intel_display.c 240 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. /* given values */
  47. int n;
  48. int m1, m2;
  49. int p1, p2;
  50. /* derived values */
  51. int dot;
  52. int vco;
  53. int m;
  54. int p;
  55. } intel_clock_t;
  56. typedef struct {
  57. int min, max;
  58. } intel_range_t;
  59. typedef struct {
  60. int dot_limit;
  61. int p2_slow, p2_fast;
  62. } intel_p2_t;
  63. #define INTEL_P2_NUM 2
  64. typedef struct intel_limit intel_limit_t;
  65. struct intel_limit {
  66. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  67. intel_p2_t p2;
  68. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  69. int, int, intel_clock_t *, intel_clock_t *);
  70. };
  71. /* FDI */
  72. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  73. int
  74. intel_pch_rawclk(struct drm_device *dev)
  75. {
  76. struct drm_i915_private *dev_priv = dev->dev_private;
  77. WARN_ON(!HAS_PCH_SPLIT(dev));
  78. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  79. }
  80. static bool
  81. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  82. int target, int refclk, intel_clock_t *match_clock,
  83. intel_clock_t *best_clock);
  84. static bool
  85. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  86. int target, int refclk, intel_clock_t *match_clock,
  87. intel_clock_t *best_clock);
  88. static bool
  89. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  90. int target, int refclk, intel_clock_t *match_clock,
  91. intel_clock_t *best_clock);
  92. static bool
  93. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  94. int target, int refclk, intel_clock_t *match_clock,
  95. intel_clock_t *best_clock);
  96. static bool
  97. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  98. int target, int refclk, intel_clock_t *match_clock,
  99. intel_clock_t *best_clock);
  100. static inline u32 /* units of 100MHz */
  101. intel_fdi_link_freq(struct drm_device *dev)
  102. {
  103. if (IS_GEN5(dev)) {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  106. } else
  107. return 27;
  108. }
  109. static const intel_limit_t intel_limits_i8xx_dvo = {
  110. .dot = { .min = 25000, .max = 350000 },
  111. .vco = { .min = 930000, .max = 1400000 },
  112. .n = { .min = 3, .max = 16 },
  113. .m = { .min = 96, .max = 140 },
  114. .m1 = { .min = 18, .max = 26 },
  115. .m2 = { .min = 6, .max = 16 },
  116. .p = { .min = 4, .max = 128 },
  117. .p1 = { .min = 2, .max = 33 },
  118. .p2 = { .dot_limit = 165000,
  119. .p2_slow = 4, .p2_fast = 2 },
  120. .find_pll = intel_find_best_PLL,
  121. };
  122. static const intel_limit_t intel_limits_i8xx_lvds = {
  123. .dot = { .min = 25000, .max = 350000 },
  124. .vco = { .min = 930000, .max = 1400000 },
  125. .n = { .min = 3, .max = 16 },
  126. .m = { .min = 96, .max = 140 },
  127. .m1 = { .min = 18, .max = 26 },
  128. .m2 = { .min = 6, .max = 16 },
  129. .p = { .min = 4, .max = 128 },
  130. .p1 = { .min = 1, .max = 6 },
  131. .p2 = { .dot_limit = 165000,
  132. .p2_slow = 14, .p2_fast = 7 },
  133. .find_pll = intel_find_best_PLL,
  134. };
  135. static const intel_limit_t intel_limits_i9xx_sdvo = {
  136. .dot = { .min = 20000, .max = 400000 },
  137. .vco = { .min = 1400000, .max = 2800000 },
  138. .n = { .min = 1, .max = 6 },
  139. .m = { .min = 70, .max = 120 },
  140. .m1 = { .min = 10, .max = 22 },
  141. .m2 = { .min = 5, .max = 9 },
  142. .p = { .min = 5, .max = 80 },
  143. .p1 = { .min = 1, .max = 8 },
  144. .p2 = { .dot_limit = 200000,
  145. .p2_slow = 10, .p2_fast = 5 },
  146. .find_pll = intel_find_best_PLL,
  147. };
  148. static const intel_limit_t intel_limits_i9xx_lvds = {
  149. .dot = { .min = 20000, .max = 400000 },
  150. .vco = { .min = 1400000, .max = 2800000 },
  151. .n = { .min = 1, .max = 6 },
  152. .m = { .min = 70, .max = 120 },
  153. .m1 = { .min = 10, .max = 22 },
  154. .m2 = { .min = 5, .max = 9 },
  155. .p = { .min = 7, .max = 98 },
  156. .p1 = { .min = 1, .max = 8 },
  157. .p2 = { .dot_limit = 112000,
  158. .p2_slow = 14, .p2_fast = 7 },
  159. .find_pll = intel_find_best_PLL,
  160. };
  161. static const intel_limit_t intel_limits_g4x_sdvo = {
  162. .dot = { .min = 25000, .max = 270000 },
  163. .vco = { .min = 1750000, .max = 3500000},
  164. .n = { .min = 1, .max = 4 },
  165. .m = { .min = 104, .max = 138 },
  166. .m1 = { .min = 17, .max = 23 },
  167. .m2 = { .min = 5, .max = 11 },
  168. .p = { .min = 10, .max = 30 },
  169. .p1 = { .min = 1, .max = 3},
  170. .p2 = { .dot_limit = 270000,
  171. .p2_slow = 10,
  172. .p2_fast = 10
  173. },
  174. .find_pll = intel_g4x_find_best_PLL,
  175. };
  176. static const intel_limit_t intel_limits_g4x_hdmi = {
  177. .dot = { .min = 22000, .max = 400000 },
  178. .vco = { .min = 1750000, .max = 3500000},
  179. .n = { .min = 1, .max = 4 },
  180. .m = { .min = 104, .max = 138 },
  181. .m1 = { .min = 16, .max = 23 },
  182. .m2 = { .min = 5, .max = 11 },
  183. .p = { .min = 5, .max = 80 },
  184. .p1 = { .min = 1, .max = 8},
  185. .p2 = { .dot_limit = 165000,
  186. .p2_slow = 10, .p2_fast = 5 },
  187. .find_pll = intel_g4x_find_best_PLL,
  188. };
  189. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  190. .dot = { .min = 20000, .max = 115000 },
  191. .vco = { .min = 1750000, .max = 3500000 },
  192. .n = { .min = 1, .max = 3 },
  193. .m = { .min = 104, .max = 138 },
  194. .m1 = { .min = 17, .max = 23 },
  195. .m2 = { .min = 5, .max = 11 },
  196. .p = { .min = 28, .max = 112 },
  197. .p1 = { .min = 2, .max = 8 },
  198. .p2 = { .dot_limit = 0,
  199. .p2_slow = 14, .p2_fast = 14
  200. },
  201. .find_pll = intel_g4x_find_best_PLL,
  202. };
  203. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  204. .dot = { .min = 80000, .max = 224000 },
  205. .vco = { .min = 1750000, .max = 3500000 },
  206. .n = { .min = 1, .max = 3 },
  207. .m = { .min = 104, .max = 138 },
  208. .m1 = { .min = 17, .max = 23 },
  209. .m2 = { .min = 5, .max = 11 },
  210. .p = { .min = 14, .max = 42 },
  211. .p1 = { .min = 2, .max = 6 },
  212. .p2 = { .dot_limit = 0,
  213. .p2_slow = 7, .p2_fast = 7
  214. },
  215. .find_pll = intel_g4x_find_best_PLL,
  216. };
  217. static const intel_limit_t intel_limits_g4x_display_port = {
  218. .dot = { .min = 161670, .max = 227000 },
  219. .vco = { .min = 1750000, .max = 3500000},
  220. .n = { .min = 1, .max = 2 },
  221. .m = { .min = 97, .max = 108 },
  222. .m1 = { .min = 0x10, .max = 0x12 },
  223. .m2 = { .min = 0x05, .max = 0x06 },
  224. .p = { .min = 10, .max = 20 },
  225. .p1 = { .min = 1, .max = 2},
  226. .p2 = { .dot_limit = 0,
  227. .p2_slow = 10, .p2_fast = 10 },
  228. .find_pll = intel_find_pll_g4x_dp,
  229. };
  230. static const intel_limit_t intel_limits_pineview_sdvo = {
  231. .dot = { .min = 20000, .max = 400000},
  232. .vco = { .min = 1700000, .max = 3500000 },
  233. /* Pineview's Ncounter is a ring counter */
  234. .n = { .min = 3, .max = 6 },
  235. .m = { .min = 2, .max = 256 },
  236. /* Pineview only has one combined m divider, which we treat as m2. */
  237. .m1 = { .min = 0, .max = 0 },
  238. .m2 = { .min = 0, .max = 254 },
  239. .p = { .min = 5, .max = 80 },
  240. .p1 = { .min = 1, .max = 8 },
  241. .p2 = { .dot_limit = 200000,
  242. .p2_slow = 10, .p2_fast = 5 },
  243. .find_pll = intel_find_best_PLL,
  244. };
  245. static const intel_limit_t intel_limits_pineview_lvds = {
  246. .dot = { .min = 20000, .max = 400000 },
  247. .vco = { .min = 1700000, .max = 3500000 },
  248. .n = { .min = 3, .max = 6 },
  249. .m = { .min = 2, .max = 256 },
  250. .m1 = { .min = 0, .max = 0 },
  251. .m2 = { .min = 0, .max = 254 },
  252. .p = { .min = 7, .max = 112 },
  253. .p1 = { .min = 1, .max = 8 },
  254. .p2 = { .dot_limit = 112000,
  255. .p2_slow = 14, .p2_fast = 14 },
  256. .find_pll = intel_find_best_PLL,
  257. };
  258. /* Ironlake / Sandybridge
  259. *
  260. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  261. * the range value for them is (actual_value - 2).
  262. */
  263. static const intel_limit_t intel_limits_ironlake_dac = {
  264. .dot = { .min = 25000, .max = 350000 },
  265. .vco = { .min = 1760000, .max = 3510000 },
  266. .n = { .min = 1, .max = 5 },
  267. .m = { .min = 79, .max = 127 },
  268. .m1 = { .min = 12, .max = 22 },
  269. .m2 = { .min = 5, .max = 9 },
  270. .p = { .min = 5, .max = 80 },
  271. .p1 = { .min = 1, .max = 8 },
  272. .p2 = { .dot_limit = 225000,
  273. .p2_slow = 10, .p2_fast = 5 },
  274. .find_pll = intel_g4x_find_best_PLL,
  275. };
  276. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  277. .dot = { .min = 25000, .max = 350000 },
  278. .vco = { .min = 1760000, .max = 3510000 },
  279. .n = { .min = 1, .max = 3 },
  280. .m = { .min = 79, .max = 118 },
  281. .m1 = { .min = 12, .max = 22 },
  282. .m2 = { .min = 5, .max = 9 },
  283. .p = { .min = 28, .max = 112 },
  284. .p1 = { .min = 2, .max = 8 },
  285. .p2 = { .dot_limit = 225000,
  286. .p2_slow = 14, .p2_fast = 14 },
  287. .find_pll = intel_g4x_find_best_PLL,
  288. };
  289. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  290. .dot = { .min = 25000, .max = 350000 },
  291. .vco = { .min = 1760000, .max = 3510000 },
  292. .n = { .min = 1, .max = 3 },
  293. .m = { .min = 79, .max = 127 },
  294. .m1 = { .min = 12, .max = 22 },
  295. .m2 = { .min = 5, .max = 9 },
  296. .p = { .min = 14, .max = 56 },
  297. .p1 = { .min = 2, .max = 8 },
  298. .p2 = { .dot_limit = 225000,
  299. .p2_slow = 7, .p2_fast = 7 },
  300. .find_pll = intel_g4x_find_best_PLL,
  301. };
  302. /* LVDS 100mhz refclk limits. */
  303. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  304. .dot = { .min = 25000, .max = 350000 },
  305. .vco = { .min = 1760000, .max = 3510000 },
  306. .n = { .min = 1, .max = 2 },
  307. .m = { .min = 79, .max = 126 },
  308. .m1 = { .min = 12, .max = 22 },
  309. .m2 = { .min = 5, .max = 9 },
  310. .p = { .min = 28, .max = 112 },
  311. .p1 = { .min = 2, .max = 8 },
  312. .p2 = { .dot_limit = 225000,
  313. .p2_slow = 14, .p2_fast = 14 },
  314. .find_pll = intel_g4x_find_best_PLL,
  315. };
  316. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  317. .dot = { .min = 25000, .max = 350000 },
  318. .vco = { .min = 1760000, .max = 3510000 },
  319. .n = { .min = 1, .max = 3 },
  320. .m = { .min = 79, .max = 126 },
  321. .m1 = { .min = 12, .max = 22 },
  322. .m2 = { .min = 5, .max = 9 },
  323. .p = { .min = 14, .max = 42 },
  324. .p1 = { .min = 2, .max = 6 },
  325. .p2 = { .dot_limit = 225000,
  326. .p2_slow = 7, .p2_fast = 7 },
  327. .find_pll = intel_g4x_find_best_PLL,
  328. };
  329. static const intel_limit_t intel_limits_ironlake_display_port = {
  330. .dot = { .min = 25000, .max = 350000 },
  331. .vco = { .min = 1760000, .max = 3510000},
  332. .n = { .min = 1, .max = 2 },
  333. .m = { .min = 81, .max = 90 },
  334. .m1 = { .min = 12, .max = 22 },
  335. .m2 = { .min = 5, .max = 9 },
  336. .p = { .min = 10, .max = 20 },
  337. .p1 = { .min = 1, .max = 2},
  338. .p2 = { .dot_limit = 0,
  339. .p2_slow = 10, .p2_fast = 10 },
  340. .find_pll = intel_find_pll_ironlake_dp,
  341. };
  342. static const intel_limit_t intel_limits_vlv_dac = {
  343. .dot = { .min = 25000, .max = 270000 },
  344. .vco = { .min = 4000000, .max = 6000000 },
  345. .n = { .min = 1, .max = 7 },
  346. .m = { .min = 22, .max = 450 }, /* guess */
  347. .m1 = { .min = 2, .max = 3 },
  348. .m2 = { .min = 11, .max = 156 },
  349. .p = { .min = 10, .max = 30 },
  350. .p1 = { .min = 2, .max = 3 },
  351. .p2 = { .dot_limit = 270000,
  352. .p2_slow = 2, .p2_fast = 20 },
  353. .find_pll = intel_vlv_find_best_pll,
  354. };
  355. static const intel_limit_t intel_limits_vlv_hdmi = {
  356. .dot = { .min = 20000, .max = 165000 },
  357. .vco = { .min = 4000000, .max = 5994000},
  358. .n = { .min = 1, .max = 7 },
  359. .m = { .min = 60, .max = 300 }, /* guess */
  360. .m1 = { .min = 2, .max = 3 },
  361. .m2 = { .min = 11, .max = 156 },
  362. .p = { .min = 10, .max = 30 },
  363. .p1 = { .min = 2, .max = 3 },
  364. .p2 = { .dot_limit = 270000,
  365. .p2_slow = 2, .p2_fast = 20 },
  366. .find_pll = intel_vlv_find_best_pll,
  367. };
  368. static const intel_limit_t intel_limits_vlv_dp = {
  369. .dot = { .min = 25000, .max = 270000 },
  370. .vco = { .min = 4000000, .max = 6000000 },
  371. .n = { .min = 1, .max = 7 },
  372. .m = { .min = 22, .max = 450 },
  373. .m1 = { .min = 2, .max = 3 },
  374. .m2 = { .min = 11, .max = 156 },
  375. .p = { .min = 10, .max = 30 },
  376. .p1 = { .min = 2, .max = 3 },
  377. .p2 = { .dot_limit = 270000,
  378. .p2_slow = 2, .p2_fast = 20 },
  379. .find_pll = intel_vlv_find_best_pll,
  380. };
  381. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  382. {
  383. unsigned long flags;
  384. u32 val = 0;
  385. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  386. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  387. DRM_ERROR("DPIO idle wait timed out\n");
  388. goto out_unlock;
  389. }
  390. I915_WRITE(DPIO_REG, reg);
  391. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  392. DPIO_BYTE);
  393. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  394. DRM_ERROR("DPIO read wait timed out\n");
  395. goto out_unlock;
  396. }
  397. val = I915_READ(DPIO_DATA);
  398. out_unlock:
  399. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  400. return val;
  401. }
  402. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  403. u32 val)
  404. {
  405. unsigned long flags;
  406. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  407. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  408. DRM_ERROR("DPIO idle wait timed out\n");
  409. goto out_unlock;
  410. }
  411. I915_WRITE(DPIO_DATA, val);
  412. I915_WRITE(DPIO_REG, reg);
  413. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  414. DPIO_BYTE);
  415. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  416. DRM_ERROR("DPIO write wait timed out\n");
  417. out_unlock:
  418. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  419. }
  420. static void vlv_init_dpio(struct drm_device *dev)
  421. {
  422. struct drm_i915_private *dev_priv = dev->dev_private;
  423. /* Reset the DPIO config */
  424. I915_WRITE(DPIO_CTL, 0);
  425. POSTING_READ(DPIO_CTL);
  426. I915_WRITE(DPIO_CTL, 1);
  427. POSTING_READ(DPIO_CTL);
  428. }
  429. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  430. int refclk)
  431. {
  432. struct drm_device *dev = crtc->dev;
  433. const intel_limit_t *limit;
  434. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  435. if (intel_is_dual_link_lvds(dev)) {
  436. /* LVDS dual channel */
  437. if (refclk == 100000)
  438. limit = &intel_limits_ironlake_dual_lvds_100m;
  439. else
  440. limit = &intel_limits_ironlake_dual_lvds;
  441. } else {
  442. if (refclk == 100000)
  443. limit = &intel_limits_ironlake_single_lvds_100m;
  444. else
  445. limit = &intel_limits_ironlake_single_lvds;
  446. }
  447. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  448. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  449. limit = &intel_limits_ironlake_display_port;
  450. else
  451. limit = &intel_limits_ironlake_dac;
  452. return limit;
  453. }
  454. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  455. {
  456. struct drm_device *dev = crtc->dev;
  457. const intel_limit_t *limit;
  458. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  459. if (intel_is_dual_link_lvds(dev))
  460. /* LVDS with dual channel */
  461. limit = &intel_limits_g4x_dual_channel_lvds;
  462. else
  463. /* LVDS with dual channel */
  464. limit = &intel_limits_g4x_single_channel_lvds;
  465. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  466. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  467. limit = &intel_limits_g4x_hdmi;
  468. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  469. limit = &intel_limits_g4x_sdvo;
  470. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  471. limit = &intel_limits_g4x_display_port;
  472. } else /* The option is for other outputs */
  473. limit = &intel_limits_i9xx_sdvo;
  474. return limit;
  475. }
  476. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  477. {
  478. struct drm_device *dev = crtc->dev;
  479. const intel_limit_t *limit;
  480. if (HAS_PCH_SPLIT(dev))
  481. limit = intel_ironlake_limit(crtc, refclk);
  482. else if (IS_G4X(dev)) {
  483. limit = intel_g4x_limit(crtc);
  484. } else if (IS_PINEVIEW(dev)) {
  485. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  486. limit = &intel_limits_pineview_lvds;
  487. else
  488. limit = &intel_limits_pineview_sdvo;
  489. } else if (IS_VALLEYVIEW(dev)) {
  490. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  491. limit = &intel_limits_vlv_dac;
  492. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  493. limit = &intel_limits_vlv_hdmi;
  494. else
  495. limit = &intel_limits_vlv_dp;
  496. } else if (!IS_GEN2(dev)) {
  497. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  498. limit = &intel_limits_i9xx_lvds;
  499. else
  500. limit = &intel_limits_i9xx_sdvo;
  501. } else {
  502. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  503. limit = &intel_limits_i8xx_lvds;
  504. else
  505. limit = &intel_limits_i8xx_dvo;
  506. }
  507. return limit;
  508. }
  509. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  510. static void pineview_clock(int refclk, intel_clock_t *clock)
  511. {
  512. clock->m = clock->m2 + 2;
  513. clock->p = clock->p1 * clock->p2;
  514. clock->vco = refclk * clock->m / clock->n;
  515. clock->dot = clock->vco / clock->p;
  516. }
  517. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  518. {
  519. if (IS_PINEVIEW(dev)) {
  520. pineview_clock(refclk, clock);
  521. return;
  522. }
  523. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  524. clock->p = clock->p1 * clock->p2;
  525. clock->vco = refclk * clock->m / (clock->n + 2);
  526. clock->dot = clock->vco / clock->p;
  527. }
  528. /**
  529. * Returns whether any output on the specified pipe is of the specified type
  530. */
  531. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  532. {
  533. struct drm_device *dev = crtc->dev;
  534. struct intel_encoder *encoder;
  535. for_each_encoder_on_crtc(dev, crtc, encoder)
  536. if (encoder->type == type)
  537. return true;
  538. return false;
  539. }
  540. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  541. /**
  542. * Returns whether the given set of divisors are valid for a given refclk with
  543. * the given connectors.
  544. */
  545. static bool intel_PLL_is_valid(struct drm_device *dev,
  546. const intel_limit_t *limit,
  547. const intel_clock_t *clock)
  548. {
  549. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  550. INTELPllInvalid("p1 out of range\n");
  551. if (clock->p < limit->p.min || limit->p.max < clock->p)
  552. INTELPllInvalid("p out of range\n");
  553. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  554. INTELPllInvalid("m2 out of range\n");
  555. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  556. INTELPllInvalid("m1 out of range\n");
  557. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  558. INTELPllInvalid("m1 <= m2\n");
  559. if (clock->m < limit->m.min || limit->m.max < clock->m)
  560. INTELPllInvalid("m out of range\n");
  561. if (clock->n < limit->n.min || limit->n.max < clock->n)
  562. INTELPllInvalid("n out of range\n");
  563. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  564. INTELPllInvalid("vco out of range\n");
  565. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  566. * connector, etc., rather than just a single range.
  567. */
  568. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  569. INTELPllInvalid("dot out of range\n");
  570. return true;
  571. }
  572. static bool
  573. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  574. int target, int refclk, intel_clock_t *match_clock,
  575. intel_clock_t *best_clock)
  576. {
  577. struct drm_device *dev = crtc->dev;
  578. intel_clock_t clock;
  579. int err = target;
  580. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  581. /*
  582. * For LVDS just rely on its current settings for dual-channel.
  583. * We haven't figured out how to reliably set up different
  584. * single/dual channel state, if we even can.
  585. */
  586. if (intel_is_dual_link_lvds(dev))
  587. clock.p2 = limit->p2.p2_fast;
  588. else
  589. clock.p2 = limit->p2.p2_slow;
  590. } else {
  591. if (target < limit->p2.dot_limit)
  592. clock.p2 = limit->p2.p2_slow;
  593. else
  594. clock.p2 = limit->p2.p2_fast;
  595. }
  596. memset(best_clock, 0, sizeof(*best_clock));
  597. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  598. clock.m1++) {
  599. for (clock.m2 = limit->m2.min;
  600. clock.m2 <= limit->m2.max; clock.m2++) {
  601. /* m1 is always 0 in Pineview */
  602. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  603. break;
  604. for (clock.n = limit->n.min;
  605. clock.n <= limit->n.max; clock.n++) {
  606. for (clock.p1 = limit->p1.min;
  607. clock.p1 <= limit->p1.max; clock.p1++) {
  608. int this_err;
  609. intel_clock(dev, refclk, &clock);
  610. if (!intel_PLL_is_valid(dev, limit,
  611. &clock))
  612. continue;
  613. if (match_clock &&
  614. clock.p != match_clock->p)
  615. continue;
  616. this_err = abs(clock.dot - target);
  617. if (this_err < err) {
  618. *best_clock = clock;
  619. err = this_err;
  620. }
  621. }
  622. }
  623. }
  624. }
  625. return (err != target);
  626. }
  627. static bool
  628. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  629. int target, int refclk, intel_clock_t *match_clock,
  630. intel_clock_t *best_clock)
  631. {
  632. struct drm_device *dev = crtc->dev;
  633. intel_clock_t clock;
  634. int max_n;
  635. bool found;
  636. /* approximately equals target * 0.00585 */
  637. int err_most = (target >> 8) + (target >> 9);
  638. found = false;
  639. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  640. int lvds_reg;
  641. if (HAS_PCH_SPLIT(dev))
  642. lvds_reg = PCH_LVDS;
  643. else
  644. lvds_reg = LVDS;
  645. if (intel_is_dual_link_lvds(dev))
  646. clock.p2 = limit->p2.p2_fast;
  647. else
  648. clock.p2 = limit->p2.p2_slow;
  649. } else {
  650. if (target < limit->p2.dot_limit)
  651. clock.p2 = limit->p2.p2_slow;
  652. else
  653. clock.p2 = limit->p2.p2_fast;
  654. }
  655. memset(best_clock, 0, sizeof(*best_clock));
  656. max_n = limit->n.max;
  657. /* based on hardware requirement, prefer smaller n to precision */
  658. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  659. /* based on hardware requirement, prefere larger m1,m2 */
  660. for (clock.m1 = limit->m1.max;
  661. clock.m1 >= limit->m1.min; clock.m1--) {
  662. for (clock.m2 = limit->m2.max;
  663. clock.m2 >= limit->m2.min; clock.m2--) {
  664. for (clock.p1 = limit->p1.max;
  665. clock.p1 >= limit->p1.min; clock.p1--) {
  666. int this_err;
  667. intel_clock(dev, refclk, &clock);
  668. if (!intel_PLL_is_valid(dev, limit,
  669. &clock))
  670. continue;
  671. if (match_clock &&
  672. clock.p != match_clock->p)
  673. continue;
  674. this_err = abs(clock.dot - target);
  675. if (this_err < err_most) {
  676. *best_clock = clock;
  677. err_most = this_err;
  678. max_n = clock.n;
  679. found = true;
  680. }
  681. }
  682. }
  683. }
  684. }
  685. return found;
  686. }
  687. static bool
  688. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  689. int target, int refclk, intel_clock_t *match_clock,
  690. intel_clock_t *best_clock)
  691. {
  692. struct drm_device *dev = crtc->dev;
  693. intel_clock_t clock;
  694. if (target < 200000) {
  695. clock.n = 1;
  696. clock.p1 = 2;
  697. clock.p2 = 10;
  698. clock.m1 = 12;
  699. clock.m2 = 9;
  700. } else {
  701. clock.n = 2;
  702. clock.p1 = 1;
  703. clock.p2 = 10;
  704. clock.m1 = 14;
  705. clock.m2 = 8;
  706. }
  707. intel_clock(dev, refclk, &clock);
  708. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  709. return true;
  710. }
  711. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  712. static bool
  713. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  714. int target, int refclk, intel_clock_t *match_clock,
  715. intel_clock_t *best_clock)
  716. {
  717. intel_clock_t clock;
  718. if (target < 200000) {
  719. clock.p1 = 2;
  720. clock.p2 = 10;
  721. clock.n = 2;
  722. clock.m1 = 23;
  723. clock.m2 = 8;
  724. } else {
  725. clock.p1 = 1;
  726. clock.p2 = 10;
  727. clock.n = 1;
  728. clock.m1 = 14;
  729. clock.m2 = 2;
  730. }
  731. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  732. clock.p = (clock.p1 * clock.p2);
  733. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  734. clock.vco = 0;
  735. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  736. return true;
  737. }
  738. static bool
  739. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  740. int target, int refclk, intel_clock_t *match_clock,
  741. intel_clock_t *best_clock)
  742. {
  743. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  744. u32 m, n, fastclk;
  745. u32 updrate, minupdate, fracbits, p;
  746. unsigned long bestppm, ppm, absppm;
  747. int dotclk, flag;
  748. flag = 0;
  749. dotclk = target * 1000;
  750. bestppm = 1000000;
  751. ppm = absppm = 0;
  752. fastclk = dotclk / (2*100);
  753. updrate = 0;
  754. minupdate = 19200;
  755. fracbits = 1;
  756. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  757. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  758. /* based on hardware requirement, prefer smaller n to precision */
  759. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  760. updrate = refclk / n;
  761. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  762. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  763. if (p2 > 10)
  764. p2 = p2 - 1;
  765. p = p1 * p2;
  766. /* based on hardware requirement, prefer bigger m1,m2 values */
  767. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  768. m2 = (((2*(fastclk * p * n / m1 )) +
  769. refclk) / (2*refclk));
  770. m = m1 * m2;
  771. vco = updrate * m;
  772. if (vco >= limit->vco.min && vco < limit->vco.max) {
  773. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  774. absppm = (ppm > 0) ? ppm : (-ppm);
  775. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  776. bestppm = 0;
  777. flag = 1;
  778. }
  779. if (absppm < bestppm - 10) {
  780. bestppm = absppm;
  781. flag = 1;
  782. }
  783. if (flag) {
  784. bestn = n;
  785. bestm1 = m1;
  786. bestm2 = m2;
  787. bestp1 = p1;
  788. bestp2 = p2;
  789. flag = 0;
  790. }
  791. }
  792. }
  793. }
  794. }
  795. }
  796. best_clock->n = bestn;
  797. best_clock->m1 = bestm1;
  798. best_clock->m2 = bestm2;
  799. best_clock->p1 = bestp1;
  800. best_clock->p2 = bestp2;
  801. return true;
  802. }
  803. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  804. enum pipe pipe)
  805. {
  806. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  807. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  808. return intel_crtc->cpu_transcoder;
  809. }
  810. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  811. {
  812. struct drm_i915_private *dev_priv = dev->dev_private;
  813. u32 frame, frame_reg = PIPEFRAME(pipe);
  814. frame = I915_READ(frame_reg);
  815. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  816. DRM_DEBUG_KMS("vblank wait timed out\n");
  817. }
  818. /**
  819. * intel_wait_for_vblank - wait for vblank on a given pipe
  820. * @dev: drm device
  821. * @pipe: pipe to wait for
  822. *
  823. * Wait for vblank to occur on a given pipe. Needed for various bits of
  824. * mode setting code.
  825. */
  826. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  827. {
  828. struct drm_i915_private *dev_priv = dev->dev_private;
  829. int pipestat_reg = PIPESTAT(pipe);
  830. if (INTEL_INFO(dev)->gen >= 5) {
  831. ironlake_wait_for_vblank(dev, pipe);
  832. return;
  833. }
  834. /* Clear existing vblank status. Note this will clear any other
  835. * sticky status fields as well.
  836. *
  837. * This races with i915_driver_irq_handler() with the result
  838. * that either function could miss a vblank event. Here it is not
  839. * fatal, as we will either wait upon the next vblank interrupt or
  840. * timeout. Generally speaking intel_wait_for_vblank() is only
  841. * called during modeset at which time the GPU should be idle and
  842. * should *not* be performing page flips and thus not waiting on
  843. * vblanks...
  844. * Currently, the result of us stealing a vblank from the irq
  845. * handler is that a single frame will be skipped during swapbuffers.
  846. */
  847. I915_WRITE(pipestat_reg,
  848. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  849. /* Wait for vblank interrupt bit to set */
  850. if (wait_for(I915_READ(pipestat_reg) &
  851. PIPE_VBLANK_INTERRUPT_STATUS,
  852. 50))
  853. DRM_DEBUG_KMS("vblank wait timed out\n");
  854. }
  855. /*
  856. * intel_wait_for_pipe_off - wait for pipe to turn off
  857. * @dev: drm device
  858. * @pipe: pipe to wait for
  859. *
  860. * After disabling a pipe, we can't wait for vblank in the usual way,
  861. * spinning on the vblank interrupt status bit, since we won't actually
  862. * see an interrupt when the pipe is disabled.
  863. *
  864. * On Gen4 and above:
  865. * wait for the pipe register state bit to turn off
  866. *
  867. * Otherwise:
  868. * wait for the display line value to settle (it usually
  869. * ends up stopping at the start of the next frame).
