i915_gem.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include <drm/drmP.h>
  28. #include <drm/i915_drm.h>
  29. #include "i915_drv.h"
  30. #include "i915_trace.h"
  31. #include "intel_drv.h"
  32. #include <linux/shmem_fs.h>
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-buf.h>
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  40. unsigned alignment,
  41. bool map_and_fenceable,
  42. bool nonblocking);
  43. static int i915_gem_phys_pwrite(struct drm_device *dev,
  44. struct drm_i915_gem_object *obj,
  45. struct drm_i915_gem_pwrite *args,
  46. struct drm_file *file);
  47. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48. struct drm_i915_gem_object *obj);
  49. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50. struct drm_i915_fence_reg *fence,
  51. bool enable);
  52. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  53. struct shrink_control *sc);
  54. static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  55. static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  56. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  57. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  58. {
  59. if (obj->tiling_mode)
  60. i915_gem_release_mmap(obj);
  61. /* As we do not have an associated fence register, we will force
  62. * a tiling change if we ever need to acquire one.
  63. */
  64. obj->fence_dirty = false;
  65. obj->fence_reg = I915_FENCE_REG_NONE;
  66. }
  67. /* some bookkeeping */
  68. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  69. size_t size)
  70. {
  71. dev_priv->mm.object_count++;
  72. dev_priv->mm.object_memory += size;
  73. }
  74. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  75. size_t size)
  76. {
  77. dev_priv->mm.object_count--;
  78. dev_priv->mm.object_memory -= size;
  79. }
  80. static int
  81. i915_gem_wait_for_error(struct drm_device *dev)
  82. {
  83. struct drm_i915_private *dev_priv = dev->dev_private;
  84. struct completion *x = &dev_priv->error_completion;
  85. unsigned long flags;
  86. int ret;
  87. if (!atomic_read(&dev_priv->mm.wedged))
  88. return 0;
  89. /*
  90. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  91. * userspace. If it takes that long something really bad is going on and
  92. * we should simply try to bail out and fail as gracefully as possible.
  93. */
  94. ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
  95. if (ret == 0) {
  96. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  97. return -EIO;
  98. } else if (ret < 0) {
  99. return ret;
  100. }
  101. if (atomic_read(&dev_priv->mm.wedged)) {
  102. /* GPU is hung, bump the completion count to account for
  103. * the token we just consumed so that we never hit zero and
  104. * end up waiting upon a subsequent completion event that
  105. * will never happen.
  106. */
  107. spin_lock_irqsave(&x->wait.lock, flags);
  108. x->done++;
  109. spin_unlock_irqrestore(&x->wait.lock, flags);
  110. }
  111. return 0;
  112. }
  113. int i915_mutex_lock_interruptible(struct drm_device *dev)
  114. {
  115. int ret;
  116. ret = i915_gem_wait_for_error(dev);
  117. if (ret)
  118. return ret;
  119. ret = mutex_lock_interruptible(&dev->struct_mutex);
  120. if (ret)
  121. return ret;
  122. WARN_ON(i915_verify_lists(dev));
  123. return 0;
  124. }
  125. static inline bool
  126. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  127. {
  128. return obj->gtt_space && !obj->active;
  129. }
  130. int
  131. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  132. struct drm_file *file)
  133. {
  134. struct drm_i915_gem_init *args = data;
  135. if (drm_core_check_feature(dev, DRIVER_MODESET))
  136. return -ENODEV;
  137. if (args->gtt_start >= args->gtt_end ||
  138. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  139. return -EINVAL;
  140. /* GEM with user mode setting was never supported on ilk and later. */
  141. if (INTEL_INFO(dev)->gen >= 5)
  142. return -ENODEV;
  143. mutex_lock(&dev->struct_mutex);
  144. i915_gem_init_global_gtt(dev, args->gtt_start,
  145. args->gtt_end, args->gtt_end);
  146. mutex_unlock(&dev->struct_mutex);
  147. return 0;
  148. }
  149. int
  150. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  151. struct drm_file *file)
  152. {
  153. struct drm_i915_private *dev_priv = dev->dev_private;
  154. struct drm_i915_gem_get_aperture *args = data;
  155. struct drm_i915_gem_object *obj;
  156. size_t pinned;
  157. pinned = 0;
  158. mutex_lock(&dev->struct_mutex);
  159. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  160. if (obj->pin_count)
  161. pinned += obj->gtt_space->size;
  162. mutex_unlock(&dev->struct_mutex);
  163. args->aper_size = dev_priv->mm.gtt_total;
  164. args->aper_available_size = args->aper_size - pinned;
  165. return 0;
  166. }
  167. void *i915_gem_object_alloc(struct drm_device *dev)
  168. {
  169. struct drm_i915_private *dev_priv = dev->dev_private;
  170. return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
  171. }
  172. void i915_gem_object_free(struct drm_i915_gem_object *obj)
  173. {
  174. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  175. kmem_cache_free(dev_priv->slab, obj);
  176. }
  177. static int
  178. i915_gem_create(struct drm_file *file,
  179. struct drm_device *dev,
  180. uint64_t size,
  181. uint32_t *handle_p)
  182. {
  183. struct drm_i915_gem_object *obj;
  184. int ret;
  185. u32 handle;
  186. size = roundup(size, PAGE_SIZE);
  187. if (size == 0)
  188. return -EINVAL;
  189. /* Allocate the new object */
  190. obj = i915_gem_alloc_object(dev, size);
  191. if (obj == NULL)
  192. return -ENOMEM;
  193. ret = drm_gem_handle_create(file, &obj->base, &handle);
  194. if (ret) {
  195. drm_gem_object_release(&obj->base);
  196. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  197. i915_gem_object_free(obj);
  198. return ret;
  199. }
  200. /* drop reference from allocate - handle holds it now */
  201. drm_gem_object_unreference(&obj->base);
  202. trace_i915_gem_object_create(obj);
  203. *handle_p = handle;
  204. return 0;
  205. }
  206. int
  207. i915_gem_dumb_create(struct drm_file *file,
  208. struct drm_device *dev,
  209. struct drm_mode_create_dumb *args)
  210. {
  211. /* have to work out size/pitch and return them */
  212. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  213. args->size = args->pitch * args->height;
  214. return i915_gem_create(file, dev,
  215. args->size, &args->handle);
  216. }
  217. int i915_gem_dumb_destroy(struct drm_file *file,
  218. struct drm_device *dev,
  219. uint32_t handle)
  220. {
  221. return drm_gem_handle_delete(file, handle);
  222. }
  223. /**
  224. * Creates a new mm object and returns a handle to it.
  225. */
  226. int
  227. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  228. struct drm_file *file)
  229. {
  230. struct drm_i915_gem_create *args = data;
  231. return i915_gem_create(file, dev,
  232. args->size, &args->handle);
  233. }
  234. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  235. {
  236. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  237. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  238. obj->tiling_mode != I915_TILING_NONE;
  239. }
  240. static inline int
  241. __copy_to_user_swizzled(char __user *cpu_vaddr,
  242. const char *gpu_vaddr, int gpu_offset,
  243. int length)
  244. {
  245. int ret, cpu_offset = 0;
  246. while (length > 0) {
  247. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  248. int this_length = min(cacheline_end - gpu_offset, length);
  249. int swizzled_gpu_offset = gpu_offset ^ 64;
  250. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  251. gpu_vaddr + swizzled_gpu_offset,
  252. this_length);
  253. if (ret)
  254. return ret + length;
  255. cpu_offset += this_length;
  256. gpu_offset += this_length;
  257. length -= this_length;
  258. }
  259. return 0;
  260. }
  261. static inline int
  262. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  263. const char __user *cpu_vaddr,
  264. int length)
  265. {
  266. int ret, cpu_offset = 0;
  267. while (length > 0) {
  268. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  269. int this_length = min(cacheline_end - gpu_offset, length);
  270. int swizzled_gpu_offset = gpu_offset ^ 64;
  271. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  272. cpu_vaddr + cpu_offset,
  273. this_length);
  274. if (ret)
  275. return ret + length;
  276. cpu_offset += this_length;
  277. gpu_offset += this_length;
  278. length -= this_length;
  279. }
  280. return 0;
  281. }
  282. /* Per-page copy function for the shmem pread fastpath.
  283. * Flushes invalid cachelines before reading the target if
  284. * needs_clflush is set. */
  285. static int
  286. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  287. char __user *user_data,
  288. bool page_do_bit17_swizzling, bool needs_clflush)
  289. {
  290. char *vaddr;
  291. int ret;
  292. if (unlikely(page_do_bit17_swizzling))
  293. return -EINVAL;
  294. vaddr = kmap_atomic(page);
  295. if (needs_clflush)
  296. drm_clflush_virt_range(vaddr + shmem_page_offset,
  297. page_length);
  298. ret = __copy_to_user_inatomic(user_data,
  299. vaddr + shmem_page_offset,
  300. page_length);
  301. kunmap_atomic(vaddr);
  302. return ret ? -EFAULT : 0;
  303. }
  304. static void
  305. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  306. bool swizzled)
  307. {
  308. if (unlikely(swizzled)) {
  309. unsigned long start = (unsigned long) addr;
  310. unsigned long end = (unsigned long) addr + length;
  311. /* For swizzling simply ensure that we always flush both
  312. * channels. Lame, but simple and it works. Swizzled
  313. * pwrite/pread is far from a hotpath - current userspace
  314. * doesn't use it at all. */
  315. start = round_down(start, 128);
  316. end = round_up(end, 128);
  317. drm_clflush_virt_range((void *)start, end - start);
  318. } else {
  319. drm_clflush_virt_range(addr, length);
  320. }
  321. }
  322. /* Only difference to the fast-path function is that this can handle bit17
  323. * and uses non-atomic copy and kmap functions. */
  324. static int
  325. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  326. char __user *user_data,
  327. bool page_do_bit17_swizzling, bool needs_clflush)
  328. {
  329. char *vaddr;
  330. int ret;
  331. vaddr = kmap(page);
  332. if (needs_clflush)
  333. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  334. page_length,
  335. page_do_bit17_swizzling);
  336. if (page_do_bit17_swizzling)
  337. ret = __copy_to_user_swizzled(user_data,
  338. vaddr, shmem_page_offset,
  339. page_length);
  340. else
  341. ret = __copy_to_user(user_data,
  342. vaddr + shmem_page_offset,
  343. page_length);
  344. kunmap(page);
  345. return ret ? - EFAULT : 0;
  346. }
  347. static int
  348. i915_gem_shmem_pread(struct drm_device *dev,
  349. struct drm_i915_gem_object *obj,
  350. struct drm_i915_gem_pread *args,
  351. struct drm_file *file)
  352. {
  353. char __user *user_data;
  354. ssize_t remain;
  355. loff_t offset;
  356. int shmem_page_offset, page_length, ret = 0;
  357. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  358. int prefaulted = 0;
  359. int needs_clflush = 0;
  360. struct scatterlist *sg;
  361. int i;
  362. user_data = (char __user *) (uintptr_t) args->data_ptr;
  363. remain = args->size;
  364. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  365. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  366. /* If we're not in the cpu read domain, set ourself into the gtt
  367. * read domain and manually flush cachelines (if required). This
  368. * optimizes for the case when the gpu will dirty the data
  369. * anyway again before the next pread happens. */
  370. if (obj->cache_level == I915_CACHE_NONE)
  371. needs_clflush = 1;
  372. if (obj->gtt_space) {
  373. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  374. if (ret)
  375. return ret;
  376. }
  377. }
  378. ret = i915_gem_object_get_pages(obj);
  379. if (ret)
  380. return ret;
  381. i915_gem_object_pin_pages(obj);
  382. offset = args->offset;
  383. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  384. struct page *page;
  385. if (i < offset >> PAGE_SHIFT)
  386. continue;
  387. if (remain <= 0)
  388. break;
  389. /* Operation in this page
  390. *
  391. * shmem_page_offset = offset within page in shmem file
  392. * page_length = bytes to copy for this page
  393. */
  394. shmem_page_offset = offset_in_page(offset);
  395. page_length = remain;
  396. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  397. page_length = PAGE_SIZE - shmem_page_offset;
  398. page = sg_page(sg);
  399. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  400. (page_to_phys(page) & (1 << 17)) != 0;
  401. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  402. user_data, page_do_bit17_swizzling,
  403. needs_clflush);
  404. if (ret == 0)
  405. goto next_page;
  406. mutex_unlock(&dev->struct_mutex);
  407. if (!prefaulted) {
  408. ret = fault_in_multipages_writeable(user_data, remain);
  409. /* Userspace is tricking us, but we've already clobbered
  410. * its pages with the prefault and promised to write the
  411. * data up to the first fault. Hence ignore any errors
  412. * and just continue. */
  413. (void)ret;
  414. prefaulted = 1;
  415. }
  416. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  417. user_data, page_do_bit17_swizzling,
  418. needs_clflush);
  419. mutex_lock(&dev->struct_mutex);
  420. next_page:
  421. mark_page_accessed(page);
  422. if (ret)
  423. goto out;
  424. remain -= page_length;
  425. user_data += page_length;
  426. offset += page_length;
  427. }
  428. out:
  429. i915_gem_object_unpin_pages(obj);
  430. return ret;
  431. }
  432. /**
  433. * Reads data from the object referenced by handle.
  434. *
  435. * On error, the contents of *data are undefined.
  436. */
  437. int
  438. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  439. struct drm_file *file)
  440. {
  441. struct drm_i915_gem_pread *args = data;
  442. struct drm_i915_gem_object *obj;
  443. int ret = 0;
  444. if (args->size == 0)
  445. return 0;
  446. if (!access_ok(VERIFY_WRITE,
  447. (char __user *)(uintptr_t)args->data_ptr,
  448. args->size))
  449. return -EFAULT;
  450. ret = i915_mutex_lock_interruptible(dev);
  451. if (ret)
  452. return ret;
  453. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  454. if (&obj->base == NULL) {
  455. ret = -ENOENT;
  456. goto unlock;
  457. }
  458. /* Bounds check source. */
  459. if (args->offset > obj->base.size ||
  460. args->size > obj->base.size - args->offset) {
  461. ret = -EINVAL;
  462. goto out;
  463. }
  464. /* prime objects have no backing filp to GEM pread/pwrite
  465. * pages from.
  466. */
  467. if (!obj->base.filp) {
  468. ret = -EINVAL;
  469. goto out;
  470. }
  471. trace_i915_gem_object_pread(obj, args->offset, args->size);
  472. ret = i915_gem_shmem_pread(dev, obj, args, file);
  473. out:
  474. drm_gem_object_unreference(&obj->base);
  475. unlock:
  476. mutex_unlock(&dev->struct_mutex);
  477. return ret;
  478. }
  479. /* This is the fast write path which cannot handle
  480. * page faults in the source data
  481. */
  482. static inline int
  483. fast_user_write(struct io_mapping *mapping,
  484. loff_t page_base, int page_offset,
  485. char __user *user_data,
  486. int length)
  487. {
  488. void __iomem *vaddr_atomic;
  489. void *vaddr;
  490. unsigned long unwritten;
  491. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  492. /* We can use the cpu mem copy function because this is X86. */
  493. vaddr = (void __force*)vaddr_atomic + page_offset;
  494. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  495. user_data, length);
  496. io_mapping_unmap_atomic(vaddr_atomic);
  497. return unwritten;
  498. }
  499. /**
  500. * This is the fast pwrite path, where we copy the data directly from the
  501. * user into the GTT, uncached.
