  2361. * nilfs_segctor_destroy - destroy the segment constructor.
  2362. * @sci: nilfs_sc_info
  2363. *
  2364. * nilfs_segctor_destroy() kills the segctord thread and frees
  2365. * the nilfs_sc_info struct.
  2366. * Caller must hold the segment semaphore.
  2367. */
  2368. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2369. {
  2370. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2371. int flag;
  2372. up_write(&nilfs->ns_segctor_sem);
  2373. spin_lock(&sci->sc_state_lock);
  2374. nilfs_segctor_kill_thread(sci);
  2375. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2376. || sci->sc_seq_request != sci->sc_seq_done);
  2377. spin_unlock(&sci->sc_state_lock);
  2378. if (flag || !nilfs_segctor_confirm(sci))
  2379. nilfs_segctor_write_out(sci);
  2380. WARN_ON(!list_empty(&sci->sc_copied_buffers));
  2381. if (!list_empty(&sci->sc_dirty_files)) {
  2382. nilfs_warning(sci->sc_super, __func__,
  2383. "dirty file(s) after the final construction\n");
  2384. nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
  2385. }
  2386. WARN_ON(!list_empty(&sci->sc_segbufs));
  2387. WARN_ON(!list_empty(&sci->sc_write_logs));
  2388. nilfs_put_root(sci->sc_root);
  2389. down_write(&nilfs->ns_segctor_sem);
  2390. del_timer_sync(&sci->sc_timer);
  2391. kfree(sci);
  2392. }
  2393. /**
  2394. * nilfs_attach_log_writer - attach log writer
  2395. * @sb: super block instance
  2396. * @root: root object of the current filesystem tree
  2397. *
  2398. * This allocates a log writer object, initializes it, and starts the
  2399. * log writer.
  2400. *
  2401. * Return Value: On success, 0 is returned. On error, one of the following
  2402. * negative error code is returned.
  2403. *
  2404. * %-ENOMEM - Insufficient memory available.
  2405. */
  2406. int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
  2407. {
  2408. struct the_nilfs *nilfs = sb->s_fs_info;
  2409. int err;
  2410. if (nilfs->ns_writer) {
  2411. /*
  2412. * This happens if the filesystem was remounted
  2413. * read/write after nilfs_error degenerated it into a
  2414. * read-only mount.
  2415. */
  2416. nilfs_detach_log_writer(sb);
  2417. }
  2418. nilfs->ns_writer = nilfs_segctor_new(sb, root);
  2419. if (!nilfs->ns_writer)
  2420. return -ENOMEM;
  2421. err = nilfs_segctor_start_thread(nilfs->ns_writer);
  2422. if (err) {
  2423. kfree(nilfs->ns_writer);
  2424. nilfs->ns_writer = NULL;
  2425. }
  2426. return err;
  2427. }
  2428. /**
  2429. * nilfs_detach_log_writer - destroy log writer
  2430. * @sb: super block instance
  2431. *
  2432. * This kills log writer daemon, frees the log writer object, and
  2433. * destroys list of dirty files.
  2434. */
  2435. void nilfs_detach_log_writer(struct super_block *sb)
  2436. {
  2437. struct the_nilfs *nilfs = sb->s_fs_info;
  2438. LIST_HEAD(garbage_list);
  2439. down_write(&nilfs->ns_segctor_sem);
  2440. if (nilfs->ns_writer) {
  2441. nilfs_segctor_destroy(nilfs->ns_writer);
  2442. nilfs->ns_writer = NULL;
  2443. }
  2444. /* Force to free the list of dirty files */
  2445. spin_lock(&nilfs->ns_inode_lock);
  2446. if (!list_empty(&nilfs->ns_dirty_files)) {
  2447. list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
  2448. nilfs_warning(sb, __func__,
  2449. "Hit dirty file after stopped log writer\n");
  2450. }
  2451. spin_unlock(&nilfs->ns_inode_lock);
  2452. up_write(&nilfs->ns_segctor_sem);
  2453. nilfs_dispose_list(nilfs, &garbage_list, 1);
  2454. }