  870. *
  871. */
  872. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  873. {
  874. struct drm_i915_private *dev_priv = dev->dev_private;
  875. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  876. pipe);
  877. if (INTEL_INFO(dev)->gen >= 4) {
  878. int reg = PIPECONF(cpu_transcoder);
  879. /* Wait for the Pipe State to go off */
  880. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  881. 100))
  882. WARN(1, "pipe_off wait timed out\n");
  883. } else {
  884. u32 last_line, line_mask;
  885. int reg = PIPEDSL(pipe);
  886. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  887. if (IS_GEN2(dev))
  888. line_mask = DSL_LINEMASK_GEN2;
  889. else
  890. line_mask = DSL_LINEMASK_GEN3;
  891. /* Wait for the display line to settle */
  892. do {
  893. last_line = I915_READ(reg) & line_mask;
  894. mdelay(5);
  895. } while (((I915_READ(reg) & line_mask) != last_line) &&
  896. time_after(timeout, jiffies));
  897. if (time_after(jiffies, timeout))
  898. WARN(1, "pipe_off wait timed out\n");
  899. }
  900. }
  901. static const char *state_string(bool enabled)
  902. {
  903. return enabled ? "on" : "off";
  904. }
  905. /* Only for pre-ILK configs */
  906. static void assert_pll(struct drm_i915_private *dev_priv,
  907. enum pipe pipe, bool state)
  908. {
  909. int reg;
  910. u32 val;
  911. bool cur_state;
  912. reg = DPLL(pipe);
  913. val = I915_READ(reg);
  914. cur_state = !!(val & DPLL_VCO_ENABLE);
  915. WARN(cur_state != state,
  916. "PLL state assertion failure (expected %s, current %s)\n",
  917. state_string(state), state_string(cur_state));
  918. }
  919. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  920. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  921. /* For ILK+ */
  922. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  923. struct intel_pch_pll *pll,
  924. struct intel_crtc *crtc,
  925. bool state)
  926. {
  927. u32 val;
  928. bool cur_state;
  929. if (HAS_PCH_LPT(dev_priv->dev)) {
  930. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  931. return;
  932. }
  933. if (WARN (!pll,
  934. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  935. return;
  936. val = I915_READ(pll->pll_reg);
  937. cur_state = !!(val & DPLL_VCO_ENABLE);
  938. WARN(cur_state != state,
  939. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  940. pll->pll_reg, state_string(state), state_string(cur_state), val);
  941. /* Make sure the selected PLL is correctly attached to the transcoder */
  942. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  943. u32 pch_dpll;
  944. pch_dpll = I915_READ(PCH_DPLL_SEL);
  945. cur_state = pll->pll_reg == _PCH_DPLL_B;
  946. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  947. "PLL[%d] not attached to this transcoder %d: %08x\n",
  948. cur_state, crtc->pipe, pch_dpll)) {
  949. cur_state = !!(val >> (4*crtc->pipe + 3));
  950. WARN(cur_state != state,
  951. "PLL[%d] not %s on this transcoder %d: %08x\n",
  952. pll->pll_reg == _PCH_DPLL_B,
  953. state_string(state),
  954. crtc->pipe,
  955. val);
  956. }
  957. }
  958. }
  959. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  960. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  961. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  962. enum pipe pipe, bool state)
  963. {
  964. int reg;
  965. u32 val;
  966. bool cur_state;
  967. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  968. pipe);
  969. if (HAS_DDI(dev_priv->dev)) {
  970. /* DDI does not have a specific FDI_TX register */
  971. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  972. val = I915_READ(reg);
  973. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  974. } else {
  975. reg = FDI_TX_CTL(pipe);
  976. val = I915_READ(reg);
  977. cur_state = !!(val & FDI_TX_ENABLE);
  978. }
  979. WARN(cur_state != state,
  980. "FDI TX state assertion failure (expected %s, current %s)\n",
  981. state_string(state), state_string(cur_state));
  982. }
  983. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  984. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  985. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  986. enum pipe pipe, bool state)
  987. {
  988. int reg;
  989. u32 val;
  990. bool cur_state;
  991. reg = FDI_RX_CTL(pipe);
  992. val = I915_READ(reg);
  993. cur_state = !!(val & FDI_RX_ENABLE);
  994. WARN(cur_state != state,
  995. "FDI RX state assertion failure (expected %s, current %s)\n",
  996. state_string(state), state_string(cur_state));
  997. }
  998. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  999. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1000. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1001. enum pipe pipe)
  1002. {
  1003. int reg;
  1004. u32 val;
  1005. /* ILK FDI PLL is always enabled */
  1006. if (dev_priv->info->gen == 5)
  1007. return;
  1008. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1009. if (HAS_DDI(dev_priv->dev))
  1010. return;
  1011. reg = FDI_TX_CTL(pipe);
  1012. val = I915_READ(reg);
  1013. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1014. }
  1015. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1016. enum pipe pipe)
  1017. {
  1018. int reg;
  1019. u32 val;
  1020. reg = FDI_RX_CTL(pipe);
  1021. val = I915_READ(reg);
  1022. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1023. }
  1024. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1025. enum pipe pipe)
  1026. {
  1027. int pp_reg, lvds_reg;
  1028. u32 val;
  1029. enum pipe panel_pipe = PIPE_A;
  1030. bool locked = true;
  1031. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1032. pp_reg = PCH_PP_CONTROL;
  1033. lvds_reg = PCH_LVDS;
  1034. } else {
  1035. pp_reg = PP_CONTROL;
  1036. lvds_reg = LVDS;
  1037. }
  1038. val = I915_READ(pp_reg);
  1039. if (!(val & PANEL_POWER_ON) ||
  1040. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1041. locked = false;
  1042. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1043. panel_pipe = PIPE_B;
  1044. WARN(panel_pipe == pipe && locked,
  1045. "panel assertion failure, pipe %c regs locked\n",
  1046. pipe_name(pipe));
  1047. }
  1048. void assert_pipe(struct drm_i915_private *dev_priv,
  1049. enum pipe pipe, bool state)
  1050. {
  1051. int reg;
  1052. u32 val;
  1053. bool cur_state;
  1054. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1055. pipe);
  1056. /* if we need the pipe A quirk it must be always on */
  1057. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1058. state = true;
  1059. reg = PIPECONF(cpu_transcoder);
  1060. val = I915_READ(reg);
  1061. cur_state = !!(val & PIPECONF_ENABLE);
  1062. WARN(cur_state != state,
  1063. "pipe %c assertion failure (expected %s, current %s)\n",
  1064. pipe_name(pipe), state_string(state), state_string(cur_state));
  1065. }
  1066. static void assert_plane(struct drm_i915_private *dev_priv,
  1067. enum plane plane, bool state)
  1068. {
  1069. int reg;
  1070. u32 val;
  1071. bool cur_state;
  1072. reg = DSPCNTR(plane);
  1073. val = I915_READ(reg);
  1074. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1075. WARN(cur_state != state,
  1076. "plane %c assertion failure (expected %s, current %s)\n",
  1077. plane_name(plane), state_string(state), state_string(cur_state));
  1078. }
  1079. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1080. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1081. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1082. enum pipe pipe)
  1083. {
  1084. int reg, i;
  1085. u32 val;
  1086. int cur_pipe;
  1087. /* Planes are fixed to pipes on ILK+ */
  1088. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1089. reg = DSPCNTR(pipe);
  1090. val = I915_READ(reg);
  1091. WARN((val & DISPLAY_PLANE_ENABLE),
  1092. "plane %c assertion failure, should be disabled but not\n",
  1093. plane_name(pipe));
  1094. return;
  1095. }
  1096. /* Need to check both planes against the pipe */
  1097. for (i = 0; i < 2; i++) {
  1098. reg = DSPCNTR(i);
  1099. val = I915_READ(reg);
  1100. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1101. DISPPLANE_SEL_PIPE_SHIFT;
  1102. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1103. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1104. plane_name(i), pipe_name(pipe));
  1105. }
  1106. }
  1107. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1108. {
  1109. u32 val;
  1110. bool enabled;
  1111. if (HAS_PCH_LPT(dev_priv->dev)) {
  1112. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1113. return;
  1114. }
  1115. val = I915_READ(PCH_DREF_CONTROL);
  1116. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1117. DREF_SUPERSPREAD_SOURCE_MASK));
  1118. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1119. }
  1120. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1121. enum pipe pipe)
  1122. {
  1123. int reg;
  1124. u32 val;
  1125. bool enabled;
  1126. reg = TRANSCONF(pipe);
  1127. val = I915_READ(reg);
  1128. enabled = !!(val & TRANS_ENABLE);
  1129. WARN(enabled,
  1130. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1131. pipe_name(pipe));
  1132. }
  1133. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1134. enum pipe pipe, u32 port_sel, u32 val)
  1135. {
  1136. if ((val & DP_PORT_EN) == 0)
  1137. return false;
  1138. if (HAS_PCH_CPT(dev_priv->dev)) {
  1139. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1140. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1141. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1142. return false;
  1143. } else {
  1144. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1145. return false;
  1146. }
  1147. return true;
  1148. }
  1149. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1150. enum pipe pipe, u32 val)
  1151. {
  1152. if ((val & PORT_ENABLE) == 0)
  1153. return false;
  1154. if (HAS_PCH_CPT(dev_priv->dev)) {
  1155. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1156. return false;
  1157. } else {
  1158. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1159. return false;
  1160. }
  1161. return true;
  1162. }
  1163. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1164. enum pipe pipe, u32 val)
  1165. {
  1166. if ((val & LVDS_PORT_EN) == 0)
  1167. return false;
  1168. if (HAS_PCH_CPT(dev_priv->dev)) {
  1169. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1170. return false;
  1171. } else {
  1172. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1173. return false;
  1174. }
  1175. return true;
  1176. }
  1177. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1178. enum pipe pipe, u32 val)
  1179. {
  1180. if ((val & ADPA_DAC_ENABLE) == 0)
  1181. return false;
  1182. if (HAS_PCH_CPT(dev_priv->dev)) {
  1183. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1184. return false;
  1185. } else {
  1186. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1187. return false;
  1188. }
  1189. return true;
  1190. }
  1191. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1192. enum pipe pipe, int reg, u32 port_sel)
  1193. {
  1194. u32 val = I915_READ(reg);
  1195. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1196. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1197. reg, pipe_name(pipe));
  1198. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1199. && (val & DP_PIPEB_SELECT),
  1200. "IBX PCH dp port still using transcoder B\n");
  1201. }
  1202. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1203. enum pipe pipe, int reg)
  1204. {
  1205. u32 val = I915_READ(reg);
  1206. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1207. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1208. reg, pipe_name(pipe));
  1209. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
  1210. && (val & SDVO_PIPE_B_SELECT),
  1211. "IBX PCH hdmi port still using transcoder B\n");
  1212. }
  1213. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1214. enum pipe pipe)
  1215. {
  1216. int reg;
  1217. u32 val;
  1218. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1219. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1220. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1221. reg = PCH_ADPA;
  1222. val = I915_READ(reg);
  1223. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1224. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1225. pipe_name(pipe));
  1226. reg = PCH_LVDS;
  1227. val = I915_READ(reg);
  1228. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1229. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1230. pipe_name(pipe));
  1231. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1232. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1233. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1234. }
  1235. /**
  1236. * intel_enable_pll - enable a PLL
  1237. * @dev_priv: i915 private structure
  1238. * @pipe: pipe PLL to enable
  1239. *
  1240. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1241. * make sure the PLL reg is writable first though, since the panel write
  1242. * protect mechanism may be enabled.
  1243. *
  1244. * Note! This is for pre-ILK only.
  1245. *
  1246. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1247. */
  1248. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1249. {
  1250. int reg;
  1251. u32 val;
  1252. /* No really, not for ILK+ */
  1253. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1254. /* PLL is protected by panel, make sure we can write it */
  1255. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1256. assert_panel_unlocked(dev_priv, pipe);
  1257. reg = DPLL(pipe);
  1258. val = I915_READ(reg);
  1259. val |= DPLL_VCO_ENABLE;
  1260. /* We do this three times for luck */
  1261. I915_WRITE(reg, val);
  1262. POSTING_READ(reg);
  1263. udelay(150); /* wait for warmup */
  1264. I915_WRITE(reg, val);
  1265. POSTING_READ(reg);
  1266. udelay(150); /* wait for warmup */
  1267. I915_WRITE(reg, val);
  1268. POSTING_READ(reg);
  1269. udelay(150); /* wait for warmup */
  1270. }
  1271. /**
  1272. * intel_disable_pll - disable a PLL
  1273. * @dev_priv: i915 private structure
  1274. * @pipe: pipe PLL to disable
  1275. *
  1276. * Disable the PLL for @pipe, making sure the pipe is off first.
  1277. *
  1278. * Note! This is for pre-ILK only.
  1279. */
  1280. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1281. {
  1282. int reg;
  1283. u32 val;
  1284. /* Don't disable pipe A or pipe A PLLs if needed */
  1285. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1286. return;
  1287. /* Make sure the pipe isn't still relying on us */
  1288. assert_pipe_disabled(dev_priv, pipe);
  1289. reg = DPLL(pipe);
  1290. val = I915_READ(reg);
  1291. val &= ~DPLL_VCO_ENABLE;
  1292. I915_WRITE(reg, val);
  1293. POSTING_READ(reg);
  1294. }
  1295. /* SBI access */
  1296. static void
  1297. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
  1298. {
  1299. unsigned long flags;
  1300. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1301. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1302. 100)) {
  1303. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1304. goto out_unlock;
  1305. }
  1306. I915_WRITE(SBI_ADDR,
  1307. (reg << 16));
  1308. I915_WRITE(SBI_DATA,
  1309. value);
  1310. I915_WRITE(SBI_CTL_STAT,
  1311. SBI_BUSY |
  1312. SBI_CTL_OP_CRWR);
  1313. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1314. 100)) {
  1315. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1316. goto out_unlock;
  1317. }
  1318. out_unlock:
  1319. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1320. }
  1321. static u32
  1322. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
  1323. {
  1324. unsigned long flags;
  1325. u32 value = 0;
  1326. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1327. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1328. 100)) {
  1329. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1330. goto out_unlock;
  1331. }
  1332. I915_WRITE(SBI_ADDR,
  1333. (reg << 16));
  1334. I915_WRITE(SBI_CTL_STAT,
  1335. SBI_BUSY |
  1336. SBI_CTL_OP_CRRD);
  1337. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1338. 100)) {
  1339. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1340. goto out_unlock;
  1341. }
  1342. value = I915_READ(SBI_DATA);
  1343. out_unlock:
  1344. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1345. return value;
  1346. }
  1347. /**
  1348. * ironlake_enable_pch_pll - enable PCH PLL
  1349. * @dev_priv: i915 private structure
  1350. * @pipe: pipe PLL to enable
  1351. *
  1352. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1353. * drives the transcoder clock.
  1354. */
  1355. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1356. {
  1357. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1358. struct intel_pch_pll *pll;
  1359. int reg;
  1360. u32 val;
  1361. /* PCH PLLs only available on ILK, SNB and IVB */
  1362. BUG_ON(dev_priv->info->gen < 5);
  1363. pll = intel_crtc->pch_pll;
  1364. if (pll == NULL)
  1365. return;
  1366. if (WARN_ON(pll->refcount == 0))
  1367. return;
  1368. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1369. pll->pll_reg, pll->active, pll->on,
  1370. intel_crtc->base.base.id);
  1371. /* PCH refclock must be enabled first */
  1372. assert_pch_refclk_enabled(dev_priv);
  1373. if (pll->active++ && pll->on) {
  1374. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1375. return;
  1376. }
  1377. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1378. reg = pll->pll_reg;
  1379. val = I915_READ(reg);
  1380. val |= DPLL_VCO_ENABLE;
  1381. I915_WRITE(reg, val);
  1382. POSTING_READ(reg);
  1383. udelay(200);
  1384. pll->on = true;
  1385. }
  1386. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1387. {
  1388. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1389. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1390. int reg;
  1391. u32 val;
  1392. /* PCH only available on ILK+ */
  1393. BUG_ON(dev_priv->info->gen < 5);
  1394. if (pll == NULL)
  1395. return;
  1396. if (WARN_ON(pll->refcount == 0))
  1397. return;
  1398. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1399. pll->pll_reg, pll->active, pll->on,
  1400. intel_crtc->base.base.id);
  1401. if (WARN_ON(pll->active == 0)) {
  1402. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1403. return;
  1404. }
  1405. if (--pll->active) {
  1406. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1407. return;
  1408. }
  1409. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1410. /* Make sure transcoder isn't still depending on us */
  1411. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1412. reg = pll->pll_reg;
  1413. val = I915_READ(reg);
  1414. val &= ~DPLL_VCO_ENABLE;
  1415. I915_WRITE(reg, val);
  1416. POSTING_READ(reg);
  1417. udelay(200);
  1418. pll->on = false;
  1419. }
  1420. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1421. enum pipe pipe)
  1422. {
  1423. struct drm_device *dev = dev_priv->dev;
  1424. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1425. uint32_t reg, val, pipeconf_val;
  1426. /* PCH only available on ILK+ */
  1427. BUG_ON(dev_priv->info->gen < 5);
  1428. /* Make sure PCH DPLL is enabled */
  1429. assert_pch_pll_enabled(dev_priv,
  1430. to_intel_crtc(crtc)->pch_pll,
  1431. to_intel_crtc(crtc));
  1432. /* FDI must be feeding us bits for PCH ports */
  1433. assert_fdi_tx_enabled(dev_priv, pipe);
  1434. assert_fdi_rx_enabled(dev_priv, pipe);
  1435. if (HAS_PCH_CPT(dev)) {
  1436. /* Workaround: Set the timing override bit before enabling the
  1437. * pch transcoder. */
  1438. reg = TRANS_CHICKEN2(pipe);
  1439. val = I915_READ(reg);
  1440. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1441. I915_WRITE(reg, val);
  1442. }
  1443. reg = TRANSCONF(pipe);
  1444. val = I915_READ(reg);
  1445. pipeconf_val = I915_READ(PIPECONF(pipe));
  1446. if (HAS_PCH_IBX(dev_priv->dev)) {
  1447. /*
  1448. * make the BPC in transcoder be consistent with
  1449. * that in pipeconf reg.
  1450. */
  1451. val &= ~PIPE_BPC_MASK;
  1452. val |= pipeconf_val & PIPE_BPC_MASK;
  1453. }
  1454. val &= ~TRANS_INTERLACE_MASK;
  1455. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1456. if (HAS_PCH_IBX(dev_priv->dev) &&
  1457. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1458. val |= TRANS_LEGACY_INTERLACED_ILK;
  1459. else
  1460. val |= TRANS_INTERLACED;
  1461. else
  1462. val |= TRANS_PROGRESSIVE;
  1463. I915_WRITE(reg, val | TRANS_ENABLE);
  1464. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1465. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1466. }
  1467. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1468. enum transcoder cpu_transcoder)
  1469. {
  1470. u32 val, pipeconf_val;
  1471. /* PCH only available on ILK+ */
  1472. BUG_ON(dev_priv->info->gen < 5);
  1473. /* FDI must be feeding us bits for PCH ports */
  1474. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1475. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1476. /* Workaround: set timing override bit. */
  1477. val = I915_READ(_TRANSA_CHICKEN2);
  1478. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1479. I915_WRITE(_TRANSA_CHICKEN2, val);
  1480. val = TRANS_ENABLE;
  1481. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1482. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1483. PIPECONF_INTERLACED_ILK)
  1484. val |= TRANS_INTERLACED;
  1485. else
  1486. val |= TRANS_PROGRESSIVE;
  1487. I915_WRITE(TRANSCONF(TRANSCODER_A), val);
  1488. if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
  1489. DRM_ERROR("Failed to enable PCH transcoder\n");
  1490. }
  1491. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1492. enum pipe pipe)
  1493. {
  1494. struct drm_device *dev = dev_priv->dev;
  1495. uint32_t reg, val;
  1496. /* FDI relies on the transcoder */
  1497. assert_fdi_tx_disabled(dev_priv, pipe);
  1498. assert_fdi_rx_disabled(dev_priv, pipe);
  1499. /* Ports must be off as well */
  1500. assert_pch_ports_disabled(dev_priv, pipe);
  1501. reg = TRANSCONF(pipe);
  1502. val = I915_READ(reg);
  1503. val &= ~TRANS_ENABLE;
  1504. I915_WRITE(reg, val);
  1505. /* wait for PCH transcoder off, transcoder state */
  1506. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1507. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1508. if (!HAS_PCH_IBX(dev)) {
  1509. /* Workaround: Clear the timing override chicken bit again. */
  1510. reg = TRANS_CHICKEN2(pipe);
  1511. val = I915_READ(reg);
  1512. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1513. I915_WRITE(reg, val);
  1514. }
  1515. }
  1516. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1517. {
  1518. u32 val;
  1519. val = I915_READ(_TRANSACONF);
  1520. val &= ~TRANS_ENABLE;
  1521. I915_WRITE(_TRANSACONF, val);
  1522. /* wait for PCH transcoder off, transcoder state */
  1523. if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
  1524. DRM_ERROR("Failed to disable PCH transcoder\n");
  1525. /* Workaround: clear timing override bit. */
  1526. val = I915_READ(_TRANSA_CHICKEN2);
  1527. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1528. I915_WRITE(_TRANSA_CHICKEN2, val);
  1529. }
  1530. /**
  1531. * intel_enable_pipe - enable a pipe, asserting requirements
  1532. * @dev_priv: i915 private structure
  1533. * @pipe: pipe to enable
  1534. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1535. *
  1536. * Enable @pipe, making sure that various hardware specific requirements
  1537. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1538. *
  1539. * @pipe should be %PIPE_A or %PIPE_B.
  1540. *
  1541. * Will wait until the pipe is actually running (i.e. first vblank) before
  1542. * returning.
  1543. */
  1544. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1545. bool pch_port)
  1546. {
  1547. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1548. pipe);
  1549. enum pipe pch_transcoder;
  1550. int reg;
  1551. u32 val;
  1552. if (IS_HASWELL(dev_priv->dev))
  1553. pch_transcoder = TRANSCODER_A;
  1554. else
  1555. pch_transcoder = pipe;
  1556. /*
  1557. * A pipe without a PLL won't actually be able to drive bits from
  1558. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1559. * need the check.
  1560. */
  1561. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1562. assert_pll_enabled(dev_priv, pipe);
  1563. else {
  1564. if (pch_port) {
  1565. /* if driving the PCH, we need FDI enabled */
  1566. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1567. assert_fdi_tx_pll_enabled(dev_priv,
  1568. (enum pipe) cpu_transcoder);
  1569. }
  1570. /* FIXME: assert CPU port conditions for SNB+ */
  1571. }
  1572. reg = PIPECONF(cpu_transcoder);
  1573. val = I915_READ(reg);
  1574. if (val & PIPECONF_ENABLE)
  1575. return;
  1576. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1577. intel_wait_for_vblank(dev_priv->dev, pipe);
  1578. }
  1579. /**
  1580. * intel_disable_pipe - disable a pipe, asserting requirements
  1581. * @dev_priv: i915 private structure
  1582. * @pipe: pipe to disable
  1583. *
  1584. * Disable @pipe, making sure that various hardware specific requirements
  1585. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1586. *
  1587. * @pipe should be %PIPE_A or %PIPE_B.
  1588. *
  1589. * Will wait until the pipe has shut down before returning.
  1590. */
  1591. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1592. enum pipe pipe)
  1593. {
  1594. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1595. pipe);
  1596. int reg;
  1597. u32 val;
  1598. /*
  1599. * Make sure planes won't keep trying to pump pixels to us,
  1600. * or we might hang the display.
  1601. */
  1602. assert_planes_disabled(dev_priv, pipe);
  1603. /* Don't disable pipe A or pipe A PLLs if needed */
  1604. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1605. return;
  1606. reg = PIPECONF(cpu_transcoder);
  1607. val = I915_READ(reg);
  1608. if ((val & PIPECONF_ENABLE) == 0)
  1609. return;
  1610. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1611. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1612. }
  1613. /*
  1614. * Plane regs are double buffered, going from enabled->disabled needs a
  1615. * trigger in order to latch. The display address reg provides this.
  1616. */
  1617. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1618. enum plane plane)
  1619. {
  1620. if (dev_priv->info->gen >= 4)
  1621. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1622. else
  1623. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1624. }
  1625. /**
  1626. * intel_enable_plane - enable a display plane on a given pipe
  1627. * @dev_priv: i915 private structure
  1628. * @plane: plane to enable
  1629. * @pipe: pipe being fed
  1630. *
  1631. * Enable @plane on @pipe, making sure that @pipe is running first.
  1632. */
  1633. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1634. enum plane plane, enum pipe pipe)
  1635. {
  1636. int reg;
  1637. u32 val;
  1638. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1639. assert_pipe_enabled(dev_priv, pipe);
  1640. reg = DSPCNTR(plane);
  1641. val = I915_READ(reg);
  1642. if (val & DISPLAY_PLANE_ENABLE)
  1643. return;
  1644. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1645. intel_flush_display_plane(dev_priv, plane);
  1646. intel_wait_for_vblank(dev_priv->dev, pipe);
  1647. }
  1648. /**
  1649. * intel_disable_plane - disable a display plane
  1650. * @dev_priv: i915 private structure
  1651. * @plane: plane to disable
  1652. * @pipe: pipe consuming the data
  1653. *
  1654. * Disable @plane; should be an independent operation.
  1655. */
  1656. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1657. enum plane plane, enum pipe pipe)
  1658. {
  1659. int reg;
  1660. u32 val;
  1661. reg = DSPCNTR(plane);
  1662. val = I915_READ(reg);
  1663. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1664. return;
  1665. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1666. intel_flush_display_plane(dev_priv, plane);
  1667. intel_wait_for_vblank(dev_priv->dev, pipe);
  1668. }
  1669. int
  1670. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1671. struct drm_i915_gem_object *obj,
  1672. struct intel_ring_buffer *pipelined)
  1673. {
  1674. struct drm_i915_private *dev_priv = dev->dev_private;
  1675. u32 alignment;
  1676. int ret;
  1677. switch (obj->tiling_mode) {
  1678. case I915_TILING_NONE:
  1679. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1680. alignment = 128 * 1024;
  1681. else if (INTEL_INFO(dev)->gen >= 4)
  1682. alignment = 4 * 1024;
  1683. else
  1684. alignment = 64 * 1024;
  1685. break;
  1686. case I915_TILING_X:
  1687. /* pin() will align the object as required by fence */
  1688. alignment = 0;
  1689. break;
  1690. case I915_TILING_Y:
  1691. /* FIXME: Is this true? */
  1692. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1693. return -EINVAL;
  1694. default:
  1695. BUG();
  1696. }
  1697. dev_priv->mm.interruptible = false;
  1698. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1699. if (ret)
  1700. goto err_interruptible;
  1701. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1702. * fence, whereas 965+ only requires a fence if using
  1703. * framebuffer compression. For simplicity, we always install
  1704. * a fence as the cost is not that onerous.
  1705. */
  1706. ret = i915_gem_object_get_fence(obj);
  1707. if (ret)
  1708. goto err_unpin;
  1709. i915_gem_object_pin_fence(obj);
  1710. dev_priv->mm.interruptible = true;
  1711. return 0;
  1712. err_unpin:
  1713. i915_gem_object_unpin(obj);
  1714. err_interruptible:
  1715. dev_priv->mm.interruptible = true;
  1716. return ret;
  1717. }
  1718. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1719. {
  1720. i915_gem_object_unpin_fence(obj);
  1721. i915_gem_object_unpin(obj);
  1722. }
  1723. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1724. * is assumed to be a power-of-two. */
  1725. unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
  1726. unsigned int bpp,
  1727. unsigned int pitch)
  1728. {
  1729. int tile_rows, tiles;
  1730. tile_rows = *y / 8;
  1731. *y %= 8;
  1732. tiles = *x / (512/bpp);
  1733. *x %= 512/bpp;
  1734. return tile_rows * pitch * 8 + tiles * 4096;
  1735. }
  1736. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1737. int x, int y)
  1738. {
  1739. struct drm_device *dev = crtc->dev;
  1740. struct drm_i915_private *dev_priv = dev->dev_private;
  1741. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1742. struct intel_framebuffer *intel_fb;
  1743. struct drm_i915_gem_object *obj;
  1744. int plane = intel_crtc->plane;
  1745. unsigned long linear_offset;
  1746. u32 dspcntr;
  1747. u32 reg;
  1748. switch (plane) {
  1749. case 0:
  1750. case 1:
  1751. break;
  1752. default:
  1753. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1754. return -EINVAL;
  1755. }
  1756. intel_fb = to_intel_framebuffer(fb);
  1757. obj = intel_fb->obj;
  1758. reg = DSPCNTR(plane);
  1759. dspcntr = I915_READ(reg);
  1760. /* Mask out pixel format bits in case we change it */
  1761. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1762. switch (fb->pixel_format) {
  1763. case DRM_FORMAT_C8:
  1764. dspcntr |= DISPPLANE_8BPP;
  1765. break;
  1766. case DRM_FORMAT_XRGB1555:
  1767. case DRM_FORMAT_ARGB1555:
  1768. dspcntr |= DISPPLANE_BGRX555;
  1769. break;
  1770. case DRM_FORMAT_RGB565:
  1771. dspcntr |= DISPPLANE_BGRX565;
  1772. break;
  1773. case DRM_FORMAT_XRGB8888:
  1774. case DRM_FORMAT_ARGB8888:
  1775. dspcntr |= DISPPLANE_BGRX888;
  1776. break;
  1777. case DRM_FORMAT_XBGR8888:
  1778. case DRM_FORMAT_ABGR8888:
  1779. dspcntr |= DISPPLANE_RGBX888;
  1780. break;
  1781. case DRM_FORMAT_XRGB2101010:
  1782. case DRM_FORMAT_ARGB2101010:
  1783. dspcntr |= DISPPLANE_BGRX101010;
  1784. break;
  1785. case DRM_FORMAT_XBGR2101010:
  1786. case DRM_FORMAT_ABGR2101010:
  1787. dspcntr |= DISPPLANE_RGBX101010;
  1788. break;
  1789. default:
  1790. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1791. return -EINVAL;
  1792. }
  1793. if (INTEL_INFO(dev)->gen >= 4) {
  1794. if (obj->tiling_mode != I915_TILING_NONE)
  1795. dspcntr |= DISPPLANE_TILED;
  1796. else
  1797. dspcntr &= ~DISPPLANE_TILED;
  1798. }
  1799. I915_WRITE(reg, dspcntr);
  1800. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1801. if (INTEL_INFO(dev)->gen >= 4) {
  1802. intel_crtc->dspaddr_offset =
  1803. intel_gen4_compute_offset_xtiled(&x, &y,
  1804. fb->bits_per_pixel / 8,
  1805. fb->pitches[0]);
  1806. linear_offset -= intel_crtc->dspaddr_offset;
  1807. } else {
  1808. intel_crtc->dspaddr_offset = linear_offset;
  1809. }
  1810. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1811. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1812. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1813. if (INTEL_INFO(dev)->gen >= 4) {
  1814. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1815. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1816. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1817. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1818. } else
  1819. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1820. POSTING_READ(reg);
  1821. return 0;
  1822. }
  1823. static int ironlake_update_plane(struct drm_crtc *crtc,
  1824. struct drm_framebuffer *fb, int x, int y)
  1825. {
  1826. struct drm_device *dev = crtc->dev;
  1827. struct drm_i915_private *dev_priv = dev->dev_private;
  1828. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1829. struct intel_framebuffer *intel_fb;
  1830. struct drm_i915_gem_object *obj;
  1831. int plane = intel_crtc->plane;
  1832. unsigned long linear_offset;
  1833. u32 dspcntr;
  1834. u32 reg;
  1835. switch (plane) {
  1836. case 0:
  1837. case 1:
  1838. case 2:
  1839. break;
  1840. default:
  1841. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1842. return -EINVAL;
  1843. }
  1844. intel_fb = to_intel_framebuffer(fb);
  1845. obj = intel_fb->obj;
  1846. reg = DSPCNTR(plane);
  1847. dspcntr = I915_READ(reg);
  1848. /* Mask out pixel format bits in case we change it */
  1849. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1850. switch (fb->pixel_format) {
  1851. case DRM_FORMAT_C8:
  1852. dspcntr |= DISPPLANE_8BPP;
  1853. break;
  1854. case DRM_FORMAT_RGB565:
  1855. dspcntr |= DISPPLANE_BGRX565;
  1856. break;
  1857. case DRM_FORMAT_XRGB8888:
  1858. case DRM_FORMAT_ARGB8888:
  1859. dspcntr |= DISPPLANE_BGRX888;
  1860. break;
  1861. case DRM_FORMAT_XBGR8888:
  1862. case DRM_FORMAT_ABGR8888:
  1863. dspcntr |= DISPPLANE_RGBX888;
  1864. break;
  1865. case DRM_FORMAT_XRGB2101010:
  1866. case DRM_FORMAT_ARGB2101010:
  1867. dspcntr |= DISPPLANE_BGRX101010;
  1868. break;
  1869. case DRM_FORMAT_XBGR2101010:
  1870. case DRM_FORMAT_ABGR2101010:
  1871. dspcntr |= DISPPLANE_RGBX101010;
  1872. break;
  1873. default:
  1874. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1875. return -EINVAL;
  1876. }
  1877. if (obj->tiling_mode != I915_TILING_NONE)
  1878. dspcntr |= DISPPLANE_TILED;
  1879. else
  1880. dspcntr &= ~DISPPLANE_TILED;
  1881. /* must disable */
  1882. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1883. I915_WRITE(reg, dspcntr);
  1884. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1885. intel_crtc->dspaddr_offset =
  1886. intel_gen4_compute_offset_xtiled(&x, &y,
  1887. fb->bits_per_pixel / 8,
  1888. fb->pitches[0]);
  1889. linear_offset -= intel_crtc->dspaddr_offset;
  1890. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1891. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1892. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1893. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1894. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1895. if (IS_HASWELL(dev)) {
  1896. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1897. } else {
  1898. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1899. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1900. }
  1901. POSTING_READ(reg);
  1902. return 0;
  1903. }
  1904. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1905. static int
  1906. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1907. int x, int y, enum mode_set_atomic state)
  1908. {
  1909. struct drm_device *dev = crtc->dev;
  1910. struct drm_i915_private *dev_priv = dev->dev_private;
  1911. if (dev_priv->display.disable_fbc)
  1912. dev_priv->display.disable_fbc(dev);
  1913. intel_increase_pllclock(crtc);
  1914. return dev_priv->display.update_plane(crtc, fb, x, y);
  1915. }
  1916. static int
  1917. intel_finish_fb(struct drm_framebuffer *old_fb)
  1918. {
  1919. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1920. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1921. bool was_interruptible = dev_priv->mm.interruptible;
  1922. int ret;
  1923. wait_event(dev_priv->pending_flip_queue,
  1924. atomic_read(&dev_priv->mm.wedged) ||
  1925. atomic_read(&obj->pending_flip) == 0);
  1926. /* Big Hammer, we also need to ensure that any pending
  1927. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1928. * current scanout is retired before unpinning the old
  1929. * framebuffer.