  502. */
  503. static int
  504. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  505. struct drm_i915_gem_object *obj,
  506. struct drm_i915_gem_pwrite *args,
  507. struct drm_file *file)
  508. {
  509. drm_i915_private_t *dev_priv = dev->dev_private;
  510. ssize_t remain;
  511. loff_t offset, page_base;
  512. char __user *user_data;
  513. int page_offset, page_length, ret;
  514. ret = i915_gem_object_pin(obj, 0, true, true);
  515. if (ret)
  516. goto out;
  517. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  518. if (ret)
  519. goto out_unpin;
  520. ret = i915_gem_object_put_fence(obj);
  521. if (ret)
  522. goto out_unpin;
  523. user_data = (char __user *) (uintptr_t) args->data_ptr;
  524. remain = args->size;
  525. offset = obj->gtt_offset + args->offset;
  526. while (remain > 0) {
  527. /* Operation in this page
  528. *
  529. * page_base = page offset within aperture
  530. * page_offset = offset within page
  531. * page_length = bytes to copy for this page
  532. */
  533. page_base = offset & PAGE_MASK;
  534. page_offset = offset_in_page(offset);
  535. page_length = remain;
  536. if ((page_offset + remain) > PAGE_SIZE)
  537. page_length = PAGE_SIZE - page_offset;
  538. /* If we get a fault while copying data, then (presumably) our
  539. * source page isn't available. Return the error and we'll
  540. * retry in the slow path.
  541. */
  542. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  543. page_offset, user_data, page_length)) {
  544. ret = -EFAULT;
  545. goto out_unpin;
  546. }
  547. remain -= page_length;
  548. user_data += page_length;
  549. offset += page_length;
  550. }
  551. out_unpin:
  552. i915_gem_object_unpin(obj);
  553. out:
  554. return ret;
  555. }
  556. /* Per-page copy function for the shmem pwrite fastpath.
  557. * Flushes invalid cachelines before writing to the target if
  558. * needs_clflush_before is set and flushes out any written cachelines after
  559. * writing if needs_clflush is set. */
  560. static int
  561. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  562. char __user *user_data,
  563. bool page_do_bit17_swizzling,
  564. bool needs_clflush_before,
  565. bool needs_clflush_after)
  566. {
  567. char *vaddr;
  568. int ret;
  569. if (unlikely(page_do_bit17_swizzling))
  570. return -EINVAL;
  571. vaddr = kmap_atomic(page);
  572. if (needs_clflush_before)
  573. drm_clflush_virt_range(vaddr + shmem_page_offset,
  574. page_length);
  575. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  576. user_data,
  577. page_length);
  578. if (needs_clflush_after)
  579. drm_clflush_virt_range(vaddr + shmem_page_offset,
  580. page_length);
  581. kunmap_atomic(vaddr);
  582. return ret ? -EFAULT : 0;
  583. }
  584. /* Only difference to the fast-path function is that this can handle bit17
  585. * and uses non-atomic copy and kmap functions. */
  586. static int
  587. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  588. char __user *user_data,
  589. bool page_do_bit17_swizzling,
  590. bool needs_clflush_before,
  591. bool needs_clflush_after)
  592. {
  593. char *vaddr;
  594. int ret;
  595. vaddr = kmap(page);
  596. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  597. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  598. page_length,
  599. page_do_bit17_swizzling);
  600. if (page_do_bit17_swizzling)
  601. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  602. user_data,
  603. page_length);
  604. else
  605. ret = __copy_from_user(vaddr + shmem_page_offset,
  606. user_data,
  607. page_length);
  608. if (needs_clflush_after)
  609. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  610. page_length,
  611. page_do_bit17_swizzling);
  612. kunmap(page);
  613. return ret ? -EFAULT : 0;
  614. }
  615. static int
  616. i915_gem_shmem_pwrite(struct drm_device *dev,
  617. struct drm_i915_gem_object *obj,
  618. struct drm_i915_gem_pwrite *args,
  619. struct drm_file *file)
  620. {
  621. ssize_t remain;
  622. loff_t offset;
  623. char __user *user_data;
  624. int shmem_page_offset, page_length, ret = 0;
  625. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  626. int hit_slowpath = 0;
  627. int needs_clflush_after = 0;
  628. int needs_clflush_before = 0;
  629. int i;
  630. struct scatterlist *sg;
  631. user_data = (char __user *) (uintptr_t) args->data_ptr;
  632. remain = args->size;
  633. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  634. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  635. /* If we're not in the cpu write domain, set ourself into the gtt
  636. * write domain and manually flush cachelines (if required). This
  637. * optimizes for the case when the gpu will use the data
  638. * right away and we therefore have to clflush anyway. */
  639. if (obj->cache_level == I915_CACHE_NONE)
  640. needs_clflush_after = 1;
  641. if (obj->gtt_space) {
  642. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  643. if (ret)
  644. return ret;
  645. }
  646. }
  647. /* Same trick applies for invalidate partially written cachelines before
  648. * writing. */
  649. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  650. && obj->cache_level == I915_CACHE_NONE)
  651. needs_clflush_before = 1;
  652. ret = i915_gem_object_get_pages(obj);
  653. if (ret)
  654. return ret;
  655. i915_gem_object_pin_pages(obj);
  656. offset = args->offset;
  657. obj->dirty = 1;
  658. for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
  659. struct page *page;
  660. int partial_cacheline_write;
  661. if (i < offset >> PAGE_SHIFT)
  662. continue;
  663. if (remain <= 0)
  664. break;
  665. /* Operation in this page
  666. *
  667. * shmem_page_offset = offset within page in shmem file
  668. * page_length = bytes to copy for this page
  669. */
  670. shmem_page_offset = offset_in_page(offset);
  671. page_length = remain;
  672. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  673. page_length = PAGE_SIZE - shmem_page_offset;
  674. /* If we don't overwrite a cacheline completely we need to be
  675. * careful to have up-to-date data by first clflushing. Don't
  676. * overcomplicate things and flush the entire patch. */
  677. partial_cacheline_write = needs_clflush_before &&
  678. ((shmem_page_offset | page_length)
  679. & (boot_cpu_data.x86_clflush_size - 1));
  680. page = sg_page(sg);
  681. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  682. (page_to_phys(page) & (1 << 17)) != 0;
  683. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  684. user_data, page_do_bit17_swizzling,
  685. partial_cacheline_write,
  686. needs_clflush_after);
  687. if (ret == 0)
  688. goto next_page;
  689. hit_slowpath = 1;
  690. mutex_unlock(&dev->struct_mutex);
  691. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  692. user_data, page_do_bit17_swizzling,
  693. partial_cacheline_write,
  694. needs_clflush_after);
  695. mutex_lock(&dev->struct_mutex);
  696. next_page:
  697. set_page_dirty(page);
  698. mark_page_accessed(page);
  699. if (ret)
  700. goto out;
  701. remain -= page_length;
  702. user_data += page_length;
  703. offset += page_length;
  704. }
  705. out:
  706. i915_gem_object_unpin_pages(obj);
  707. if (hit_slowpath) {
  708. /*
  709. * Fixup: Flush cpu caches in case we didn't flush the dirty
  710. * cachelines in-line while writing and the object moved
  711. * out of the cpu write domain while we've dropped the lock.
  712. */
  713. if (!needs_clflush_after &&
  714. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  715. i915_gem_clflush_object(obj);
  716. i915_gem_chipset_flush(dev);
  717. }
  718. }
  719. if (needs_clflush_after)
  720. i915_gem_chipset_flush(dev);
  721. return ret;
  722. }
  723. /**
  724. * Writes data to the object referenced by handle.
  725. *
  726. * On error, the contents of the buffer that were to be modified are undefined.
  727. */
  728. int
  729. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  730. struct drm_file *file)
  731. {
  732. struct drm_i915_gem_pwrite *args = data;
  733. struct drm_i915_gem_object *obj;
  734. int ret;
  735. if (args->size == 0)
  736. return 0;
  737. if (!access_ok(VERIFY_READ,
  738. (char __user *)(uintptr_t)args->data_ptr,
  739. args->size))
  740. return -EFAULT;
  741. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  742. args->size);
  743. if (ret)
  744. return -EFAULT;
  745. ret = i915_mutex_lock_interruptible(dev);
  746. if (ret)
  747. return ret;
  748. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  749. if (&obj->base == NULL) {
  750. ret = -ENOENT;
  751. goto unlock;
  752. }
  753. /* Bounds check destination. */
  754. if (args->offset > obj->base.size ||
  755. args->size > obj->base.size - args->offset) {
  756. ret = -EINVAL;
  757. goto out;
  758. }
  759. /* prime objects have no backing filp to GEM pread/pwrite
  760. * pages from.
  761. */
  762. if (!obj->base.filp) {
  763. ret = -EINVAL;
  764. goto out;
  765. }
  766. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  767. ret = -EFAULT;
  768. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  769. * it would end up going through the fenced access, and we'll get
  770. * different detiling behavior between reading and writing.
  771. * pread/pwrite currently are reading and writing from the CPU
  772. * perspective, requiring manual detiling by the client.
  773. */
  774. if (obj->phys_obj) {
  775. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  776. goto out;
  777. }
  778. if (obj->cache_level == I915_CACHE_NONE &&
  779. obj->tiling_mode == I915_TILING_NONE &&
  780. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  781. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  782. /* Note that the gtt paths might fail with non-page-backed user
  783. * pointers (e.g. gtt mappings when moving data between
  784. * textures). Fallback to the shmem path in that case. */
  785. }
  786. if (ret == -EFAULT || ret == -ENOSPC)
  787. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  788. out:
  789. drm_gem_object_unreference(&obj->base);
  790. unlock:
  791. mutex_unlock(&dev->struct_mutex);
  792. return ret;
  793. }
  794. int
  795. i915_gem_check_wedge(struct drm_i915_private *dev_priv,
  796. bool interruptible)
  797. {
  798. if (atomic_read(&dev_priv->mm.wedged)) {
  799. struct completion *x = &dev_priv->error_completion;
  800. bool recovery_complete;
  801. unsigned long flags;
  802. /* Give the error handler a chance to run. */
  803. spin_lock_irqsave(&x->wait.lock, flags);
  804. recovery_complete = x->done > 0;
  805. spin_unlock_irqrestore(&x->wait.lock, flags);
  806. /* Non-interruptible callers can't handle -EAGAIN, hence return
  807. * -EIO unconditionally for these. */
  808. if (!interruptible)
  809. return -EIO;
  810. /* Recovery complete, but still wedged means reset failure. */
  811. if (recovery_complete)
  812. return -EIO;
  813. return -EAGAIN;
  814. }
  815. return 0;
  816. }
  817. /*
  818. * Compare seqno against outstanding lazy request. Emit a request if they are
  819. * equal.
  820. */
  821. static int
  822. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  823. {
  824. int ret;
  825. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  826. ret = 0;
  827. if (seqno == ring->outstanding_lazy_request)
  828. ret = i915_add_request(ring, NULL, NULL);
  829. return ret;
  830. }
  831. /**
  832. * __wait_seqno - wait until execution of seqno has finished
  833. * @ring: the ring expected to report seqno
  834. * @seqno: duh!
  835. * @interruptible: do an interruptible wait (normally yes)
  836. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  837. *
  838. * Returns 0 if the seqno was found within the alloted time. Else returns the
  839. * errno with remaining time filled in timeout argument.
  840. */
  841. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  842. bool interruptible, struct timespec *timeout)
  843. {
  844. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  845. struct timespec before, now, wait_time={1,0};
  846. unsigned long timeout_jiffies;
  847. long end;
  848. bool wait_forever = true;
  849. int ret;
  850. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  851. return 0;
  852. trace_i915_gem_request_wait_begin(ring, seqno);
  853. if (timeout != NULL) {
  854. wait_time = *timeout;
  855. wait_forever = false;
  856. }
  857. timeout_jiffies = timespec_to_jiffies(&wait_time);
  858. if (WARN_ON(!ring->irq_get(ring)))
  859. return -ENODEV;
  860. /* Record current time in case interrupted by signal, or wedged * */
  861. getrawmonotonic(&before);
  862. #define EXIT_COND \
  863. (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
  864. atomic_read(&dev_priv->mm.wedged))
  865. do {
  866. if (interruptible)
  867. end = wait_event_interruptible_timeout(ring->irq_queue,
  868. EXIT_COND,
  869. timeout_jiffies);
  870. else
  871. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  872. timeout_jiffies);
  873. ret = i915_gem_check_wedge(dev_priv, interruptible);
  874. if (ret)
  875. end = ret;
  876. } while (end == 0 && wait_forever);
  877. getrawmonotonic(&now);
  878. ring->irq_put(ring);
  879. trace_i915_gem_request_wait_end(ring, seqno);
  880. #undef EXIT_COND
  881. if (timeout) {
  882. struct timespec sleep_time = timespec_sub(now, before);
  883. *timeout = timespec_sub(*timeout, sleep_time);
  884. }
  885. switch (end) {
  886. case -EIO:
  887. case -EAGAIN: /* Wedged */
  888. case -ERESTARTSYS: /* Signal */
  889. return (int)end;
  890. case 0: /* Timeout */
  891. if (timeout)
  892. set_normalized_timespec(timeout, 0, 0);
  893. return -ETIME;
  894. default: /* Completed */
  895. WARN_ON(end < 0); /* We're not aware of other errors */
  896. return 0;
  897. }
  898. }
  899. /**
  900. * Waits for a sequence number to be signaled, and cleans up the
  901. * request and object lists appropriately for that event.
  902. */
  903. int
  904. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  905. {
  906. struct drm_device *dev = ring->dev;
  907. struct drm_i915_private *dev_priv = dev->dev_private;
  908. bool interruptible = dev_priv->mm.interruptible;
  909. int ret;
  910. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  911. BUG_ON(seqno == 0);
  912. ret = i915_gem_check_wedge(dev_priv, interruptible);
  913. if (ret)
  914. return ret;
  915. ret = i915_gem_check_olr(ring, seqno);
  916. if (ret)
  917. return ret;
  918. return __wait_seqno(ring, seqno, interruptible, NULL);
  919. }
  920. /**
  921. * Ensures that all rendering to the object has completed and the object is
  922. * safe to unbind from the GTT or access from the CPU.
  923. */
  924. static __must_check int
  925. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  926. bool readonly)
  927. {
  928. struct intel_ring_buffer *ring = obj->ring;
  929. u32 seqno;
  930. int ret;
  931. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  932. if (seqno == 0)
  933. return 0;
  934. ret = i915_wait_seqno(ring, seqno);
  935. if (ret)
  936. return ret;
  937. i915_gem_retire_requests_ring(ring);
  938. /* Manually manage the write flush as we may have not yet
  939. * retired the buffer.
  940. */
  941. if (obj->last_write_seqno &&
  942. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  943. obj->last_write_seqno = 0;
  944. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  945. }
  946. return 0;
  947. }
  948. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  949. * as the object state may change during this call.
  950. */
  951. static __must_check int
  952. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  953. bool readonly)
  954. {
  955. struct drm_device *dev = obj->base.dev;
  956. struct drm_i915_private *dev_priv = dev->dev_private;
  957. struct intel_ring_buffer *ring = obj->ring;
  958. u32 seqno;
  959. int ret;
  960. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  961. BUG_ON(!dev_priv->mm.interruptible);
  962. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  963. if (seqno == 0)
  964. return 0;
  965. ret = i915_gem_check_wedge(dev_priv, true);
  966. if (ret)
  967. return ret;
  968. ret = i915_gem_check_olr(ring, seqno);
  969. if (ret)
  970. return ret;
  971. mutex_unlock(&dev->struct_mutex);
  972. ret = __wait_seqno(ring, seqno, true, NULL);
  973. mutex_lock(&dev->struct_mutex);
  974. i915_gem_retire_requests_ring(ring);
  975. /* Manually manage the write flush as we may have not yet
  976. * retired the buffer.
  977. */
  978. if (obj->last_write_seqno &&
  979. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  980. obj->last_write_seqno = 0;
  981. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  982. }
  983. return ret;
  984. }
  985. /**
  986. * Called when user space prepares to use an object with the CPU, either
  987. * through the mmap ioctl's mapping or a GTT mapping.
  988. */
  989. int
  990. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  991. struct drm_file *file)
  992. {
  993. struct drm_i915_gem_set_domain *args = data;
  994. struct drm_i915_gem_object *obj;
  995. uint32_t read_domains = args->read_domains;
  996. uint32_t write_domain = args->write_domain;
  997. int ret;
  998. /* Only handle setting domains to types used by the CPU. */
  999. if (write_domain & I915_GEM_GPU_DOMAINS)
  1000. return -EINVAL;
  1001. if (read_domains & I915_GEM_GPU_DOMAINS)
  1002. return -EINVAL;
  1003. /* Having something in the write domain implies it's in the read
  1004. * domain, and only that read domain. Enforce that in the request.
  1005. */
  1006. if (write_domain != 0 && read_domains != write_domain)
  1007. return -EINVAL;
  1008. ret = i915_mutex_lock_interruptible(dev);
  1009. if (ret)
  1010. return ret;
  1011. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1012. if (&obj->base == NULL) {
  1013. ret = -ENOENT;
  1014. goto unlock;
  1015. }
  1016. /* Try to flush the object off the GPU without holding the lock.
  1017. * We will repeat the flush holding the lock in the normal manner
  1018. * to catch cases where we are gazumped.
  1019. */
  1020. ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
  1021. if (ret)
  1022. goto unref;
  1023. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1024. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1025. /* Silently promote "you're not bound, there was nothing to do"
  1026. * to success, since the client was just asking us to
  1027. * make sure everything was done.
  1028. */
  1029. if (ret == -EINVAL)
  1030. ret = 0;
  1031. } else {
  1032. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1033. }
  1034. unref:
  1035. drm_gem_object_unreference(&obj->base);
  1036. unlock:
  1037. mutex_unlock(&dev->struct_mutex);
  1038. return ret;
  1039. }
  1040. /**
  1041. * Called when user space has done writes to this buffer
  1042. */
  1043. int
  1044. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1045. struct drm_file *file)
  1046. {
  1047. struct drm_i915_gem_sw_finish *args = data;
  1048. struct drm_i915_gem_object *obj;
  1049. int ret = 0;
  1050. ret = i915_mutex_lock_interruptible(dev);
  1051. if (ret)
  1052. return ret;
  1053. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1054. if (&obj->base == NULL) {
  1055. ret = -ENOENT;
  1056. goto unlock;
  1057. }
  1058. /* Pinned buffers may be scanout, so flush the cache */
  1059. if (obj->pin_count)
  1060. i915_gem_object_flush_cpu_write_domain(obj);
  1061. drm_gem_object_unreference(&obj->base);
  1062. unlock:
  1063. mutex_unlock(&dev->struct_mutex);
  1064. return ret;
  1065. }
  1066. /**
  1067. * Maps the contents of an object, returning the address it is mapped
  1068. * into.
  1069. *
  1070. * While the mapping holds a reference on the contents of the object, it doesn't
  1071. * imply a ref on the object itself.
  1072. */
  1073. int
  1074. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1075. struct drm_file *file)
  1076. {
  1077. struct drm_i915_gem_mmap *args = data;
  1078. struct drm_gem_object *obj;
  1079. unsigned long addr;
  1080. obj = drm_gem_object_lookup(dev, file, args->handle);
  1081. if (obj == NULL)
  1082. return -ENOENT;
  1083. /* prime objects have no backing filp to GEM mmap
  1084. * pages from.
  1085. */
  1086. if (!obj->filp) {
  1087. drm_gem_object_unreference_unlocked(obj);
  1088. return -EINVAL;
  1089. }
  1090. addr = vm_mmap(obj->filp, 0, args->size,
  1091. PROT_READ | PROT_WRITE, MAP_SHARED,
  1092. args->offset);
  1093. drm_gem_object_unreference_unlocked(obj);
  1094. if (IS_ERR((void *)addr))
  1095. return addr;
  1096. args->addr_ptr = (uint64_t) addr;
  1097. return 0;
  1098. }
  1099. /**
  1100. * i915_gem_fault - fault a page into the GTT
  1101. * vma: VMA in question
  1102. * vmf: fault info
  1103. *
  1104. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1105. * from userspace. The fault handler takes care of binding the object to
  1106. * the GTT (if needed), allocating and programming a fence register (again,
  1107. * only if needed based on whether the old reg is still valid or the object
  1108. * is tiled) and inserting a new PTE into the faulting process.
  1109. *
  1110. * Note that the faulting process may involve evicting existing objects
  1111. * from the GTT and/or fence registers to make room. So performance may
  1112. * suffer if the GTT working set is large or there are few fence registers
  1113. * left.
  1114. */
  1115. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1116. {
  1117. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1118. struct drm_device *dev = obj->base.dev;
  1119. drm_i915_private_t *dev_priv = dev->dev_private;
  1120. pgoff_t page_offset;
  1121. unsigned long pfn;
  1122. int ret = 0;
  1123. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1124. /* We don't use vmf->pgoff since that has the fake offset */
  1125. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1126. PAGE_SHIFT;
  1127. ret = i915_mutex_lock_interruptible(dev);
  1128. if (ret)
  1129. goto out;
  1130. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1131. /* Now bind it into the GTT if needed */
  1132. ret = i915_gem_object_pin(obj, 0, true, false);
  1133. if (ret)
  1134. goto unlock;
  1135. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1136. if (ret)
  1137. goto unpin;
  1138. ret = i915_gem_object_get_fence(obj);
  1139. if (ret)
  1140. goto unpin;
  1141. obj->fault_mappable = true;
  1142. pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
  1143. page_offset;
  1144. /* Finally, remap it using the new GTT offset */
  1145. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1146. unpin:
  1147. i915_gem_object_unpin(obj);
  1148. unlock:
  1149. mutex_unlock(&dev->struct_mutex);
  1150. out:
  1151. switch (ret) {
  1152. case -EIO:
  1153. /* If this -EIO is due to a gpu hang, give the reset code a
  1154. * chance to clean up the mess. Otherwise return the proper
  1155. * SIGBUS. */
  1156. if (!atomic_read(&dev_priv->mm.wedged))
  1157. return VM_FAULT_SIGBUS;
  1158. case -EAGAIN:
  1159. /* Give the error handler a chance to run and move the
  1160. * objects off the GPU active list. Next time we service the
  1161. * fault, we should be able to transition the page into the
  1162. * GTT without touching the GPU (and so avoid further
  1163. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1164. * with coherency, just lost writes.
  1165. */
  1166. set_need_resched();
  1167. case 0:
  1168. case -ERESTARTSYS:
  1169. case -EINTR:
  1170. case -EBUSY:
  1171. /*
  1172. * EBUSY is ok: this just means that another thread
  1173. * already did the job.
  1174. */
  1175. return VM_FAULT_NOPAGE;
  1176. case -ENOMEM:
  1177. return VM_FAULT_OOM;
  1178. case -ENOSPC:
  1179. return VM_FAULT_SIGBUS;
  1180. default:
  1181. WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
  1182. return VM_FAULT_SIGBUS;
  1183. }
  1184. }
  1185. /**
  1186. * i915_gem_release_mmap - remove physical page mappings
  1187. * @obj: obj in question
  1188. *
  1189. * Preserve the reservation of the mmapping with the DRM core code, but
  1190. * relinquish ownership of the pages back to the system.
  1191. *
  1192. * It is vital that we remove the page mapping if we have mapped a tiled
  1193. * object through the GTT and then lose the fence register due to
  1194. * resource pressure. Similarly if the object has been moved out of the
  1195. * aperture, than pages mapped into userspace must be revoked. Removing the
  1196. * mapping will then trigger a page fault on the next user access, allowing
  1197. * fixup by i915_gem_fault().
  1198. */
  1199. void
  1200. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1201. {
  1202. if (!obj->fault_mappable)
  1203. return;
  1204. if (obj->base.dev->dev_mapping)
  1205. unmap_mapping_range(obj->base.dev->dev_mapping,
  1206. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1207. obj->base.size, 1);
  1208. obj->fault_mappable = false;
  1209. }
  1210. static uint32_t
  1211. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1212. {
  1213. uint32_t gtt_size;
  1214. if (INTEL_INFO(dev)->gen >= 4 ||
  1215. tiling_mode == I915_TILING_NONE)
  1216. return size;
  1217. /* Previous chips need a power-of-two fence region when tiling */
  1218. if (INTEL_INFO(dev)->gen == 3)
  1219. gtt_size = 1024*1024;
  1220. else
  1221. gtt_size = 512*1024;
  1222. while (gtt_size < size)
  1223. gtt_size <<= 1;
  1224. return gtt_size;
  1225. }
  1226. /**
  1227. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1228. * @obj: object to check
  1229. *
  1230. * Return the required GTT alignment for an object, taking into account
  1231. * potential fence register mapping.
  1232. */
  1233. static uint32_t
  1234. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1235. uint32_t size,
  1236. int tiling_mode)
  1237. {
  1238. /*
  1239. * Minimum alignment is 4k (GTT page size), but might be greater
  1240. * if a fence register is needed for the object.
  1241. */
  1242. if (INTEL_INFO(dev)->gen >= 4 ||
  1243. tiling_mode == I915_TILING_NONE)
  1244. return 4096;
  1245. /*
  1246. * Previous chips need to be aligned to the size of the smallest
  1247. * fence register that can contain the object.
  1248. */
  1249. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1250. }
  1251. /**
  1252. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1253. * unfenced object
  1254. * @dev: the device
  1255. * @size: size of the object
  1256. * @tiling_mode: tiling mode of the object
  1257. *
  1258. * Return the required GTT alignment for an object, only taking into account
  1259. * unfenced tiled surface requirements.
  1260. */
  1261. uint32_t
  1262. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1263. uint32_t size,
  1264. int tiling_mode)
  1265. {
  1266. /*
  1267. * Minimum alignment is 4k (GTT page size) for sane hw.
  1268. */
  1269. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1270. tiling_mode == I915_TILING_NONE)
  1271. return 4096;
  1272. /* Previous hardware however needs to be aligned to a power-of-two
  1273. * tile height. The simplest method for determining this is to reuse
  1274. * the power-of-tile object size.
  1275. */
  1276. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1277. }
  1278. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1279. {
  1280. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1281. int ret;
  1282. if (obj->base.map_list.map)
  1283. return 0;
  1284. ret = drm_gem_create_mmap_offset(&obj->base);
  1285. if (ret != -ENOSPC)
  1286. return ret;
  1287. /* Badly fragmented mmap space? The only way we can recover
  1288. * space is by destroying unwanted objects. We can't randomly release
  1289. * mmap_offsets as userspace expects them to be persistent for the
  1290. * lifetime of the objects. The closest we can is to release the
  1291. * offsets on purgeable objects by truncating it and marking it purged,
  1292. * which prevents userspace from ever using that object again.
  1293. */
  1294. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1295. ret = drm_gem_create_mmap_offset(&obj->base);
  1296. if (ret != -ENOSPC)
  1297. return ret;
  1298. i915_gem_shrink_all(dev_priv);
  1299. return drm_gem_create_mmap_offset(&obj->base);
  1300. }
  1301. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1302. {
  1303. if (!obj->base.map_list.map)
  1304. return;
  1305. drm_gem_free_mmap_offset(&obj->base);
  1306. }
  1307. int
  1308. i915_gem_mmap_gtt(struct drm_file *file,
  1309. struct drm_device *dev,
  1310. uint32_t handle,
  1311. uint64_t *offset)
  1312. {
  1313. struct drm_i915_private *dev_priv = dev->dev_private;
  1314. struct drm_i915_gem_object *obj;
  1315. int ret;
  1316. ret = i915_mutex_lock_interruptible(dev);
  1317. if (ret)
  1318. return ret;
  1319. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1320. if (&obj->base == NULL) {
  1321. ret = -ENOENT;
  1322. goto unlock;
  1323. }
  1324. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1325. ret = -E2BIG;
  1326. goto out;
  1327. }
  1328. if (obj->madv != I915_MADV_WILLNEED) {
  1329. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1330. ret = -EINVAL;
  1331. goto out;
  1332. }
  1333. ret = i915_gem_object_create_mmap_offset(obj);
  1334. if (ret)
  1335. goto out;
  1336. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1337. out:
  1338. drm_gem_object_unreference(&obj->base);
  1339. unlock:
  1340. mutex_unlock(&dev->struct_mutex);
  1341. return ret;
  1342. }
  1343. /**
  1344. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1345. * @dev: DRM device
  1346. * @data: GTT mapping ioctl data
  1347. * @file: GEM object info
  1348. *
  1349. * Simply returns the fake offset to userspace so it can mmap it.
  1350. * The mmap call will end up in drm_gem_mmap(), which will set things
  1351. * up so we can get faults in the handler above.
  1352. *
  1353. * The fault handler will take care of binding the object into the GTT
  1354. * (since it may have been evicted to make room for something), allocating
  1355. * a fence register, and mapping the appropriate aperture address into
  1356. * userspace.
  1357. */
  1358. int
  1359. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1360. struct drm_file *file)
  1361. {
  1362. struct drm_i915_gem_mmap_gtt *args = data;
  1363. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1364. }
  1365. /* Immediately discard the backing storage */
  1366. static void
  1367. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1368. {
  1369. struct inode *inode;
  1370. i915_gem_object_free_mmap_offset(obj);
  1371. if (obj->base.filp == NULL)
  1372. return;
  1373. /* Our goal here is to return as much of the memory as
  1374. * is possible back to the system as we are called from OOM.