  1930. *
  1931. * This should only fail upon a hung GPU, in which case we
  1932. * can safely continue.
  1933. */
  1934. dev_priv->mm.interruptible = false;
  1935. ret = i915_gem_object_finish_gpu(obj);
  1936. dev_priv->mm.interruptible = was_interruptible;
  1937. return ret;
  1938. }
  1939. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1940. {
  1941. struct drm_device *dev = crtc->dev;
  1942. struct drm_i915_master_private *master_priv;
  1943. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1944. if (!dev->primary->master)
  1945. return;
  1946. master_priv = dev->primary->master->driver_priv;
  1947. if (!master_priv->sarea_priv)
  1948. return;
  1949. switch (intel_crtc->pipe) {
  1950. case 0:
  1951. master_priv->sarea_priv->pipeA_x = x;
  1952. master_priv->sarea_priv->pipeA_y = y;
  1953. break;
  1954. case 1:
  1955. master_priv->sarea_priv->pipeB_x = x;
  1956. master_priv->sarea_priv->pipeB_y = y;
  1957. break;
  1958. default:
  1959. break;
  1960. }
  1961. }
  1962. static int
  1963. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1964. struct drm_framebuffer *fb)
  1965. {
  1966. struct drm_device *dev = crtc->dev;
  1967. struct drm_i915_private *dev_priv = dev->dev_private;
  1968. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1969. struct drm_framebuffer *old_fb;
  1970. int ret;
  1971. /* no fb bound */
  1972. if (!fb) {
  1973. DRM_ERROR("No FB bound\n");
  1974. return 0;
  1975. }
  1976. if(intel_crtc->plane > dev_priv->num_pipe) {
  1977. DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
  1978. intel_crtc->plane,
  1979. dev_priv->num_pipe);
  1980. return -EINVAL;
  1981. }
  1982. mutex_lock(&dev->struct_mutex);
  1983. ret = intel_pin_and_fence_fb_obj(dev,
  1984. to_intel_framebuffer(fb)->obj,
  1985. NULL);
  1986. if (ret != 0) {
  1987. mutex_unlock(&dev->struct_mutex);
  1988. DRM_ERROR("pin & fence failed\n");
  1989. return ret;
  1990. }
  1991. if (crtc->fb)
  1992. intel_finish_fb(crtc->fb);
  1993. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1994. if (ret) {
  1995. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1996. mutex_unlock(&dev->struct_mutex);
  1997. DRM_ERROR("failed to update base address\n");
  1998. return ret;
  1999. }
  2000. old_fb = crtc->fb;
  2001. crtc->fb = fb;
  2002. crtc->x = x;
  2003. crtc->y = y;
  2004. if (old_fb) {
  2005. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2006. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2007. }
  2008. intel_update_fbc(dev);
  2009. mutex_unlock(&dev->struct_mutex);
  2010. intel_crtc_update_sarea_pos(crtc, x, y);
  2011. return 0;
  2012. }
  2013. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2014. {
  2015. struct drm_device *dev = crtc->dev;
  2016. struct drm_i915_private *dev_priv = dev->dev_private;
  2017. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2018. int pipe = intel_crtc->pipe;
  2019. u32 reg, temp;
  2020. /* enable normal train */
  2021. reg = FDI_TX_CTL(pipe);
  2022. temp = I915_READ(reg);
  2023. if (IS_IVYBRIDGE(dev)) {
  2024. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2025. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2026. } else {
  2027. temp &= ~FDI_LINK_TRAIN_NONE;
  2028. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2029. }
  2030. I915_WRITE(reg, temp);
  2031. reg = FDI_RX_CTL(pipe);
  2032. temp = I915_READ(reg);
  2033. if (HAS_PCH_CPT(dev)) {
  2034. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2035. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2036. } else {
  2037. temp &= ~FDI_LINK_TRAIN_NONE;
  2038. temp |= FDI_LINK_TRAIN_NONE;
  2039. }
  2040. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2041. /* wait one idle pattern time */
  2042. POSTING_READ(reg);
  2043. udelay(1000);
  2044. /* IVB wants error correction enabled */
  2045. if (IS_IVYBRIDGE(dev))
  2046. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2047. FDI_FE_ERRC_ENABLE);
  2048. }
  2049. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2050. {
  2051. struct drm_i915_private *dev_priv = dev->dev_private;
  2052. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2053. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2054. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2055. flags |= FDI_PHASE_SYNC_EN(pipe);
  2056. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2057. POSTING_READ(SOUTH_CHICKEN1);
  2058. }
  2059. static void ivb_modeset_global_resources(struct drm_device *dev)
  2060. {
  2061. struct drm_i915_private *dev_priv = dev->dev_private;
  2062. struct intel_crtc *pipe_B_crtc =
  2063. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2064. struct intel_crtc *pipe_C_crtc =
  2065. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2066. uint32_t temp;
  2067. /* When everything is off disable fdi C so that we could enable fdi B
  2068. * with all lanes. XXX: This misses the case where a pipe is not using
  2069. * any pch resources and so doesn't need any fdi lanes. */
  2070. if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
  2071. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2072. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2073. temp = I915_READ(SOUTH_CHICKEN1);
  2074. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2075. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2076. I915_WRITE(SOUTH_CHICKEN1, temp);
  2077. }
  2078. }
  2079. /* The FDI link training functions for ILK/Ibexpeak. */
  2080. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2081. {
  2082. struct drm_device *dev = crtc->dev;
  2083. struct drm_i915_private *dev_priv = dev->dev_private;
  2084. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2085. int pipe = intel_crtc->pipe;
  2086. int plane = intel_crtc->plane;
  2087. u32 reg, temp, tries;
  2088. /* FDI needs bits from pipe & plane first */
  2089. assert_pipe_enabled(dev_priv, pipe);
  2090. assert_plane_enabled(dev_priv, plane);
  2091. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2092. for train result */
  2093. reg = FDI_RX_IMR(pipe);
  2094. temp = I915_READ(reg);
  2095. temp &= ~FDI_RX_SYMBOL_LOCK;
  2096. temp &= ~FDI_RX_BIT_LOCK;
  2097. I915_WRITE(reg, temp);
  2098. I915_READ(reg);
  2099. udelay(150);
  2100. /* enable CPU FDI TX and PCH FDI RX */
  2101. reg = FDI_TX_CTL(pipe);
  2102. temp = I915_READ(reg);
  2103. temp &= ~(7 << 19);
  2104. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2105. temp &= ~FDI_LINK_TRAIN_NONE;
  2106. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2107. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2108. reg = FDI_RX_CTL(pipe);
  2109. temp = I915_READ(reg);
  2110. temp &= ~FDI_LINK_TRAIN_NONE;
  2111. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2112. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2113. POSTING_READ(reg);
  2114. udelay(150);
  2115. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2116. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2117. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2118. FDI_RX_PHASE_SYNC_POINTER_EN);
  2119. reg = FDI_RX_IIR(pipe);
  2120. for (tries = 0; tries < 5; tries++) {
  2121. temp = I915_READ(reg);
  2122. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2123. if ((temp & FDI_RX_BIT_LOCK)) {
  2124. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2125. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2126. break;
  2127. }
  2128. }
  2129. if (tries == 5)
  2130. DRM_ERROR("FDI train 1 fail!\n");
  2131. /* Train 2 */
  2132. reg = FDI_TX_CTL(pipe);
  2133. temp = I915_READ(reg);
  2134. temp &= ~FDI_LINK_TRAIN_NONE;
  2135. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2136. I915_WRITE(reg, temp);
  2137. reg = FDI_RX_CTL(pipe);
  2138. temp = I915_READ(reg);
  2139. temp &= ~FDI_LINK_TRAIN_NONE;
  2140. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2141. I915_WRITE(reg, temp);
  2142. POSTING_READ(reg);
  2143. udelay(150);
  2144. reg = FDI_RX_IIR(pipe);
  2145. for (tries = 0; tries < 5; tries++) {
  2146. temp = I915_READ(reg);
  2147. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2148. if (temp & FDI_RX_SYMBOL_LOCK) {
  2149. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2150. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2151. break;
  2152. }
  2153. }
  2154. if (tries == 5)
  2155. DRM_ERROR("FDI train 2 fail!\n");
  2156. DRM_DEBUG_KMS("FDI train done\n");
  2157. }
  2158. static const int snb_b_fdi_train_param[] = {
  2159. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2160. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2161. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2162. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2163. };
  2164. /* The FDI link training functions for SNB/Cougarpoint. */
  2165. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2166. {
  2167. struct drm_device *dev = crtc->dev;
  2168. struct drm_i915_private *dev_priv = dev->dev_private;
  2169. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2170. int pipe = intel_crtc->pipe;
  2171. u32 reg, temp, i, retry;
  2172. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2173. for train result */
  2174. reg = FDI_RX_IMR(pipe);
  2175. temp = I915_READ(reg);
  2176. temp &= ~FDI_RX_SYMBOL_LOCK;
  2177. temp &= ~FDI_RX_BIT_LOCK;
  2178. I915_WRITE(reg, temp);
  2179. POSTING_READ(reg);
  2180. udelay(150);
  2181. /* enable CPU FDI TX and PCH FDI RX */
  2182. reg = FDI_TX_CTL(pipe);
  2183. temp = I915_READ(reg);
  2184. temp &= ~(7 << 19);
  2185. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2186. temp &= ~FDI_LINK_TRAIN_NONE;
  2187. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2188. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2189. /* SNB-B */
  2190. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2191. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2192. I915_WRITE(FDI_RX_MISC(pipe),
  2193. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2194. reg = FDI_RX_CTL(pipe);
  2195. temp = I915_READ(reg);
  2196. if (HAS_PCH_CPT(dev)) {
  2197. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2198. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2199. } else {
  2200. temp &= ~FDI_LINK_TRAIN_NONE;
  2201. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2202. }
  2203. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2204. POSTING_READ(reg);
  2205. udelay(150);
  2206. cpt_phase_pointer_enable(dev, pipe);
  2207. for (i = 0; i < 4; i++) {
  2208. reg = FDI_TX_CTL(pipe);
  2209. temp = I915_READ(reg);
  2210. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2211. temp |= snb_b_fdi_train_param[i];
  2212. I915_WRITE(reg, temp);
  2213. POSTING_READ(reg);
  2214. udelay(500);
  2215. for (retry = 0; retry < 5; retry++) {
  2216. reg = FDI_RX_IIR(pipe);
  2217. temp = I915_READ(reg);
  2218. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2219. if (temp & FDI_RX_BIT_LOCK) {
  2220. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2221. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2222. break;
  2223. }
  2224. udelay(50);
  2225. }
  2226. if (retry < 5)
  2227. break;
  2228. }
  2229. if (i == 4)
  2230. DRM_ERROR("FDI train 1 fail!\n");
  2231. /* Train 2 */
  2232. reg = FDI_TX_CTL(pipe);
  2233. temp = I915_READ(reg);
  2234. temp &= ~FDI_LINK_TRAIN_NONE;
  2235. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2236. if (IS_GEN6(dev)) {
  2237. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2238. /* SNB-B */
  2239. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2240. }
  2241. I915_WRITE(reg, temp);
  2242. reg = FDI_RX_CTL(pipe);
  2243. temp = I915_READ(reg);
  2244. if (HAS_PCH_CPT(dev)) {
  2245. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2246. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2247. } else {
  2248. temp &= ~FDI_LINK_TRAIN_NONE;
  2249. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2250. }
  2251. I915_WRITE(reg, temp);
  2252. POSTING_READ(reg);
  2253. udelay(150);
  2254. for (i = 0; i < 4; i++) {
  2255. reg = FDI_TX_CTL(pipe);
  2256. temp = I915_READ(reg);
  2257. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2258. temp |= snb_b_fdi_train_param[i];
  2259. I915_WRITE(reg, temp);
  2260. POSTING_READ(reg);
  2261. udelay(500);
  2262. for (retry = 0; retry < 5; retry++) {
  2263. reg = FDI_RX_IIR(pipe);
  2264. temp = I915_READ(reg);
  2265. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2266. if (temp & FDI_RX_SYMBOL_LOCK) {
  2267. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2268. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2269. break;
  2270. }
  2271. udelay(50);
  2272. }
  2273. if (retry < 5)
  2274. break;
  2275. }
  2276. if (i == 4)
  2277. DRM_ERROR("FDI train 2 fail!\n");
  2278. DRM_DEBUG_KMS("FDI train done.\n");
  2279. }
  2280. /* Manual link training for Ivy Bridge A0 parts */
  2281. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2282. {
  2283. struct drm_device *dev = crtc->dev;
  2284. struct drm_i915_private *dev_priv = dev->dev_private;
  2285. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2286. int pipe = intel_crtc->pipe;
  2287. u32 reg, temp, i;
  2288. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2289. for train result */
  2290. reg = FDI_RX_IMR(pipe);
  2291. temp = I915_READ(reg);
  2292. temp &= ~FDI_RX_SYMBOL_LOCK;
  2293. temp &= ~FDI_RX_BIT_LOCK;
  2294. I915_WRITE(reg, temp);
  2295. POSTING_READ(reg);
  2296. udelay(150);
  2297. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2298. I915_READ(FDI_RX_IIR(pipe)));
  2299. /* enable CPU FDI TX and PCH FDI RX */
  2300. reg = FDI_TX_CTL(pipe);
  2301. temp = I915_READ(reg);
  2302. temp &= ~(7 << 19);
  2303. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2304. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2305. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2306. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2307. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2308. temp |= FDI_COMPOSITE_SYNC;
  2309. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2310. I915_WRITE(FDI_RX_MISC(pipe),
  2311. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2312. reg = FDI_RX_CTL(pipe);
  2313. temp = I915_READ(reg);
  2314. temp &= ~FDI_LINK_TRAIN_AUTO;
  2315. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2316. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2317. temp |= FDI_COMPOSITE_SYNC;
  2318. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2319. POSTING_READ(reg);
  2320. udelay(150);
  2321. cpt_phase_pointer_enable(dev, pipe);
  2322. for (i = 0; i < 4; i++) {
  2323. reg = FDI_TX_CTL(pipe);
  2324. temp = I915_READ(reg);
  2325. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2326. temp |= snb_b_fdi_train_param[i];
  2327. I915_WRITE(reg, temp);
  2328. POSTING_READ(reg);
  2329. udelay(500);
  2330. reg = FDI_RX_IIR(pipe);
  2331. temp = I915_READ(reg);
  2332. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2333. if (temp & FDI_RX_BIT_LOCK ||
  2334. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2335. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2336. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2337. break;
  2338. }
  2339. }
  2340. if (i == 4)
  2341. DRM_ERROR("FDI train 1 fail!\n");
  2342. /* Train 2 */
  2343. reg = FDI_TX_CTL(pipe);
  2344. temp = I915_READ(reg);
  2345. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2346. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2347. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2348. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2349. I915_WRITE(reg, temp);
  2350. reg = FDI_RX_CTL(pipe);
  2351. temp = I915_READ(reg);
  2352. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2353. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2354. I915_WRITE(reg, temp);
  2355. POSTING_READ(reg);
  2356. udelay(150);
  2357. for (i = 0; i < 4; i++) {
  2358. reg = FDI_TX_CTL(pipe);
  2359. temp = I915_READ(reg);
  2360. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2361. temp |= snb_b_fdi_train_param[i];
  2362. I915_WRITE(reg, temp);
  2363. POSTING_READ(reg);
  2364. udelay(500);
  2365. reg = FDI_RX_IIR(pipe);
  2366. temp = I915_READ(reg);
  2367. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2368. if (temp & FDI_RX_SYMBOL_LOCK) {
  2369. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2370. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2371. break;
  2372. }
  2373. }
  2374. if (i == 4)
  2375. DRM_ERROR("FDI train 2 fail!\n");
  2376. DRM_DEBUG_KMS("FDI train done.\n");
  2377. }
  2378. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2379. {
  2380. struct drm_device *dev = intel_crtc->base.dev;
  2381. struct drm_i915_private *dev_priv = dev->dev_private;
  2382. int pipe = intel_crtc->pipe;
  2383. u32 reg, temp;
  2384. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2385. reg = FDI_RX_CTL(pipe);
  2386. temp = I915_READ(reg);
  2387. temp &= ~((0x7 << 19) | (0x7 << 16));
  2388. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2389. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2390. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2391. POSTING_READ(reg);
  2392. udelay(200);
  2393. /* Switch from Rawclk to PCDclk */
  2394. temp = I915_READ(reg);
  2395. I915_WRITE(reg, temp | FDI_PCDCLK);
  2396. POSTING_READ(reg);
  2397. udelay(200);
  2398. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2399. reg = FDI_TX_CTL(pipe);
  2400. temp = I915_READ(reg);
  2401. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2402. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2403. POSTING_READ(reg);
  2404. udelay(100);
  2405. }
  2406. }
  2407. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2408. {
  2409. struct drm_device *dev = intel_crtc->base.dev;
  2410. struct drm_i915_private *dev_priv = dev->dev_private;
  2411. int pipe = intel_crtc->pipe;
  2412. u32 reg, temp;
  2413. /* Switch from PCDclk to Rawclk */
  2414. reg = FDI_RX_CTL(pipe);
  2415. temp = I915_READ(reg);
  2416. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2417. /* Disable CPU FDI TX PLL */
  2418. reg = FDI_TX_CTL(pipe);
  2419. temp = I915_READ(reg);
  2420. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2421. POSTING_READ(reg);
  2422. udelay(100);
  2423. reg = FDI_RX_CTL(pipe);
  2424. temp = I915_READ(reg);
  2425. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2426. /* Wait for the clocks to turn off. */
  2427. POSTING_READ(reg);
  2428. udelay(100);
  2429. }
  2430. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2431. {
  2432. struct drm_i915_private *dev_priv = dev->dev_private;
  2433. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2434. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2435. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2436. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2437. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2438. POSTING_READ(SOUTH_CHICKEN1);
  2439. }
  2440. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2441. {
  2442. struct drm_device *dev = crtc->dev;
  2443. struct drm_i915_private *dev_priv = dev->dev_private;
  2444. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2445. int pipe = intel_crtc->pipe;
  2446. u32 reg, temp;
  2447. /* disable CPU FDI tx and PCH FDI rx */
  2448. reg = FDI_TX_CTL(pipe);
  2449. temp = I915_READ(reg);
  2450. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2451. POSTING_READ(reg);
  2452. reg = FDI_RX_CTL(pipe);
  2453. temp = I915_READ(reg);
  2454. temp &= ~(0x7 << 16);
  2455. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2456. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2457. POSTING_READ(reg);
  2458. udelay(100);
  2459. /* Ironlake workaround, disable clock pointer after downing FDI */
  2460. if (HAS_PCH_IBX(dev)) {
  2461. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2462. } else if (HAS_PCH_CPT(dev)) {
  2463. cpt_phase_pointer_disable(dev, pipe);
  2464. }
  2465. /* still set train pattern 1 */
  2466. reg = FDI_TX_CTL(pipe);
  2467. temp = I915_READ(reg);
  2468. temp &= ~FDI_LINK_TRAIN_NONE;
  2469. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2470. I915_WRITE(reg, temp);
  2471. reg = FDI_RX_CTL(pipe);
  2472. temp = I915_READ(reg);
  2473. if (HAS_PCH_CPT(dev)) {
  2474. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2475. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2476. } else {
  2477. temp &= ~FDI_LINK_TRAIN_NONE;
  2478. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2479. }
  2480. /* BPC in FDI rx is consistent with that in PIPECONF */
  2481. temp &= ~(0x07 << 16);
  2482. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2483. I915_WRITE(reg, temp);
  2484. POSTING_READ(reg);
  2485. udelay(100);
  2486. }
  2487. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2488. {
  2489. struct drm_device *dev = crtc->dev;
  2490. struct drm_i915_private *dev_priv = dev->dev_private;
  2491. unsigned long flags;
  2492. bool pending;
  2493. if (atomic_read(&dev_priv->mm.wedged))
  2494. return false;
  2495. spin_lock_irqsave(&dev->event_lock, flags);
  2496. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2497. spin_unlock_irqrestore(&dev->event_lock, flags);
  2498. return pending;
  2499. }
  2500. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2501. {
  2502. struct drm_device *dev = crtc->dev;
  2503. struct drm_i915_private *dev_priv = dev->dev_private;
  2504. if (crtc->fb == NULL)
  2505. return;
  2506. wait_event(dev_priv->pending_flip_queue,
  2507. !intel_crtc_has_pending_flip(crtc));
  2508. mutex_lock(&dev->struct_mutex);
  2509. intel_finish_fb(crtc->fb);
  2510. mutex_unlock(&dev->struct_mutex);
  2511. }
  2512. static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
  2513. {
  2514. struct drm_device *dev = crtc->dev;
  2515. struct intel_encoder *intel_encoder;
  2516. /*
  2517. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2518. * must be driven by its own crtc; no sharing is possible.
  2519. */
  2520. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2521. switch (intel_encoder->type) {
  2522. case INTEL_OUTPUT_EDP:
  2523. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  2524. return false;
  2525. continue;
  2526. }
  2527. }
  2528. return true;
  2529. }
  2530. static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
  2531. {
  2532. return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
  2533. }
  2534. /* Program iCLKIP clock to the desired frequency */
  2535. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2536. {
  2537. struct drm_device *dev = crtc->dev;
  2538. struct drm_i915_private *dev_priv = dev->dev_private;
  2539. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2540. u32 temp;
  2541. /* It is necessary to ungate the pixclk gate prior to programming
  2542. * the divisors, and gate it back when it is done.
  2543. */
  2544. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2545. /* Disable SSCCTL */
  2546. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2547. intel_sbi_read(dev_priv, SBI_SSCCTL6) |
  2548. SBI_SSCCTL_DISABLE);
  2549. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2550. if (crtc->mode.clock == 20000) {
  2551. auxdiv = 1;
  2552. divsel = 0x41;
  2553. phaseinc = 0x20;
  2554. } else {
  2555. /* The iCLK virtual clock root frequency is in MHz,
  2556. * but the crtc->mode.clock in in KHz. To get the divisors,
  2557. * it is necessary to divide one by another, so we
  2558. * convert the virtual clock precision to KHz here for higher
  2559. * precision.
  2560. */
  2561. u32 iclk_virtual_root_freq = 172800 * 1000;
  2562. u32 iclk_pi_range = 64;
  2563. u32 desired_divisor, msb_divisor_value, pi_value;
  2564. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2565. msb_divisor_value = desired_divisor / iclk_pi_range;
  2566. pi_value = desired_divisor % iclk_pi_range;
  2567. auxdiv = 0;
  2568. divsel = msb_divisor_value - 2;
  2569. phaseinc = pi_value;
  2570. }
  2571. /* This should not happen with any sane values */
  2572. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2573. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2574. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2575. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2576. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2577. crtc->mode.clock,
  2578. auxdiv,
  2579. divsel,
  2580. phasedir,
  2581. phaseinc);
  2582. /* Program SSCDIVINTPHASE6 */
  2583. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
  2584. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2585. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2586. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2587. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2588. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2589. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2590. intel_sbi_write(dev_priv,
  2591. SBI_SSCDIVINTPHASE6,
  2592. temp);
  2593. /* Program SSCAUXDIV */
  2594. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
  2595. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2596. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2597. intel_sbi_write(dev_priv,
  2598. SBI_SSCAUXDIV6,
  2599. temp);
  2600. /* Enable modulator and associated divider */
  2601. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
  2602. temp &= ~SBI_SSCCTL_DISABLE;
  2603. intel_sbi_write(dev_priv,
  2604. SBI_SSCCTL6,
  2605. temp);
  2606. /* Wait for initialization time */
  2607. udelay(24);
  2608. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2609. }
  2610. /*
  2611. * Enable PCH resources required for PCH ports:
  2612. * - PCH PLLs
  2613. * - FDI training & RX/TX
  2614. * - update transcoder timings
  2615. * - DP transcoding bits
  2616. * - transcoder
  2617. */
  2618. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2619. {
  2620. struct drm_device *dev = crtc->dev;
  2621. struct drm_i915_private *dev_priv = dev->dev_private;
  2622. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2623. int pipe = intel_crtc->pipe;
  2624. u32 reg, temp;
  2625. assert_transcoder_disabled(dev_priv, pipe);
  2626. /* Write the TU size bits before fdi link training, so that error
  2627. * detection works. */
  2628. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2629. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2630. /* For PCH output, training FDI link */
  2631. dev_priv->display.fdi_link_train(crtc);
  2632. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2633. * transcoder, and we actually should do this to not upset any PCH
  2634. * transcoder that already use the clock when we share it.
  2635. *
  2636. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2637. * unconditionally resets the pll - we need that to have the right LVDS
  2638. * enable sequence. */
  2639. ironlake_enable_pch_pll(intel_crtc);
  2640. if (HAS_PCH_CPT(dev)) {
  2641. u32 sel;
  2642. temp = I915_READ(PCH_DPLL_SEL);
  2643. switch (pipe) {
  2644. default:
  2645. case 0:
  2646. temp |= TRANSA_DPLL_ENABLE;
  2647. sel = TRANSA_DPLLB_SEL;
  2648. break;
  2649. case 1:
  2650. temp |= TRANSB_DPLL_ENABLE;
  2651. sel = TRANSB_DPLLB_SEL;
  2652. break;
  2653. case 2:
  2654. temp |= TRANSC_DPLL_ENABLE;
  2655. sel = TRANSC_DPLLB_SEL;
  2656. break;
  2657. }
  2658. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2659. temp |= sel;
  2660. else
  2661. temp &= ~sel;
  2662. I915_WRITE(PCH_DPLL_SEL, temp);
  2663. }
  2664. /* set transcoder timing, panel must allow it */
  2665. assert_panel_unlocked(dev_priv, pipe);
  2666. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2667. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2668. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2669. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2670. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2671. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2672. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2673. intel_fdi_normal_train(crtc);
  2674. /* For PCH DP, enable TRANS_DP_CTL */
  2675. if (HAS_PCH_CPT(dev) &&
  2676. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2677. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2678. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2679. reg = TRANS_DP_CTL(pipe);
  2680. temp = I915_READ(reg);
  2681. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2682. TRANS_DP_SYNC_MASK |
  2683. TRANS_DP_BPC_MASK);
  2684. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2685. TRANS_DP_ENH_FRAMING);
  2686. temp |= bpc << 9; /* same format but at 11:9 */
  2687. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2688. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2689. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2690. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2691. switch (intel_trans_dp_port_sel(crtc)) {
  2692. case PCH_DP_B:
  2693. temp |= TRANS_DP_PORT_SEL_B;
  2694. break;
  2695. case PCH_DP_C:
  2696. temp |= TRANS_DP_PORT_SEL_C;
  2697. break;
  2698. case PCH_DP_D:
  2699. temp |= TRANS_DP_PORT_SEL_D;
  2700. break;
  2701. default:
  2702. BUG();
  2703. }
  2704. I915_WRITE(reg, temp);
  2705. }
  2706. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2707. }
  2708. static void lpt_pch_enable(struct drm_crtc *crtc)
  2709. {
  2710. struct drm_device *dev = crtc->dev;
  2711. struct drm_i915_private *dev_priv = dev->dev_private;
  2712. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2713. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  2714. assert_transcoder_disabled(dev_priv, TRANSCODER_A);
  2715. lpt_program_iclkip(crtc);
  2716. /* Set transcoder timing. */
  2717. I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
  2718. I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
  2719. I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
  2720. I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
  2721. I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
  2722. I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
  2723. I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2724. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2725. }
  2726. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2727. {
  2728. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2729. if (pll == NULL)
  2730. return;
  2731. if (pll->refcount == 0) {
  2732. WARN(1, "bad PCH PLL refcount\n");
  2733. return;
  2734. }
  2735. --pll->refcount;
  2736. intel_crtc->pch_pll = NULL;
  2737. }
  2738. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2739. {
  2740. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2741. struct intel_pch_pll *pll;
  2742. int i;
  2743. pll = intel_crtc->pch_pll;
  2744. if (pll) {
  2745. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2746. intel_crtc->base.base.id, pll->pll_reg);
  2747. goto prepare;
  2748. }
  2749. if (HAS_PCH_IBX(dev_priv->dev)) {
  2750. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2751. i = intel_crtc->pipe;
  2752. pll = &dev_priv->pch_plls[i];
  2753. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2754. intel_crtc->base.base.id, pll->pll_reg);
  2755. goto found;
  2756. }
  2757. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2758. pll = &dev_priv->pch_plls[i];
  2759. /* Only want to check enabled timings first */
  2760. if (pll->refcount == 0)
  2761. continue;
  2762. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2763. fp == I915_READ(pll->fp0_reg)) {
  2764. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2765. intel_crtc->base.base.id,
  2766. pll->pll_reg, pll->refcount, pll->active);
  2767. goto found;
  2768. }
  2769. }
  2770. /* Ok no matching timings, maybe there's a free one? */
  2771. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2772. pll = &dev_priv->pch_plls[i];
  2773. if (pll->refcount == 0) {
  2774. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2775. intel_crtc->base.base.id, pll->pll_reg);
  2776. goto found;
  2777. }
  2778. }
  2779. return NULL;
  2780. found:
  2781. intel_crtc->pch_pll = pll;
  2782. pll->refcount++;
  2783. DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  2784. prepare: /* separate function? */
  2785. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2786. /* Wait for the clocks to stabilize before rewriting the regs */
  2787. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2788. POSTING_READ(pll->pll_reg);
  2789. udelay(150);
  2790. I915_WRITE(pll->fp0_reg, fp);
  2791. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2792. pll->on = false;
  2793. return pll;
  2794. }
  2795. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2796. {
  2797. struct drm_i915_private *dev_priv = dev->dev_private;
  2798. int dslreg = PIPEDSL(pipe);
  2799. u32 temp;
  2800. temp = I915_READ(dslreg);
  2801. udelay(500);
  2802. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2803. if (wait_for(I915_READ(dslreg) != temp, 5))
  2804. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2805. }
  2806. }
  2807. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2808. {
  2809. struct drm_device *dev = crtc->dev;
  2810. struct drm_i915_private *dev_priv = dev->dev_private;
  2811. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2812. struct intel_encoder *encoder;
  2813. int pipe = intel_crtc->pipe;
  2814. int plane = intel_crtc->plane;
  2815. u32 temp;
  2816. bool is_pch_port;
  2817. WARN_ON(!crtc->enabled);
  2818. if (intel_crtc->active)
  2819. return;
  2820. intel_crtc->active = true;
  2821. intel_update_watermarks(dev);
  2822. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2823. temp = I915_READ(PCH_LVDS);
  2824. if ((temp & LVDS_PORT_EN) == 0)
  2825. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2826. }
  2827. is_pch_port = ironlake_crtc_driving_pch(crtc);
  2828. if (is_pch_port) {
  2829. /* Note: FDI PLL enabling _must_ be done before we enable the
  2830. * cpu pipes, hence this is separate from all the other fdi/pch
  2831. * enabling. */
  2832. ironlake_fdi_pll_enable(intel_crtc);
  2833. } else {
  2834. assert_fdi_tx_disabled(dev_priv, pipe);
  2835. assert_fdi_rx_disabled(dev_priv, pipe);
  2836. }
  2837. for_each_encoder_on_crtc(dev, crtc, encoder)
  2838. if (encoder->pre_enable)
  2839. encoder->pre_enable(encoder);
  2840. /* Enable panel fitting for LVDS */
  2841. if (dev_priv->pch_pf_size &&
  2842. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2843. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2844. /* Force use of hard-coded filter coefficients
  2845. * as some pre-programmed values are broken,
  2846. * e.g. x201.
  2847. */
  2848. if (IS_IVYBRIDGE(dev))
  2849. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2850. PF_PIPE_SEL_IVB(pipe));
  2851. else
  2852. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2853. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2854. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2855. }
  2856. /*
  2857. * On ILK+ LUT must be loaded before the pipe is running but with
  2858. * clocks enabled
  2859. */
  2860. intel_crtc_load_lut(crtc);
  2861. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2862. intel_enable_plane(dev_priv, plane, pipe);
  2863. if (is_pch_port)
  2864. ironlake_pch_enable(crtc);
  2865. mutex_lock(&dev->struct_mutex);
  2866. intel_update_fbc(dev);
  2867. mutex_unlock(&dev->struct_mutex);
  2868. intel_crtc_update_cursor(crtc, true);
  2869. for_each_encoder_on_crtc(dev, crtc, encoder)
  2870. encoder->enable(encoder);
  2871. if (HAS_PCH_CPT(dev))
  2872. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2873. /*
  2874. * There seems to be a race in PCH platform hw (at least on some
  2875. * outputs) where an enabled pipe still completes any pageflip right
  2876. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2877. * as the first vblank happend, everything works as expected. Hence just
  2878. * wait for one vblank before returning to avoid strange things
  2879. * happening.