  1375. * To do this we must instruct the shmfs to drop all of its
  1376. * backing pages, *now*.
  1377. */
  1378. inode = obj->base.filp->f_path.dentry->d_inode;
  1379. shmem_truncate_range(inode, 0, (loff_t)-1);
  1380. obj->madv = __I915_MADV_PURGED;
  1381. }
  1382. static inline int
  1383. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1384. {
  1385. return obj->madv == I915_MADV_DONTNEED;
  1386. }
  1387. static void
  1388. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1389. {
  1390. int page_count = obj->base.size / PAGE_SIZE;
  1391. struct scatterlist *sg;
  1392. int ret, i;
  1393. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1394. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1395. if (ret) {
  1396. /* In the event of a disaster, abandon all caches and
  1397. * hope for the best.
  1398. */
  1399. WARN_ON(ret != -EIO);
  1400. i915_gem_clflush_object(obj);
  1401. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1402. }
  1403. if (i915_gem_object_needs_bit17_swizzle(obj))
  1404. i915_gem_object_save_bit_17_swizzle(obj);
  1405. if (obj->madv == I915_MADV_DONTNEED)
  1406. obj->dirty = 0;
  1407. for_each_sg(obj->pages->sgl, sg, page_count, i) {
  1408. struct page *page = sg_page(sg);
  1409. if (obj->dirty)
  1410. set_page_dirty(page);
  1411. if (obj->madv == I915_MADV_WILLNEED)
  1412. mark_page_accessed(page);
  1413. page_cache_release(page);
  1414. }
  1415. obj->dirty = 0;
  1416. sg_free_table(obj->pages);
  1417. kfree(obj->pages);
  1418. }
  1419. static int
  1420. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1421. {
  1422. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1423. if (obj->pages == NULL)
  1424. return 0;
  1425. BUG_ON(obj->gtt_space);
  1426. if (obj->pages_pin_count)
  1427. return -EBUSY;
  1428. ops->put_pages(obj);
  1429. obj->pages = NULL;
  1430. list_del(&obj->gtt_list);
  1431. if (i915_gem_object_is_purgeable(obj))
  1432. i915_gem_object_truncate(obj);
  1433. return 0;
  1434. }
  1435. static long
  1436. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1437. {
  1438. struct drm_i915_gem_object *obj, *next;
  1439. long count = 0;
  1440. list_for_each_entry_safe(obj, next,
  1441. &dev_priv->mm.unbound_list,
  1442. gtt_list) {
  1443. if (i915_gem_object_is_purgeable(obj) &&
  1444. i915_gem_object_put_pages(obj) == 0) {
  1445. count += obj->base.size >> PAGE_SHIFT;
  1446. if (count >= target)
  1447. return count;
  1448. }
  1449. }
  1450. list_for_each_entry_safe(obj, next,
  1451. &dev_priv->mm.inactive_list,
  1452. mm_list) {
  1453. if (i915_gem_object_is_purgeable(obj) &&
  1454. i915_gem_object_unbind(obj) == 0 &&
  1455. i915_gem_object_put_pages(obj) == 0) {
  1456. count += obj->base.size >> PAGE_SHIFT;
  1457. if (count >= target)
  1458. return count;
  1459. }
  1460. }
  1461. return count;
  1462. }
  1463. static void
  1464. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1465. {
  1466. struct drm_i915_gem_object *obj, *next;
  1467. i915_gem_evict_everything(dev_priv->dev);
  1468. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
  1469. i915_gem_object_put_pages(obj);
  1470. }
  1471. static int
  1472. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1473. {
  1474. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1475. int page_count, i;
  1476. struct address_space *mapping;
  1477. struct sg_table *st;
  1478. struct scatterlist *sg;
  1479. struct page *page;
  1480. gfp_t gfp;
  1481. /* Assert that the object is not currently in any GPU domain. As it
  1482. * wasn't in the GTT, there shouldn't be any way it could have been in
  1483. * a GPU cache
  1484. */
  1485. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1486. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1487. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1488. if (st == NULL)
  1489. return -ENOMEM;
  1490. page_count = obj->base.size / PAGE_SIZE;
  1491. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1492. sg_free_table(st);
  1493. kfree(st);
  1494. return -ENOMEM;
  1495. }
  1496. /* Get the list of pages out of our struct file. They'll be pinned
  1497. * at this point until we release them.
  1498. *
  1499. * Fail silently without starting the shrinker
  1500. */
  1501. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  1502. gfp = mapping_gfp_mask(mapping);
  1503. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1504. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1505. for_each_sg(st->sgl, sg, page_count, i) {
  1506. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1507. if (IS_ERR(page)) {
  1508. i915_gem_purge(dev_priv, page_count);
  1509. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1510. }
  1511. if (IS_ERR(page)) {
  1512. /* We've tried hard to allocate the memory by reaping
  1513. * our own buffer, now let the real VM do its job and
  1514. * go down in flames if truly OOM.
  1515. */
  1516. gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
  1517. gfp |= __GFP_IO | __GFP_WAIT;
  1518. i915_gem_shrink_all(dev_priv);
  1519. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1520. if (IS_ERR(page))
  1521. goto err_pages;
  1522. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1523. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1524. }
  1525. sg_set_page(sg, page, PAGE_SIZE, 0);
  1526. }
  1527. obj->pages = st;
  1528. if (i915_gem_object_needs_bit17_swizzle(obj))
  1529. i915_gem_object_do_bit_17_swizzle(obj);
  1530. return 0;
  1531. err_pages:
  1532. for_each_sg(st->sgl, sg, i, page_count)
  1533. page_cache_release(sg_page(sg));
  1534. sg_free_table(st);
  1535. kfree(st);
  1536. return PTR_ERR(page);
  1537. }
  1538. /* Ensure that the associated pages are gathered from the backing storage
  1539. * and pinned into our object. i915_gem_object_get_pages() may be called
  1540. * multiple times before they are released by a single call to
  1541. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1542. * either as a result of memory pressure (reaping pages under the shrinker)
  1543. * or as the object is itself released.
  1544. */
  1545. int
  1546. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1547. {
  1548. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1549. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1550. int ret;
  1551. if (obj->pages)
  1552. return 0;
  1553. BUG_ON(obj->pages_pin_count);
  1554. ret = ops->get_pages(obj);
  1555. if (ret)
  1556. return ret;
  1557. list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  1558. return 0;
  1559. }
  1560. void
  1561. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1562. struct intel_ring_buffer *ring)
  1563. {
  1564. struct drm_device *dev = obj->base.dev;
  1565. struct drm_i915_private *dev_priv = dev->dev_private;
  1566. u32 seqno = intel_ring_get_seqno(ring);
  1567. BUG_ON(ring == NULL);
  1568. obj->ring = ring;
  1569. /* Add a reference if we're newly entering the active list. */
  1570. if (!obj->active) {
  1571. drm_gem_object_reference(&obj->base);
  1572. obj->active = 1;
  1573. }
  1574. /* Move from whatever list we were on to the tail of execution. */
  1575. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1576. list_move_tail(&obj->ring_list, &ring->active_list);
  1577. obj->last_read_seqno = seqno;
  1578. if (obj->fenced_gpu_access) {
  1579. obj->last_fenced_seqno = seqno;
  1580. /* Bump MRU to take account of the delayed flush */
  1581. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1582. struct drm_i915_fence_reg *reg;
  1583. reg = &dev_priv->fence_regs[obj->fence_reg];
  1584. list_move_tail(&reg->lru_list,
  1585. &dev_priv->mm.fence_list);
  1586. }
  1587. }
  1588. }
  1589. static void
  1590. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1591. {
  1592. struct drm_device *dev = obj->base.dev;
  1593. struct drm_i915_private *dev_priv = dev->dev_private;
  1594. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1595. BUG_ON(!obj->active);
  1596. if (obj->pin_count) /* are we a framebuffer? */
  1597. intel_mark_fb_idle(obj);
  1598. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1599. list_del_init(&obj->ring_list);
  1600. obj->ring = NULL;
  1601. obj->last_read_seqno = 0;
  1602. obj->last_write_seqno = 0;
  1603. obj->base.write_domain = 0;
  1604. obj->last_fenced_seqno = 0;
  1605. obj->fenced_gpu_access = false;
  1606. obj->active = 0;
  1607. drm_gem_object_unreference(&obj->base);
  1608. WARN_ON(i915_verify_lists(dev));
  1609. }
  1610. static int
  1611. i915_gem_handle_seqno_wrap(struct drm_device *dev)
  1612. {
  1613. struct drm_i915_private *dev_priv = dev->dev_private;
  1614. struct intel_ring_buffer *ring;
  1615. int ret, i, j;
  1616. /* The hardware uses various monotonic 32-bit counters, if we
  1617. * detect that they will wraparound we need to idle the GPU
  1618. * and reset those counters.
  1619. */
  1620. ret = 0;
  1621. for_each_ring(ring, dev_priv, i) {
  1622. for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
  1623. ret |= ring->sync_seqno[j] != 0;
  1624. }
  1625. if (ret == 0)
  1626. return ret;
  1627. ret = i915_gpu_idle(dev);
  1628. if (ret)
  1629. return ret;
  1630. i915_gem_retire_requests(dev);
  1631. for_each_ring(ring, dev_priv, i) {
  1632. ret = intel_ring_handle_seqno_wrap(ring);
  1633. if (ret)
  1634. return ret;
  1635. for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
  1636. ring->sync_seqno[j] = 0;
  1637. }
  1638. return 0;
  1639. }
  1640. int
  1641. i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
  1642. {
  1643. struct drm_i915_private *dev_priv = dev->dev_private;
  1644. /* reserve 0 for non-seqno */
  1645. if (dev_priv->next_seqno == 0) {
  1646. int ret = i915_gem_handle_seqno_wrap(dev);
  1647. if (ret)
  1648. return ret;
  1649. dev_priv->next_seqno = 1;
  1650. }
  1651. *seqno = dev_priv->next_seqno++;
  1652. return 0;
  1653. }
  1654. int
  1655. i915_add_request(struct intel_ring_buffer *ring,
  1656. struct drm_file *file,
  1657. u32 *out_seqno)
  1658. {
  1659. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1660. struct drm_i915_gem_request *request;
  1661. u32 request_ring_position;
  1662. int was_empty;
  1663. int ret;
  1664. /*
  1665. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1666. * after having emitted the batchbuffer command. Hence we need to fix
  1667. * things up similar to emitting the lazy request. The difference here
  1668. * is that the flush _must_ happen before the next request, no matter
  1669. * what.
  1670. */
  1671. ret = intel_ring_flush_all_caches(ring);
  1672. if (ret)
  1673. return ret;
  1674. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1675. if (request == NULL)
  1676. return -ENOMEM;
  1677. /* Record the position of the start of the request so that
  1678. * should we detect the updated seqno part-way through the
  1679. * GPU processing the request, we never over-estimate the
  1680. * position of the head.
  1681. */
  1682. request_ring_position = intel_ring_get_tail(ring);
  1683. ret = ring->add_request(ring);
  1684. if (ret) {
  1685. kfree(request);
  1686. return ret;
  1687. }
  1688. request->seqno = intel_ring_get_seqno(ring);
  1689. request->ring = ring;
  1690. request->tail = request_ring_position;
  1691. request->emitted_jiffies = jiffies;
  1692. was_empty = list_empty(&ring->request_list);
  1693. list_add_tail(&request->list, &ring->request_list);
  1694. request->file_priv = NULL;
  1695. if (file) {
  1696. struct drm_i915_file_private *file_priv = file->driver_priv;
  1697. spin_lock(&file_priv->mm.lock);
  1698. request->file_priv = file_priv;
  1699. list_add_tail(&request->client_list,
  1700. &file_priv->mm.request_list);
  1701. spin_unlock(&file_priv->mm.lock);
  1702. }
  1703. trace_i915_gem_request_add(ring, request->seqno);
  1704. ring->outstanding_lazy_request = 0;
  1705. if (!dev_priv->mm.suspended) {
  1706. if (i915_enable_hangcheck) {
  1707. mod_timer(&dev_priv->hangcheck_timer,
  1708. round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
  1709. }
  1710. if (was_empty) {
  1711. queue_delayed_work(dev_priv->wq,
  1712. &dev_priv->mm.retire_work,
  1713. round_jiffies_up_relative(HZ));
  1714. intel_mark_busy(dev_priv->dev);
  1715. }
  1716. }
  1717. if (out_seqno)
  1718. *out_seqno = request->seqno;
  1719. return 0;
  1720. }
  1721. static inline void
  1722. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1723. {
  1724. struct drm_i915_file_private *file_priv = request->file_priv;
  1725. if (!file_priv)
  1726. return;
  1727. spin_lock(&file_priv->mm.lock);
  1728. if (request->file_priv) {
  1729. list_del(&request->client_list);
  1730. request->file_priv = NULL;
  1731. }
  1732. spin_unlock(&file_priv->mm.lock);
  1733. }
  1734. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1735. struct intel_ring_buffer *ring)
  1736. {
  1737. while (!list_empty(&ring->request_list)) {
  1738. struct drm_i915_gem_request *request;
  1739. request = list_first_entry(&ring->request_list,
  1740. struct drm_i915_gem_request,
  1741. list);
  1742. list_del(&request->list);
  1743. i915_gem_request_remove_from_client(request);
  1744. kfree(request);
  1745. }
  1746. while (!list_empty(&ring->active_list)) {
  1747. struct drm_i915_gem_object *obj;
  1748. obj = list_first_entry(&ring->active_list,
  1749. struct drm_i915_gem_object,
  1750. ring_list);
  1751. i915_gem_object_move_to_inactive(obj);
  1752. }
  1753. }
  1754. static void i915_gem_reset_fences(struct drm_device *dev)
  1755. {
  1756. struct drm_i915_private *dev_priv = dev->dev_private;
  1757. int i;
  1758. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1759. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1760. i915_gem_write_fence(dev, i, NULL);
  1761. if (reg->obj)
  1762. i915_gem_object_fence_lost(reg->obj);
  1763. reg->pin_count = 0;
  1764. reg->obj = NULL;
  1765. INIT_LIST_HEAD(&reg->lru_list);
  1766. }
  1767. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1768. }
  1769. void i915_gem_reset(struct drm_device *dev)
  1770. {
  1771. struct drm_i915_private *dev_priv = dev->dev_private;
  1772. struct drm_i915_gem_object *obj;
  1773. struct intel_ring_buffer *ring;
  1774. int i;
  1775. for_each_ring(ring, dev_priv, i)
  1776. i915_gem_reset_ring_lists(dev_priv, ring);
  1777. /* Move everything out of the GPU domains to ensure we do any
  1778. * necessary invalidation upon reuse.