  2880. */
  2881. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2882. }
  2883. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2884. {
  2885. struct drm_device *dev = crtc->dev;
  2886. struct drm_i915_private *dev_priv = dev->dev_private;
  2887. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2888. struct intel_encoder *encoder;
  2889. int pipe = intel_crtc->pipe;
  2890. int plane = intel_crtc->plane;
  2891. bool is_pch_port;
  2892. WARN_ON(!crtc->enabled);
  2893. if (intel_crtc->active)
  2894. return;
  2895. intel_crtc->active = true;
  2896. intel_update_watermarks(dev);
  2897. is_pch_port = haswell_crtc_driving_pch(crtc);
  2898. if (is_pch_port)
  2899. dev_priv->display.fdi_link_train(crtc);
  2900. for_each_encoder_on_crtc(dev, crtc, encoder)
  2901. if (encoder->pre_enable)
  2902. encoder->pre_enable(encoder);
  2903. intel_ddi_enable_pipe_clock(intel_crtc);
  2904. /* Enable panel fitting for eDP */
  2905. if (dev_priv->pch_pf_size &&
  2906. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  2907. /* Force use of hard-coded filter coefficients
  2908. * as some pre-programmed values are broken,
  2909. * e.g. x201.
  2910. */
  2911. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2912. PF_PIPE_SEL_IVB(pipe));
  2913. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2914. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2915. }
  2916. /*
  2917. * On ILK+ LUT must be loaded before the pipe is running but with
  2918. * clocks enabled
  2919. */
  2920. intel_crtc_load_lut(crtc);
  2921. intel_ddi_set_pipe_settings(crtc);
  2922. intel_ddi_enable_pipe_func(crtc);
  2923. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2924. intel_enable_plane(dev_priv, plane, pipe);
  2925. if (is_pch_port)
  2926. lpt_pch_enable(crtc);
  2927. mutex_lock(&dev->struct_mutex);
  2928. intel_update_fbc(dev);
  2929. mutex_unlock(&dev->struct_mutex);
  2930. intel_crtc_update_cursor(crtc, true);
  2931. for_each_encoder_on_crtc(dev, crtc, encoder)
  2932. encoder->enable(encoder);
  2933. /*
  2934. * There seems to be a race in PCH platform hw (at least on some
  2935. * outputs) where an enabled pipe still completes any pageflip right
  2936. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2937. * as the first vblank happend, everything works as expected. Hence just
  2938. * wait for one vblank before returning to avoid strange things
  2939. * happening.
  2940. */
  2941. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2942. }
  2943. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2944. {
  2945. struct drm_device *dev = crtc->dev;
  2946. struct drm_i915_private *dev_priv = dev->dev_private;
  2947. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2948. struct intel_encoder *encoder;
  2949. int pipe = intel_crtc->pipe;
  2950. int plane = intel_crtc->plane;
  2951. u32 reg, temp;
  2952. if (!intel_crtc->active)
  2953. return;
  2954. for_each_encoder_on_crtc(dev, crtc, encoder)
  2955. encoder->disable(encoder);
  2956. intel_crtc_wait_for_pending_flips(crtc);
  2957. drm_vblank_off(dev, pipe);
  2958. intel_crtc_update_cursor(crtc, false);
  2959. intel_disable_plane(dev_priv, plane, pipe);
  2960. if (dev_priv->cfb_plane == plane)
  2961. intel_disable_fbc(dev);
  2962. intel_disable_pipe(dev_priv, pipe);
  2963. /* Disable PF */
  2964. I915_WRITE(PF_CTL(pipe), 0);
  2965. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2966. for_each_encoder_on_crtc(dev, crtc, encoder)
  2967. if (encoder->post_disable)
  2968. encoder->post_disable(encoder);
  2969. ironlake_fdi_disable(crtc);
  2970. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2971. if (HAS_PCH_CPT(dev)) {
  2972. /* disable TRANS_DP_CTL */
  2973. reg = TRANS_DP_CTL(pipe);
  2974. temp = I915_READ(reg);
  2975. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2976. temp |= TRANS_DP_PORT_SEL_NONE;
  2977. I915_WRITE(reg, temp);
  2978. /* disable DPLL_SEL */
  2979. temp = I915_READ(PCH_DPLL_SEL);
  2980. switch (pipe) {
  2981. case 0:
  2982. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2983. break;
  2984. case 1:
  2985. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2986. break;
  2987. case 2:
  2988. /* C shares PLL A or B */
  2989. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2990. break;
  2991. default:
  2992. BUG(); /* wtf */
  2993. }
  2994. I915_WRITE(PCH_DPLL_SEL, temp);
  2995. }
  2996. /* disable PCH DPLL */
  2997. intel_disable_pch_pll(intel_crtc);
  2998. ironlake_fdi_pll_disable(intel_crtc);
  2999. intel_crtc->active = false;
  3000. intel_update_watermarks(dev);
  3001. mutex_lock(&dev->struct_mutex);
  3002. intel_update_fbc(dev);
  3003. mutex_unlock(&dev->struct_mutex);
  3004. }
  3005. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3006. {
  3007. struct drm_device *dev = crtc->dev;
  3008. struct drm_i915_private *dev_priv = dev->dev_private;
  3009. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3010. struct intel_encoder *encoder;
  3011. int pipe = intel_crtc->pipe;
  3012. int plane = intel_crtc->plane;
  3013. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3014. bool is_pch_port;
  3015. if (!intel_crtc->active)
  3016. return;
  3017. is_pch_port = haswell_crtc_driving_pch(crtc);
  3018. for_each_encoder_on_crtc(dev, crtc, encoder)
  3019. encoder->disable(encoder);
  3020. intel_crtc_wait_for_pending_flips(crtc);
  3021. drm_vblank_off(dev, pipe);
  3022. intel_crtc_update_cursor(crtc, false);
  3023. intel_disable_plane(dev_priv, plane, pipe);
  3024. if (dev_priv->cfb_plane == plane)
  3025. intel_disable_fbc(dev);
  3026. intel_disable_pipe(dev_priv, pipe);
  3027. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3028. /* Disable PF */
  3029. I915_WRITE(PF_CTL(pipe), 0);
  3030. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3031. intel_ddi_disable_pipe_clock(intel_crtc);
  3032. for_each_encoder_on_crtc(dev, crtc, encoder)
  3033. if (encoder->post_disable)
  3034. encoder->post_disable(encoder);
  3035. if (is_pch_port) {
  3036. lpt_disable_pch_transcoder(dev_priv);
  3037. intel_ddi_fdi_disable(crtc);
  3038. }
  3039. intel_crtc->active = false;
  3040. intel_update_watermarks(dev);
  3041. mutex_lock(&dev->struct_mutex);
  3042. intel_update_fbc(dev);
  3043. mutex_unlock(&dev->struct_mutex);
  3044. }
  3045. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3046. {
  3047. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3048. intel_put_pch_pll(intel_crtc);
  3049. }
  3050. static void haswell_crtc_off(struct drm_crtc *crtc)
  3051. {
  3052. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3053. /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
  3054. * start using it. */
  3055. intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  3056. intel_ddi_put_crtc_pll(crtc);
  3057. }
  3058. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3059. {
  3060. if (!enable && intel_crtc->overlay) {
  3061. struct drm_device *dev = intel_crtc->base.dev;
  3062. struct drm_i915_private *dev_priv = dev->dev_private;
  3063. mutex_lock(&dev->struct_mutex);
  3064. dev_priv->mm.interruptible = false;
  3065. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3066. dev_priv->mm.interruptible = true;
  3067. mutex_unlock(&dev->struct_mutex);
  3068. }
  3069. /* Let userspace switch the overlay on again. In most cases userspace
  3070. * has to recompute where to put it anyway.
  3071. */
  3072. }
  3073. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3074. {
  3075. struct drm_device *dev = crtc->dev;
  3076. struct drm_i915_private *dev_priv = dev->dev_private;
  3077. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3078. struct intel_encoder *encoder;
  3079. int pipe = intel_crtc->pipe;
  3080. int plane = intel_crtc->plane;
  3081. WARN_ON(!crtc->enabled);
  3082. if (intel_crtc->active)
  3083. return;
  3084. intel_crtc->active = true;
  3085. intel_update_watermarks(dev);
  3086. intel_enable_pll(dev_priv, pipe);
  3087. intel_enable_pipe(dev_priv, pipe, false);
  3088. intel_enable_plane(dev_priv, plane, pipe);
  3089. intel_crtc_load_lut(crtc);
  3090. intel_update_fbc(dev);
  3091. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3092. intel_crtc_dpms_overlay(intel_crtc, true);
  3093. intel_crtc_update_cursor(crtc, true);
  3094. for_each_encoder_on_crtc(dev, crtc, encoder)
  3095. encoder->enable(encoder);
  3096. }
  3097. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3098. {
  3099. struct drm_device *dev = crtc->dev;
  3100. struct drm_i915_private *dev_priv = dev->dev_private;
  3101. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3102. struct intel_encoder *encoder;
  3103. int pipe = intel_crtc->pipe;
  3104. int plane = intel_crtc->plane;
  3105. if (!intel_crtc->active)
  3106. return;
  3107. for_each_encoder_on_crtc(dev, crtc, encoder)
  3108. encoder->disable(encoder);
  3109. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3110. intel_crtc_wait_for_pending_flips(crtc);
  3111. drm_vblank_off(dev, pipe);
  3112. intel_crtc_dpms_overlay(intel_crtc, false);
  3113. intel_crtc_update_cursor(crtc, false);
  3114. if (dev_priv->cfb_plane == plane)
  3115. intel_disable_fbc(dev);
  3116. intel_disable_plane(dev_priv, plane, pipe);
  3117. intel_disable_pipe(dev_priv, pipe);
  3118. intel_disable_pll(dev_priv, pipe);
  3119. intel_crtc->active = false;
  3120. intel_update_fbc(dev);
  3121. intel_update_watermarks(dev);
  3122. }
  3123. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3124. {
  3125. }
  3126. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3127. bool enabled)
  3128. {
  3129. struct drm_device *dev = crtc->dev;
  3130. struct drm_i915_master_private *master_priv;
  3131. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3132. int pipe = intel_crtc->pipe;
  3133. if (!dev->primary->master)
  3134. return;
  3135. master_priv = dev->primary->master->driver_priv;
  3136. if (!master_priv->sarea_priv)
  3137. return;
  3138. switch (pipe) {
  3139. case 0:
  3140. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3141. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3142. break;
  3143. case 1:
  3144. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3145. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3146. break;
  3147. default:
  3148. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3149. break;
  3150. }
  3151. }
  3152. /**
  3153. * Sets the power management mode of the pipe and plane.
  3154. */
  3155. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3156. {
  3157. struct drm_device *dev = crtc->dev;
  3158. struct drm_i915_private *dev_priv = dev->dev_private;
  3159. struct intel_encoder *intel_encoder;
  3160. bool enable = false;
  3161. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3162. enable |= intel_encoder->connectors_active;
  3163. if (enable)
  3164. dev_priv->display.crtc_enable(crtc);
  3165. else
  3166. dev_priv->display.crtc_disable(crtc);
  3167. intel_crtc_update_sarea(crtc, enable);
  3168. }
  3169. static void intel_crtc_noop(struct drm_crtc *crtc)
  3170. {
  3171. }
  3172. static void intel_crtc_disable(struct drm_crtc *crtc)
  3173. {
  3174. struct drm_device *dev = crtc->dev;
  3175. struct drm_connector *connector;
  3176. struct drm_i915_private *dev_priv = dev->dev_private;
  3177. /* crtc should still be enabled when we disable it. */
  3178. WARN_ON(!crtc->enabled);
  3179. dev_priv->display.crtc_disable(crtc);
  3180. intel_crtc_update_sarea(crtc, false);
  3181. dev_priv->display.off(crtc);
  3182. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3183. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3184. if (crtc->fb) {
  3185. mutex_lock(&dev->struct_mutex);
  3186. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3187. mutex_unlock(&dev->struct_mutex);
  3188. crtc->fb = NULL;
  3189. }
  3190. /* Update computed state. */
  3191. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3192. if (!connector->encoder || !connector->encoder->crtc)
  3193. continue;
  3194. if (connector->encoder->crtc != crtc)
  3195. continue;
  3196. connector->dpms = DRM_MODE_DPMS_OFF;
  3197. to_intel_encoder(connector->encoder)->connectors_active = false;
  3198. }
  3199. }
  3200. void intel_modeset_disable(struct drm_device *dev)
  3201. {
  3202. struct drm_crtc *crtc;
  3203. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3204. if (crtc->enabled)
  3205. intel_crtc_disable(crtc);
  3206. }
  3207. }
  3208. void intel_encoder_noop(struct drm_encoder *encoder)
  3209. {
  3210. }
  3211. void intel_encoder_destroy(struct drm_encoder *encoder)
  3212. {
  3213. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3214. drm_encoder_cleanup(encoder);
  3215. kfree(intel_encoder);
  3216. }
  3217. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3218. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3219. * state of the entire output pipe. */
  3220. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3221. {
  3222. if (mode == DRM_MODE_DPMS_ON) {
  3223. encoder->connectors_active = true;
  3224. intel_crtc_update_dpms(encoder->base.crtc);
  3225. } else {
  3226. encoder->connectors_active = false;
  3227. intel_crtc_update_dpms(encoder->base.crtc);
  3228. }
  3229. }
  3230. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3231. * internal consistency). */
  3232. static void intel_connector_check_state(struct intel_connector *connector)
  3233. {
  3234. if (connector->get_hw_state(connector)) {
  3235. struct intel_encoder *encoder = connector->encoder;
  3236. struct drm_crtc *crtc;
  3237. bool encoder_enabled;
  3238. enum pipe pipe;
  3239. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3240. connector->base.base.id,
  3241. drm_get_connector_name(&connector->base));
  3242. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3243. "wrong connector dpms state\n");
  3244. WARN(connector->base.encoder != &encoder->base,
  3245. "active connector not linked to encoder\n");
  3246. WARN(!encoder->connectors_active,
  3247. "encoder->connectors_active not set\n");
  3248. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3249. WARN(!encoder_enabled, "encoder not enabled\n");
  3250. if (WARN_ON(!encoder->base.crtc))
  3251. return;
  3252. crtc = encoder->base.crtc;
  3253. WARN(!crtc->enabled, "crtc not enabled\n");
  3254. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3255. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3256. "encoder active on the wrong pipe\n");
  3257. }
  3258. }
  3259. /* Even simpler default implementation, if there's really no special case to
  3260. * consider. */
  3261. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3262. {
  3263. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3264. /* All the simple cases only support two dpms states. */
  3265. if (mode != DRM_MODE_DPMS_ON)
  3266. mode = DRM_MODE_DPMS_OFF;
  3267. if (mode == connector->dpms)
  3268. return;
  3269. connector->dpms = mode;
  3270. /* Only need to change hw state when actually enabled */
  3271. if (encoder->base.crtc)
  3272. intel_encoder_dpms(encoder, mode);
  3273. else
  3274. WARN_ON(encoder->connectors_active != false);
  3275. intel_modeset_check_state(connector->dev);
  3276. }
  3277. /* Simple connector->get_hw_state implementation for encoders that support only
  3278. * one connector and no cloning and hence the encoder state determines the state
  3279. * of the connector. */
  3280. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3281. {
  3282. enum pipe pipe = 0;
  3283. struct intel_encoder *encoder = connector->encoder;
  3284. return encoder->get_hw_state(encoder, &pipe);
  3285. }
  3286. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3287. const struct drm_display_mode *mode,
  3288. struct drm_display_mode *adjusted_mode)
  3289. {
  3290. struct drm_device *dev = crtc->dev;
  3291. if (HAS_PCH_SPLIT(dev)) {
  3292. /* FDI link clock is fixed at 2.7G */
  3293. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3294. return false;
  3295. }
  3296. /* All interlaced capable intel hw wants timings in frames. Note though
  3297. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3298. * timings, so we need to be careful not to clobber these.*/
  3299. if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3300. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3301. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3302. * with a hsync front porch of 0.
  3303. */
  3304. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3305. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3306. return false;
  3307. return true;
  3308. }
  3309. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3310. {
  3311. return 400000; /* FIXME */
  3312. }
  3313. static int i945_get_display_clock_speed(struct drm_device *dev)
  3314. {
  3315. return 400000;
  3316. }
  3317. static int i915_get_display_clock_speed(struct drm_device *dev)
  3318. {
  3319. return 333000;
  3320. }
  3321. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3322. {
  3323. return 200000;
  3324. }
  3325. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3326. {
  3327. u16 gcfgc = 0;
  3328. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3329. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3330. return 133000;
  3331. else {
  3332. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3333. case GC_DISPLAY_CLOCK_333_MHZ:
  3334. return 333000;
  3335. default:
  3336. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3337. return 190000;
  3338. }
  3339. }
  3340. }
  3341. static int i865_get_display_clock_speed(struct drm_device *dev)
  3342. {
  3343. return 266000;
  3344. }
  3345. static int i855_get_display_clock_speed(struct drm_device *dev)
  3346. {
  3347. u16 hpllcc = 0;
  3348. /* Assume that the hardware is in the high speed state. This
  3349. * should be the default.
  3350. */
  3351. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3352. case GC_CLOCK_133_200:
  3353. case GC_CLOCK_100_200:
  3354. return 200000;
  3355. case GC_CLOCK_166_250:
  3356. return 250000;
  3357. case GC_CLOCK_100_133:
  3358. return 133000;
  3359. }
  3360. /* Shouldn't happen */
  3361. return 0;
  3362. }
  3363. static int i830_get_display_clock_speed(struct drm_device *dev)
  3364. {
  3365. return 133000;
  3366. }
  3367. struct fdi_m_n {
  3368. u32 tu;
  3369. u32 gmch_m;
  3370. u32 gmch_n;
  3371. u32 link_m;
  3372. u32 link_n;
  3373. };
  3374. static void
  3375. fdi_reduce_ratio(u32 *num, u32 *den)
  3376. {
  3377. while (*num > 0xffffff || *den > 0xffffff) {
  3378. *num >>= 1;
  3379. *den >>= 1;
  3380. }
  3381. }
  3382. static void
  3383. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3384. int link_clock, struct fdi_m_n *m_n)
  3385. {
  3386. m_n->tu = 64; /* default size */
  3387. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3388. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3389. m_n->gmch_n = link_clock * nlanes * 8;
  3390. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3391. m_n->link_m = pixel_clock;
  3392. m_n->link_n = link_clock;
  3393. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3394. }
  3395. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3396. {
  3397. if (i915_panel_use_ssc >= 0)
  3398. return i915_panel_use_ssc != 0;
  3399. return dev_priv->lvds_use_ssc
  3400. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3401. }
  3402. /**
  3403. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3404. * @crtc: CRTC structure
  3405. * @mode: requested mode
  3406. *
  3407. * A pipe may be connected to one or more outputs. Based on the depth of the
  3408. * attached framebuffer, choose a good color depth to use on the pipe.
  3409. *
  3410. * If possible, match the pipe depth to the fb depth. In some cases, this
  3411. * isn't ideal, because the connected output supports a lesser or restricted
  3412. * set of depths. Resolve that here:
  3413. * LVDS typically supports only 6bpc, so clamp down in that case
  3414. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3415. * Displays may support a restricted set as well, check EDID and clamp as
  3416. * appropriate.
  3417. * DP may want to dither down to 6bpc to fit larger modes
  3418. *
  3419. * RETURNS:
  3420. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3421. * true if they don't match).
  3422. */
  3423. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3424. struct drm_framebuffer *fb,
  3425. unsigned int *pipe_bpp,
  3426. struct drm_display_mode *mode)
  3427. {
  3428. struct drm_device *dev = crtc->dev;
  3429. struct drm_i915_private *dev_priv = dev->dev_private;
  3430. struct drm_connector *connector;
  3431. struct intel_encoder *intel_encoder;
  3432. unsigned int display_bpc = UINT_MAX, bpc;
  3433. /* Walk the encoders & connectors on this crtc, get min bpc */
  3434. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3435. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3436. unsigned int lvds_bpc;
  3437. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3438. LVDS_A3_POWER_UP)
  3439. lvds_bpc = 8;
  3440. else
  3441. lvds_bpc = 6;
  3442. if (lvds_bpc < display_bpc) {
  3443. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  3444. display_bpc = lvds_bpc;
  3445. }
  3446. continue;
  3447. }
  3448. /* Not one of the known troublemakers, check the EDID */
  3449. list_for_each_entry(connector, &dev->mode_config.connector_list,
  3450. head) {
  3451. if (connector->encoder != &intel_encoder->base)
  3452. continue;
  3453. /* Don't use an invalid EDID bpc value */
  3454. if (connector->display_info.bpc &&
  3455. connector->display_info.bpc < display_bpc) {
  3456. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  3457. display_bpc = connector->display_info.bpc;
  3458. }
  3459. }
  3460. /*
  3461. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  3462. * through, clamp it down. (Note: >12bpc will be caught below.)
  3463. */
  3464. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  3465. if (display_bpc > 8 && display_bpc < 12) {
  3466. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  3467. display_bpc = 12;
  3468. } else {
  3469. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  3470. display_bpc = 8;
  3471. }
  3472. }
  3473. }
  3474. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3475. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  3476. display_bpc = 6;
  3477. }
  3478. /*
  3479. * We could just drive the pipe at the highest bpc all the time and
  3480. * enable dithering as needed, but that costs bandwidth. So choose
  3481. * the minimum value that expresses the full color range of the fb but
  3482. * also stays within the max display bpc discovered above.
  3483. */
  3484. switch (fb->depth) {
  3485. case 8:
  3486. bpc = 8; /* since we go through a colormap */
  3487. break;
  3488. case 15:
  3489. case 16:
  3490. bpc = 6; /* min is 18bpp */
  3491. break;
  3492. case 24:
  3493. bpc = 8;
  3494. break;
  3495. case 30:
  3496. bpc = 10;
  3497. break;
  3498. case 48:
  3499. bpc = 12;
  3500. break;
  3501. default:
  3502. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  3503. bpc = min((unsigned int)8, display_bpc);
  3504. break;
  3505. }
  3506. display_bpc = min(display_bpc, bpc);
  3507. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  3508. bpc, display_bpc);
  3509. *pipe_bpp = display_bpc * 3;
  3510. return display_bpc != bpc;
  3511. }
  3512. static int vlv_get_refclk(struct drm_crtc *crtc)
  3513. {
  3514. struct drm_device *dev = crtc->dev;
  3515. struct drm_i915_private *dev_priv = dev->dev_private;
  3516. int refclk = 27000; /* for DP & HDMI */
  3517. return 100000; /* only one validated so far */
  3518. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3519. refclk = 96000;
  3520. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3521. if (intel_panel_use_ssc(dev_priv))
  3522. refclk = 100000;
  3523. else
  3524. refclk = 96000;
  3525. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3526. refclk = 100000;
  3527. }
  3528. return refclk;
  3529. }
  3530. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3531. {
  3532. struct drm_device *dev = crtc->dev;
  3533. struct drm_i915_private *dev_priv = dev->dev_private;
  3534. int refclk;
  3535. if (IS_VALLEYVIEW(dev)) {
  3536. refclk = vlv_get_refclk(crtc);
  3537. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3538. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3539. refclk = dev_priv->lvds_ssc_freq * 1000;
  3540. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3541. refclk / 1000);
  3542. } else if (!IS_GEN2(dev)) {
  3543. refclk = 96000;
  3544. } else {
  3545. refclk = 48000;
  3546. }
  3547. return refclk;
  3548. }
  3549. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  3550. intel_clock_t *clock)
  3551. {
  3552. /* SDVO TV has fixed PLL values depend on its clock range,
  3553. this mirrors vbios setting. */
  3554. if (adjusted_mode->clock >= 100000
  3555. && adjusted_mode->clock < 140500) {
  3556. clock->p1 = 2;
  3557. clock->p2 = 10;
  3558. clock->n = 3;
  3559. clock->m1 = 16;
  3560. clock->m2 = 8;
  3561. } else if (adjusted_mode->clock >= 140500
  3562. && adjusted_mode->clock <= 200000) {
  3563. clock->p1 = 1;
  3564. clock->p2 = 10;
  3565. clock->n = 6;
  3566. clock->m1 = 12;
  3567. clock->m2 = 8;
  3568. }
  3569. }
  3570. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  3571. intel_clock_t *clock,
  3572. intel_clock_t *reduced_clock)
  3573. {
  3574. struct drm_device *dev = crtc->dev;
  3575. struct drm_i915_private *dev_priv = dev->dev_private;
  3576. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3577. int pipe = intel_crtc->pipe;
  3578. u32 fp, fp2 = 0;
  3579. if (IS_PINEVIEW(dev)) {
  3580. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3581. if (reduced_clock)
  3582. fp2 = (1 << reduced_clock->n) << 16 |
  3583. reduced_clock->m1 << 8 | reduced_clock->m2;
  3584. } else {
  3585. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3586. if (reduced_clock)
  3587. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3588. reduced_clock->m2;
  3589. }
  3590. I915_WRITE(FP0(pipe), fp);
  3591. intel_crtc->lowfreq_avail = false;
  3592. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3593. reduced_clock && i915_powersave) {
  3594. I915_WRITE(FP1(pipe), fp2);
  3595. intel_crtc->lowfreq_avail = true;
  3596. } else {
  3597. I915_WRITE(FP1(pipe), fp);
  3598. }
  3599. }
  3600. static void vlv_update_pll(struct drm_crtc *crtc,
  3601. struct drm_display_mode *mode,
  3602. struct drm_display_mode *adjusted_mode,
  3603. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3604. int num_connectors)
  3605. {
  3606. struct drm_device *dev = crtc->dev;
  3607. struct drm_i915_private *dev_priv = dev->dev_private;
  3608. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3609. int pipe = intel_crtc->pipe;
  3610. u32 dpll, mdiv, pdiv;
  3611. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3612. bool is_sdvo;
  3613. u32 temp;
  3614. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3615. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3616. dpll = DPLL_VGA_MODE_DIS;
  3617. dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
  3618. dpll |= DPLL_REFA_CLK_ENABLE_VLV;
  3619. dpll |= DPLL_INTEGRATED_CLOCK_VLV;
  3620. I915_WRITE(DPLL(pipe), dpll);
  3621. POSTING_READ(DPLL(pipe));
  3622. bestn = clock->n;
  3623. bestm1 = clock->m1;
  3624. bestm2 = clock->m2;
  3625. bestp1 = clock->p1;
  3626. bestp2 = clock->p2;
  3627. /*
  3628. * In Valleyview PLL and program lane counter registers are exposed
  3629. * through DPIO interface
  3630. */
  3631. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3632. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3633. mdiv |= ((bestn << DPIO_N_SHIFT));
  3634. mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  3635. mdiv |= (1 << DPIO_K_SHIFT);
  3636. mdiv |= DPIO_ENABLE_CALIBRATION;
  3637. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3638. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  3639. pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
  3640. (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  3641. (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
  3642. (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  3643. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  3644. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
  3645. dpll |= DPLL_VCO_ENABLE;
  3646. I915_WRITE(DPLL(pipe), dpll);
  3647. POSTING_READ(DPLL(pipe));
  3648. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3649. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3650. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
  3651. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3652. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3653. I915_WRITE(DPLL(pipe), dpll);
  3654. /* Wait for the clocks to stabilize. */
  3655. POSTING_READ(DPLL(pipe));
  3656. udelay(150);
  3657. temp = 0;
  3658. if (is_sdvo) {
  3659. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3660. if (temp > 1)
  3661. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3662. else
  3663. temp = 0;
  3664. }
  3665. I915_WRITE(DPLL_MD(pipe), temp);
  3666. POSTING_READ(DPLL_MD(pipe));
  3667. /* Now program lane control registers */
  3668. if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
  3669. || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  3670. {
  3671. temp = 0x1000C4;
  3672. if(pipe == 1)
  3673. temp |= (1 << 21);
  3674. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
  3675. }
  3676. if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
  3677. {
  3678. temp = 0x1000C4;
  3679. if(pipe == 1)
  3680. temp |= (1 << 21);
  3681. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
  3682. }
  3683. }
  3684. static void i9xx_update_pll(struct drm_crtc *crtc,
  3685. struct drm_display_mode *mode,
  3686. struct drm_display_mode *adjusted_mode,
  3687. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3688. int num_connectors)
  3689. {
  3690. struct drm_device *dev = crtc->dev;
  3691. struct drm_i915_private *dev_priv = dev->dev_private;
  3692. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3693. struct intel_encoder *encoder;
  3694. int pipe = intel_crtc->pipe;
  3695. u32 dpll;
  3696. bool is_sdvo;
  3697. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3698. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3699. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3700. dpll = DPLL_VGA_MODE_DIS;
  3701. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3702. dpll |= DPLLB_MODE_LVDS;
  3703. else
  3704. dpll |= DPLLB_MODE_DAC_SERIAL;
  3705. if (is_sdvo) {
  3706. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3707. if (pixel_multiplier > 1) {
  3708. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3709. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3710. }
  3711. dpll |= DPLL_DVO_HIGH_SPEED;
  3712. }
  3713. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3714. dpll |= DPLL_DVO_HIGH_SPEED;
  3715. /* compute bitmask from p1 value */
  3716. if (IS_PINEVIEW(dev))
  3717. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3718. else {
  3719. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3720. if (IS_G4X(dev) && reduced_clock)
  3721. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3722. }
  3723. switch (clock->p2) {
  3724. case 5:
  3725. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3726. break;
  3727. case 7:
  3728. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3729. break;
  3730. case 10:
  3731. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3732. break;
  3733. case 14:
  3734. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3735. break;
  3736. }
  3737. if (INTEL_INFO(dev)->gen >= 4)
  3738. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3739. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3740. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3741. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3742. /* XXX: just matching BIOS for now */
  3743. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3744. dpll |= 3;
  3745. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3746. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3747. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3748. else
  3749. dpll |= PLL_REF_INPUT_DREFCLK;
  3750. dpll |= DPLL_VCO_ENABLE;
  3751. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3752. POSTING_READ(DPLL(pipe));
  3753. udelay(150);
  3754. for_each_encoder_on_crtc(dev, crtc, encoder)
  3755. if (encoder->pre_pll_enable)
  3756. encoder->pre_pll_enable(encoder);
  3757. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3758. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3759. I915_WRITE(DPLL(pipe), dpll);
  3760. /* Wait for the clocks to stabilize. */
  3761. POSTING_READ(DPLL(pipe));
  3762. udelay(150);
  3763. if (INTEL_INFO(dev)->gen >= 4) {
  3764. u32 temp = 0;
  3765. if (is_sdvo) {
  3766. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3767. if (temp > 1)
  3768. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3769. else
  3770. temp = 0;
  3771. }
  3772. I915_WRITE(DPLL_MD(pipe), temp);
  3773. } else {
  3774. /* The pixel multiplier can only be updated once the
  3775. * DPLL is enabled and the clocks are stable.
  3776. *
  3777. * So write it again.
  3778. */
  3779. I915_WRITE(DPLL(pipe), dpll);
  3780. }
  3781. }
  3782. static void i8xx_update_pll(struct drm_crtc *crtc,
  3783. struct drm_display_mode *adjusted_mode,
  3784. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3785. int num_connectors)
  3786. {
  3787. struct drm_device *dev = crtc->dev;
  3788. struct drm_i915_private *dev_priv = dev->dev_private;
  3789. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3790. struct intel_encoder *encoder;
  3791. int pipe = intel_crtc->pipe;
  3792. u32 dpll;
  3793. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3794. dpll = DPLL_VGA_MODE_DIS;
  3795. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3796. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3797. } else {
  3798. if (clock->p1 == 2)
  3799. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3800. else
  3801. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3802. if (clock->p2 == 4)
  3803. dpll |= PLL_P2_DIVIDE_BY_4;
  3804. }
  3805. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3806. /* XXX: just matching BIOS for now */
  3807. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3808. dpll |= 3;
  3809. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3810. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3811. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3812. else
  3813. dpll |= PLL_REF_INPUT_DREFCLK;
  3814. dpll |= DPLL_VCO_ENABLE;
  3815. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3816. POSTING_READ(DPLL(pipe));
  3817. udelay(150);
  3818. for_each_encoder_on_crtc(dev, crtc, encoder)
  3819. if (encoder->pre_pll_enable)
  3820. encoder->pre_pll_enable(encoder);
  3821. I915_WRITE(DPLL(pipe), dpll);
  3822. /* Wait for the clocks to stabilize. */
  3823. POSTING_READ(DPLL(pipe));
  3824. udelay(150);
  3825. /* The pixel multiplier can only be updated once the
  3826. * DPLL is enabled and the clocks are stable.
  3827. *
  3828. * So write it again.
  3829. */
  3830. I915_WRITE(DPLL(pipe), dpll);
  3831. }
  3832. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3833. struct drm_display_mode *mode,
  3834. struct drm_display_mode *adjusted_mode)
  3835. {
  3836. struct drm_device *dev = intel_crtc->base.dev;
  3837. struct drm_i915_private *dev_priv = dev->dev_private;
  3838. enum pipe pipe = intel_crtc->pipe;
  3839. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3840. uint32_t vsyncshift;
  3841. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3842. /* the chip adds 2 halflines automatically */
  3843. adjusted_mode->crtc_vtotal -= 1;
  3844. adjusted_mode->crtc_vblank_end -= 1;
  3845. vsyncshift = adjusted_mode->crtc_hsync_start
  3846. - adjusted_mode->crtc_htotal / 2;
  3847. } else {
  3848. vsyncshift = 0;
  3849. }
  3850. if (INTEL_INFO(dev)->gen > 3)
  3851. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3852. I915_WRITE(HTOTAL(cpu_transcoder),
  3853. (adjusted_mode->crtc_hdisplay - 1) |
  3854. ((adjusted_mode->crtc_htotal - 1) << 16));
  3855. I915_WRITE(HBLANK(cpu_transcoder),
  3856. (adjusted_mode->crtc_hblank_start - 1) |
  3857. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3858. I915_WRITE(HSYNC(cpu_transcoder),
  3859. (adjusted_mode->crtc_hsync_start - 1) |
  3860. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3861. I915_WRITE(VTOTAL(cpu_transcoder),
  3862. (adjusted_mode->crtc_vdisplay - 1) |
  3863. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3864. I915_WRITE(VBLANK(cpu_transcoder),
  3865. (adjusted_mode->crtc_vblank_start - 1) |
  3866. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3867. I915_WRITE(VSYNC(cpu_transcoder),
  3868. (adjusted_mode->crtc_vsync_start - 1) |
  3869. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3870. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3871. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3872. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3873. * bits. */
  3874. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3875. (pipe == PIPE_B || pipe == PIPE_C))
  3876. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3877. /* pipesrc controls the size that is scaled from, which should
  3878. * always be the user's requested size.
  3879. */
  3880. I915_WRITE(PIPESRC(pipe),
  3881. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3882. }
  3883. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  3884. struct drm_display_mode *mode,
  3885. struct drm_display_mode *adjusted_mode,
  3886. int x, int y,
  3887. struct drm_framebuffer *fb)
  3888. {
  3889. struct drm_device *dev = crtc->dev;
  3890. struct drm_i915_private *dev_priv = dev->dev_private;
  3891. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3892. int pipe = intel_crtc->pipe;
  3893. int plane = intel_crtc->plane;
  3894. int refclk, num_connectors = 0;
  3895. intel_clock_t clock, reduced_clock;
  3896. u32 dspcntr, pipeconf;
  3897. bool ok, has_reduced_clock = false, is_sdvo = false;
  3898. bool is_lvds = false, is_tv = false, is_dp = false;
  3899. struct intel_encoder *encoder;
  3900. const intel_limit_t *limit;
  3901. int ret;
  3902. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3903. switch (encoder->type) {
  3904. case INTEL_OUTPUT_LVDS:
  3905. is_lvds = true;
  3906. break;
  3907. case INTEL_OUTPUT_SDVO:
  3908. case INTEL_OUTPUT_HDMI:
  3909. is_sdvo = true;
  3910. if (encoder->needs_tv_clock)
  3911. is_tv = true;
  3912. break;
  3913. case INTEL_OUTPUT_TVOUT:
  3914. is_tv = true;
  3915. break;
  3916. case INTEL_OUTPUT_DISPLAYPORT:
  3917. is_dp = true;
  3918. break;
  3919. }
  3920. num_connectors++;
  3921. }
  3922. refclk = i9xx_get_refclk(crtc, num_connectors);
  3923. /*
  3924. * Returns a set of divisors for the desired target clock with the given
  3925. * refclk, or FALSE. The returned values represent the clock equation:
  3926. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3927. */
  3928. limit = intel_limit(crtc, refclk);
  3929. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3930. &clock);
  3931. if (!ok) {
  3932. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3933. return -EINVAL;
  3934. }
  3935. /* Ensure that the cursor is valid for the new mode before changing... */
  3936. intel_crtc_update_cursor(crtc, true);
  3937. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3938. /*
  3939. * Ensure we match the reduced clock's P to the target clock.
  3940. * If the clocks don't match, we can't switch the display clock
  3941. * by using the FP0/FP1. In such case we will disable the LVDS
  3942. * downclock feature.
  3943. */
  3944. has_reduced_clock = limit->find_pll(limit, crtc,
  3945. dev_priv->lvds_downclock,
  3946. refclk,
  3947. &clock,
  3948. &reduced_clock);
  3949. }
  3950. if (is_sdvo && is_tv)
  3951. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  3952. if (IS_GEN2(dev))
  3953. i8xx_update_pll(crtc, adjusted_mode, &clock,
  3954. has_reduced_clock ? &reduced_clock : NULL,
  3955. num_connectors);
  3956. else if (IS_VALLEYVIEW(dev))
  3957. vlv_update_pll(crtc, mode, adjusted_mode, &clock,
  3958. has_reduced_clock ? &reduced_clock : NULL,
  3959. num_connectors);
  3960. else
  3961. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  3962. has_reduced_clock ? &reduced_clock : NULL,
  3963. num_connectors);
  3964. /* setup pipeconf */
  3965. pipeconf = I915_READ(PIPECONF(pipe));
  3966. /* Set up the display plane register */
  3967. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3968. if (pipe == 0)
  3969. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3970. else
  3971. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3972. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  3973. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3974. * core speed.
  3975. *
  3976. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3977. * pipe == 0 check?
  3978. */
  3979. if (mode->clock >
  3980. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3981. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3982. else
  3983. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  3984. }
  3985. /* default to 8bpc */
  3986. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  3987. if (is_dp) {
  3988. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3989. pipeconf |= PIPECONF_BPP_6 |
  3990. PIPECONF_DITHER_EN |
  3991. PIPECONF_DITHER_TYPE_SP;
  3992. }
  3993. }
  3994. if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3995. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3996. pipeconf |= PIPECONF_BPP_6 |
  3997. PIPECONF_ENABLE |
  3998. I965_PIPECONF_ACTIVE;
  3999. }
  4000. }
  4001. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4002. drm_mode_debug_printmodeline(mode);
  4003. if (HAS_PIPE_CXSR(dev)) {
  4004. if (intel_crtc->lowfreq_avail) {
  4005. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4006. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4007. } else {
  4008. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4009. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4010. }
  4011. }
  4012. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4013. if (!IS_GEN2(dev) &&
  4014. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4015. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4016. else
  4017. pipeconf |= PIPECONF_PROGRESSIVE;
  4018. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4019. /* pipesrc and dspsize control the size that is scaled from,
  4020. * which should always be the user's requested size.
  4021. */
  4022. I915_WRITE(DSPSIZE(plane),
  4023. ((mode->vdisplay - 1) << 16) |
  4024. (mode->hdisplay - 1));
  4025. I915_WRITE(DSPPOS(plane), 0);
  4026. I915_WRITE(PIPECONF(pipe), pipeconf);
  4027. POSTING_READ(PIPECONF(pipe));
  4028. intel_enable_pipe(dev_priv, pipe, false);
  4029. intel_wait_for_vblank(dev, pipe);
  4030. I915_WRITE(DSPCNTR(plane), dspcntr);
  4031. POSTING_READ(DSPCNTR(plane));
  4032. ret = intel_pipe_set_base(crtc, x, y, fb);
  4033. intel_update_watermarks(dev);
  4034. return ret;
  4035. }
  4036. /*
  4037. * Initialize reference clocks when the driver loads
  4038. */
  4039. void ironlake_init_pch_refclk(struct drm_device *dev)
  4040. {
  4041. struct drm_i915_private *dev_priv = dev->dev_private;
  4042. struct drm_mode_config *mode_config = &dev->mode_config;
  4043. struct intel_encoder *encoder;
  4044. u32 temp;
  4045. bool has_lvds = false;
  4046. bool has_cpu_edp = false;
  4047. bool has_pch_edp = false;
  4048. bool has_panel = false;
  4049. bool has_ck505 = false;
  4050. bool can_ssc = false;
  4051. /* We need to take the global config into account */
  4052. list_for_each_entry(encoder, &mode_config->encoder_list,
  4053. base.head) {
  4054. switch (encoder->type) {
  4055. case INTEL_OUTPUT_LVDS:
  4056. has_panel = true;
  4057. has_lvds = true;
  4058. break;
  4059. case INTEL_OUTPUT_EDP:
  4060. has_panel = true;
  4061. if (intel_encoder_is_pch_edp(&encoder->base))
  4062. has_pch_edp = true;
  4063. else
  4064. has_cpu_edp = true;
  4065. break;
  4066. }
  4067. }
  4068. if (HAS_PCH_IBX(dev)) {
  4069. has_ck505 = dev_priv->display_clock_mode;
  4070. can_ssc = has_ck505;
  4071. } else {
  4072. has_ck505 = false;
  4073. can_ssc = true;
  4074. }
  4075. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4076. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4077. has_ck505);
  4078. /* Ironlake: try to setup display ref clock before DPLL
  4079. * enabling. This is only under driver's control after
  4080. * PCH B stepping, previous chipset stepping should be
  4081. * ignoring this setting.
  4082. */
  4083. temp = I915_READ(PCH_DREF_CONTROL);
  4084. /* Always enable nonspread source */
  4085. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4086. if (has_ck505)
  4087. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4088. else
  4089. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4090. if (has_panel) {
  4091. temp &= ~DREF_SSC_SOURCE_MASK;
  4092. temp |= DREF_SSC_SOURCE_ENABLE;
  4093. /* SSC must be turned on before enabling the CPU output */
  4094. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4095. DRM_DEBUG_KMS("Using SSC on panel\n");
  4096. temp |= DREF_SSC1_ENABLE;
  4097. } else
  4098. temp &= ~DREF_SSC1_ENABLE;
  4099. /* Get SSC going before enabling the outputs */
  4100. I915_WRITE(PCH_DREF_CONTROL, temp);
  4101. POSTING_READ(PCH_DREF_CONTROL);
  4102. udelay(200);
  4103. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4104. /* Enable CPU source on CPU attached eDP */
  4105. if (has_cpu_edp) {
  4106. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4107. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4108. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4109. }
  4110. else
  4111. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4112. } else
  4113. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4114. I915_WRITE(PCH_DREF_CONTROL, temp);
  4115. POSTING_READ(PCH_DREF_CONTROL);
  4116. udelay(200);
  4117. } else {
  4118. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4119. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4120. /* Turn off CPU output */
  4121. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4122. I915_WRITE(PCH_DREF_CONTROL, temp);
  4123. POSTING_READ(PCH_DREF_CONTROL);
  4124. udelay(200);
  4125. /* Turn off the SSC source */
  4126. temp &= ~DREF_SSC_SOURCE_MASK;
  4127. temp |= DREF_SSC_SOURCE_DISABLE;
  4128. /* Turn off SSC1 */
  4129. temp &= ~ DREF_SSC1_ENABLE;
  4130. I915_WRITE(PCH_DREF_CONTROL, temp);
  4131. POSTING_READ(PCH_DREF_CONTROL);
  4132. udelay(200);
  4133. }
  4134. }
  4135. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4136. {
  4137. struct drm_device *dev = crtc->dev;
  4138. struct drm_i915_private *dev_priv = dev->dev_private;
  4139. struct intel_encoder *encoder;
  4140. struct intel_encoder *edp_encoder = NULL;
  4141. int num_connectors = 0;
  4142. bool is_lvds = false;
  4143. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4144. switch (encoder->type) {
  4145. case INTEL_OUTPUT_LVDS:
  4146. is_lvds = true;
  4147. break;
  4148. case INTEL_OUTPUT_EDP:
  4149. edp_encoder = encoder;
  4150. break;
  4151. }
  4152. num_connectors++;
  4153. }
  4154. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4155. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4156. dev_priv->lvds_ssc_freq);
  4157. return dev_priv->lvds_ssc_freq * 1000;
  4158. }
  4159. return 120000;
  4160. }
  4161. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4162. struct drm_display_mode *adjusted_mode,
  4163. bool dither)
  4164. {
  4165. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4166. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4167. int pipe = intel_crtc->pipe;
  4168. uint32_t val;
  4169. val = I915_READ(PIPECONF(pipe));
  4170. val &= ~PIPE_BPC_MASK;
  4171. switch (intel_crtc->bpp) {
  4172. case 18:
  4173. val |= PIPE_6BPC;
  4174. break;
  4175. case 24:
  4176. val |= PIPE_8BPC;
  4177. break;
  4178. case 30:
  4179. val |= PIPE_10BPC;
  4180. break;
  4181. case 36:
  4182. val |= PIPE_12BPC;
  4183. break;
  4184. default:
  4185. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4186. BUG();
  4187. }
  4188. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4189. if (dither)
  4190. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4191. val &= ~PIPECONF_INTERLACE_MASK;
  4192. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4193. val |= PIPECONF_INTERLACED_ILK;
  4194. else
  4195. val |= PIPECONF_PROGRESSIVE;
  4196. I915_WRITE(PIPECONF(pipe), val);
  4197. POSTING_READ(PIPECONF(pipe));
  4198. }
  4199. static void haswell_set_pipeconf(struct drm_crtc *crtc,
  4200. struct drm_display_mode *adjusted_mode,
  4201. bool dither)
  4202. {
  4203. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4204. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4205. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4206. uint32_t val;
  4207. val = I915_READ(PIPECONF(cpu_transcoder));
  4208. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4209. if (dither)
  4210. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4211. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4212. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4213. val |= PIPECONF_INTERLACED_ILK;
  4214. else
  4215. val |= PIPECONF_PROGRESSIVE;
  4216. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4217. POSTING_READ(PIPECONF(cpu_transcoder));
  4218. }
  4219. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4220. struct drm_display_mode *adjusted_mode,
  4221. intel_clock_t *clock,
  4222. bool *has_reduced_clock,
  4223. intel_clock_t *reduced_clock)
  4224. {
  4225. struct drm_device *dev = crtc->dev;
  4226. struct drm_i915_private *dev_priv = dev->dev_private;
  4227. struct intel_encoder *intel_encoder;
  4228. int refclk;
  4229. const intel_limit_t *limit;
  4230. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4231. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4232. switch (intel_encoder->type) {
  4233. case INTEL_OUTPUT_LVDS:
  4234. is_lvds = true;
  4235. break;
  4236. case INTEL_OUTPUT_SDVO:
  4237. case INTEL_OUTPUT_HDMI:
  4238. is_sdvo = true;
  4239. if (intel_encoder->needs_tv_clock)
  4240. is_tv = true;
  4241. break;
  4242. case INTEL_OUTPUT_TVOUT:
  4243. is_tv = true;
  4244. break;
  4245. }
  4246. }
  4247. refclk = ironlake_get_refclk(crtc);
  4248. /*
  4249. * Returns a set of divisors for the desired target clock with the given
  4250. * refclk, or FALSE. The returned values represent the clock equation:
  4251. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4252. */
  4253. limit = intel_limit(crtc, refclk);
  4254. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4255. clock);
  4256. if (!ret)
  4257. return false;
  4258. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4259. /*
  4260. * Ensure we match the reduced clock's P to the target clock.
  4261. * If the clocks don't match, we can't switch the display clock
  4262. * by using the FP0/FP1. In such case we will disable the LVDS
  4263. * downclock feature.
  4264. */
  4265. *has_reduced_clock = limit->find_pll(limit, crtc,
  4266. dev_priv->lvds_downclock,
  4267. refclk,
  4268. clock,
  4269. reduced_clock);
  4270. }
  4271. if (is_sdvo && is_tv)
  4272. i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
  4273. return true;
  4274. }
  4275. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4276. {
  4277. struct drm_i915_private *dev_priv = dev->dev_private;
  4278. uint32_t temp;
  4279. temp = I915_READ(SOUTH_CHICKEN1);
  4280. if (temp & FDI_BC_BIFURCATION_SELECT)
  4281. return;
  4282. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4283. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4284. temp |= FDI_BC_BIFURCATION_SELECT;
  4285. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4286. I915_WRITE(SOUTH_CHICKEN1, temp);
  4287. POSTING_READ(SOUTH_CHICKEN1);
  4288. }
  4289. static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
  4290. {
  4291. struct drm_device *dev = intel_crtc->base.dev;
  4292. struct drm_i915_private *dev_priv = dev->dev_private;
  4293. struct intel_crtc *pipe_B_crtc =
  4294. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  4295. DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
  4296. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4297. if (intel_crtc->fdi_lanes > 4) {
  4298. DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
  4299. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4300. /* Clamp lanes to avoid programming the hw with bogus values. */
  4301. intel_crtc->fdi_lanes = 4;
  4302. return false;
  4303. }
  4304. if (dev_priv->num_pipe == 2)
  4305. return true;
  4306. switch (intel_crtc->pipe) {
  4307. case PIPE_A:
  4308. return true;
  4309. case PIPE_B:
  4310. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  4311. intel_crtc->fdi_lanes > 2) {
  4312. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4313. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4314. /* Clamp lanes to avoid programming the hw with bogus values. */
  4315. intel_crtc->fdi_lanes = 2;
  4316. return false;
  4317. }
  4318. if (intel_crtc->fdi_lanes > 2)
  4319. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4320. else
  4321. cpt_enable_fdi_bc_bifurcation(dev);
  4322. return true;
  4323. case PIPE_C:
  4324. if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
  4325. if (intel_crtc->fdi_lanes > 2) {
  4326. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4327. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4328. /* Clamp lanes to avoid programming the hw with bogus values. */
  4329. intel_crtc->fdi_lanes = 2;
  4330. return false;
  4331. }
  4332. } else {
  4333. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  4334. return false;
  4335. }
  4336. cpt_enable_fdi_bc_bifurcation(dev);
  4337. return true;
  4338. default:
  4339. BUG();
  4340. }
  4341. }
  4342. static void ironlake_set_m_n(struct drm_crtc *crtc,
  4343. struct drm_display_mode *mode,
  4344. struct drm_display_mode *adjusted_mode)
  4345. {
  4346. struct drm_device *dev = crtc->dev;
  4347. struct drm_i915_private *dev_priv = dev->dev_private;
  4348. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4349. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4350. struct intel_encoder *intel_encoder, *edp_encoder = NULL;
  4351. struct fdi_m_n m_n = {0};
  4352. int target_clock, pixel_multiplier, lane, link_bw;
  4353. bool is_dp = false, is_cpu_edp = false;
  4354. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4355. switch (intel_encoder->type) {
  4356. case INTEL_OUTPUT_DISPLAYPORT:
  4357. is_dp = true;
  4358. break;
  4359. case INTEL_OUTPUT_EDP:
  4360. is_dp = true;
  4361. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4362. is_cpu_edp = true;
  4363. edp_encoder = intel_encoder;
  4364. break;
  4365. }
  4366. }
  4367. /* FDI link */
  4368. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4369. lane = 0;
  4370. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4371. according to current link config */
  4372. if (is_cpu_edp) {
  4373. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  4374. } else {
  4375. /* FDI is a binary signal running at ~2.7GHz, encoding
  4376. * each output octet as 10 bits. The actual frequency
  4377. * is stored as a divider into a 100MHz clock, and the
  4378. * mode pixel clock is stored in units of 1KHz.
  4379. * Hence the bw of each lane in terms of the mode signal
  4380. * is:
  4381. */
  4382. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4383. }
  4384. /* [e]DP over FDI requires target mode clock instead of link clock. */
  4385. if (edp_encoder)
  4386. target_clock = intel_edp_target_clock(edp_encoder, mode);
  4387. else if (is_dp)
  4388. target_clock = mode->clock;
  4389. else
  4390. target_clock = adjusted_mode->clock;
  4391. if (!lane) {
  4392. /*
  4393. * Account for spread spectrum to avoid
  4394. * oversubscribing the link. Max center spread
  4395. * is 2.5%; use 5% for safety's sake.
  4396. */
  4397. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4398. lane = bps / (link_bw * 8) + 1;
  4399. }
  4400. intel_crtc->fdi_lanes = lane;
  4401. if (pixel_multiplier > 1)
  4402. link_bw *= pixel_multiplier;
  4403. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4404. &m_n);
  4405. I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4406. I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
  4407. I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
  4408. I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
  4409. }
  4410. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4411. struct drm_display_mode *adjusted_mode,
  4412. intel_clock_t *clock, u32 fp)
  4413. {
  4414. struct drm_crtc *crtc = &intel_crtc->base;
  4415. struct drm_device *dev = crtc->dev;
  4416. struct drm_i915_private *dev_priv = dev->dev_private;
  4417. struct intel_encoder *intel_encoder;
  4418. uint32_t dpll;
  4419. int factor, pixel_multiplier, num_connectors = 0;
  4420. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4421. bool is_dp = false, is_cpu_edp = false;
  4422. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4423. switch (intel_encoder->type) {
  4424. case INTEL_OUTPUT_LVDS:
  4425. is_lvds = true;
  4426. break;
  4427. case INTEL_OUTPUT_SDVO:
  4428. case INTEL_OUTPUT_HDMI:
  4429. is_sdvo = true;
  4430. if (intel_encoder->needs_tv_clock)
  4431. is_tv = true;
  4432. break;
  4433. case INTEL_OUTPUT_TVOUT:
  4434. is_tv = true;
  4435. break;
  4436. case INTEL_OUTPUT_DISPLAYPORT:
  4437. is_dp = true;
  4438. break;
  4439. case INTEL_OUTPUT_EDP:
  4440. is_dp = true;
  4441. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4442. is_cpu_edp = true;
  4443. break;
  4444. }
  4445. num_connectors++;
  4446. }
  4447. /* Enable autotuning of the PLL clock (if permissible) */
  4448. factor = 21;
  4449. if (is_lvds) {
  4450. if ((intel_panel_use_ssc(dev_priv) &&
  4451. dev_priv->lvds_ssc_freq == 100) ||
  4452. intel_is_dual_link_lvds(dev))
  4453. factor = 25;
  4454. } else if (is_sdvo && is_tv)
  4455. factor = 20;
  4456. if (clock->m < factor * clock->n)
  4457. fp |= FP_CB_TUNE;
  4458. dpll = 0;
  4459. if (is_lvds)
  4460. dpll |= DPLLB_MODE_LVDS;
  4461. else
  4462. dpll |= DPLLB_MODE_DAC_SERIAL;
  4463. if (is_sdvo) {
  4464. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4465. if (pixel_multiplier > 1) {
  4466. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4467. }
  4468. dpll |= DPLL_DVO_HIGH_SPEED;
  4469. }
  4470. if (is_dp && !is_cpu_edp)
  4471. dpll |= DPLL_DVO_HIGH_SPEED;
  4472. /* compute bitmask from p1 value */
  4473. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4474. /* also FPA1 */
  4475. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4476. switch (clock->p2) {
  4477. case 5:
  4478. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4479. break;
  4480. case 7:
  4481. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4482. break;
  4483. case 10:
  4484. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4485. break;
  4486. case 14:
  4487. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4488. break;
  4489. }
  4490. if (is_sdvo && is_tv)
  4491. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4492. else if (is_tv)
  4493. /* XXX: just matching BIOS for now */
  4494. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4495. dpll |= 3;
  4496. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4497. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4498. else
  4499. dpll |= PLL_REF_INPUT_DREFCLK;
  4500. return dpll;
  4501. }
  4502. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4503. struct drm_display_mode *mode,
  4504. struct drm_display_mode *adjusted_mode,
  4505. int x, int y,
  4506. struct drm_framebuffer *fb)
  4507. {
  4508. struct drm_device *dev = crtc->dev;
  4509. struct drm_i915_private *dev_priv = dev->dev_private;
  4510. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4511. int pipe = intel_crtc->pipe;
  4512. int plane = intel_crtc->plane;
  4513. int num_connectors = 0;
  4514. intel_clock_t clock, reduced_clock;
  4515. u32 dpll, fp = 0, fp2 = 0;
  4516. bool ok, has_reduced_clock = false;
  4517. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4518. struct intel_encoder *encoder;
  4519. int ret;
  4520. bool dither, fdi_config_ok;
  4521. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4522. switch (encoder->type) {
  4523. case INTEL_OUTPUT_LVDS:
  4524. is_lvds = true;
  4525. break;
  4526. case INTEL_OUTPUT_DISPLAYPORT:
  4527. is_dp = true;
  4528. break;
  4529. case INTEL_OUTPUT_EDP:
  4530. is_dp = true;
  4531. if (!intel_encoder_is_pch_edp(&encoder->base))
  4532. is_cpu_edp = true;
  4533. break;
  4534. }
  4535. num_connectors++;
  4536. }
  4537. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4538. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4539. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4540. &has_reduced_clock, &reduced_clock);
  4541. if (!ok) {
  4542. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4543. return -EINVAL;
  4544. }
  4545. /* Ensure that the cursor is valid for the new mode before changing... */
  4546. intel_crtc_update_cursor(crtc, true);
  4547. /* determine panel color depth */
  4548. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4549. adjusted_mode);
  4550. if (is_lvds && dev_priv->lvds_dither)
  4551. dither = true;
  4552. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4553. if (has_reduced_clock)
  4554. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4555. reduced_clock.m2;
  4556. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
  4557. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4558. drm_mode_debug_printmodeline(mode);
  4559. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4560. if (!is_cpu_edp) {
  4561. struct intel_pch_pll *pll;
  4562. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4563. if (pll == NULL) {
  4564. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4565. pipe);
  4566. return -EINVAL;
  4567. }
  4568. } else
  4569. intel_put_pch_pll(intel_crtc);
  4570. if (is_dp && !is_cpu_edp) {
  4571. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4572. } else {
  4573. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4574. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4575. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4576. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4577. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4578. }
  4579. for_each_encoder_on_crtc(dev, crtc, encoder)
  4580. if (encoder->pre_pll_enable)
  4581. encoder->pre_pll_enable(encoder);
  4582. if (intel_crtc->pch_pll) {
  4583. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4584. /* Wait for the clocks to stabilize. */
  4585. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4586. udelay(150);
  4587. /* The pixel multiplier can only be updated once the
  4588. * DPLL is enabled and the clocks are stable.
  4589. *
  4590. * So write it again.
  4591. */
  4592. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4593. }
  4594. intel_crtc->lowfreq_avail = false;
  4595. if (intel_crtc->pch_pll) {
  4596. if (is_lvds && has_reduced_clock && i915_powersave) {
  4597. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4598. intel_crtc->lowfreq_avail = true;
  4599. } else {
  4600. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4601. }
  4602. }
  4603. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4604. /* Note, this also computes intel_crtc->fdi_lanes which is used below in
  4605. * ironlake_check_fdi_lanes. */
  4606. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4607. fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
  4608. ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  4609. intel_wait_for_vblank(dev, pipe);
  4610. /* Set up the display plane register */
  4611. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4612. POSTING_READ(DSPCNTR(plane));
  4613. ret = intel_pipe_set_base(crtc, x, y, fb);
  4614. intel_update_watermarks(dev);
  4615. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4616. return fdi_config_ok ? ret : -EINVAL;
  4617. }
  4618. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4619. struct drm_display_mode *mode,
  4620. struct drm_display_mode *adjusted_mode,
  4621. int x, int y,
  4622. struct drm_framebuffer *fb)
  4623. {
  4624. struct drm_device *dev = crtc->dev;
  4625. struct drm_i915_private *dev_priv = dev->dev_private;
  4626. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4627. int pipe = intel_crtc->pipe;
  4628. int plane = intel_crtc->plane;
  4629. int num_connectors = 0;
  4630. bool is_dp = false, is_cpu_edp = false;
  4631. struct intel_encoder *encoder;
  4632. int ret;
  4633. bool dither;
  4634. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4635. switch (encoder->type) {
  4636. case INTEL_OUTPUT_DISPLAYPORT:
  4637. is_dp = true;
  4638. break;
  4639. case INTEL_OUTPUT_EDP:
  4640. is_dp = true;
  4641. if (!intel_encoder_is_pch_edp(&encoder->base))
  4642. is_cpu_edp = true;
  4643. break;
  4644. }
  4645. num_connectors++;
  4646. }
  4647. if (is_cpu_edp)
  4648. intel_crtc->cpu_transcoder = TRANSCODER_EDP;
  4649. else
  4650. intel_crtc->cpu_transcoder = pipe;
  4651. /* We are not sure yet this won't happen. */
  4652. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  4653. INTEL_PCH_TYPE(dev));
  4654. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4655. num_connectors, pipe_name(pipe));
  4656. WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
  4657. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  4658. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  4659. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  4660. return -EINVAL;
  4661. /* Ensure that the cursor is valid for the new mode before changing... */
  4662. intel_crtc_update_cursor(crtc, true);
  4663. /* determine panel color depth */
  4664. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4665. adjusted_mode);
  4666. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4667. drm_mode_debug_printmodeline(mode);
  4668. if (is_dp && !is_cpu_edp)
  4669. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4670. intel_crtc->lowfreq_avail = false;
  4671. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4672. if (!is_dp || is_cpu_edp)
  4673. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4674. haswell_set_pipeconf(crtc, adjusted_mode, dither);
  4675. /* Set up the display plane register */
  4676. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4677. POSTING_READ(DSPCNTR(plane));
  4678. ret = intel_pipe_set_base(crtc, x, y, fb);
  4679. intel_update_watermarks(dev);
  4680. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4681. return ret;
  4682. }
  4683. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4684. struct drm_display_mode *mode,
  4685. struct drm_display_mode *adjusted_mode,
  4686. int x, int y,
  4687. struct drm_framebuffer *fb)
  4688. {
  4689. struct drm_device *dev = crtc->dev;
  4690. struct drm_i915_private *dev_priv = dev->dev_private;
  4691. struct drm_encoder_helper_funcs *encoder_funcs;
  4692. struct intel_encoder *encoder;
  4693. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4694. int pipe = intel_crtc->pipe;
  4695. int ret;
  4696. drm_vblank_pre_modeset(dev, pipe);
  4697. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4698. x, y, fb);
  4699. drm_vblank_post_modeset(dev, pipe);
  4700. if (ret != 0)
  4701. return ret;
  4702. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4703. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  4704. encoder->base.base.id,
  4705. drm_get_encoder_name(&encoder->base),
  4706. mode->base.id, mode->name);
  4707. encoder_funcs = encoder->base.helper_private;
  4708. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  4709. }
  4710. return 0;
  4711. }
  4712. static bool intel_eld_uptodate(struct drm_connector *connector,
  4713. int reg_eldv, uint32_t bits_eldv,
  4714. int reg_elda, uint32_t bits_elda,
  4715. int reg_edid)
  4716. {
  4717. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4718. uint8_t *eld = connector->eld;
  4719. uint32_t i;
  4720. i = I915_READ(reg_eldv);
  4721. i &= bits_eldv;
  4722. if (!eld[0])
  4723. return !i;
  4724. if (!i)
  4725. return false;
  4726. i = I915_READ(reg_elda);
  4727. i &= ~bits_elda;
  4728. I915_WRITE(reg_elda, i);
  4729. for (i = 0; i < eld[2]; i++)
  4730. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  4731. return false;
  4732. return true;
  4733. }
  4734. static void g4x_write_eld(struct drm_connector *connector,
  4735. struct drm_crtc *crtc)
  4736. {
  4737. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4738. uint8_t *eld = connector->eld;
  4739. uint32_t eldv;
  4740. uint32_t len;
  4741. uint32_t i;
  4742. i = I915_READ(G4X_AUD_VID_DID);
  4743. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  4744. eldv = G4X_ELDV_DEVCL_DEVBLC;
  4745. else
  4746. eldv = G4X_ELDV_DEVCTG;
  4747. if (intel_eld_uptodate(connector,
  4748. G4X_AUD_CNTL_ST, eldv,
  4749. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  4750. G4X_HDMIW_HDMIEDID))
  4751. return;
  4752. i = I915_READ(G4X_AUD_CNTL_ST);
  4753. i &= ~(eldv | G4X_ELD_ADDR);
  4754. len = (i >> 9) & 0x1f; /* ELD buffer size */
  4755. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4756. if (!eld[0])
  4757. return;
  4758. len = min_t(uint8_t, eld[2], len);
  4759. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4760. for (i = 0; i < len; i++)
  4761. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  4762. i = I915_READ(G4X_AUD_CNTL_ST);
  4763. i |= eldv;
  4764. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4765. }
  4766. static void haswell_write_eld(struct drm_connector *connector,
  4767. struct drm_crtc *crtc)
  4768. {
  4769. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4770. uint8_t *eld = connector->eld;
  4771. struct drm_device *dev = crtc->dev;
  4772. uint32_t eldv;
  4773. uint32_t i;
  4774. int len;
  4775. int pipe = to_intel_crtc(crtc)->pipe;
  4776. int tmp;
  4777. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  4778. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  4779. int aud_config = HSW_AUD_CFG(pipe);
  4780. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  4781. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  4782. /* Audio output enable */
  4783. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  4784. tmp = I915_READ(aud_cntrl_st2);
  4785. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  4786. I915_WRITE(aud_cntrl_st2, tmp);
  4787. /* Wait for 1 vertical blank */
  4788. intel_wait_for_vblank(dev, pipe);
  4789. /* Set ELD valid state */
  4790. tmp = I915_READ(aud_cntrl_st2);
  4791. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  4792. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  4793. I915_WRITE(aud_cntrl_st2, tmp);
  4794. tmp = I915_READ(aud_cntrl_st2);
  4795. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  4796. /* Enable HDMI mode */
  4797. tmp = I915_READ(aud_config);
  4798. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  4799. /* clear N_programing_enable and N_value_index */
  4800. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  4801. I915_WRITE(aud_config, tmp);
  4802. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4803. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  4804. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4805. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4806. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4807. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4808. } else
  4809. I915_WRITE(aud_config, 0);
  4810. if (intel_eld_uptodate(connector,
  4811. aud_cntrl_st2, eldv,
  4812. aud_cntl_st, IBX_ELD_ADDRESS,
  4813. hdmiw_hdmiedid))
  4814. return;
  4815. i = I915_READ(aud_cntrl_st2);
  4816. i &= ~eldv;
  4817. I915_WRITE(aud_cntrl_st2, i);
  4818. if (!eld[0])
  4819. return;
  4820. i = I915_READ(aud_cntl_st);
  4821. i &= ~IBX_ELD_ADDRESS;
  4822. I915_WRITE(aud_cntl_st, i);
  4823. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  4824. DRM_DEBUG_DRIVER("port num:%d\n", i);
  4825. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4826. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4827. for (i = 0; i < len; i++)
  4828. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4829. i = I915_READ(aud_cntrl_st2);
  4830. i |= eldv;
  4831. I915_WRITE(aud_cntrl_st2, i);
  4832. }
  4833. static void ironlake_write_eld(struct drm_connector *connector,
  4834. struct drm_crtc *crtc)
  4835. {
  4836. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4837. uint8_t *eld = connector->eld;
  4838. uint32_t eldv;
  4839. uint32_t i;
  4840. int len;
  4841. int hdmiw_hdmiedid;
  4842. int aud_config;
  4843. int aud_cntl_st;
  4844. int aud_cntrl_st2;
  4845. int pipe = to_intel_crtc(crtc)->pipe;
  4846. if (HAS_PCH_IBX(connector->dev)) {
  4847. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  4848. aud_config = IBX_AUD_CFG(pipe);
  4849. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  4850. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  4851. } else {
  4852. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  4853. aud_config = CPT_AUD_CFG(pipe);
  4854. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  4855. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  4856. }
  4857. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4858. i = I915_READ(aud_cntl_st);
  4859. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  4860. if (!i) {
  4861. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  4862. /* operate blindly on all ports */
  4863. eldv = IBX_ELD_VALIDB;
  4864. eldv |= IBX_ELD_VALIDB << 4;
  4865. eldv |= IBX_ELD_VALIDB << 8;
  4866. } else {
  4867. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  4868. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  4869. }
  4870. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4871. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4872. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4873. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4874. } else
  4875. I915_WRITE(aud_config, 0);
  4876. if (intel_eld_uptodate(connector,
  4877. aud_cntrl_st2, eldv,
  4878. aud_cntl_st, IBX_ELD_ADDRESS,
  4879. hdmiw_hdmiedid))
  4880. return;
  4881. i = I915_READ(aud_cntrl_st2);
  4882. i &= ~eldv;
  4883. I915_WRITE(aud_cntrl_st2, i);
  4884. if (!eld[0])
  4885. return;
  4886. i = I915_READ(aud_cntl_st);
  4887. i &= ~IBX_ELD_ADDRESS;
  4888. I915_WRITE(aud_cntl_st, i);
  4889. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4890. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4891. for (i = 0; i < len; i++)
  4892. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4893. i = I915_READ(aud_cntrl_st2);
  4894. i |= eldv;
  4895. I915_WRITE(aud_cntrl_st2, i);
  4896. }
  4897. void intel_write_eld(struct drm_encoder *encoder,
  4898. struct drm_display_mode *mode)
  4899. {
  4900. struct drm_crtc *crtc = encoder->crtc;
  4901. struct drm_connector *connector;
  4902. struct drm_device *dev = encoder->dev;
  4903. struct drm_i915_private *dev_priv = dev->dev_private;
  4904. connector = drm_select_eld(encoder, mode);
  4905. if (!connector)
  4906. return;
  4907. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4908. connector->base.id,
  4909. drm_get_connector_name(connector),
  4910. connector->encoder->base.id,
  4911. drm_get_encoder_name(connector->encoder));
  4912. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  4913. if (dev_priv->display.write_eld)
  4914. dev_priv->display.write_eld(connector, crtc);
  4915. }
  4916. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  4917. void intel_crtc_load_lut(struct drm_crtc *crtc)
  4918. {
  4919. struct drm_device *dev = crtc->dev;
  4920. struct drm_i915_private *dev_priv = dev->dev_private;
  4921. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4922. int palreg = PALETTE(intel_crtc->pipe);
  4923. int i;
  4924. /* The clocks have to be on to load the palette. */
  4925. if (!crtc->enabled || !intel_crtc->active)
  4926. return;
  4927. /* use legacy palette for Ironlake */
  4928. if (HAS_PCH_SPLIT(dev))
  4929. palreg = LGC_PALETTE(intel_crtc->pipe);
  4930. for (i = 0; i < 256; i++) {
  4931. I915_WRITE(palreg + 4 * i,
  4932. (intel_crtc->lut_r[i] << 16) |
  4933. (intel_crtc->lut_g[i] << 8) |
  4934. intel_crtc->lut_b[i]);
  4935. }
  4936. }
  4937. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  4938. {
  4939. struct drm_device *dev = crtc->dev;
  4940. struct drm_i915_private *dev_priv = dev->dev_private;
  4941. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4942. bool visible = base != 0;
  4943. u32 cntl;
  4944. if (intel_crtc->cursor_visible == visible)
  4945. return;
  4946. cntl = I915_READ(_CURACNTR);
  4947. if (visible) {
  4948. /* On these chipsets we can only modify the base whilst
  4949. * the cursor is disabled.