  1779. */
  1780. list_for_each_entry(obj,
  1781. &dev_priv->mm.inactive_list,
  1782. mm_list)
  1783. {
  1784. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1785. }
  1786. /* The fence registers are invalidated so clear them out */
  1787. i915_gem_reset_fences(dev);
  1788. }
  1789. /**
  1790. * This function clears the request list as sequence numbers are passed.
  1791. */
  1792. void
  1793. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1794. {
  1795. uint32_t seqno;
  1796. if (list_empty(&ring->request_list))
  1797. return;
  1798. WARN_ON(i915_verify_lists(ring->dev));
  1799. seqno = ring->get_seqno(ring, true);
  1800. while (!list_empty(&ring->request_list)) {
  1801. struct drm_i915_gem_request *request;
  1802. request = list_first_entry(&ring->request_list,
  1803. struct drm_i915_gem_request,
  1804. list);
  1805. if (!i915_seqno_passed(seqno, request->seqno))
  1806. break;
  1807. trace_i915_gem_request_retire(ring, request->seqno);
  1808. /* We know the GPU must have read the request to have
  1809. * sent us the seqno + interrupt, so use the position
  1810. * of tail of the request to update the last known position
  1811. * of the GPU head.
  1812. */
  1813. ring->last_retired_head = request->tail;
  1814. list_del(&request->list);
  1815. i915_gem_request_remove_from_client(request);
  1816. kfree(request);
  1817. }
  1818. /* Move any buffers on the active list that are no longer referenced
  1819. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1820. */
  1821. while (!list_empty(&ring->active_list)) {
  1822. struct drm_i915_gem_object *obj;
  1823. obj = list_first_entry(&ring->active_list,
  1824. struct drm_i915_gem_object,
  1825. ring_list);
  1826. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  1827. break;
  1828. i915_gem_object_move_to_inactive(obj);
  1829. }
  1830. if (unlikely(ring->trace_irq_seqno &&
  1831. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1832. ring->irq_put(ring);
  1833. ring->trace_irq_seqno = 0;
  1834. }
  1835. WARN_ON(i915_verify_lists(ring->dev));
  1836. }
  1837. void
  1838. i915_gem_retire_requests(struct drm_device *dev)
  1839. {
  1840. drm_i915_private_t *dev_priv = dev->dev_private;
  1841. struct intel_ring_buffer *ring;
  1842. int i;
  1843. for_each_ring(ring, dev_priv, i)
  1844. i915_gem_retire_requests_ring(ring);
  1845. }
  1846. static void
  1847. i915_gem_retire_work_handler(struct work_struct *work)
  1848. {
  1849. drm_i915_private_t *dev_priv;
  1850. struct drm_device *dev;
  1851. struct intel_ring_buffer *ring;
  1852. bool idle;
  1853. int i;
  1854. dev_priv = container_of(work, drm_i915_private_t,
  1855. mm.retire_work.work);
  1856. dev = dev_priv->dev;
  1857. /* Come back later if the device is busy... */
  1858. if (!mutex_trylock(&dev->struct_mutex)) {
  1859. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  1860. round_jiffies_up_relative(HZ));
  1861. return;
  1862. }
  1863. i915_gem_retire_requests(dev);
  1864. /* Send a periodic flush down the ring so we don't hold onto GEM
  1865. * objects indefinitely.
  1866. */
  1867. idle = true;
  1868. for_each_ring(ring, dev_priv, i) {
  1869. if (ring->gpu_caches_dirty)
  1870. i915_add_request(ring, NULL, NULL);
  1871. idle &= list_empty(&ring->request_list);
  1872. }
  1873. if (!dev_priv->mm.suspended && !idle)
  1874. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  1875. round_jiffies_up_relative(HZ));
  1876. if (idle)
  1877. intel_mark_idle(dev);
  1878. mutex_unlock(&dev->struct_mutex);
  1879. }
  1880. /**
  1881. * Ensures that an object will eventually get non-busy by flushing any required
  1882. * write domains, emitting any outstanding lazy request and retiring and
  1883. * completed requests.
  1884. */
  1885. static int
  1886. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  1887. {
  1888. int ret;
  1889. if (obj->active) {
  1890. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  1891. if (ret)
  1892. return ret;
  1893. i915_gem_retire_requests_ring(obj->ring);
  1894. }
  1895. return 0;
  1896. }
  1897. /**
  1898. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  1899. * @DRM_IOCTL_ARGS: standard ioctl arguments
  1900. *
  1901. * Returns 0 if successful, else an error is returned with the remaining time in
  1902. * the timeout parameter.
  1903. * -ETIME: object is still busy after timeout
  1904. * -ERESTARTSYS: signal interrupted the wait
  1905. * -ENONENT: object doesn't exist
  1906. * Also possible, but rare:
  1907. * -EAGAIN: GPU wedged
  1908. * -ENOMEM: damn
  1909. * -ENODEV: Internal IRQ fail
  1910. * -E?: The add request failed
  1911. *
  1912. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  1913. * non-zero timeout parameter the wait ioctl will wait for the given number of
  1914. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  1915. * without holding struct_mutex the object may become re-busied before this
  1916. * function completes. A similar but shorter * race condition exists in the busy
  1917. * ioctl
  1918. */
  1919. int
  1920. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  1921. {
  1922. struct drm_i915_gem_wait *args = data;
  1923. struct drm_i915_gem_object *obj;
  1924. struct intel_ring_buffer *ring = NULL;
  1925. struct timespec timeout_stack, *timeout = NULL;
  1926. u32 seqno = 0;
  1927. int ret = 0;
  1928. if (args->timeout_ns >= 0) {
  1929. timeout_stack = ns_to_timespec(args->timeout_ns);
  1930. timeout = &timeout_stack;
  1931. }
  1932. ret = i915_mutex_lock_interruptible(dev);
  1933. if (ret)
  1934. return ret;
  1935. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  1936. if (&obj->base == NULL) {
  1937. mutex_unlock(&dev->struct_mutex);
  1938. return -ENOENT;
  1939. }
  1940. /* Need to make sure the object gets inactive eventually. */
  1941. ret = i915_gem_object_flush_active(obj);
  1942. if (ret)
  1943. goto out;
  1944. if (obj->active) {
  1945. seqno = obj->last_read_seqno;
  1946. ring = obj->ring;
  1947. }
  1948. if (seqno == 0)
  1949. goto out;
  1950. /* Do this after OLR check to make sure we make forward progress polling
  1951. * on this IOCTL with a 0 timeout (like busy ioctl)
  1952. */
  1953. if (!args->timeout_ns) {
  1954. ret = -ETIME;
  1955. goto out;
  1956. }
  1957. drm_gem_object_unreference(&obj->base);
  1958. mutex_unlock(&dev->struct_mutex);
  1959. ret = __wait_seqno(ring, seqno, true, timeout);
  1960. if (timeout) {
  1961. WARN_ON(!timespec_valid(timeout));
  1962. args->timeout_ns = timespec_to_ns(timeout);
  1963. }
  1964. return ret;
  1965. out:
  1966. drm_gem_object_unreference(&obj->base);
  1967. mutex_unlock(&dev->struct_mutex);
  1968. return ret;
  1969. }
  1970. /**
  1971. * i915_gem_object_sync - sync an object to a ring.
  1972. *
  1973. * @obj: object which may be in use on another ring.
  1974. * @to: ring we wish to use the object on. May be NULL.
  1975. *
  1976. * This code is meant to abstract object synchronization with the GPU.
  1977. * Calling with NULL implies synchronizing the object with the CPU
  1978. * rather than a particular GPU ring.
  1979. *
  1980. * Returns 0 if successful, else propagates up the lower layer error.
  1981. */
  1982. int
  1983. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1984. struct intel_ring_buffer *to)
  1985. {
  1986. struct intel_ring_buffer *from = obj->ring;
  1987. u32 seqno;
  1988. int ret, idx;
  1989. if (from == NULL || to == from)
  1990. return 0;
  1991. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1992. return i915_gem_object_wait_rendering(obj, false);
  1993. idx = intel_ring_sync_index(from, to);
  1994. seqno = obj->last_read_seqno;
  1995. if (seqno <= from->sync_seqno[idx])
  1996. return 0;
  1997. ret = i915_gem_check_olr(obj->ring, seqno);
  1998. if (ret)
  1999. return ret;
  2000. ret = to->sync_to(to, from, seqno);
  2001. if (!ret)
  2002. /* We use last_read_seqno because sync_to()
  2003. * might have just caused seqno wrap under
  2004. * the radar.
  2005. */
  2006. from->sync_seqno[idx] = obj->last_read_seqno;
  2007. return ret;
  2008. }
  2009. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  2010. {
  2011. u32 old_write_domain, old_read_domains;
  2012. /* Act a barrier for all accesses through the GTT */
  2013. mb();
  2014. /* Force a pagefault for domain tracking on next user access */
  2015. i915_gem_release_mmap(obj);
  2016. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2017. return;
  2018. old_read_domains = obj->base.read_domains;
  2019. old_write_domain = obj->base.write_domain;
  2020. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  2021. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  2022. trace_i915_gem_object_change_domain(obj,
  2023. old_read_domains,
  2024. old_write_domain);
  2025. }
  2026. /**
  2027. * Unbinds an object from the GTT aperture.
  2028. */
  2029. int
  2030. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  2031. {
  2032. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2033. int ret = 0;
  2034. if (obj->gtt_space == NULL)
  2035. return 0;
  2036. if (obj->pin_count)
  2037. return -EBUSY;
  2038. BUG_ON(obj->pages == NULL);
  2039. ret = i915_gem_object_finish_gpu(obj);
  2040. if (ret)
  2041. return ret;
  2042. /* Continue on if we fail due to EIO, the GPU is hung so we
  2043. * should be safe and we need to cleanup or else we might
  2044. * cause memory corruption through use-after-free.
  2045. */
  2046. i915_gem_object_finish_gtt(obj);
  2047. /* release the fence reg _after_ flushing */
  2048. ret = i915_gem_object_put_fence(obj);
  2049. if (ret)
  2050. return ret;
  2051. trace_i915_gem_object_unbind(obj);
  2052. if (obj->has_global_gtt_mapping)
  2053. i915_gem_gtt_unbind_object(obj);
  2054. if (obj->has_aliasing_ppgtt_mapping) {
  2055. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  2056. obj->has_aliasing_ppgtt_mapping = 0;
  2057. }
  2058. i915_gem_gtt_finish_object(obj);
  2059. list_del(&obj->mm_list);
  2060. list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  2061. /* Avoid an unnecessary call to unbind on rebind. */
  2062. obj->map_and_fenceable = true;
  2063. drm_mm_put_block(obj->gtt_space);
  2064. obj->gtt_space = NULL;
  2065. obj->gtt_offset = 0;
  2066. return 0;
  2067. }
  2068. int i915_gpu_idle(struct drm_device *dev)
  2069. {
  2070. drm_i915_private_t *dev_priv = dev->dev_private;
  2071. struct intel_ring_buffer *ring;
  2072. int ret, i;
  2073. /* Flush everything onto the inactive list. */
  2074. for_each_ring(ring, dev_priv, i) {
  2075. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  2076. if (ret)
  2077. return ret;
  2078. ret = intel_ring_idle(ring);
  2079. if (ret)
  2080. return ret;
  2081. }
  2082. return 0;
  2083. }
  2084. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  2085. struct drm_i915_gem_object *obj)
  2086. {
  2087. drm_i915_private_t *dev_priv = dev->dev_private;
  2088. uint64_t val;
  2089. if (obj) {
  2090. u32 size = obj->gtt_space->size;
  2091. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2092. 0xfffff000) << 32;
  2093. val |= obj->gtt_offset & 0xfffff000;
  2094. val |= (uint64_t)((obj->stride / 128) - 1) <<
  2095. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2096. if (obj->tiling_mode == I915_TILING_Y)
  2097. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2098. val |= I965_FENCE_REG_VALID;
  2099. } else
  2100. val = 0;
  2101. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  2102. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  2103. }
  2104. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2105. struct drm_i915_gem_object *obj)
  2106. {
  2107. drm_i915_private_t *dev_priv = dev->dev_private;
  2108. uint64_t val;
  2109. if (obj) {
  2110. u32 size = obj->gtt_space->size;
  2111. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2112. 0xfffff000) << 32;
  2113. val |= obj->gtt_offset & 0xfffff000;
  2114. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2115. if (obj->tiling_mode == I915_TILING_Y)
  2116. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2117. val |= I965_FENCE_REG_VALID;
  2118. } else
  2119. val = 0;
  2120. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  2121. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  2122. }
  2123. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2124. struct drm_i915_gem_object *obj)
  2125. {
  2126. drm_i915_private_t *dev_priv = dev->dev_private;
  2127. u32 val;
  2128. if (obj) {
  2129. u32 size = obj->gtt_space->size;
  2130. int pitch_val;
  2131. int tile_width;
  2132. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  2133. (size & -size) != size ||
  2134. (obj->gtt_offset & (size - 1)),
  2135. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2136. obj->gtt_offset, obj->map_and_fenceable, size);
  2137. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2138. tile_width = 128;
  2139. else
  2140. tile_width = 512;
  2141. /* Note: pitch better be a power of two tile widths */
  2142. pitch_val = obj->stride / tile_width;
  2143. pitch_val = ffs(pitch_val) - 1;
  2144. val = obj->gtt_offset;
  2145. if (obj->tiling_mode == I915_TILING_Y)
  2146. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2147. val |= I915_FENCE_SIZE_BITS(size);
  2148. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2149. val |= I830_FENCE_REG_VALID;
  2150. } else
  2151. val = 0;
  2152. if (reg < 8)
  2153. reg = FENCE_REG_830_0 + reg * 4;
  2154. else
  2155. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2156. I915_WRITE(reg, val);
  2157. POSTING_READ(reg);
  2158. }
  2159. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2160. struct drm_i915_gem_object *obj)
  2161. {
  2162. drm_i915_private_t *dev_priv = dev->dev_private;
  2163. uint32_t val;
  2164. if (obj) {
  2165. u32 size = obj->gtt_space->size;
  2166. uint32_t pitch_val;
  2167. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2168. (size & -size) != size ||
  2169. (obj->gtt_offset & (size - 1)),
  2170. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2171. obj->gtt_offset, size);
  2172. pitch_val = obj->stride / 128;
  2173. pitch_val = ffs(pitch_val) - 1;
  2174. val = obj->gtt_offset;
  2175. if (obj->tiling_mode == I915_TILING_Y)
  2176. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2177. val |= I830_FENCE_SIZE_BITS(size);
  2178. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2179. val |= I830_FENCE_REG_VALID;
  2180. } else
  2181. val = 0;
  2182. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2183. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2184. }
  2185. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2186. struct drm_i915_gem_object *obj)
  2187. {
  2188. switch (INTEL_INFO(dev)->gen) {
  2189. case 7:
  2190. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  2191. case 5:
  2192. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2193. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2194. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2195. default: break;
  2196. }
  2197. }
  2198. static inline int fence_number(struct drm_i915_private *dev_priv,
  2199. struct drm_i915_fence_reg *fence)
  2200. {
  2201. return fence - dev_priv->fence_regs;
  2202. }
  2203. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2204. struct drm_i915_fence_reg *fence,
  2205. bool enable)
  2206. {
  2207. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2208. int reg = fence_number(dev_priv, fence);
  2209. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2210. if (enable) {
  2211. obj->fence_reg = reg;
  2212. fence->obj = obj;
  2213. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2214. } else {
  2215. obj->fence_reg = I915_FENCE_REG_NONE;
  2216. fence->obj = NULL;
  2217. list_del_init(&fence->lru_list);
  2218. }
  2219. }
  2220. static int
  2221. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  2222. {
  2223. if (obj->last_fenced_seqno) {
  2224. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2225. if (ret)
  2226. return ret;
  2227. obj->last_fenced_seqno = 0;
  2228. }
  2229. /* Ensure that all CPU reads are completed before installing a fence
  2230. * and all writes before removing the fence.