  4950. */
  4951. I915_WRITE(_CURABASE, base);
  4952. cntl &= ~(CURSOR_FORMAT_MASK);
  4953. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  4954. cntl |= CURSOR_ENABLE |
  4955. CURSOR_GAMMA_ENABLE |
  4956. CURSOR_FORMAT_ARGB;
  4957. } else
  4958. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  4959. I915_WRITE(_CURACNTR, cntl);
  4960. intel_crtc->cursor_visible = visible;
  4961. }
  4962. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  4963. {
  4964. struct drm_device *dev = crtc->dev;
  4965. struct drm_i915_private *dev_priv = dev->dev_private;
  4966. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4967. int pipe = intel_crtc->pipe;
  4968. bool visible = base != 0;
  4969. if (intel_crtc->cursor_visible != visible) {
  4970. uint32_t cntl = I915_READ(CURCNTR(pipe));
  4971. if (base) {
  4972. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  4973. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4974. cntl |= pipe << 28; /* Connect to correct pipe */
  4975. } else {
  4976. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4977. cntl |= CURSOR_MODE_DISABLE;
  4978. }
  4979. I915_WRITE(CURCNTR(pipe), cntl);
  4980. intel_crtc->cursor_visible = visible;
  4981. }
  4982. /* and commit changes on next vblank */
  4983. I915_WRITE(CURBASE(pipe), base);
  4984. }
  4985. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  4986. {
  4987. struct drm_device *dev = crtc->dev;
  4988. struct drm_i915_private *dev_priv = dev->dev_private;
  4989. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4990. int pipe = intel_crtc->pipe;
  4991. bool visible = base != 0;
  4992. if (intel_crtc->cursor_visible != visible) {
  4993. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  4994. if (base) {
  4995. cntl &= ~CURSOR_MODE;
  4996. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4997. } else {
  4998. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4999. cntl |= CURSOR_MODE_DISABLE;
  5000. }
  5001. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5002. intel_crtc->cursor_visible = visible;
  5003. }
  5004. /* and commit changes on next vblank */
  5005. I915_WRITE(CURBASE_IVB(pipe), base);
  5006. }
  5007. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5008. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5009. bool on)
  5010. {
  5011. struct drm_device *dev = crtc->dev;
  5012. struct drm_i915_private *dev_priv = dev->dev_private;
  5013. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5014. int pipe = intel_crtc->pipe;
  5015. int x = intel_crtc->cursor_x;
  5016. int y = intel_crtc->cursor_y;
  5017. u32 base, pos;
  5018. bool visible;
  5019. pos = 0;
  5020. if (on && crtc->enabled && crtc->fb) {
  5021. base = intel_crtc->cursor_addr;
  5022. if (x > (int) crtc->fb->width)
  5023. base = 0;
  5024. if (y > (int) crtc->fb->height)
  5025. base = 0;
  5026. } else
  5027. base = 0;
  5028. if (x < 0) {
  5029. if (x + intel_crtc->cursor_width < 0)
  5030. base = 0;
  5031. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5032. x = -x;
  5033. }
  5034. pos |= x << CURSOR_X_SHIFT;
  5035. if (y < 0) {
  5036. if (y + intel_crtc->cursor_height < 0)
  5037. base = 0;
  5038. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5039. y = -y;
  5040. }
  5041. pos |= y << CURSOR_Y_SHIFT;
  5042. visible = base != 0;
  5043. if (!visible && !intel_crtc->cursor_visible)
  5044. return;
  5045. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5046. I915_WRITE(CURPOS_IVB(pipe), pos);
  5047. ivb_update_cursor(crtc, base);
  5048. } else {
  5049. I915_WRITE(CURPOS(pipe), pos);
  5050. if (IS_845G(dev) || IS_I865G(dev))
  5051. i845_update_cursor(crtc, base);
  5052. else
  5053. i9xx_update_cursor(crtc, base);
  5054. }
  5055. }
  5056. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5057. struct drm_file *file,
  5058. uint32_t handle,
  5059. uint32_t width, uint32_t height)
  5060. {
  5061. struct drm_device *dev = crtc->dev;
  5062. struct drm_i915_private *dev_priv = dev->dev_private;
  5063. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5064. struct drm_i915_gem_object *obj;
  5065. uint32_t addr;
  5066. int ret;
  5067. /* if we want to turn off the cursor ignore width and height */
  5068. if (!handle) {
  5069. DRM_DEBUG_KMS("cursor off\n");
  5070. addr = 0;
  5071. obj = NULL;
  5072. mutex_lock(&dev->struct_mutex);
  5073. goto finish;
  5074. }
  5075. /* Currently we only support 64x64 cursors */
  5076. if (width != 64 || height != 64) {
  5077. DRM_ERROR("we currently only support 64x64 cursors\n");
  5078. return -EINVAL;
  5079. }
  5080. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5081. if (&obj->base == NULL)
  5082. return -ENOENT;
  5083. if (obj->base.size < width * height * 4) {
  5084. DRM_ERROR("buffer is to small\n");
  5085. ret = -ENOMEM;
  5086. goto fail;
  5087. }
  5088. /* we only need to pin inside GTT if cursor is non-phy */
  5089. mutex_lock(&dev->struct_mutex);
  5090. if (!dev_priv->info->cursor_needs_physical) {
  5091. if (obj->tiling_mode) {
  5092. DRM_ERROR("cursor cannot be tiled\n");
  5093. ret = -EINVAL;
  5094. goto fail_locked;
  5095. }
  5096. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5097. if (ret) {
  5098. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5099. goto fail_locked;
  5100. }
  5101. ret = i915_gem_object_put_fence(obj);
  5102. if (ret) {
  5103. DRM_ERROR("failed to release fence for cursor");
  5104. goto fail_unpin;
  5105. }
  5106. addr = obj->gtt_offset;
  5107. } else {
  5108. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5109. ret = i915_gem_attach_phys_object(dev, obj,
  5110. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5111. align);
  5112. if (ret) {
  5113. DRM_ERROR("failed to attach phys object\n");
  5114. goto fail_locked;
  5115. }
  5116. addr = obj->phys_obj->handle->busaddr;
  5117. }
  5118. if (IS_GEN2(dev))
  5119. I915_WRITE(CURSIZE, (height << 12) | width);
  5120. finish:
  5121. if (intel_crtc->cursor_bo) {
  5122. if (dev_priv->info->cursor_needs_physical) {
  5123. if (intel_crtc->cursor_bo != obj)
  5124. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5125. } else
  5126. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5127. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5128. }
  5129. mutex_unlock(&dev->struct_mutex);
  5130. intel_crtc->cursor_addr = addr;
  5131. intel_crtc->cursor_bo = obj;
  5132. intel_crtc->cursor_width = width;
  5133. intel_crtc->cursor_height = height;
  5134. intel_crtc_update_cursor(crtc, true);
  5135. return 0;
  5136. fail_unpin:
  5137. i915_gem_object_unpin(obj);
  5138. fail_locked:
  5139. mutex_unlock(&dev->struct_mutex);
  5140. fail:
  5141. drm_gem_object_unreference_unlocked(&obj->base);
  5142. return ret;
  5143. }
  5144. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5145. {
  5146. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5147. intel_crtc->cursor_x = x;
  5148. intel_crtc->cursor_y = y;
  5149. intel_crtc_update_cursor(crtc, true);
  5150. return 0;
  5151. }
  5152. /** Sets the color ramps on behalf of RandR */
  5153. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5154. u16 blue, int regno)
  5155. {
  5156. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5157. intel_crtc->lut_r[regno] = red >> 8;
  5158. intel_crtc->lut_g[regno] = green >> 8;
  5159. intel_crtc->lut_b[regno] = blue >> 8;
  5160. }
  5161. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5162. u16 *blue, int regno)
  5163. {
  5164. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5165. *red = intel_crtc->lut_r[regno] << 8;
  5166. *green = intel_crtc->lut_g[regno] << 8;
  5167. *blue = intel_crtc->lut_b[regno] << 8;
  5168. }
  5169. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5170. u16 *blue, uint32_t start, uint32_t size)
  5171. {
  5172. int end = (start + size > 256) ? 256 : start + size, i;
  5173. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5174. for (i = start; i < end; i++) {
  5175. intel_crtc->lut_r[i] = red[i] >> 8;
  5176. intel_crtc->lut_g[i] = green[i] >> 8;
  5177. intel_crtc->lut_b[i] = blue[i] >> 8;
  5178. }
  5179. intel_crtc_load_lut(crtc);
  5180. }
  5181. /**
  5182. * Get a pipe with a simple mode set on it for doing load-based monitor
  5183. * detection.
  5184. *
  5185. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5186. * its requirements. The pipe will be connected to no other encoders.
  5187. *
  5188. * Currently this code will only succeed if there is a pipe with no encoders
  5189. * configured for it. In the future, it could choose to temporarily disable
  5190. * some outputs to free up a pipe for its use.
  5191. *
  5192. * \return crtc, or NULL if no pipes are available.
  5193. */
  5194. /* VESA 640x480x72Hz mode to set on the pipe */
  5195. static struct drm_display_mode load_detect_mode = {
  5196. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5197. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5198. };
  5199. static struct drm_framebuffer *
  5200. intel_framebuffer_create(struct drm_device *dev,
  5201. struct drm_mode_fb_cmd2 *mode_cmd,
  5202. struct drm_i915_gem_object *obj)
  5203. {
  5204. struct intel_framebuffer *intel_fb;
  5205. int ret;
  5206. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5207. if (!intel_fb) {
  5208. drm_gem_object_unreference_unlocked(&obj->base);
  5209. return ERR_PTR(-ENOMEM);
  5210. }
  5211. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5212. if (ret) {
  5213. drm_gem_object_unreference_unlocked(&obj->base);
  5214. kfree(intel_fb);
  5215. return ERR_PTR(ret);
  5216. }
  5217. return &intel_fb->base;
  5218. }
  5219. static u32
  5220. intel_framebuffer_pitch_for_width(int width, int bpp)
  5221. {
  5222. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5223. return ALIGN(pitch, 64);
  5224. }
  5225. static u32
  5226. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5227. {
  5228. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5229. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5230. }
  5231. static struct drm_framebuffer *
  5232. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5233. struct drm_display_mode *mode,
  5234. int depth, int bpp)
  5235. {
  5236. struct drm_i915_gem_object *obj;
  5237. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5238. obj = i915_gem_alloc_object(dev,
  5239. intel_framebuffer_size_for_mode(mode, bpp));
  5240. if (obj == NULL)
  5241. return ERR_PTR(-ENOMEM);
  5242. mode_cmd.width = mode->hdisplay;
  5243. mode_cmd.height = mode->vdisplay;
  5244. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5245. bpp);
  5246. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5247. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5248. }
  5249. static struct drm_framebuffer *
  5250. mode_fits_in_fbdev(struct drm_device *dev,
  5251. struct drm_display_mode *mode)
  5252. {
  5253. struct drm_i915_private *dev_priv = dev->dev_private;
  5254. struct drm_i915_gem_object *obj;
  5255. struct drm_framebuffer *fb;
  5256. if (dev_priv->fbdev == NULL)
  5257. return NULL;
  5258. obj = dev_priv->fbdev->ifb.obj;
  5259. if (obj == NULL)
  5260. return NULL;
  5261. fb = &dev_priv->fbdev->ifb.base;
  5262. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5263. fb->bits_per_pixel))
  5264. return NULL;
  5265. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5266. return NULL;
  5267. return fb;
  5268. }
  5269. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5270. struct drm_display_mode *mode,
  5271. struct intel_load_detect_pipe *old)
  5272. {
  5273. struct intel_crtc *intel_crtc;
  5274. struct intel_encoder *intel_encoder =
  5275. intel_attached_encoder(connector);
  5276. struct drm_crtc *possible_crtc;
  5277. struct drm_encoder *encoder = &intel_encoder->base;
  5278. struct drm_crtc *crtc = NULL;
  5279. struct drm_device *dev = encoder->dev;
  5280. struct drm_framebuffer *fb;
  5281. int i = -1;
  5282. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5283. connector->base.id, drm_get_connector_name(connector),
  5284. encoder->base.id, drm_get_encoder_name(encoder));
  5285. /*
  5286. * Algorithm gets a little messy:
  5287. *
  5288. * - if the connector already has an assigned crtc, use it (but make
  5289. * sure it's on first)
  5290. *
  5291. * - try to find the first unused crtc that can drive this connector,
  5292. * and use that if we find one
  5293. */
  5294. /* See if we already have a CRTC for this connector */
  5295. if (encoder->crtc) {
  5296. crtc = encoder->crtc;
  5297. old->dpms_mode = connector->dpms;
  5298. old->load_detect_temp = false;
  5299. /* Make sure the crtc and connector are running */
  5300. if (connector->dpms != DRM_MODE_DPMS_ON)
  5301. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5302. return true;
  5303. }
  5304. /* Find an unused one (if possible) */
  5305. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5306. i++;
  5307. if (!(encoder->possible_crtcs & (1 << i)))
  5308. continue;
  5309. if (!possible_crtc->enabled) {
  5310. crtc = possible_crtc;
  5311. break;
  5312. }
  5313. }
  5314. /*
  5315. * If we didn't find an unused CRTC, don't use any.
  5316. */
  5317. if (!crtc) {
  5318. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5319. return false;
  5320. }
  5321. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5322. to_intel_connector(connector)->new_encoder = intel_encoder;
  5323. intel_crtc = to_intel_crtc(crtc);
  5324. old->dpms_mode = connector->dpms;
  5325. old->load_detect_temp = true;
  5326. old->release_fb = NULL;
  5327. if (!mode)
  5328. mode = &load_detect_mode;
  5329. /* We need a framebuffer large enough to accommodate all accesses
  5330. * that the plane may generate whilst we perform load detection.
  5331. * We can not rely on the fbcon either being present (we get called
  5332. * during its initialisation to detect all boot displays, or it may
  5333. * not even exist) or that it is large enough to satisfy the
  5334. * requested mode.
  5335. */
  5336. fb = mode_fits_in_fbdev(dev, mode);
  5337. if (fb == NULL) {
  5338. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5339. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5340. old->release_fb = fb;
  5341. } else
  5342. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5343. if (IS_ERR(fb)) {
  5344. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5345. return false;
  5346. }
  5347. if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
  5348. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5349. if (old->release_fb)
  5350. old->release_fb->funcs->destroy(old->release_fb);
  5351. return false;
  5352. }
  5353. /* let the connector get through one full cycle before testing */
  5354. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5355. return true;
  5356. }
  5357. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5358. struct intel_load_detect_pipe *old)
  5359. {
  5360. struct intel_encoder *intel_encoder =
  5361. intel_attached_encoder(connector);
  5362. struct drm_encoder *encoder = &intel_encoder->base;
  5363. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5364. connector->base.id, drm_get_connector_name(connector),
  5365. encoder->base.id, drm_get_encoder_name(encoder));
  5366. if (old->load_detect_temp) {
  5367. struct drm_crtc *crtc = encoder->crtc;
  5368. to_intel_connector(connector)->new_encoder = NULL;
  5369. intel_encoder->new_crtc = NULL;
  5370. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5371. if (old->release_fb)
  5372. old->release_fb->funcs->destroy(old->release_fb);
  5373. return;
  5374. }
  5375. /* Switch crtc and encoder back off if necessary */
  5376. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5377. connector->funcs->dpms(connector, old->dpms_mode);
  5378. }
  5379. /* Returns the clock of the currently programmed mode of the given pipe. */
  5380. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5381. {
  5382. struct drm_i915_private *dev_priv = dev->dev_private;
  5383. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5384. int pipe = intel_crtc->pipe;
  5385. u32 dpll = I915_READ(DPLL(pipe));
  5386. u32 fp;
  5387. intel_clock_t clock;
  5388. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5389. fp = I915_READ(FP0(pipe));
  5390. else
  5391. fp = I915_READ(FP1(pipe));
  5392. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5393. if (IS_PINEVIEW(dev)) {
  5394. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5395. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5396. } else {
  5397. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5398. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5399. }
  5400. if (!IS_GEN2(dev)) {
  5401. if (IS_PINEVIEW(dev))
  5402. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5403. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5404. else
  5405. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5406. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5407. switch (dpll & DPLL_MODE_MASK) {
  5408. case DPLLB_MODE_DAC_SERIAL:
  5409. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5410. 5 : 10;
  5411. break;
  5412. case DPLLB_MODE_LVDS:
  5413. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5414. 7 : 14;
  5415. break;
  5416. default:
  5417. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5418. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5419. return 0;
  5420. }
  5421. /* XXX: Handle the 100Mhz refclk */
  5422. intel_clock(dev, 96000, &clock);
  5423. } else {
  5424. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5425. if (is_lvds) {
  5426. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5427. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5428. clock.p2 = 14;
  5429. if ((dpll & PLL_REF_INPUT_MASK) ==
  5430. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5431. /* XXX: might not be 66MHz */
  5432. intel_clock(dev, 66000, &clock);
  5433. } else
  5434. intel_clock(dev, 48000, &clock);
  5435. } else {
  5436. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5437. clock.p1 = 2;
  5438. else {
  5439. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5440. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5441. }
  5442. if (dpll & PLL_P2_DIVIDE_BY_4)
  5443. clock.p2 = 4;
  5444. else
  5445. clock.p2 = 2;
  5446. intel_clock(dev, 48000, &clock);
  5447. }
  5448. }
  5449. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5450. * i830PllIsValid() because it relies on the xf86_config connector
  5451. * configuration being accurate, which it isn't necessarily.
  5452. */
  5453. return clock.dot;
  5454. }
  5455. /** Returns the currently programmed mode of the given pipe. */
  5456. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5457. struct drm_crtc *crtc)
  5458. {
  5459. struct drm_i915_private *dev_priv = dev->dev_private;
  5460. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5461. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  5462. struct drm_display_mode *mode;
  5463. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5464. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5465. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5466. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5467. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5468. if (!mode)
  5469. return NULL;
  5470. mode->clock = intel_crtc_clock_get(dev, crtc);
  5471. mode->hdisplay = (htot & 0xffff) + 1;
  5472. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5473. mode->hsync_start = (hsync & 0xffff) + 1;
  5474. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5475. mode->vdisplay = (vtot & 0xffff) + 1;
  5476. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5477. mode->vsync_start = (vsync & 0xffff) + 1;
  5478. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5479. drm_mode_set_name(mode);
  5480. return mode;
  5481. }
  5482. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5483. {
  5484. struct drm_device *dev = crtc->dev;
  5485. drm_i915_private_t *dev_priv = dev->dev_private;
  5486. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5487. int pipe = intel_crtc->pipe;
  5488. int dpll_reg = DPLL(pipe);
  5489. int dpll;
  5490. if (HAS_PCH_SPLIT(dev))
  5491. return;
  5492. if (!dev_priv->lvds_downclock_avail)
  5493. return;
  5494. dpll = I915_READ(dpll_reg);
  5495. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5496. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5497. assert_panel_unlocked(dev_priv, pipe);
  5498. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5499. I915_WRITE(dpll_reg, dpll);
  5500. intel_wait_for_vblank(dev, pipe);
  5501. dpll = I915_READ(dpll_reg);
  5502. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5503. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5504. }
  5505. }
  5506. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5507. {
  5508. struct drm_device *dev = crtc->dev;
  5509. drm_i915_private_t *dev_priv = dev->dev_private;
  5510. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5511. if (HAS_PCH_SPLIT(dev))
  5512. return;
  5513. if (!dev_priv->lvds_downclock_avail)
  5514. return;
  5515. /*
  5516. * Since this is called by a timer, we should never get here in
  5517. * the manual case.
  5518. */
  5519. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5520. int pipe = intel_crtc->pipe;
  5521. int dpll_reg = DPLL(pipe);
  5522. int dpll;
  5523. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5524. assert_panel_unlocked(dev_priv, pipe);
  5525. dpll = I915_READ(dpll_reg);
  5526. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5527. I915_WRITE(dpll_reg, dpll);
  5528. intel_wait_for_vblank(dev, pipe);
  5529. dpll = I915_READ(dpll_reg);
  5530. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5531. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5532. }
  5533. }
  5534. void intel_mark_busy(struct drm_device *dev)
  5535. {
  5536. i915_update_gfx_val(dev->dev_private);
  5537. }
  5538. void intel_mark_idle(struct drm_device *dev)
  5539. {
  5540. }
  5541. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5542. {
  5543. struct drm_device *dev = obj->base.dev;
  5544. struct drm_crtc *crtc;
  5545. if (!i915_powersave)
  5546. return;
  5547. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5548. if (!crtc->fb)
  5549. continue;
  5550. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5551. intel_increase_pllclock(crtc);
  5552. }
  5553. }
  5554. void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
  5555. {
  5556. struct drm_device *dev = obj->base.dev;
  5557. struct drm_crtc *crtc;
  5558. if (!i915_powersave)
  5559. return;
  5560. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5561. if (!crtc->fb)
  5562. continue;
  5563. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5564. intel_decrease_pllclock(crtc);
  5565. }
  5566. }
  5567. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5568. {
  5569. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5570. struct drm_device *dev = crtc->dev;
  5571. struct intel_unpin_work *work;
  5572. unsigned long flags;
  5573. spin_lock_irqsave(&dev->event_lock, flags);
  5574. work = intel_crtc->unpin_work;
  5575. intel_crtc->unpin_work = NULL;
  5576. spin_unlock_irqrestore(&dev->event_lock, flags);
  5577. if (work) {
  5578. cancel_work_sync(&work->work);
  5579. kfree(work);
  5580. }
  5581. drm_crtc_cleanup(crtc);
  5582. kfree(intel_crtc);
  5583. }
  5584. static void intel_unpin_work_fn(struct work_struct *__work)
  5585. {
  5586. struct intel_unpin_work *work =
  5587. container_of(__work, struct intel_unpin_work, work);
  5588. struct drm_device *dev = work->crtc->dev;
  5589. mutex_lock(&dev->struct_mutex);
  5590. intel_unpin_fb_obj(work->old_fb_obj);
  5591. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5592. drm_gem_object_unreference(&work->old_fb_obj->base);
  5593. intel_update_fbc(dev);
  5594. mutex_unlock(&dev->struct_mutex);
  5595. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5596. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5597. kfree(work);
  5598. }
  5599. static void do_intel_finish_page_flip(struct drm_device *dev,
  5600. struct drm_crtc *crtc)
  5601. {
  5602. drm_i915_private_t *dev_priv = dev->dev_private;
  5603. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5604. struct intel_unpin_work *work;
  5605. struct drm_i915_gem_object *obj;
  5606. unsigned long flags;
  5607. /* Ignore early vblank irqs */
  5608. if (intel_crtc == NULL)
  5609. return;
  5610. spin_lock_irqsave(&dev->event_lock, flags);
  5611. work = intel_crtc->unpin_work;
  5612. if (work == NULL || !work->pending) {
  5613. spin_unlock_irqrestore(&dev->event_lock, flags);
  5614. return;
  5615. }
  5616. intel_crtc->unpin_work = NULL;
  5617. if (work->event)
  5618. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5619. drm_vblank_put(dev, intel_crtc->pipe);
  5620. spin_unlock_irqrestore(&dev->event_lock, flags);
  5621. obj = work->old_fb_obj;
  5622. wake_up(&dev_priv->pending_flip_queue);
  5623. queue_work(dev_priv->wq, &work->work);
  5624. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5625. }
  5626. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5627. {
  5628. drm_i915_private_t *dev_priv = dev->dev_private;
  5629. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5630. do_intel_finish_page_flip(dev, crtc);
  5631. }
  5632. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5633. {
  5634. drm_i915_private_t *dev_priv = dev->dev_private;
  5635. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5636. do_intel_finish_page_flip(dev, crtc);
  5637. }
  5638. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5639. {
  5640. drm_i915_private_t *dev_priv = dev->dev_private;
  5641. struct intel_crtc *intel_crtc =
  5642. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5643. unsigned long flags;
  5644. spin_lock_irqsave(&dev->event_lock, flags);
  5645. if (intel_crtc->unpin_work) {
  5646. if ((++intel_crtc->unpin_work->pending) > 1)
  5647. DRM_ERROR("Prepared flip multiple times\n");
  5648. } else {
  5649. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  5650. }
  5651. spin_unlock_irqrestore(&dev->event_lock, flags);
  5652. }
  5653. static int intel_gen2_queue_flip(struct drm_device *dev,
  5654. struct drm_crtc *crtc,
  5655. struct drm_framebuffer *fb,
  5656. struct drm_i915_gem_object *obj)
  5657. {
  5658. struct drm_i915_private *dev_priv = dev->dev_private;
  5659. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5660. u32 flip_mask;
  5661. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5662. int ret;
  5663. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5664. if (ret)
  5665. goto err;
  5666. ret = intel_ring_begin(ring, 6);
  5667. if (ret)
  5668. goto err_unpin;
  5669. /* Can't queue multiple flips, so wait for the previous
  5670. * one to finish before executing the next.
  5671. */
  5672. if (intel_crtc->plane)
  5673. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5674. else
  5675. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5676. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5677. intel_ring_emit(ring, MI_NOOP);
  5678. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5679. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5680. intel_ring_emit(ring, fb->pitches[0]);
  5681. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5682. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5683. intel_ring_advance(ring);
  5684. return 0;
  5685. err_unpin:
  5686. intel_unpin_fb_obj(obj);
  5687. err:
  5688. return ret;
  5689. }
  5690. static int intel_gen3_queue_flip(struct drm_device *dev,
  5691. struct drm_crtc *crtc,
  5692. struct drm_framebuffer *fb,
  5693. struct drm_i915_gem_object *obj)
  5694. {
  5695. struct drm_i915_private *dev_priv = dev->dev_private;
  5696. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5697. u32 flip_mask;
  5698. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5699. int ret;
  5700. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5701. if (ret)
  5702. goto err;
  5703. ret = intel_ring_begin(ring, 6);
  5704. if (ret)
  5705. goto err_unpin;
  5706. if (intel_crtc->plane)
  5707. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5708. else
  5709. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5710. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5711. intel_ring_emit(ring, MI_NOOP);
  5712. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  5713. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5714. intel_ring_emit(ring, fb->pitches[0]);
  5715. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5716. intel_ring_emit(ring, MI_NOOP);
  5717. intel_ring_advance(ring);
  5718. return 0;
  5719. err_unpin:
  5720. intel_unpin_fb_obj(obj);
  5721. err:
  5722. return ret;
  5723. }
  5724. static int intel_gen4_queue_flip(struct drm_device *dev,
  5725. struct drm_crtc *crtc,
  5726. struct drm_framebuffer *fb,
  5727. struct drm_i915_gem_object *obj)
  5728. {
  5729. struct drm_i915_private *dev_priv = dev->dev_private;
  5730. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5731. uint32_t pf, pipesrc;
  5732. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5733. int ret;
  5734. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5735. if (ret)
  5736. goto err;
  5737. ret = intel_ring_begin(ring, 4);
  5738. if (ret)
  5739. goto err_unpin;
  5740. /* i965+ uses the linear or tiled offsets from the
  5741. * Display Registers (which do not change across a page-flip)
  5742. * so we need only reprogram the base address.
  5743. */
  5744. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5745. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5746. intel_ring_emit(ring, fb->pitches[0]);
  5747. intel_ring_emit(ring,
  5748. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  5749. obj->tiling_mode);
  5750. /* XXX Enabling the panel-fitter across page-flip is so far
  5751. * untested on non-native modes, so ignore it for now.
  5752. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  5753. */
  5754. pf = 0;
  5755. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5756. intel_ring_emit(ring, pf | pipesrc);
  5757. intel_ring_advance(ring);
  5758. return 0;
  5759. err_unpin:
  5760. intel_unpin_fb_obj(obj);
  5761. err:
  5762. return ret;
  5763. }
  5764. static int intel_gen6_queue_flip(struct drm_device *dev,
  5765. struct drm_crtc *crtc,
  5766. struct drm_framebuffer *fb,
  5767. struct drm_i915_gem_object *obj)
  5768. {
  5769. struct drm_i915_private *dev_priv = dev->dev_private;
  5770. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5771. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5772. uint32_t pf, pipesrc;
  5773. int ret;
  5774. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5775. if (ret)
  5776. goto err;
  5777. ret = intel_ring_begin(ring, 4);
  5778. if (ret)
  5779. goto err_unpin;
  5780. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5781. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5782. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  5783. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5784. /* Contrary to the suggestions in the documentation,
  5785. * "Enable Panel Fitter" does not seem to be required when page
  5786. * flipping with a non-native mode, and worse causes a normal
  5787. * modeset to fail.
  5788. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  5789. */
  5790. pf = 0;
  5791. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5792. intel_ring_emit(ring, pf | pipesrc);
  5793. intel_ring_advance(ring);
  5794. return 0;
  5795. err_unpin:
  5796. intel_unpin_fb_obj(obj);
  5797. err:
  5798. return ret;
  5799. }
  5800. /*
  5801. * On gen7 we currently use the blit ring because (in early silicon at least)
  5802. * the render ring doesn't give us interrpts for page flip completion, which
  5803. * means clients will hang after the first flip is queued. Fortunately the
  5804. * blit ring generates interrupts properly, so use it instead.
  5805. */
  5806. static int intel_gen7_queue_flip(struct drm_device *dev,
  5807. struct drm_crtc *crtc,
  5808. struct drm_framebuffer *fb,
  5809. struct drm_i915_gem_object *obj)
  5810. {
  5811. struct drm_i915_private *dev_priv = dev->dev_private;
  5812. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5813. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  5814. uint32_t plane_bit = 0;
  5815. int ret;
  5816. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5817. if (ret)
  5818. goto err;
  5819. switch(intel_crtc->plane) {
  5820. case PLANE_A:
  5821. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  5822. break;
  5823. case PLANE_B:
  5824. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  5825. break;
  5826. case PLANE_C:
  5827. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  5828. break;
  5829. default:
  5830. WARN_ONCE(1, "unknown plane in flip command\n");
  5831. ret = -ENODEV;
  5832. goto err_unpin;
  5833. }
  5834. ret = intel_ring_begin(ring, 4);
  5835. if (ret)
  5836. goto err_unpin;
  5837. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  5838. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  5839. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5840. intel_ring_emit(ring, (MI_NOOP));
  5841. intel_ring_advance(ring);
  5842. return 0;
  5843. err_unpin:
  5844. intel_unpin_fb_obj(obj);
  5845. err:
  5846. return ret;
  5847. }
  5848. static int intel_default_queue_flip(struct drm_device *dev,
  5849. struct drm_crtc *crtc,
  5850. struct drm_framebuffer *fb,
  5851. struct drm_i915_gem_object *obj)
  5852. {
  5853. return -ENODEV;
  5854. }
  5855. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  5856. struct drm_framebuffer *fb,
  5857. struct drm_pending_vblank_event *event)
  5858. {
  5859. struct drm_device *dev = crtc->dev;
  5860. struct drm_i915_private *dev_priv = dev->dev_private;
  5861. struct intel_framebuffer *intel_fb;
  5862. struct drm_i915_gem_object *obj;
  5863. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5864. struct intel_unpin_work *work;
  5865. unsigned long flags;
  5866. int ret;
  5867. /* Can't change pixel format via MI display flips. */
  5868. if (fb->pixel_format != crtc->fb->pixel_format)
  5869. return -EINVAL;
  5870. /*
  5871. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  5872. * Note that pitch changes could also affect these register.
  5873. */
  5874. if (INTEL_INFO(dev)->gen > 3 &&
  5875. (fb->offsets[0] != crtc->fb->offsets[0] ||
  5876. fb->pitches[0] != crtc->fb->pitches[0]))
  5877. return -EINVAL;
  5878. work = kzalloc(sizeof *work, GFP_KERNEL);
  5879. if (work == NULL)
  5880. return -ENOMEM;
  5881. work->event = event;
  5882. work->crtc = crtc;
  5883. intel_fb = to_intel_framebuffer(crtc->fb);
  5884. work->old_fb_obj = intel_fb->obj;
  5885. INIT_WORK(&work->work, intel_unpin_work_fn);
  5886. ret = drm_vblank_get(dev, intel_crtc->pipe);
  5887. if (ret)
  5888. goto free_work;
  5889. /* We borrow the event spin lock for protecting unpin_work */
  5890. spin_lock_irqsave(&dev->event_lock, flags);
  5891. if (intel_crtc->unpin_work) {
  5892. spin_unlock_irqrestore(&dev->event_lock, flags);
  5893. kfree(work);
  5894. drm_vblank_put(dev, intel_crtc->pipe);
  5895. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  5896. return -EBUSY;
  5897. }
  5898. intel_crtc->unpin_work = work;
  5899. spin_unlock_irqrestore(&dev->event_lock, flags);
  5900. intel_fb = to_intel_framebuffer(fb);
  5901. obj = intel_fb->obj;
  5902. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  5903. flush_workqueue(dev_priv->wq);
  5904. ret = i915_mutex_lock_interruptible(dev);
  5905. if (ret)
  5906. goto cleanup;
  5907. /* Reference the objects for the scheduled work. */
  5908. drm_gem_object_reference(&work->old_fb_obj->base);
  5909. drm_gem_object_reference(&obj->base);
  5910. crtc->fb = fb;
  5911. work->pending_flip_obj = obj;
  5912. work->enable_stall_check = true;
  5913. atomic_inc(&intel_crtc->unpin_work_count);
  5914. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  5915. if (ret)
  5916. goto cleanup_pending;
  5917. intel_disable_fbc(dev);
  5918. intel_mark_fb_busy(obj);
  5919. mutex_unlock(&dev->struct_mutex);
  5920. trace_i915_flip_request(intel_crtc->plane, obj);
  5921. return 0;
  5922. cleanup_pending:
  5923. atomic_dec(&intel_crtc->unpin_work_count);
  5924. drm_gem_object_unreference(&work->old_fb_obj->base);
  5925. drm_gem_object_unreference(&obj->base);
  5926. mutex_unlock(&dev->struct_mutex);
  5927. cleanup:
  5928. spin_lock_irqsave(&dev->event_lock, flags);
  5929. intel_crtc->unpin_work = NULL;
  5930. spin_unlock_irqrestore(&dev->event_lock, flags);
  5931. drm_vblank_put(dev, intel_crtc->pipe);
  5932. free_work:
  5933. kfree(work);
  5934. return ret;
  5935. }
  5936. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  5937. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  5938. .load_lut = intel_crtc_load_lut,
  5939. .disable = intel_crtc_noop,
  5940. };
  5941. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  5942. {
  5943. struct intel_encoder *other_encoder;
  5944. struct drm_crtc *crtc = &encoder->new_crtc->base;
  5945. if (WARN_ON(!crtc))
  5946. return false;
  5947. list_for_each_entry(other_encoder,
  5948. &crtc->dev->mode_config.encoder_list,
  5949. base.head) {
  5950. if (&other_encoder->new_crtc->base != crtc ||
  5951. encoder == other_encoder)
  5952. continue;
  5953. else
  5954. return true;
  5955. }
  5956. return false;
  5957. }
  5958. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  5959. struct drm_crtc *crtc)
  5960. {
  5961. struct drm_device *dev;
  5962. struct drm_crtc *tmp;
  5963. int crtc_mask = 1;
  5964. WARN(!crtc, "checking null crtc?\n");
  5965. dev = crtc->dev;
  5966. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  5967. if (tmp == crtc)
  5968. break;
  5969. crtc_mask <<= 1;
  5970. }
  5971. if (encoder->possible_crtcs & crtc_mask)
  5972. return true;
  5973. return false;
  5974. }
  5975. /**
  5976. * intel_modeset_update_staged_output_state
  5977. *
  5978. * Updates the staged output configuration state, e.g. after we've read out the
  5979. * current hw state.
  5980. */
  5981. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  5982. {
  5983. struct intel_encoder *encoder;
  5984. struct intel_connector *connector;
  5985. list_for_each_entry(connector, &dev->mode_config.connector_list,
  5986. base.head) {
  5987. connector->new_encoder =
  5988. to_intel_encoder(connector->base.encoder);
  5989. }
  5990. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  5991. base.head) {
  5992. encoder->new_crtc =
  5993. to_intel_crtc(encoder->base.crtc);
  5994. }
  5995. }
  5996. /**
  5997. * intel_modeset_commit_output_state
  5998. *
  5999. * This function copies the stage display pipe configuration to the real one.
  6000. */
  6001. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6002. {
  6003. struct intel_encoder *encoder;
  6004. struct intel_connector *connector;
  6005. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6006. base.head) {
  6007. connector->base.encoder = &connector->new_encoder->base;
  6008. }
  6009. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6010. base.head) {
  6011. encoder->base.crtc = &encoder->new_crtc->base;
  6012. }
  6013. }
  6014. static struct drm_display_mode *
  6015. intel_modeset_adjusted_mode(struct drm_crtc *crtc,
  6016. struct drm_display_mode *mode)
  6017. {
  6018. struct drm_device *dev = crtc->dev;
  6019. struct drm_display_mode *adjusted_mode;
  6020. struct drm_encoder_helper_funcs *encoder_funcs;
  6021. struct intel_encoder *encoder;
  6022. adjusted_mode = drm_mode_duplicate(dev, mode);
  6023. if (!adjusted_mode)
  6024. return ERR_PTR(-ENOMEM);
  6025. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6026. * adjust it according to limitations or connector properties, and also
  6027. * a chance to reject the mode entirely.
  6028. */
  6029. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6030. base.head) {
  6031. if (&encoder->new_crtc->base != crtc)
  6032. continue;
  6033. encoder_funcs = encoder->base.helper_private;
  6034. if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
  6035. adjusted_mode))) {
  6036. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6037. goto fail;
  6038. }
  6039. }
  6040. if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
  6041. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6042. goto fail;
  6043. }
  6044. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6045. return adjusted_mode;
  6046. fail:
  6047. drm_mode_destroy(dev, adjusted_mode);
  6048. return ERR_PTR(-EINVAL);
  6049. }
  6050. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6051. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6052. static void
  6053. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6054. unsigned *prepare_pipes, unsigned *disable_pipes)
  6055. {
  6056. struct intel_crtc *intel_crtc;
  6057. struct drm_device *dev = crtc->dev;
  6058. struct intel_encoder *encoder;
  6059. struct intel_connector *connector;
  6060. struct drm_crtc *tmp_crtc;
  6061. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6062. /* Check which crtcs have changed outputs connected to them, these need
  6063. * to be part of the prepare_pipes mask. We don't (yet) support global
  6064. * modeset across multiple crtcs, so modeset_pipes will only have one
  6065. * bit set at most. */
  6066. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6067. base.head) {
  6068. if (connector->base.encoder == &connector->new_encoder->base)
  6069. continue;
  6070. if (connector->base.encoder) {
  6071. tmp_crtc = connector->base.encoder->crtc;
  6072. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6073. }
  6074. if (connector->new_encoder)
  6075. *prepare_pipes |=
  6076. 1 << connector->new_encoder->new_crtc->pipe;
  6077. }
  6078. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6079. base.head) {
  6080. if (encoder->base.crtc == &encoder->new_crtc->base)
  6081. continue;
  6082. if (encoder->base.crtc) {
  6083. tmp_crtc = encoder->base.crtc;
  6084. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6085. }
  6086. if (encoder->new_crtc)
  6087. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6088. }
  6089. /* Check for any pipes that will be fully disabled ... */
  6090. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6091. base.head) {
  6092. bool used = false;
  6093. /* Don't try to disable disabled crtcs. */
  6094. if (!intel_crtc->base.enabled)
  6095. continue;
  6096. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6097. base.head) {
  6098. if (encoder->new_crtc == intel_crtc)
  6099. used = true;
  6100. }
  6101. if (!used)
  6102. *disable_pipes |= 1 << intel_crtc->pipe;
  6103. }
  6104. /* set_mode is also used to update properties on life display pipes. */
  6105. intel_crtc = to_intel_crtc(crtc);
  6106. if (crtc->enabled)
  6107. *prepare_pipes |= 1 << intel_crtc->pipe;
  6108. /* We only support modeset on one single crtc, hence we need to do that
  6109. * only for the passed in crtc iff we change anything else than just
  6110. * disable crtcs.
  6111. *
  6112. * This is actually not true, to be fully compatible with the old crtc
  6113. * helper we automatically disable _any_ output (i.e. doesn't need to be
  6114. * connected to the crtc we're modesetting on) if it's disconnected.
  6115. * Which is a rather nutty api (since changed the output configuration
  6116. * without userspace's explicit request can lead to confusion), but
  6117. * alas. Hence we currently need to modeset on all pipes we prepare. */
  6118. if (*prepare_pipes)
  6119. *modeset_pipes = *prepare_pipes;
  6120. /* ... and mask these out. */
  6121. *modeset_pipes &= ~(*disable_pipes);
  6122. *prepare_pipes &= ~(*disable_pipes);
  6123. }
  6124. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6125. {
  6126. struct drm_encoder *encoder;
  6127. struct drm_device *dev = crtc->dev;
  6128. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6129. if (encoder->crtc == crtc)
  6130. return true;
  6131. return false;
  6132. }
  6133. static void
  6134. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6135. {
  6136. struct intel_encoder *intel_encoder;
  6137. struct intel_crtc *intel_crtc;
  6138. struct drm_connector *connector;
  6139. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6140. base.head) {
  6141. if (!intel_encoder->base.crtc)
  6142. continue;
  6143. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6144. if (prepare_pipes & (1 << intel_crtc->pipe))
  6145. intel_encoder->connectors_active = false;
  6146. }
  6147. intel_modeset_commit_output_state(dev);
  6148. /* Update computed state. */
  6149. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6150. base.head) {
  6151. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6152. }
  6153. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6154. if (!connector->encoder || !connector->encoder->crtc)
  6155. continue;
  6156. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6157. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6158. struct drm_property *dpms_property =
  6159. dev->mode_config.dpms_property;
  6160. connector->dpms = DRM_MODE_DPMS_ON;
  6161. drm_object_property_set_value(&connector->base,
  6162. dpms_property,
  6163. DRM_MODE_DPMS_ON);
  6164. intel_encoder = to_intel_encoder(connector->encoder);
  6165. intel_encoder->connectors_active = true;
  6166. }
  6167. }
  6168. }
  6169. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6170. list_for_each_entry((intel_crtc), \
  6171. &(dev)->mode_config.crtc_list, \
  6172. base.head) \
  6173. if (mask & (1 <<(intel_crtc)->pipe)) \
  6174. void
  6175. intel_modeset_check_state(struct drm_device *dev)
  6176. {
  6177. struct intel_crtc *crtc;
  6178. struct intel_encoder *encoder;
  6179. struct intel_connector *connector;
  6180. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6181. base.head) {
  6182. /* This also checks the encoder/connector hw state with the
  6183. * ->get_hw_state callbacks. */
  6184. intel_connector_check_state(connector);
  6185. WARN(&connector->new_encoder->base != connector->base.encoder,
  6186. "connector's staged encoder doesn't match current encoder\n");
  6187. }
  6188. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6189. base.head) {
  6190. bool enabled = false;
  6191. bool active = false;
  6192. enum pipe pipe, tracked_pipe;
  6193. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6194. encoder->base.base.id,
  6195. drm_get_encoder_name(&encoder->base));
  6196. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6197. "encoder's stage crtc doesn't match current crtc\n");
  6198. WARN(encoder->connectors_active && !encoder->base.crtc,
  6199. "encoder's active_connectors set, but no crtc\n");
  6200. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6201. base.head) {
  6202. if (connector->base.encoder != &encoder->base)
  6203. continue;
  6204. enabled = true;
  6205. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6206. active = true;
  6207. }
  6208. WARN(!!encoder->base.crtc != enabled,
  6209. "encoder's enabled state mismatch "
  6210. "(expected %i, found %i)\n",
  6211. !!encoder->base.crtc, enabled);
  6212. WARN(active && !encoder->base.crtc,
  6213. "active encoder with no crtc\n");
  6214. WARN(encoder->connectors_active != active,
  6215. "encoder's computed active state doesn't match tracked active state "
  6216. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6217. active = encoder->get_hw_state(encoder, &pipe);
  6218. WARN(active != encoder->connectors_active,
  6219. "encoder's hw state doesn't match sw tracking "
  6220. "(expected %i, found %i)\n",
  6221. encoder->connectors_active, active);
  6222. if (!encoder->base.crtc)
  6223. continue;
  6224. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6225. WARN(active && pipe != tracked_pipe,
  6226. "active encoder's pipe doesn't match"
  6227. "(expected %i, found %i)\n",
  6228. tracked_pipe, pipe);
  6229. }
  6230. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6231. base.head) {
  6232. bool enabled = false;
  6233. bool active = false;
  6234. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6235. crtc->base.base.id);
  6236. WARN(crtc->active && !crtc->base.enabled,
  6237. "active crtc, but not enabled in sw tracking\n");
  6238. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6239. base.head) {
  6240. if (encoder->base.crtc != &crtc->base)
  6241. continue;
  6242. enabled = true;
  6243. if (encoder->connectors_active)
  6244. active = true;
  6245. }
  6246. WARN(active != crtc->active,
  6247. "crtc's computed active state doesn't match tracked active state "
  6248. "(expected %i, found %i)\n", active, crtc->active);
  6249. WARN(enabled != crtc->base.enabled,
  6250. "crtc's computed enabled state doesn't match tracked enabled state "
  6251. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6252. assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
  6253. }
  6254. }
  6255. bool intel_set_mode(struct drm_crtc *crtc,
  6256. struct drm_display_mode *mode,
  6257. int x, int y, struct drm_framebuffer *fb)
  6258. {
  6259. struct drm_device *dev = crtc->dev;
  6260. drm_i915_private_t *dev_priv = dev->dev_private;
  6261. struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
  6262. struct intel_crtc *intel_crtc;
  6263. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6264. bool ret = true;
  6265. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6266. &prepare_pipes, &disable_pipes);
  6267. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6268. modeset_pipes, prepare_pipes, disable_pipes);
  6269. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6270. intel_crtc_disable(&intel_crtc->base);
  6271. saved_hwmode = crtc->hwmode;
  6272. saved_mode = crtc->mode;
  6273. /* Hack: Because we don't (yet) support global modeset on multiple
  6274. * crtcs, we don't keep track of the new mode for more than one crtc.
  6275. * Hence simply check whether any bit is set in modeset_pipes in all the
  6276. * pieces of code that are not yet converted to deal with mutliple crtcs
  6277. * changing their mode at the same time. */
  6278. adjusted_mode = NULL;
  6279. if (modeset_pipes) {
  6280. adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
  6281. if (IS_ERR(adjusted_mode)) {
  6282. return false;
  6283. }
  6284. }
  6285. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6286. if (intel_crtc->base.enabled)
  6287. dev_priv->display.crtc_disable(&intel_crtc->base);
  6288. }
  6289. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6290. * to set it here already despite that we pass it down the callchain.
  6291. */
  6292. if (modeset_pipes)
  6293. crtc->mode = *mode;
  6294. /* Only after disabling all output pipelines that will be changed can we
  6295. * update the the output configuration. */
  6296. intel_modeset_update_state(dev, prepare_pipes);
  6297. if (dev_priv->display.modeset_global_resources)
  6298. dev_priv->display.modeset_global_resources(dev);
  6299. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6300. * on the DPLL.
  6301. */
  6302. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6303. ret = !intel_crtc_mode_set(&intel_crtc->base,
  6304. mode, adjusted_mode,
  6305. x, y, fb);
  6306. if (!ret)
  6307. goto done;
  6308. }
  6309. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6310. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6311. dev_priv->display.crtc_enable(&intel_crtc->base);
  6312. if (modeset_pipes) {
  6313. /* Store real post-adjustment hardware mode. */
  6314. crtc->hwmode = *adjusted_mode;
  6315. /* Calculate and store various constants which
  6316. * are later needed by vblank and swap-completion
  6317. * timestamping. They are derived from true hwmode.
  6318. */
  6319. drm_calc_timestamping_constants(crtc);
  6320. }
  6321. /* FIXME: add subpixel order */
  6322. done:
  6323. drm_mode_destroy(dev, adjusted_mode);
  6324. if (!ret && crtc->enabled) {
  6325. crtc->hwmode = saved_hwmode;
  6326. crtc->mode = saved_mode;
  6327. } else {
  6328. intel_modeset_check_state(dev);
  6329. }
  6330. return ret;
  6331. }
  6332. #undef for_each_intel_crtc_masked
  6333. static void intel_set_config_free(struct intel_set_config *config)
  6334. {
  6335. if (!config)
  6336. return;
  6337. kfree(config->save_connector_encoders);
  6338. kfree(config->save_encoder_crtcs);
  6339. kfree(config);
  6340. }
  6341. static int intel_set_config_save_state(struct drm_device *dev,
  6342. struct intel_set_config *config)
  6343. {
  6344. struct drm_encoder *encoder;
  6345. struct drm_connector *connector;
  6346. int count;
  6347. config->save_encoder_crtcs =
  6348. kcalloc(dev->mode_config.num_encoder,
  6349. sizeof(struct drm_crtc *), GFP_KERNEL);
  6350. if (!config->save_encoder_crtcs)
  6351. return -ENOMEM;
  6352. config->save_connector_encoders =
  6353. kcalloc(dev->mode_config.num_connector,
  6354. sizeof(struct drm_encoder *), GFP_KERNEL);
  6355. if (!config->save_connector_encoders)
  6356. return -ENOMEM;
  6357. /* Copy data. Note that driver private data is not affected.
  6358. * Should anything bad happen only the expected state is
  6359. * restored, not the drivers personal bookkeeping.
  6360. */
  6361. count = 0;
  6362. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6363. config->save_encoder_crtcs[count++] = encoder->crtc;
  6364. }
  6365. count = 0;
  6366. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6367. config->save_connector_encoders[count++] = connector->encoder;
  6368. }
  6369. return 0;
  6370. }
  6371. static void intel_set_config_restore_state(struct drm_device *dev,
  6372. struct intel_set_config *config)
  6373. {
  6374. struct intel_encoder *encoder;
  6375. struct intel_connector *connector;
  6376. int count;
  6377. count = 0;
  6378. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6379. encoder->new_crtc =
  6380. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6381. }
  6382. count = 0;
  6383. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6384. connector->new_encoder =
  6385. to_intel_encoder(config->save_connector_encoders[count++]);
  6386. }
  6387. }
  6388. static void
  6389. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6390. struct intel_set_config *config)
  6391. {
  6392. /* We should be able to check here if the fb has the same properties
  6393. * and then just flip_or_move it */
  6394. if (set->crtc->fb != set->fb) {
  6395. /* If we have no fb then treat it as a full mode set */
  6396. if (set->crtc->fb == NULL) {
  6397. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6398. config->mode_changed = true;
  6399. } else if (set->fb == NULL) {
  6400. config->mode_changed = true;
  6401. } else if (set->fb->depth != set->crtc->fb->depth) {
  6402. config->mode_changed = true;
  6403. } else if (set->fb->bits_per_pixel !=
  6404. set->crtc->fb->bits_per_pixel) {
  6405. config->mode_changed = true;
  6406. } else
  6407. config->fb_changed = true;
  6408. }
  6409. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6410. config->fb_changed = true;
  6411. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6412. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6413. drm_mode_debug_printmodeline(&set->crtc->mode);
  6414. drm_mode_debug_printmodeline(set->mode);
  6415. config->mode_changed = true;
  6416. }
  6417. }
  6418. static int
  6419. intel_modeset_stage_output_state(struct drm_device *dev,
  6420. struct drm_mode_set *set,
  6421. struct intel_set_config *config)
  6422. {
  6423. struct drm_crtc *new_crtc;
  6424. struct intel_connector *connector;
  6425. struct intel_encoder *encoder;
  6426. int count, ro;
  6427. /* The upper layers ensure that we either disabl a crtc or have a list
  6428. * of connectors. For paranoia, double-check this. */
  6429. WARN_ON(!set->fb && (set->num_connectors != 0));
  6430. WARN_ON(set->fb && (set->num_connectors == 0));
  6431. count = 0;
  6432. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6433. base.head) {
  6434. /* Otherwise traverse passed in connector list and get encoders
  6435. * for them. */
  6436. for (ro = 0; ro < set->num_connectors; ro++) {
  6437. if (set->connectors[ro] == &connector->base) {
  6438. connector->new_encoder = connector->encoder;
  6439. break;
  6440. }
  6441. }
  6442. /* If we disable the crtc, disable all its connectors. Also, if
  6443. * the connector is on the changing crtc but not on the new
  6444. * connector list, disable it. */
  6445. if ((!set->fb || ro == set->num_connectors) &&
  6446. connector->base.encoder &&
  6447. connector->base.encoder->crtc == set->crtc) {
  6448. connector->new_encoder = NULL;
  6449. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6450. connector->base.base.id,
  6451. drm_get_connector_name(&connector->base));
  6452. }
  6453. if (&connector->new_encoder->base != connector->base.encoder) {
  6454. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6455. config->mode_changed = true;
  6456. }
  6457. /* Disable all disconnected encoders. */
  6458. if (connector->base.status == connector_status_disconnected)
  6459. connector->new_encoder = NULL;
  6460. }
  6461. /* connector->new_encoder is now updated for all connectors. */
  6462. /* Update crtc of enabled connectors. */
  6463. count = 0;
  6464. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6465. base.head) {
  6466. if (!connector->new_encoder)
  6467. continue;
  6468. new_crtc = connector->new_encoder->base.crtc;
  6469. for (ro = 0; ro < set->num_connectors; ro++) {
  6470. if (set->connectors[ro] == &connector->base)
  6471. new_crtc = set->crtc;
  6472. }
  6473. /* Make sure the new CRTC will work with the encoder */
  6474. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  6475. new_crtc)) {
  6476. return -EINVAL;
  6477. }
  6478. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  6479. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  6480. connector->base.base.id,
  6481. drm_get_connector_name(&connector->base),
  6482. new_crtc->base.id);
  6483. }
  6484. /* Check for any encoders that needs to be disabled. */
  6485. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6486. base.head) {
  6487. list_for_each_entry(connector,
  6488. &dev->mode_config.connector_list,
  6489. base.head) {
  6490. if (connector->new_encoder == encoder) {
  6491. WARN_ON(!connector->new_encoder->new_crtc);
  6492. goto next_encoder;
  6493. }
  6494. }
  6495. encoder->new_crtc = NULL;
  6496. next_encoder:
  6497. /* Only now check for crtc changes so we don't miss encoders
  6498. * that will be disabled. */
  6499. if (&encoder->new_crtc->base != encoder->base.crtc) {
  6500. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  6501. config->mode_changed = true;
  6502. }
  6503. }
  6504. /* Now we've also updated encoder->new_crtc for all encoders. */
  6505. return 0;
  6506. }
  6507. static int intel_crtc_set_config(struct drm_mode_set *set)
  6508. {
  6509. struct drm_device *dev;
  6510. struct drm_mode_set save_set;
  6511. struct intel_set_config *config;
  6512. int ret;
  6513. BUG_ON(!set);
  6514. BUG_ON(!set->crtc);
  6515. BUG_ON(!set->crtc->helper_private);
  6516. if (!set->mode)
  6517. set->fb = NULL;
  6518. /* The fb helper likes to play gross jokes with ->mode_set_config.