  2231. */
  2232. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2233. mb();
  2234. obj->fenced_gpu_access = false;
  2235. return 0;
  2236. }
  2237. int
  2238. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2239. {
  2240. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2241. int ret;
  2242. ret = i915_gem_object_flush_fence(obj);
  2243. if (ret)
  2244. return ret;
  2245. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2246. return 0;
  2247. i915_gem_object_update_fence(obj,
  2248. &dev_priv->fence_regs[obj->fence_reg],
  2249. false);
  2250. i915_gem_object_fence_lost(obj);
  2251. return 0;
  2252. }
  2253. static struct drm_i915_fence_reg *
  2254. i915_find_fence_reg(struct drm_device *dev)
  2255. {
  2256. struct drm_i915_private *dev_priv = dev->dev_private;
  2257. struct drm_i915_fence_reg *reg, *avail;
  2258. int i;
  2259. /* First try to find a free reg */
  2260. avail = NULL;
  2261. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2262. reg = &dev_priv->fence_regs[i];
  2263. if (!reg->obj)
  2264. return reg;
  2265. if (!reg->pin_count)
  2266. avail = reg;
  2267. }
  2268. if (avail == NULL)
  2269. return NULL;
  2270. /* None available, try to steal one or wait for a user to finish */
  2271. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2272. if (reg->pin_count)
  2273. continue;
  2274. return reg;
  2275. }
  2276. return NULL;
  2277. }
  2278. /**
  2279. * i915_gem_object_get_fence - set up fencing for an object
  2280. * @obj: object to map through a fence reg
  2281. *
  2282. * When mapping objects through the GTT, userspace wants to be able to write
  2283. * to them without having to worry about swizzling if the object is tiled.
  2284. * This function walks the fence regs looking for a free one for @obj,
  2285. * stealing one if it can't find any.
  2286. *
  2287. * It then sets up the reg based on the object's properties: address, pitch
  2288. * and tiling format.
  2289. *
  2290. * For an untiled surface, this removes any existing fence.
  2291. */
  2292. int
  2293. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2294. {
  2295. struct drm_device *dev = obj->base.dev;
  2296. struct drm_i915_private *dev_priv = dev->dev_private;
  2297. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2298. struct drm_i915_fence_reg *reg;
  2299. int ret;
  2300. /* Have we updated the tiling parameters upon the object and so
  2301. * will need to serialise the write to the associated fence register?
  2302. */
  2303. if (obj->fence_dirty) {
  2304. ret = i915_gem_object_flush_fence(obj);
  2305. if (ret)
  2306. return ret;
  2307. }
  2308. /* Just update our place in the LRU if our fence is getting reused. */
  2309. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2310. reg = &dev_priv->fence_regs[obj->fence_reg];
  2311. if (!obj->fence_dirty) {
  2312. list_move_tail(&reg->lru_list,
  2313. &dev_priv->mm.fence_list);
  2314. return 0;
  2315. }
  2316. } else if (enable) {
  2317. reg = i915_find_fence_reg(dev);
  2318. if (reg == NULL)
  2319. return -EDEADLK;
  2320. if (reg->obj) {
  2321. struct drm_i915_gem_object *old = reg->obj;
  2322. ret = i915_gem_object_flush_fence(old);
  2323. if (ret)
  2324. return ret;
  2325. i915_gem_object_fence_lost(old);
  2326. }
  2327. } else
  2328. return 0;
  2329. i915_gem_object_update_fence(obj, reg, enable);
  2330. obj->fence_dirty = false;
  2331. return 0;
  2332. }
  2333. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2334. struct drm_mm_node *gtt_space,
  2335. unsigned long cache_level)
  2336. {
  2337. struct drm_mm_node *other;
  2338. /* On non-LLC machines we have to be careful when putting differing
  2339. * types of snoopable memory together to avoid the prefetcher
  2340. * crossing memory domains and dying.
  2341. */
  2342. if (HAS_LLC(dev))
  2343. return true;
  2344. if (gtt_space == NULL)
  2345. return true;
  2346. if (list_empty(&gtt_space->node_list))
  2347. return true;
  2348. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2349. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2350. return false;
  2351. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2352. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2353. return false;
  2354. return true;
  2355. }
  2356. static void i915_gem_verify_gtt(struct drm_device *dev)
  2357. {
  2358. #if WATCH_GTT
  2359. struct drm_i915_private *dev_priv = dev->dev_private;
  2360. struct drm_i915_gem_object *obj;
  2361. int err = 0;
  2362. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  2363. if (obj->gtt_space == NULL) {
  2364. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2365. err++;
  2366. continue;
  2367. }
  2368. if (obj->cache_level != obj->gtt_space->color) {
  2369. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2370. obj->gtt_space->start,
  2371. obj->gtt_space->start + obj->gtt_space->size,
  2372. obj->cache_level,
  2373. obj->gtt_space->color);
  2374. err++;
  2375. continue;
  2376. }
  2377. if (!i915_gem_valid_gtt_space(dev,
  2378. obj->gtt_space,
  2379. obj->cache_level)) {
  2380. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2381. obj->gtt_space->start,
  2382. obj->gtt_space->start + obj->gtt_space->size,
  2383. obj->cache_level);
  2384. err++;
  2385. continue;
  2386. }
  2387. }
  2388. WARN_ON(err);
  2389. #endif
  2390. }
  2391. /**
  2392. * Finds free space in the GTT aperture and binds the object there.
  2393. */
  2394. static int
  2395. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2396. unsigned alignment,
  2397. bool map_and_fenceable,
  2398. bool nonblocking)
  2399. {
  2400. struct drm_device *dev = obj->base.dev;
  2401. drm_i915_private_t *dev_priv = dev->dev_private;
  2402. struct drm_mm_node *free_space;
  2403. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2404. bool mappable, fenceable;
  2405. int ret;
  2406. if (obj->madv != I915_MADV_WILLNEED) {
  2407. DRM_ERROR("Attempting to bind a purgeable object\n");
  2408. return -EINVAL;
  2409. }
  2410. fence_size = i915_gem_get_gtt_size(dev,
  2411. obj->base.size,
  2412. obj->tiling_mode);
  2413. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2414. obj->base.size,
  2415. obj->tiling_mode);
  2416. unfenced_alignment =
  2417. i915_gem_get_unfenced_gtt_alignment(dev,
  2418. obj->base.size,
  2419. obj->tiling_mode);
  2420. if (alignment == 0)
  2421. alignment = map_and_fenceable ? fence_alignment :
  2422. unfenced_alignment;
  2423. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2424. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2425. return -EINVAL;
  2426. }
  2427. size = map_and_fenceable ? fence_size : obj->base.size;
  2428. /* If the object is bigger than the entire aperture, reject it early
  2429. * before evicting everything in a vain attempt to find space.
  2430. */
  2431. if (obj->base.size >
  2432. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2433. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2434. return -E2BIG;
  2435. }
  2436. ret = i915_gem_object_get_pages(obj);
  2437. if (ret)
  2438. return ret;
  2439. i915_gem_object_pin_pages(obj);
  2440. search_free:
  2441. if (map_and_fenceable)
  2442. free_space = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
  2443. size, alignment, obj->cache_level,
  2444. 0, dev_priv->mm.gtt_mappable_end,
  2445. false);
  2446. else
  2447. free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
  2448. size, alignment, obj->cache_level,
  2449. false);
  2450. if (free_space != NULL) {
  2451. if (map_and_fenceable)
  2452. free_space =
  2453. drm_mm_get_block_range_generic(free_space,
  2454. size, alignment, obj->cache_level,
  2455. 0, dev_priv->mm.gtt_mappable_end,
  2456. false);
  2457. else
  2458. free_space =
  2459. drm_mm_get_block_generic(free_space,
  2460. size, alignment, obj->cache_level,
  2461. false);
  2462. }
  2463. if (free_space == NULL) {
  2464. ret = i915_gem_evict_something(dev, size, alignment,
  2465. obj->cache_level,
  2466. map_and_fenceable,
  2467. nonblocking);
  2468. if (ret) {
  2469. i915_gem_object_unpin_pages(obj);
  2470. return ret;
  2471. }
  2472. goto search_free;
  2473. }
  2474. if (WARN_ON(!i915_gem_valid_gtt_space(dev,
  2475. free_space,
  2476. obj->cache_level))) {
  2477. i915_gem_object_unpin_pages(obj);
  2478. drm_mm_put_block(free_space);
  2479. return -EINVAL;
  2480. }
  2481. ret = i915_gem_gtt_prepare_object(obj);
  2482. if (ret) {
  2483. i915_gem_object_unpin_pages(obj);
  2484. drm_mm_put_block(free_space);
  2485. return ret;
  2486. }
  2487. list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
  2488. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2489. obj->gtt_space = free_space;
  2490. obj->gtt_offset = free_space->start;
  2491. fenceable =
  2492. free_space->size == fence_size &&
  2493. (free_space->start & (fence_alignment - 1)) == 0;
  2494. mappable =
  2495. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2496. obj->map_and_fenceable = mappable && fenceable;
  2497. i915_gem_object_unpin_pages(obj);
  2498. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2499. i915_gem_verify_gtt(dev);
  2500. return 0;
  2501. }
  2502. void
  2503. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2504. {
  2505. /* If we don't have a page list set up, then we're not pinned
  2506. * to GPU, and we can ignore the cache flush because it'll happen
  2507. * again at bind time.
  2508. */
  2509. if (obj->pages == NULL)
  2510. return;
  2511. /* If the GPU is snooping the contents of the CPU cache,
  2512. * we do not need to manually clear the CPU cache lines. However,
  2513. * the caches are only snooped when the render cache is
  2514. * flushed/invalidated. As we always have to emit invalidations
  2515. * and flushes when moving into and out of the RENDER domain, correct
  2516. * snooping behaviour occurs naturally as the result of our domain
  2517. * tracking.
  2518. */
  2519. if (obj->cache_level != I915_CACHE_NONE)
  2520. return;
  2521. trace_i915_gem_object_clflush(obj);
  2522. drm_clflush_sg(obj->pages);
  2523. }
  2524. /** Flushes the GTT write domain for the object if it's dirty. */
  2525. static void
  2526. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2527. {
  2528. uint32_t old_write_domain;
  2529. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2530. return;
  2531. /* No actual flushing is required for the GTT write domain. Writes
  2532. * to it immediately go to main memory as far as we know, so there's
  2533. * no chipset flush. It also doesn't land in render cache.
  2534. *
  2535. * However, we do have to enforce the order so that all writes through
  2536. * the GTT land before any writes to the device, such as updates to
  2537. * the GATT itself.
  2538. */
  2539. wmb();
  2540. old_write_domain = obj->base.write_domain;
  2541. obj->base.write_domain = 0;
  2542. trace_i915_gem_object_change_domain(obj,
  2543. obj->base.read_domains,
  2544. old_write_domain);
  2545. }
  2546. /** Flushes the CPU write domain for the object if it's dirty. */
  2547. static void
  2548. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2549. {
  2550. uint32_t old_write_domain;
  2551. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2552. return;
  2553. i915_gem_clflush_object(obj);
  2554. i915_gem_chipset_flush(obj->base.dev);
  2555. old_write_domain = obj->base.write_domain;
  2556. obj->base.write_domain = 0;
  2557. trace_i915_gem_object_change_domain(obj,
  2558. obj->base.read_domains,
  2559. old_write_domain);
  2560. }
  2561. /**
  2562. * Moves a single object to the GTT read, and possibly write domain.
  2563. *
  2564. * This function returns when the move is complete, including waiting on
  2565. * flushes to occur.
  2566. */
  2567. int
  2568. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2569. {
  2570. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2571. uint32_t old_write_domain, old_read_domains;
  2572. int ret;
  2573. /* Not valid to be called on unbound objects. */
  2574. if (obj->gtt_space == NULL)
  2575. return -EINVAL;
  2576. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2577. return 0;
  2578. ret = i915_gem_object_wait_rendering(obj, !write);
  2579. if (ret)
  2580. return ret;
  2581. i915_gem_object_flush_cpu_write_domain(obj);
  2582. old_write_domain = obj->base.write_domain;
  2583. old_read_domains = obj->base.read_domains;
  2584. /* It should now be out of any other write domains, and we can update
  2585. * the domain values for our changes.
  2586. */
  2587. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2588. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2589. if (write) {
  2590. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2591. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2592. obj->dirty = 1;
  2593. }
  2594. trace_i915_gem_object_change_domain(obj,
  2595. old_read_domains,
  2596. old_write_domain);
  2597. /* And bump the LRU for this access */
  2598. if (i915_gem_object_is_inactive(obj))
  2599. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2600. return 0;
  2601. }
  2602. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2603. enum i915_cache_level cache_level)
  2604. {
  2605. struct drm_device *dev = obj->base.dev;
  2606. drm_i915_private_t *dev_priv = dev->dev_private;
  2607. int ret;
  2608. if (obj->cache_level == cache_level)
  2609. return 0;
  2610. if (obj->pin_count) {
  2611. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2612. return -EBUSY;
  2613. }
  2614. if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
  2615. ret = i915_gem_object_unbind(obj);
  2616. if (ret)
  2617. return ret;
  2618. }
  2619. if (obj->gtt_space) {
  2620. ret = i915_gem_object_finish_gpu(obj);
  2621. if (ret)
  2622. return ret;
  2623. i915_gem_object_finish_gtt(obj);
  2624. /* Before SandyBridge, you could not use tiling or fence
  2625. * registers with snooped memory, so relinquish any fences
  2626. * currently pointing to our region in the aperture.
  2627. */
  2628. if (INTEL_INFO(dev)->gen < 6) {
  2629. ret = i915_gem_object_put_fence(obj);
  2630. if (ret)
  2631. return ret;
  2632. }
  2633. if (obj->has_global_gtt_mapping)
  2634. i915_gem_gtt_bind_object(obj, cache_level);
  2635. if (obj->has_aliasing_ppgtt_mapping)
  2636. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2637. obj, cache_level);
  2638. obj->gtt_space->color = cache_level;
  2639. }
  2640. if (cache_level == I915_CACHE_NONE) {
  2641. u32 old_read_domains, old_write_domain;
  2642. /* If we're coming from LLC cached, then we haven't
  2643. * actually been tracking whether the data is in the
  2644. * CPU cache or not, since we only allow one bit set
  2645. * in obj->write_domain and have been skipping the clflushes.