  6519. * Unfortunately the crtc helper doesn't do much at all for this case,
  6520. * so we have to cope with this madness until the fb helper is fixed up. */
  6521. if (set->fb && set->num_connectors == 0)
  6522. return 0;
  6523. if (set->fb) {
  6524. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  6525. set->crtc->base.id, set->fb->base.id,
  6526. (int)set->num_connectors, set->x, set->y);
  6527. } else {
  6528. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  6529. }
  6530. dev = set->crtc->dev;
  6531. ret = -ENOMEM;
  6532. config = kzalloc(sizeof(*config), GFP_KERNEL);
  6533. if (!config)
  6534. goto out_config;
  6535. ret = intel_set_config_save_state(dev, config);
  6536. if (ret)
  6537. goto out_config;
  6538. save_set.crtc = set->crtc;
  6539. save_set.mode = &set->crtc->mode;
  6540. save_set.x = set->crtc->x;
  6541. save_set.y = set->crtc->y;
  6542. save_set.fb = set->crtc->fb;
  6543. /* Compute whether we need a full modeset, only an fb base update or no
  6544. * change at all. In the future we might also check whether only the
  6545. * mode changed, e.g. for LVDS where we only change the panel fitter in
  6546. * such cases. */
  6547. intel_set_config_compute_mode_changes(set, config);
  6548. ret = intel_modeset_stage_output_state(dev, set, config);
  6549. if (ret)
  6550. goto fail;
  6551. if (config->mode_changed) {
  6552. if (set->mode) {
  6553. DRM_DEBUG_KMS("attempting to set mode from"
  6554. " userspace\n");
  6555. drm_mode_debug_printmodeline(set->mode);
  6556. }
  6557. if (!intel_set_mode(set->crtc, set->mode,
  6558. set->x, set->y, set->fb)) {
  6559. DRM_ERROR("failed to set mode on [CRTC:%d]\n",
  6560. set->crtc->base.id);
  6561. ret = -EINVAL;
  6562. goto fail;
  6563. }
  6564. } else if (config->fb_changed) {
  6565. ret = intel_pipe_set_base(set->crtc,
  6566. set->x, set->y, set->fb);
  6567. }
  6568. intel_set_config_free(config);
  6569. return 0;
  6570. fail:
  6571. intel_set_config_restore_state(dev, config);
  6572. /* Try to restore the config */
  6573. if (config->mode_changed &&
  6574. !intel_set_mode(save_set.crtc, save_set.mode,
  6575. save_set.x, save_set.y, save_set.fb))
  6576. DRM_ERROR("failed to restore config after modeset failure\n");
  6577. out_config:
  6578. intel_set_config_free(config);
  6579. return ret;
  6580. }
  6581. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6582. .cursor_set = intel_crtc_cursor_set,
  6583. .cursor_move = intel_crtc_cursor_move,
  6584. .gamma_set = intel_crtc_gamma_set,
  6585. .set_config = intel_crtc_set_config,
  6586. .destroy = intel_crtc_destroy,
  6587. .page_flip = intel_crtc_page_flip,
  6588. };
  6589. static void intel_cpu_pll_init(struct drm_device *dev)
  6590. {
  6591. if (HAS_DDI(dev))
  6592. intel_ddi_pll_init(dev);
  6593. }
  6594. static void intel_pch_pll_init(struct drm_device *dev)
  6595. {
  6596. drm_i915_private_t *dev_priv = dev->dev_private;
  6597. int i;
  6598. if (dev_priv->num_pch_pll == 0) {
  6599. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  6600. return;
  6601. }
  6602. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  6603. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  6604. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  6605. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  6606. }
  6607. }
  6608. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6609. {
  6610. drm_i915_private_t *dev_priv = dev->dev_private;
  6611. struct intel_crtc *intel_crtc;
  6612. int i;
  6613. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6614. if (intel_crtc == NULL)
  6615. return;
  6616. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6617. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6618. for (i = 0; i < 256; i++) {
  6619. intel_crtc->lut_r[i] = i;
  6620. intel_crtc->lut_g[i] = i;
  6621. intel_crtc->lut_b[i] = i;
  6622. }
  6623. /* Swap pipes & planes for FBC on pre-965 */
  6624. intel_crtc->pipe = pipe;
  6625. intel_crtc->plane = pipe;
  6626. intel_crtc->cpu_transcoder = pipe;
  6627. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6628. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6629. intel_crtc->plane = !pipe;
  6630. }
  6631. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6632. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6633. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6634. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6635. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6636. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6637. }
  6638. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6639. struct drm_file *file)
  6640. {
  6641. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6642. struct drm_mode_object *drmmode_obj;
  6643. struct intel_crtc *crtc;
  6644. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6645. return -ENODEV;
  6646. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6647. DRM_MODE_OBJECT_CRTC);
  6648. if (!drmmode_obj) {
  6649. DRM_ERROR("no such CRTC id\n");
  6650. return -EINVAL;
  6651. }
  6652. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6653. pipe_from_crtc_id->pipe = crtc->pipe;
  6654. return 0;
  6655. }
  6656. static int intel_encoder_clones(struct intel_encoder *encoder)
  6657. {
  6658. struct drm_device *dev = encoder->base.dev;
  6659. struct intel_encoder *source_encoder;
  6660. int index_mask = 0;
  6661. int entry = 0;
  6662. list_for_each_entry(source_encoder,
  6663. &dev->mode_config.encoder_list, base.head) {
  6664. if (encoder == source_encoder)
  6665. index_mask |= (1 << entry);
  6666. /* Intel hw has only one MUX where enocoders could be cloned. */
  6667. if (encoder->cloneable && source_encoder->cloneable)
  6668. index_mask |= (1 << entry);
  6669. entry++;
  6670. }
  6671. return index_mask;
  6672. }
  6673. static bool has_edp_a(struct drm_device *dev)
  6674. {
  6675. struct drm_i915_private *dev_priv = dev->dev_private;
  6676. if (!IS_MOBILE(dev))
  6677. return false;
  6678. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6679. return false;
  6680. if (IS_GEN5(dev) &&
  6681. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6682. return false;
  6683. return true;
  6684. }
  6685. static void intel_setup_outputs(struct drm_device *dev)
  6686. {
  6687. struct drm_i915_private *dev_priv = dev->dev_private;
  6688. struct intel_encoder *encoder;
  6689. bool dpd_is_edp = false;
  6690. bool has_lvds;
  6691. has_lvds = intel_lvds_init(dev);
  6692. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6693. /* disable the panel fitter on everything but LVDS */
  6694. I915_WRITE(PFIT_CONTROL, 0);
  6695. }
  6696. if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
  6697. intel_crt_init(dev);
  6698. if (HAS_DDI(dev)) {
  6699. int found;
  6700. /* Haswell uses DDI functions to detect digital outputs */
  6701. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  6702. /* DDI A only supports eDP */
  6703. if (found)
  6704. intel_ddi_init(dev, PORT_A);
  6705. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  6706. * register */
  6707. found = I915_READ(SFUSE_STRAP);
  6708. if (found & SFUSE_STRAP_DDIB_DETECTED)
  6709. intel_ddi_init(dev, PORT_B);
  6710. if (found & SFUSE_STRAP_DDIC_DETECTED)
  6711. intel_ddi_init(dev, PORT_C);
  6712. if (found & SFUSE_STRAP_DDID_DETECTED)
  6713. intel_ddi_init(dev, PORT_D);
  6714. } else if (HAS_PCH_SPLIT(dev)) {
  6715. int found;
  6716. dpd_is_edp = intel_dpd_is_edp(dev);
  6717. if (has_edp_a(dev))
  6718. intel_dp_init(dev, DP_A, PORT_A);
  6719. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6720. /* PCH SDVOB multiplex with HDMIB */
  6721. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  6722. if (!found)
  6723. intel_hdmi_init(dev, HDMIB, PORT_B);
  6724. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6725. intel_dp_init(dev, PCH_DP_B, PORT_B);
  6726. }
  6727. if (I915_READ(HDMIC) & PORT_DETECTED)
  6728. intel_hdmi_init(dev, HDMIC, PORT_C);
  6729. if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
  6730. intel_hdmi_init(dev, HDMID, PORT_D);
  6731. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6732. intel_dp_init(dev, PCH_DP_C, PORT_C);
  6733. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  6734. intel_dp_init(dev, PCH_DP_D, PORT_D);
  6735. } else if (IS_VALLEYVIEW(dev)) {
  6736. int found;
  6737. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  6738. if (I915_READ(DP_C) & DP_DETECTED)
  6739. intel_dp_init(dev, DP_C, PORT_C);
  6740. if (I915_READ(SDVOB) & PORT_DETECTED) {
  6741. /* SDVOB multiplex with HDMIB */
  6742. found = intel_sdvo_init(dev, SDVOB, true);
  6743. if (!found)
  6744. intel_hdmi_init(dev, SDVOB, PORT_B);
  6745. if (!found && (I915_READ(DP_B) & DP_DETECTED))
  6746. intel_dp_init(dev, DP_B, PORT_B);
  6747. }
  6748. if (I915_READ(SDVOC) & PORT_DETECTED)
  6749. intel_hdmi_init(dev, SDVOC, PORT_C);
  6750. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6751. bool found = false;
  6752. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6753. DRM_DEBUG_KMS("probing SDVOB\n");
  6754. found = intel_sdvo_init(dev, SDVOB, true);
  6755. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6756. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6757. intel_hdmi_init(dev, SDVOB, PORT_B);
  6758. }
  6759. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6760. DRM_DEBUG_KMS("probing DP_B\n");
  6761. intel_dp_init(dev, DP_B, PORT_B);
  6762. }
  6763. }
  6764. /* Before G4X SDVOC doesn't have its own detect register */
  6765. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6766. DRM_DEBUG_KMS("probing SDVOC\n");
  6767. found = intel_sdvo_init(dev, SDVOC, false);
  6768. }
  6769. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6770. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6771. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6772. intel_hdmi_init(dev, SDVOC, PORT_C);
  6773. }
  6774. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6775. DRM_DEBUG_KMS("probing DP_C\n");
  6776. intel_dp_init(dev, DP_C, PORT_C);
  6777. }
  6778. }
  6779. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6780. (I915_READ(DP_D) & DP_DETECTED)) {
  6781. DRM_DEBUG_KMS("probing DP_D\n");
  6782. intel_dp_init(dev, DP_D, PORT_D);
  6783. }
  6784. } else if (IS_GEN2(dev))
  6785. intel_dvo_init(dev);
  6786. if (SUPPORTS_TV(dev))
  6787. intel_tv_init(dev);
  6788. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6789. encoder->base.possible_crtcs = encoder->crtc_mask;
  6790. encoder->base.possible_clones =
  6791. intel_encoder_clones(encoder);
  6792. }
  6793. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  6794. ironlake_init_pch_refclk(dev);
  6795. drm_helper_move_panel_connectors_to_head(dev);
  6796. }
  6797. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6798. {
  6799. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6800. drm_framebuffer_cleanup(fb);
  6801. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6802. kfree(intel_fb);
  6803. }
  6804. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6805. struct drm_file *file,
  6806. unsigned int *handle)
  6807. {
  6808. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6809. struct drm_i915_gem_object *obj = intel_fb->obj;
  6810. return drm_gem_handle_create(file, &obj->base, handle);
  6811. }
  6812. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6813. .destroy = intel_user_framebuffer_destroy,
  6814. .create_handle = intel_user_framebuffer_create_handle,
  6815. };
  6816. int intel_framebuffer_init(struct drm_device *dev,
  6817. struct intel_framebuffer *intel_fb,
  6818. struct drm_mode_fb_cmd2 *mode_cmd,
  6819. struct drm_i915_gem_object *obj)
  6820. {
  6821. int ret;
  6822. if (obj->tiling_mode == I915_TILING_Y)
  6823. return -EINVAL;
  6824. if (mode_cmd->pitches[0] & 63)
  6825. return -EINVAL;
  6826. /* FIXME <= Gen4 stride limits are bit unclear */
  6827. if (mode_cmd->pitches[0] > 32768)
  6828. return -EINVAL;
  6829. if (obj->tiling_mode != I915_TILING_NONE &&
  6830. mode_cmd->pitches[0] != obj->stride)
  6831. return -EINVAL;
  6832. /* Reject formats not supported by any plane early. */
  6833. switch (mode_cmd->pixel_format) {
  6834. case DRM_FORMAT_C8:
  6835. case DRM_FORMAT_RGB565:
  6836. case DRM_FORMAT_XRGB8888:
  6837. case DRM_FORMAT_ARGB8888:
  6838. break;
  6839. case DRM_FORMAT_XRGB1555:
  6840. case DRM_FORMAT_ARGB1555:
  6841. if (INTEL_INFO(dev)->gen > 3)
  6842. return -EINVAL;
  6843. break;
  6844. case DRM_FORMAT_XBGR8888:
  6845. case DRM_FORMAT_ABGR8888:
  6846. case DRM_FORMAT_XRGB2101010:
  6847. case DRM_FORMAT_ARGB2101010:
  6848. case DRM_FORMAT_XBGR2101010:
  6849. case DRM_FORMAT_ABGR2101010:
  6850. if (INTEL_INFO(dev)->gen < 4)
  6851. return -EINVAL;
  6852. break;
  6853. case DRM_FORMAT_YUYV:
  6854. case DRM_FORMAT_UYVY:
  6855. case DRM_FORMAT_YVYU:
  6856. case DRM_FORMAT_VYUY:
  6857. if (INTEL_INFO(dev)->gen < 6)
  6858. return -EINVAL;
  6859. break;
  6860. default:
  6861. DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  6862. return -EINVAL;
  6863. }
  6864. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  6865. if (mode_cmd->offsets[0] != 0)
  6866. return -EINVAL;
  6867. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6868. if (ret) {
  6869. DRM_ERROR("framebuffer init failed %d\n", ret);
  6870. return ret;
  6871. }
  6872. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6873. intel_fb->obj = obj;
  6874. return 0;
  6875. }
  6876. static struct drm_framebuffer *
  6877. intel_user_framebuffer_create(struct drm_device *dev,
  6878. struct drm_file *filp,
  6879. struct drm_mode_fb_cmd2 *mode_cmd)
  6880. {
  6881. struct drm_i915_gem_object *obj;
  6882. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  6883. mode_cmd->handles[0]));
  6884. if (&obj->base == NULL)
  6885. return ERR_PTR(-ENOENT);
  6886. return intel_framebuffer_create(dev, mode_cmd, obj);
  6887. }
  6888. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6889. .fb_create = intel_user_framebuffer_create,
  6890. .output_poll_changed = intel_fb_output_poll_changed,
  6891. };
  6892. /* Set up chip specific display functions */
  6893. static void intel_init_display(struct drm_device *dev)
  6894. {
  6895. struct drm_i915_private *dev_priv = dev->dev_private;
  6896. /* We always want a DPMS function */
  6897. if (HAS_DDI(dev)) {
  6898. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  6899. dev_priv->display.crtc_enable = haswell_crtc_enable;
  6900. dev_priv->display.crtc_disable = haswell_crtc_disable;
  6901. dev_priv->display.off = haswell_crtc_off;
  6902. dev_priv->display.update_plane = ironlake_update_plane;
  6903. } else if (HAS_PCH_SPLIT(dev)) {
  6904. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  6905. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  6906. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  6907. dev_priv->display.off = ironlake_crtc_off;
  6908. dev_priv->display.update_plane = ironlake_update_plane;
  6909. } else {
  6910. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  6911. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  6912. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  6913. dev_priv->display.off = i9xx_crtc_off;
  6914. dev_priv->display.update_plane = i9xx_update_plane;
  6915. }
  6916. /* Returns the core display clock speed */
  6917. if (IS_VALLEYVIEW(dev))
  6918. dev_priv->display.get_display_clock_speed =
  6919. valleyview_get_display_clock_speed;
  6920. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  6921. dev_priv->display.get_display_clock_speed =
  6922. i945_get_display_clock_speed;
  6923. else if (IS_I915G(dev))
  6924. dev_priv->display.get_display_clock_speed =
  6925. i915_get_display_clock_speed;
  6926. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  6927. dev_priv->display.get_display_clock_speed =
  6928. i9xx_misc_get_display_clock_speed;
  6929. else if (IS_I915GM(dev))
  6930. dev_priv->display.get_display_clock_speed =
  6931. i915gm_get_display_clock_speed;
  6932. else if (IS_I865G(dev))
  6933. dev_priv->display.get_display_clock_speed =
  6934. i865_get_display_clock_speed;
  6935. else if (IS_I85X(dev))
  6936. dev_priv->display.get_display_clock_speed =
  6937. i855_get_display_clock_speed;
  6938. else /* 852, 830 */
  6939. dev_priv->display.get_display_clock_speed =
  6940. i830_get_display_clock_speed;
  6941. if (HAS_PCH_SPLIT(dev)) {
  6942. if (IS_GEN5(dev)) {
  6943. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  6944. dev_priv->display.write_eld = ironlake_write_eld;
  6945. } else if (IS_GEN6(dev)) {
  6946. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  6947. dev_priv->display.write_eld = ironlake_write_eld;
  6948. } else if (IS_IVYBRIDGE(dev)) {
  6949. /* FIXME: detect B0+ stepping and use auto training */
  6950. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  6951. dev_priv->display.write_eld = ironlake_write_eld;
  6952. dev_priv->display.modeset_global_resources =
  6953. ivb_modeset_global_resources;
  6954. } else if (IS_HASWELL(dev)) {
  6955. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  6956. dev_priv->display.write_eld = haswell_write_eld;
  6957. } else
  6958. dev_priv->display.update_wm = NULL;
  6959. } else if (IS_G4X(dev)) {
  6960. dev_priv->display.write_eld = g4x_write_eld;
  6961. }
  6962. /* Default just returns -ENODEV to indicate unsupported */
  6963. dev_priv->display.queue_flip = intel_default_queue_flip;
  6964. switch (INTEL_INFO(dev)->gen) {
  6965. case 2:
  6966. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  6967. break;
  6968. case 3:
  6969. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  6970. break;
  6971. case 4:
  6972. case 5:
  6973. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  6974. break;
  6975. case 6:
  6976. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  6977. break;
  6978. case 7:
  6979. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  6980. break;
  6981. }
  6982. }
  6983. /*
  6984. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  6985. * resume, or other times. This quirk makes sure that's the case for
  6986. * affected systems.
  6987. */
  6988. static void quirk_pipea_force(struct drm_device *dev)
  6989. {
  6990. struct drm_i915_private *dev_priv = dev->dev_private;
  6991. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  6992. DRM_INFO("applying pipe a force quirk\n");
  6993. }
  6994. /*
  6995. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  6996. */
  6997. static void quirk_ssc_force_disable(struct drm_device *dev)
  6998. {
  6999. struct drm_i915_private *dev_priv = dev->dev_private;
  7000. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7001. DRM_INFO("applying lvds SSC disable quirk\n");
  7002. }
  7003. /*
  7004. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7005. * brightness value
  7006. */
  7007. static void quirk_invert_brightness(struct drm_device *dev)
  7008. {
  7009. struct drm_i915_private *dev_priv = dev->dev_private;
  7010. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7011. DRM_INFO("applying inverted panel brightness quirk\n");
  7012. }
  7013. struct intel_quirk {
  7014. int device;
  7015. int subsystem_vendor;
  7016. int subsystem_device;
  7017. void (*hook)(struct drm_device *dev);
  7018. };
  7019. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7020. struct intel_dmi_quirk {
  7021. void (*hook)(struct drm_device *dev);
  7022. const struct dmi_system_id (*dmi_id_list)[];
  7023. };
  7024. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7025. {
  7026. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7027. return 1;
  7028. }
  7029. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7030. {
  7031. .dmi_id_list = &(const struct dmi_system_id[]) {
  7032. {
  7033. .callback = intel_dmi_reverse_brightness,
  7034. .ident = "NCR Corporation",
  7035. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7036. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7037. },
  7038. },
  7039. { } /* terminating entry */
  7040. },
  7041. .hook = quirk_invert_brightness,
  7042. },
  7043. };
  7044. static struct intel_quirk intel_quirks[] = {
  7045. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7046. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7047. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7048. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7049. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7050. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7051. /* 830/845 need to leave pipe A & dpll A up */
  7052. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7053. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7054. /* Lenovo U160 cannot use SSC on LVDS */
  7055. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7056. /* Sony Vaio Y cannot use SSC on LVDS */
  7057. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7058. /* Acer Aspire 5734Z must invert backlight brightness */
  7059. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7060. };
  7061. static void intel_init_quirks(struct drm_device *dev)
  7062. {
  7063. struct pci_dev *d = dev->pdev;
  7064. int i;
  7065. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7066. struct intel_quirk *q = &intel_quirks[i];
  7067. if (d->device == q->device &&
  7068. (d->subsystem_vendor == q->subsystem_vendor ||
  7069. q->subsystem_vendor == PCI_ANY_ID) &&
  7070. (d->subsystem_device == q->subsystem_device ||
  7071. q->subsystem_device == PCI_ANY_ID))
  7072. q->hook(dev);
  7073. }
  7074. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7075. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7076. intel_dmi_quirks[i].hook(dev);
  7077. }
  7078. }
  7079. /* Disable the VGA plane that we never use */
  7080. static void i915_disable_vga(struct drm_device *dev)
  7081. {
  7082. struct drm_i915_private *dev_priv = dev->dev_private;
  7083. u8 sr1;
  7084. u32 vga_reg;
  7085. if (HAS_PCH_SPLIT(dev))
  7086. vga_reg = CPU_VGACNTRL;
  7087. else
  7088. vga_reg = VGACNTRL;
  7089. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7090. outb(SR01, VGA_SR_INDEX);
  7091. sr1 = inb(VGA_SR_DATA);
  7092. outb(sr1 | 1<<5, VGA_SR_DATA);
  7093. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7094. udelay(300);
  7095. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7096. POSTING_READ(vga_reg);
  7097. }
  7098. void intel_modeset_init_hw(struct drm_device *dev)
  7099. {
  7100. /* We attempt to init the necessary power wells early in the initialization
  7101. * time, so the subsystems that expect power to be enabled can work.
  7102. */
  7103. intel_init_power_wells(dev);
  7104. intel_prepare_ddi(dev);
  7105. intel_init_clock_gating(dev);
  7106. mutex_lock(&dev->struct_mutex);
  7107. intel_enable_gt_powersave(dev);
  7108. mutex_unlock(&dev->struct_mutex);
  7109. }
  7110. void intel_modeset_init(struct drm_device *dev)
  7111. {
  7112. struct drm_i915_private *dev_priv = dev->dev_private;
  7113. int i, ret;
  7114. drm_mode_config_init(dev);
  7115. dev->mode_config.min_width = 0;
  7116. dev->mode_config.min_height = 0;
  7117. dev->mode_config.preferred_depth = 24;
  7118. dev->mode_config.prefer_shadow = 1;
  7119. dev->mode_config.funcs = &intel_mode_funcs;
  7120. intel_init_quirks(dev);
  7121. intel_init_pm(dev);
  7122. intel_init_display(dev);
  7123. if (IS_GEN2(dev)) {
  7124. dev->mode_config.max_width = 2048;
  7125. dev->mode_config.max_height = 2048;
  7126. } else if (IS_GEN3(dev)) {
  7127. dev->mode_config.max_width = 4096;
  7128. dev->mode_config.max_height = 4096;
  7129. } else {
  7130. dev->mode_config.max_width = 8192;
  7131. dev->mode_config.max_height = 8192;
  7132. }
  7133. dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
  7134. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7135. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7136. for (i = 0; i < dev_priv->num_pipe; i++) {
  7137. intel_crtc_init(dev, i);
  7138. ret = intel_plane_init(dev, i);
  7139. if (ret)
  7140. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7141. }
  7142. intel_cpu_pll_init(dev);
  7143. intel_pch_pll_init(dev);
  7144. /* Just disable it once at startup */
  7145. i915_disable_vga(dev);
  7146. intel_setup_outputs(dev);
  7147. /* Just in case the BIOS is doing something questionable. */
  7148. intel_disable_fbc(dev);
  7149. }
  7150. static void
  7151. intel_connector_break_all_links(struct intel_connector *connector)
  7152. {
  7153. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7154. connector->base.encoder = NULL;
  7155. connector->encoder->connectors_active = false;
  7156. connector->encoder->base.crtc = NULL;
  7157. }
  7158. static void intel_enable_pipe_a(struct drm_device *dev)
  7159. {
  7160. struct intel_connector *connector;
  7161. struct drm_connector *crt = NULL;
  7162. struct intel_load_detect_pipe load_detect_temp;
  7163. /* We can't just switch on the pipe A, we need to set things up with a
  7164. * proper mode and output configuration. As a gross hack, enable pipe A
  7165. * by enabling the load detect pipe once. */
  7166. list_for_each_entry(connector,
  7167. &dev->mode_config.connector_list,
  7168. base.head) {
  7169. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7170. crt = &connector->base;
  7171. break;
  7172. }
  7173. }
  7174. if (!crt)
  7175. return;
  7176. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7177. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7178. }
  7179. static bool
  7180. intel_check_plane_mapping(struct intel_crtc *crtc)
  7181. {
  7182. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  7183. u32 reg, val;
  7184. if (dev_priv->num_pipe == 1)
  7185. return true;
  7186. reg = DSPCNTR(!crtc->plane);
  7187. val = I915_READ(reg);
  7188. if ((val & DISPLAY_PLANE_ENABLE) &&
  7189. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7190. return false;
  7191. return true;
  7192. }
  7193. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7194. {
  7195. struct drm_device *dev = crtc->base.dev;
  7196. struct drm_i915_private *dev_priv = dev->dev_private;
  7197. u32 reg;
  7198. /* Clear any frame start delays used for debugging left by the BIOS */
  7199. reg = PIPECONF(crtc->cpu_transcoder);
  7200. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7201. /* We need to sanitize the plane -> pipe mapping first because this will
  7202. * disable the crtc (and hence change the state) if it is wrong. Note
  7203. * that gen4+ has a fixed plane -> pipe mapping. */
  7204. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7205. struct intel_connector *connector;
  7206. bool plane;
  7207. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7208. crtc->base.base.id);
  7209. /* Pipe has the wrong plane attached and the plane is active.
  7210. * Temporarily change the plane mapping and disable everything
  7211. * ... */
  7212. plane = crtc->plane;
  7213. crtc->plane = !plane;
  7214. dev_priv->display.crtc_disable(&crtc->base);
  7215. crtc->plane = plane;
  7216. /* ... and break all links. */
  7217. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7218. base.head) {
  7219. if (connector->encoder->base.crtc != &crtc->base)
  7220. continue;
  7221. intel_connector_break_all_links(connector);
  7222. }
  7223. WARN_ON(crtc->active);
  7224. crtc->base.enabled = false;
  7225. }
  7226. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7227. crtc->pipe == PIPE_A && !crtc->active) {
  7228. /* BIOS forgot to enable pipe A, this mostly happens after
  7229. * resume. Force-enable the pipe to fix this, the update_dpms
  7230. * call below we restore the pipe to the right state, but leave
  7231. * the required bits on. */
  7232. intel_enable_pipe_a(dev);
  7233. }
  7234. /* Adjust the state of the output pipe according to whether we
  7235. * have active connectors/encoders. */
  7236. intel_crtc_update_dpms(&crtc->base);
  7237. if (crtc->active != crtc->base.enabled) {
  7238. struct intel_encoder *encoder;
  7239. /* This can happen either due to bugs in the get_hw_state
  7240. * functions or because the pipe is force-enabled due to the
  7241. * pipe A quirk. */
  7242. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7243. crtc->base.base.id,
  7244. crtc->base.enabled ? "enabled" : "disabled",
  7245. crtc->active ? "enabled" : "disabled");
  7246. crtc->base.enabled = crtc->active;
  7247. /* Because we only establish the connector -> encoder ->
  7248. * crtc links if something is active, this means the
  7249. * crtc is now deactivated. Break the links. connector
  7250. * -> encoder links are only establish when things are
  7251. * actually up, hence no need to break them. */
  7252. WARN_ON(crtc->active);
  7253. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7254. WARN_ON(encoder->connectors_active);
  7255. encoder->base.crtc = NULL;
  7256. }
  7257. }
  7258. }
  7259. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7260. {
  7261. struct intel_connector *connector;
  7262. struct drm_device *dev = encoder->base.dev;
  7263. /* We need to check both for a crtc link (meaning that the
  7264. * encoder is active and trying to read from a pipe) and the
  7265. * pipe itself being active. */
  7266. bool has_active_crtc = encoder->base.crtc &&
  7267. to_intel_crtc(encoder->base.crtc)->active;
  7268. if (encoder->connectors_active && !has_active_crtc) {
  7269. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7270. encoder->base.base.id,
  7271. drm_get_encoder_name(&encoder->base));
  7272. /* Connector is active, but has no active pipe. This is
  7273. * fallout from our resume register restoring. Disable
  7274. * the encoder manually again. */
  7275. if (encoder->base.crtc) {
  7276. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7277. encoder->base.base.id,
  7278. drm_get_encoder_name(&encoder->base));
  7279. encoder->disable(encoder);
  7280. }
  7281. /* Inconsistent output/port/pipe state happens presumably due to
  7282. * a bug in one of the get_hw_state functions. Or someplace else
  7283. * in our code, like the register restore mess on resume. Clamp
  7284. * things to off as a safer default. */
  7285. list_for_each_entry(connector,
  7286. &dev->mode_config.connector_list,
  7287. base.head) {
  7288. if (connector->encoder != encoder)
  7289. continue;
  7290. intel_connector_break_all_links(connector);
  7291. }
  7292. }
  7293. /* Enabled encoders without active connectors will be fixed in
  7294. * the crtc fixup. */
  7295. }
  7296. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7297. * and i915 state tracking structures. */
  7298. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7299. bool force_restore)
  7300. {
  7301. struct drm_i915_private *dev_priv = dev->dev_private;
  7302. enum pipe pipe;
  7303. u32 tmp;
  7304. struct intel_crtc *crtc;
  7305. struct intel_encoder *encoder;
  7306. struct intel_connector *connector;
  7307. if (HAS_DDI(dev)) {
  7308. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  7309. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  7310. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  7311. case TRANS_DDI_EDP_INPUT_A_ON:
  7312. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  7313. pipe = PIPE_A;
  7314. break;
  7315. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  7316. pipe = PIPE_B;
  7317. break;
  7318. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  7319. pipe = PIPE_C;
  7320. break;
  7321. }
  7322. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7323. crtc->cpu_transcoder = TRANSCODER_EDP;
  7324. DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
  7325. pipe_name(pipe));
  7326. }
  7327. }
  7328. for_each_pipe(pipe) {
  7329. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7330. tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
  7331. if (tmp & PIPECONF_ENABLE)
  7332. crtc->active = true;
  7333. else
  7334. crtc->active = false;
  7335. crtc->base.enabled = crtc->active;
  7336. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7337. crtc->base.base.id,
  7338. crtc->active ? "enabled" : "disabled");
  7339. }
  7340. if (HAS_DDI(dev))
  7341. intel_ddi_setup_hw_pll_state(dev);
  7342. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7343. base.head) {
  7344. pipe = 0;
  7345. if (encoder->get_hw_state(encoder, &pipe)) {
  7346. encoder->base.crtc =
  7347. dev_priv->pipe_to_crtc_mapping[pipe];
  7348. } else {
  7349. encoder->base.crtc = NULL;
  7350. }
  7351. encoder->connectors_active = false;
  7352. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7353. encoder->base.base.id,
  7354. drm_get_encoder_name(&encoder->base),
  7355. encoder->base.crtc ? "enabled" : "disabled",
  7356. pipe);
  7357. }
  7358. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7359. base.head) {
  7360. if (connector->get_hw_state(connector)) {
  7361. connector->base.dpms = DRM_MODE_DPMS_ON;
  7362. connector->encoder->connectors_active = true;
  7363. connector->base.encoder = &connector->encoder->base;
  7364. } else {
  7365. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7366. connector->base.encoder = NULL;
  7367. }
  7368. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7369. connector->base.base.id,
  7370. drm_get_connector_name(&connector->base),
  7371. connector->base.encoder ? "enabled" : "disabled");
  7372. }
  7373. /* HW state is read out, now we need to sanitize this mess. */
  7374. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7375. base.head) {
  7376. intel_sanitize_encoder(encoder);
  7377. }
  7378. for_each_pipe(pipe) {
  7379. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7380. intel_sanitize_crtc(crtc);
  7381. }
  7382. if (force_restore) {
  7383. for_each_pipe(pipe) {
  7384. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7385. intel_set_mode(&crtc->base, &crtc->base.mode,
  7386. crtc->base.x, crtc->base.y, crtc->base.fb);
  7387. }
  7388. } else {
  7389. intel_modeset_update_staged_output_state(dev);
  7390. }
  7391. intel_modeset_check_state(dev);
  7392. drm_mode_config_reset(dev);
  7393. }
  7394. void intel_modeset_gem_init(struct drm_device *dev)
  7395. {
  7396. intel_modeset_init_hw(dev);
  7397. intel_setup_overlay(dev);
  7398. intel_modeset_setup_hw_state(dev, false);
  7399. }
  7400. void intel_modeset_cleanup(struct drm_device *dev)
  7401. {
  7402. struct drm_i915_private *dev_priv = dev->dev_private;
  7403. struct drm_crtc *crtc;
  7404. struct intel_crtc *intel_crtc;
  7405. drm_kms_helper_poll_fini(dev);
  7406. mutex_lock(&dev->struct_mutex);
  7407. intel_unregister_dsm_handler();
  7408. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7409. /* Skip inactive CRTCs */
  7410. if (!crtc->fb)
  7411. continue;
  7412. intel_crtc = to_intel_crtc(crtc);
  7413. intel_increase_pllclock(crtc);
  7414. }
  7415. intel_disable_fbc(dev);
  7416. intel_disable_gt_powersave(dev);
  7417. ironlake_teardown_rc6(dev);
  7418. if (IS_VALLEYVIEW(dev))
  7419. vlv_init_dpio(dev);
  7420. mutex_unlock(&dev->struct_mutex);
  7421. /* Disable the irq before mode object teardown, for the irq might
  7422. * enqueue unpin/hotplug work. */
  7423. drm_irq_uninstall(dev);
  7424. cancel_work_sync(&dev_priv->hotplug_work);
  7425. cancel_work_sync(&dev_priv->rps.work);
  7426. /* flush any delayed tasks or pending work */
  7427. flush_scheduled_work();
  7428. drm_mode_config_cleanup(dev);
  7429. }
  7430. /*
  7431. * Return which encoder is currently attached for connector.
  7432. */
  7433. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7434. {
  7435. return &intel_attached_encoder(connector)->base;
  7436. }
  7437. void intel_connector_attach_encoder(struct intel_connector *connector,
  7438. struct intel_encoder *encoder)
  7439. {
  7440. connector->encoder = encoder;
  7441. drm_mode_connector_attach_encoder(&connector->base,
  7442. &encoder->base);
  7443. }
  7444. /*
  7445. * set vga decode state - true == enable VGA decode
  7446. */
  7447. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7448. {
  7449. struct drm_i915_private *dev_priv = dev->dev_private;
  7450. u16 gmch_ctrl;
  7451. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7452. if (state)
  7453. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7454. else
  7455. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7456. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7457. return 0;
  7458. }
  7459. #ifdef CONFIG_DEBUG_FS
  7460. #include <linux/seq_file.h>
  7461. struct intel_display_error_state {
  7462. struct intel_cursor_error_state {
  7463. u32 control;
  7464. u32 position;
  7465. u32 base;
  7466. u32 size;
  7467. } cursor[I915_MAX_PIPES];
  7468. struct intel_pipe_error_state {
  7469. u32 conf;
  7470. u32 source;
  7471. u32 htotal;
  7472. u32 hblank;
  7473. u32 hsync;
  7474. u32 vtotal;
  7475. u32 vblank;
  7476. u32 vsync;
  7477. } pipe[I915_MAX_PIPES];
  7478. struct intel_plane_error_state {
  7479. u32 control;
  7480. u32 stride;
  7481. u32 size;
  7482. u32 pos;
  7483. u32 addr;
  7484. u32 surface;
  7485. u32 tile_offset;
  7486. } plane[I915_MAX_PIPES];
  7487. };
  7488. struct intel_display_error_state *
  7489. intel_display_capture_error_state(struct drm_device *dev)
  7490. {
  7491. drm_i915_private_t *dev_priv = dev->dev_private;
  7492. struct intel_display_error_state *error;
  7493. enum transcoder cpu_transcoder;
  7494. int i;
  7495. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7496. if (error == NULL)
  7497. return NULL;
  7498. for_each_pipe(i) {
  7499. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  7500. error->cursor[i].control = I915_READ(CURCNTR(i));
  7501. error->cursor[i].position = I915_READ(CURPOS(i));
  7502. error->cursor[i].base = I915_READ(CURBASE(i));
  7503. error->plane[i].control = I915_READ(DSPCNTR(i));
  7504. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7505. error->plane[i].size = I915_READ(DSPSIZE(i));
  7506. error->plane[i].pos = I915_READ(DSPPOS(i));
  7507. error->plane[i].addr = I915_READ(DSPADDR(i));
  7508. if (INTEL_INFO(dev)->gen >= 4) {
  7509. error->plane[i].surface = I915_READ(DSPSURF(i));
  7510. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7511. }
  7512. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  7513. error->pipe[i].source = I915_READ(PIPESRC(i));
  7514. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  7515. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  7516. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  7517. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  7518. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  7519. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  7520. }
  7521. return error;
  7522. }
  7523. void
  7524. intel_display_print_error_state(struct seq_file *m,
  7525. struct drm_device *dev,
  7526. struct intel_display_error_state *error)
  7527. {
  7528. drm_i915_private_t *dev_priv = dev->dev_private;
  7529. int i;
  7530. seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
  7531. for_each_pipe(i) {
  7532. seq_printf(m, "Pipe [%d]:\n", i);
  7533. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7534. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7535. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7536. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7537. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7538. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7539. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7540. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7541. seq_printf(m, "Plane [%d]:\n", i);
  7542. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7543. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7544. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7545. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7546. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7547. if (INTEL_INFO(dev)->gen >= 4) {
  7548. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7549. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7550. }
  7551. seq_printf(m, "Cursor [%d]:\n", i);
  7552. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7553. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7554. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7555. }
  7556. }
  7557. #endif