  2646. * Just set it to the CPU cache for now.
  2647. */
  2648. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2649. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2650. old_read_domains = obj->base.read_domains;
  2651. old_write_domain = obj->base.write_domain;
  2652. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2653. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2654. trace_i915_gem_object_change_domain(obj,
  2655. old_read_domains,
  2656. old_write_domain);
  2657. }
  2658. obj->cache_level = cache_level;
  2659. i915_gem_verify_gtt(dev);
  2660. return 0;
  2661. }
  2662. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  2663. struct drm_file *file)
  2664. {
  2665. struct drm_i915_gem_caching *args = data;
  2666. struct drm_i915_gem_object *obj;
  2667. int ret;
  2668. ret = i915_mutex_lock_interruptible(dev);
  2669. if (ret)
  2670. return ret;
  2671. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2672. if (&obj->base == NULL) {
  2673. ret = -ENOENT;
  2674. goto unlock;
  2675. }
  2676. args->caching = obj->cache_level != I915_CACHE_NONE;
  2677. drm_gem_object_unreference(&obj->base);
  2678. unlock:
  2679. mutex_unlock(&dev->struct_mutex);
  2680. return ret;
  2681. }
  2682. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  2683. struct drm_file *file)
  2684. {
  2685. struct drm_i915_gem_caching *args = data;
  2686. struct drm_i915_gem_object *obj;
  2687. enum i915_cache_level level;
  2688. int ret;
  2689. switch (args->caching) {
  2690. case I915_CACHING_NONE:
  2691. level = I915_CACHE_NONE;
  2692. break;
  2693. case I915_CACHING_CACHED:
  2694. level = I915_CACHE_LLC;
  2695. break;
  2696. default:
  2697. return -EINVAL;
  2698. }
  2699. ret = i915_mutex_lock_interruptible(dev);
  2700. if (ret)
  2701. return ret;
  2702. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2703. if (&obj->base == NULL) {
  2704. ret = -ENOENT;
  2705. goto unlock;
  2706. }
  2707. ret = i915_gem_object_set_cache_level(obj, level);
  2708. drm_gem_object_unreference(&obj->base);
  2709. unlock:
  2710. mutex_unlock(&dev->struct_mutex);
  2711. return ret;
  2712. }
  2713. /*
  2714. * Prepare buffer for display plane (scanout, cursors, etc).
  2715. * Can be called from an uninterruptible phase (modesetting) and allows
  2716. * any flushes to be pipelined (for pageflips).
  2717. */
  2718. int
  2719. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2720. u32 alignment,
  2721. struct intel_ring_buffer *pipelined)
  2722. {
  2723. u32 old_read_domains, old_write_domain;
  2724. int ret;
  2725. if (pipelined != obj->ring) {
  2726. ret = i915_gem_object_sync(obj, pipelined);
  2727. if (ret)
  2728. return ret;
  2729. }
  2730. /* The display engine is not coherent with the LLC cache on gen6. As
  2731. * a result, we make sure that the pinning that is about to occur is
  2732. * done with uncached PTEs. This is lowest common denominator for all
  2733. * chipsets.
  2734. *
  2735. * However for gen6+, we could do better by using the GFDT bit instead
  2736. * of uncaching, which would allow us to flush all the LLC-cached data
  2737. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2738. */
  2739. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2740. if (ret)
  2741. return ret;
  2742. /* As the user may map the buffer once pinned in the display plane
  2743. * (e.g. libkms for the bootup splash), we have to ensure that we
  2744. * always use map_and_fenceable for all scanout buffers.
  2745. */
  2746. ret = i915_gem_object_pin(obj, alignment, true, false);
  2747. if (ret)
  2748. return ret;
  2749. i915_gem_object_flush_cpu_write_domain(obj);
  2750. old_write_domain = obj->base.write_domain;
  2751. old_read_domains = obj->base.read_domains;
  2752. /* It should now be out of any other write domains, and we can update
  2753. * the domain values for our changes.
  2754. */
  2755. obj->base.write_domain = 0;
  2756. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2757. trace_i915_gem_object_change_domain(obj,
  2758. old_read_domains,
  2759. old_write_domain);
  2760. return 0;
  2761. }
  2762. int
  2763. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2764. {
  2765. int ret;
  2766. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2767. return 0;
  2768. ret = i915_gem_object_wait_rendering(obj, false);
  2769. if (ret)
  2770. return ret;
  2771. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2772. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2773. return 0;
  2774. }
  2775. /**
  2776. * Moves a single object to the CPU read, and possibly write domain.
  2777. *
  2778. * This function returns when the move is complete, including waiting on
  2779. * flushes to occur.
  2780. */
  2781. int
  2782. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2783. {
  2784. uint32_t old_write_domain, old_read_domains;
  2785. int ret;
  2786. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2787. return 0;
  2788. ret = i915_gem_object_wait_rendering(obj, !write);
  2789. if (ret)
  2790. return ret;
  2791. i915_gem_object_flush_gtt_write_domain(obj);
  2792. old_write_domain = obj->base.write_domain;
  2793. old_read_domains = obj->base.read_domains;
  2794. /* Flush the CPU cache if it's still invalid. */
  2795. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2796. i915_gem_clflush_object(obj);
  2797. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2798. }
  2799. /* It should now be out of any other write domains, and we can update
  2800. * the domain values for our changes.
  2801. */
  2802. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2803. /* If we're writing through the CPU, then the GPU read domains will
  2804. * need to be invalidated at next use.
  2805. */
  2806. if (write) {
  2807. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2808. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2809. }
  2810. trace_i915_gem_object_change_domain(obj,
  2811. old_read_domains,
  2812. old_write_domain);
  2813. return 0;
  2814. }
  2815. /* Throttle our rendering by waiting until the ring has completed our requests
  2816. * emitted over 20 msec ago.
  2817. *
  2818. * Note that if we were to use the current jiffies each time around the loop,
  2819. * we wouldn't escape the function with any frames outstanding if the time to
  2820. * render a frame was over 20ms.
  2821. *
  2822. * This should get us reasonable parallelism between CPU and GPU but also
  2823. * relatively low latency when blocking on a particular request to finish.
  2824. */
  2825. static int
  2826. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2827. {
  2828. struct drm_i915_private *dev_priv = dev->dev_private;
  2829. struct drm_i915_file_private *file_priv = file->driver_priv;
  2830. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2831. struct drm_i915_gem_request *request;
  2832. struct intel_ring_buffer *ring = NULL;
  2833. u32 seqno = 0;
  2834. int ret;
  2835. if (atomic_read(&dev_priv->mm.wedged))
  2836. return -EIO;
  2837. spin_lock(&file_priv->mm.lock);
  2838. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2839. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2840. break;
  2841. ring = request->ring;
  2842. seqno = request->seqno;
  2843. }
  2844. spin_unlock(&file_priv->mm.lock);
  2845. if (seqno == 0)
  2846. return 0;
  2847. ret = __wait_seqno(ring, seqno, true, NULL);
  2848. if (ret == 0)
  2849. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2850. return ret;
  2851. }
  2852. int
  2853. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2854. uint32_t alignment,
  2855. bool map_and_fenceable,
  2856. bool nonblocking)
  2857. {
  2858. int ret;
  2859. if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  2860. return -EBUSY;
  2861. if (obj->gtt_space != NULL) {
  2862. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2863. (map_and_fenceable && !obj->map_and_fenceable)) {
  2864. WARN(obj->pin_count,
  2865. "bo is already pinned with incorrect alignment:"
  2866. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2867. " obj->map_and_fenceable=%d\n",
  2868. obj->gtt_offset, alignment,
  2869. map_and_fenceable,
  2870. obj->map_and_fenceable);
  2871. ret = i915_gem_object_unbind(obj);
  2872. if (ret)
  2873. return ret;
  2874. }
  2875. }
  2876. if (obj->gtt_space == NULL) {
  2877. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2878. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2879. map_and_fenceable,
  2880. nonblocking);
  2881. if (ret)
  2882. return ret;
  2883. if (!dev_priv->mm.aliasing_ppgtt)
  2884. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2885. }
  2886. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2887. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2888. obj->pin_count++;
  2889. obj->pin_mappable |= map_and_fenceable;
  2890. return 0;
  2891. }
  2892. void
  2893. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2894. {
  2895. BUG_ON(obj->pin_count == 0);
  2896. BUG_ON(obj->gtt_space == NULL);
  2897. if (--obj->pin_count == 0)
  2898. obj->pin_mappable = false;
  2899. }
  2900. int
  2901. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2902. struct drm_file *file)
  2903. {
  2904. struct drm_i915_gem_pin *args = data;
  2905. struct drm_i915_gem_object *obj;
  2906. int ret;
  2907. ret = i915_mutex_lock_interruptible(dev);
  2908. if (ret)
  2909. return ret;
  2910. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2911. if (&obj->base == NULL) {
  2912. ret = -ENOENT;
  2913. goto unlock;
  2914. }
  2915. if (obj->madv != I915_MADV_WILLNEED) {
  2916. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2917. ret = -EINVAL;
  2918. goto out;
  2919. }
  2920. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2921. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2922. args->handle);
  2923. ret = -EINVAL;
  2924. goto out;
  2925. }
  2926. obj->user_pin_count++;
  2927. obj->pin_filp = file;
  2928. if (obj->user_pin_count == 1) {
  2929. ret = i915_gem_object_pin(obj, args->alignment, true, false);
  2930. if (ret)
  2931. goto out;
  2932. }
  2933. /* XXX - flush the CPU caches for pinned objects
  2934. * as the X server doesn't manage domains yet
  2935. */
  2936. i915_gem_object_flush_cpu_write_domain(obj);
  2937. args->offset = obj->gtt_offset;
  2938. out:
  2939. drm_gem_object_unreference(&obj->base);
  2940. unlock:
  2941. mutex_unlock(&dev->struct_mutex);
  2942. return ret;
  2943. }
  2944. int
  2945. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2946. struct drm_file *file)
  2947. {
  2948. struct drm_i915_gem_pin *args = data;
  2949. struct drm_i915_gem_object *obj;
  2950. int ret;
  2951. ret = i915_mutex_lock_interruptible(dev);
  2952. if (ret)
  2953. return ret;
  2954. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2955. if (&obj->base == NULL) {
  2956. ret = -ENOENT;
  2957. goto unlock;
  2958. }
  2959. if (obj->pin_filp != file) {
  2960. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2961. args->handle);
  2962. ret = -EINVAL;
  2963. goto out;
  2964. }
  2965. obj->user_pin_count--;
  2966. if (obj->user_pin_count == 0) {
  2967. obj->pin_filp = NULL;
  2968. i915_gem_object_unpin(obj);
  2969. }
  2970. out:
  2971. drm_gem_object_unreference(&obj->base);
  2972. unlock:
  2973. mutex_unlock(&dev->struct_mutex);
  2974. return ret;
  2975. }
  2976. int
  2977. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2978. struct drm_file *file)
  2979. {
  2980. struct drm_i915_gem_busy *args = data;
  2981. struct drm_i915_gem_object *obj;
  2982. int ret;
  2983. ret = i915_mutex_lock_interruptible(dev);
  2984. if (ret)
  2985. return ret;
  2986. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2987. if (&obj->base == NULL) {
  2988. ret = -ENOENT;
  2989. goto unlock;
  2990. }
  2991. /* Count all active objects as busy, even if they are currently not used
  2992. * by the gpu. Users of this interface expect objects to eventually
  2993. * become non-busy without any further actions, therefore emit any
  2994. * necessary flushes here.
  2995. */
  2996. ret = i915_gem_object_flush_active(obj);
  2997. args->busy = obj->active;
  2998. if (obj->ring) {
  2999. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  3000. args->busy |= intel_ring_flag(obj->ring) << 16;
  3001. }
  3002. drm_gem_object_unreference(&obj->base);
  3003. unlock:
  3004. mutex_unlock(&dev->struct_mutex);
  3005. return ret;
  3006. }
  3007. int
  3008. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3009. struct drm_file *file_priv)
  3010. {
  3011. return i915_gem_ring_throttle(dev, file_priv);
  3012. }
  3013. int
  3014. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3015. struct drm_file *file_priv)
  3016. {
  3017. struct drm_i915_gem_madvise *args = data;
  3018. struct drm_i915_gem_object *obj;
  3019. int ret;
  3020. switch (args->madv) {
  3021. case I915_MADV_DONTNEED:
  3022. case I915_MADV_WILLNEED:
  3023. break;
  3024. default:
  3025. return -EINVAL;
  3026. }
  3027. ret = i915_mutex_lock_interruptible(dev);
  3028. if (ret)
  3029. return ret;
  3030. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3031. if (&obj->base == NULL) {
  3032. ret = -ENOENT;
  3033. goto unlock;
  3034. }
  3035. if (obj->pin_count) {
  3036. ret = -EINVAL;
  3037. goto out;
  3038. }
  3039. if (obj->madv != __I915_MADV_PURGED)
  3040. obj->madv = args->madv;
  3041. /* if the object is no longer attached, discard its backing storage */
  3042. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  3043. i915_gem_object_truncate(obj);
  3044. args->retained = obj->madv != __I915_MADV_PURGED;
  3045. out:
  3046. drm_gem_object_unreference(&obj->base);
  3047. unlock:
  3048. mutex_unlock(&dev->struct_mutex);
  3049. return ret;
  3050. }
  3051. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3052. const struct drm_i915_gem_object_ops *ops)
  3053. {
  3054. INIT_LIST_HEAD(&obj->mm_list);
  3055. INIT_LIST_HEAD(&obj->gtt_list);
  3056. INIT_LIST_HEAD(&obj->ring_list);
  3057. INIT_LIST_HEAD(&obj->exec_list);
  3058. obj->ops = ops;
  3059. obj->fence_reg = I915_FENCE_REG_NONE;
  3060. obj->madv = I915_MADV_WILLNEED;
  3061. /* Avoid an unnecessary call to unbind on the first bind. */
  3062. obj->map_and_fenceable = true;
  3063. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3064. }
  3065. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3066. .get_pages = i915_gem_object_get_pages_gtt,
  3067. .put_pages = i915_gem_object_put_pages_gtt,
  3068. };
  3069. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3070. size_t size)
  3071. {
  3072. struct drm_i915_gem_object *obj;
  3073. struct address_space *mapping;
  3074. gfp_t mask;
  3075. obj = i915_gem_object_alloc(dev);
  3076. if (obj == NULL)
  3077. return NULL;
  3078. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3079. i915_gem_object_free(obj);
  3080. return NULL;
  3081. }
  3082. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3083. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3084. /* 965gm cannot relocate objects above 4GiB. */
  3085. mask &= ~__GFP_HIGHMEM;
  3086. mask |= __GFP_DMA32;
  3087. }
  3088. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3089. mapping_set_gfp_mask(mapping, mask);
  3090. i915_gem_object_init(obj, &i915_gem_object_ops);
  3091. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3092. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3093. if (HAS_LLC(dev)) {
  3094. /* On some devices, we can have the GPU use the LLC (the CPU
  3095. * cache) for about a 10% performance improvement
  3096. * compared to uncached. Graphics requests other than
  3097. * display scanout are coherent with the CPU in
  3098. * accessing this cache. This means in this mode we
  3099. * don't need to clflush on the CPU side, and on the
  3100. * GPU side we only need to flush internal caches to
  3101. * get data visible to the CPU.
  3102. *
  3103. * However, we maintain the display planes as UC, and so
  3104. * need to rebind when first used as such.
  3105. */
  3106. obj->cache_level = I915_CACHE_LLC;
  3107. } else
  3108. obj->cache_level = I915_CACHE_NONE;
  3109. return obj;
  3110. }
  3111. int i915_gem_init_object(struct drm_gem_object *obj)
  3112. {
  3113. BUG();
  3114. return 0;
  3115. }
  3116. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3117. {
  3118. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3119. struct drm_device *dev = obj->base.dev;
  3120. drm_i915_private_t *dev_priv = dev->dev_private;
  3121. trace_i915_gem_object_destroy(obj);
  3122. if (obj->phys_obj)
  3123. i915_gem_detach_phys_object(dev, obj);
  3124. obj->pin_count = 0;
  3125. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  3126. bool was_interruptible;
  3127. was_interruptible = dev_priv->mm.interruptible;
  3128. dev_priv->mm.interruptible = false;
  3129. WARN_ON(i915_gem_object_unbind(obj));
  3130. dev_priv->mm.interruptible = was_interruptible;
  3131. }
  3132. obj->pages_pin_count = 0;
  3133. i915_gem_object_put_pages(obj);
  3134. i915_gem_object_free_mmap_offset(obj);
  3135. i915_gem_object_release_stolen(obj);
  3136. BUG_ON(obj->pages);
  3137. if (obj->base.import_attach)
  3138. drm_prime_gem_destroy(&obj->base, NULL);
  3139. drm_gem_object_release(&obj->base);
  3140. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3141. kfree(obj->bit_17);
  3142. i915_gem_object_free(obj);
  3143. }
  3144. int
  3145. i915_gem_idle(struct drm_device *dev)
  3146. {
  3147. drm_i915_private_t *dev_priv = dev->dev_private;
  3148. int ret;
  3149. mutex_lock(&dev->struct_mutex);
  3150. if (dev_priv->mm.suspended) {
  3151. mutex_unlock(&dev->struct_mutex);
  3152. return 0;
  3153. }
  3154. ret = i915_gpu_idle(dev);
  3155. if (ret) {
  3156. mutex_unlock(&dev->struct_mutex);
  3157. return ret;
  3158. }
  3159. i915_gem_retire_requests(dev);
  3160. /* Under UMS, be paranoid and evict. */
  3161. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3162. i915_gem_evict_everything(dev);
  3163. i915_gem_reset_fences(dev);
  3164. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3165. * We need to replace this with a semaphore, or something.
  3166. * And not confound mm.suspended!
  3167. */
  3168. dev_priv->mm.suspended = 1;
  3169. del_timer_sync(&dev_priv->hangcheck_timer);
  3170. i915_kernel_lost_context(dev);
  3171. i915_gem_cleanup_ringbuffer(dev);
  3172. mutex_unlock(&dev->struct_mutex);
  3173. /* Cancel the retire work handler, which should be idle now. */
  3174. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3175. return 0;
  3176. }
  3177. void i915_gem_l3_remap(struct drm_device *dev)
  3178. {
  3179. drm_i915_private_t *dev_priv = dev->dev_private;
  3180. u32 misccpctl;
  3181. int i;
  3182. if (!IS_IVYBRIDGE(dev))
  3183. return;
  3184. if (!dev_priv->l3_parity.remap_info)
  3185. return;
  3186. misccpctl = I915_READ(GEN7_MISCCPCTL);
  3187. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  3188. POSTING_READ(GEN7_MISCCPCTL);
  3189. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3190. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  3191. if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
  3192. DRM_DEBUG("0x%x was already programmed to %x\n",
  3193. GEN7_L3LOG_BASE + i, remap);
  3194. if (remap && !dev_priv->l3_parity.remap_info[i/4])
  3195. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  3196. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
  3197. }
  3198. /* Make sure all the writes land before disabling dop clock gating */
  3199. POSTING_READ(GEN7_L3LOG_BASE);
  3200. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  3201. }
  3202. void i915_gem_init_swizzling(struct drm_device *dev)
  3203. {
  3204. drm_i915_private_t *dev_priv = dev->dev_private;
  3205. if (INTEL_INFO(dev)->gen < 5 ||
  3206. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3207. return;
  3208. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3209. DISP_TILE_SURFACE_SWIZZLING);
  3210. if (IS_GEN5(dev))
  3211. return;
  3212. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3213. if (IS_GEN6(dev))
  3214. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3215. else
  3216. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3217. }
  3218. static bool
  3219. intel_enable_blt(struct drm_device *dev)
  3220. {
  3221. if (!HAS_BLT(dev))
  3222. return false;
  3223. /* The blitter was dysfunctional on early prototypes */
  3224. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3225. DRM_INFO("BLT not supported on this pre-production hardware;"
  3226. " graphics performance will be degraded.\n");
  3227. return false;
  3228. }
  3229. return true;
  3230. }
  3231. int
  3232. i915_gem_init_hw(struct drm_device *dev)
  3233. {
  3234. drm_i915_private_t *dev_priv = dev->dev_private;
  3235. int ret;
  3236. if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
  3237. return -EIO;
  3238. if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
  3239. I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
  3240. i915_gem_l3_remap(dev);
  3241. i915_gem_init_swizzling(dev);
  3242. ret = intel_init_render_ring_buffer(dev);
  3243. if (ret)
  3244. return ret;
  3245. if (HAS_BSD(dev)) {
  3246. ret = intel_init_bsd_ring_buffer(dev);
  3247. if (ret)
  3248. goto cleanup_render_ring;
  3249. }
  3250. if (intel_enable_blt(dev)) {
  3251. ret = intel_init_blt_ring_buffer(dev);
  3252. if (ret)
  3253. goto cleanup_bsd_ring;
  3254. }
  3255. dev_priv->next_seqno = 1;
  3256. /*
  3257. * XXX: There was some w/a described somewhere suggesting loading
  3258. * contexts before PPGTT.
  3259. */
  3260. i915_gem_context_init(dev);
  3261. i915_gem_init_ppgtt(dev);
  3262. return 0;
  3263. cleanup_bsd_ring:
  3264. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3265. cleanup_render_ring:
  3266. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3267. return ret;
  3268. }
  3269. static bool
  3270. intel_enable_ppgtt(struct drm_device *dev)
  3271. {
  3272. if (i915_enable_ppgtt >= 0)
  3273. return i915_enable_ppgtt;
  3274. #ifdef CONFIG_INTEL_IOMMU
  3275. /* Disable ppgtt on SNB if VT-d is on. */
  3276. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  3277. return false;
  3278. #endif
  3279. return true;
  3280. }
  3281. int i915_gem_init(struct drm_device *dev)
  3282. {
  3283. struct drm_i915_private *dev_priv = dev->dev_private;
  3284. unsigned long gtt_size, mappable_size;
  3285. int ret;
  3286. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  3287. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  3288. mutex_lock(&dev->struct_mutex);
  3289. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  3290. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  3291. * aperture accordingly when using aliasing ppgtt. */
  3292. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  3293. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  3294. ret = i915_gem_init_aliasing_ppgtt(dev);
  3295. if (ret) {
  3296. mutex_unlock(&dev->struct_mutex);
  3297. return ret;
  3298. }
  3299. } else {
  3300. /* Let GEM Manage all of the aperture.
  3301. *
  3302. * However, leave one page at the end still bound to the scratch
  3303. * page. There are a number of places where the hardware
  3304. * apparently prefetches past the end of the object, and we've
  3305. * seen multiple hangs with the GPU head pointer stuck in a
  3306. * batchbuffer bound at the last page of the aperture. One page
  3307. * should be enough to keep any prefetching inside of the
  3308. * aperture.
  3309. */
  3310. i915_gem_init_global_gtt(dev, 0, mappable_size,
  3311. gtt_size);
  3312. }
  3313. ret = i915_gem_init_hw(dev);
  3314. mutex_unlock(&dev->struct_mutex);
  3315. if (ret) {
  3316. i915_gem_cleanup_aliasing_ppgtt(dev);
  3317. return ret;
  3318. }
  3319. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3320. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3321. dev_priv->dri1.allow_batchbuffer = 1;
  3322. return 0;
  3323. }
  3324. void
  3325. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3326. {
  3327. drm_i915_private_t *dev_priv = dev->dev_private;
  3328. struct intel_ring_buffer *ring;
  3329. int i;
  3330. for_each_ring(ring, dev_priv, i)
  3331. intel_cleanup_ring_buffer(ring);
  3332. }
  3333. int
  3334. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3335. struct drm_file *file_priv)
  3336. {
  3337. drm_i915_private_t *dev_priv = dev->dev_private;
  3338. int ret;
  3339. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3340. return 0;
  3341. if (atomic_read(&dev_priv->mm.wedged)) {
  3342. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3343. atomic_set(&dev_priv->mm.wedged, 0);
  3344. }
  3345. mutex_lock(&dev->struct_mutex);
  3346. dev_priv->mm.suspended = 0;
  3347. ret = i915_gem_init_hw(dev);
  3348. if (ret != 0) {
  3349. mutex_unlock(&dev->struct_mutex);
  3350. return ret;
  3351. }
  3352. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3353. mutex_unlock(&dev->struct_mutex);
  3354. ret = drm_irq_install(dev);
  3355. if (ret)
  3356. goto cleanup_ringbuffer;
  3357. return 0;
  3358. cleanup_ringbuffer:
  3359. mutex_lock(&dev->struct_mutex);
  3360. i915_gem_cleanup_ringbuffer(dev);
  3361. dev_priv->mm.suspended = 1;
  3362. mutex_unlock(&dev->struct_mutex);
  3363. return ret;
  3364. }
  3365. int
  3366. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3367. struct drm_file *file_priv)
  3368. {
  3369. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3370. return 0;
  3371. drm_irq_uninstall(dev);
  3372. return i915_gem_idle(dev);
  3373. }
  3374. void
  3375. i915_gem_lastclose(struct drm_device *dev)
  3376. {
  3377. int ret;
  3378. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3379. return;
  3380. ret = i915_gem_idle(dev);
  3381. if (ret)
  3382. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3383. }
  3384. static void
  3385. init_ring_lists(struct intel_ring_buffer *ring)
  3386. {
  3387. INIT_LIST_HEAD(&ring->active_list);
  3388. INIT_LIST_HEAD(&ring->request_list);
  3389. }
  3390. void
  3391. i915_gem_load(struct drm_device *dev)
  3392. {
  3393. drm_i915_private_t *dev_priv = dev->dev_private;
  3394. int i;
  3395. dev_priv->slab =
  3396. kmem_cache_create("i915_gem_object",
  3397. sizeof(struct drm_i915_gem_object), 0,
  3398. SLAB_HWCACHE_ALIGN,
  3399. NULL);
  3400. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3401. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3402. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  3403. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  3404. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3405. for (i = 0; i < I915_NUM_RINGS; i++)
  3406. init_ring_lists(&dev_priv->ring[i]);
  3407. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3408. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3409. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3410. i915_gem_retire_work_handler);
  3411. init_completion(&dev_priv->error_completion);
  3412. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3413. if (IS_GEN3(dev)) {
  3414. I915_WRITE(MI_ARB_STATE,
  3415. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3416. }
  3417. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3418. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3419. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3420. dev_priv->fence_reg_start = 3;
  3421. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3422. dev_priv->num_fence_regs = 16;
  3423. else
  3424. dev_priv->num_fence_regs = 8;
  3425. /* Initialize fence registers to zero */
  3426. i915_gem_reset_fences(dev);
  3427. i915_gem_detect_bit_6_swizzle(dev);
  3428. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3429. dev_priv->mm.interruptible = true;
  3430. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3431. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3432. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3433. }
  3434. /*
  3435. * Create a physically contiguous memory object for this object
  3436. * e.g. for cursor + overlay regs
  3437. */
  3438. static int i915_gem_init_phys_object(struct drm_device *dev,
  3439. int id, int size, int align)
  3440. {
  3441. drm_i915_private_t *dev_priv = dev->dev_private;
  3442. struct drm_i915_gem_phys_object *phys_obj;
  3443. int ret;
  3444. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3445. return 0;
  3446. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3447. if (!phys_obj)
  3448. return -ENOMEM;
  3449. phys_obj->id = id;
  3450. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3451. if (!phys_obj->handle) {
  3452. ret = -ENOMEM;
  3453. goto kfree_obj;
  3454. }
  3455. #ifdef CONFIG_X86
  3456. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3457. #endif
  3458. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3459. return 0;
  3460. kfree_obj:
  3461. kfree(phys_obj);
  3462. return ret;
  3463. }
  3464. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3465. {
  3466. drm_i915_private_t *dev_priv = dev->dev_private;
  3467. struct drm_i915_gem_phys_object *phys_obj;
  3468. if (!dev_priv->mm.phys_objs[id - 1])
  3469. return;
  3470. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3471. if (phys_obj->cur_obj) {
  3472. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3473. }
  3474. #ifdef CONFIG_X86
  3475. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3476. #endif
  3477. drm_pci_free(dev, phys_obj->handle);
  3478. kfree(phys_obj);
  3479. dev_priv->mm.phys_objs[id - 1] = NULL;
  3480. }
  3481. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3482. {
  3483. int i;
  3484. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3485. i915_gem_free_phys_object(dev, i);
  3486. }
  3487. void i915_gem_detach_phys_object(struct drm_device *dev,
  3488. struct drm_i915_gem_object *obj)
  3489. {
  3490. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3491. char *vaddr;
  3492. int i;
  3493. int page_count;
  3494. if (!obj->phys_obj)
  3495. return;
  3496. vaddr = obj->phys_obj->handle->vaddr;
  3497. page_count = obj->base.size / PAGE_SIZE;
  3498. for (i = 0; i < page_count; i++) {
  3499. struct page *page = shmem_read_mapping_page(mapping, i);
  3500. if (!IS_ERR(page)) {
  3501. char *dst = kmap_atomic(page);
  3502. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3503. kunmap_atomic(dst);
  3504. drm_clflush_pages(&page, 1);
  3505. set_page_dirty(page);
  3506. mark_page_accessed(page);
  3507. page_cache_release(page);
  3508. }
  3509. }
  3510. i915_gem_chipset_flush(dev);
  3511. obj->phys_obj->cur_obj = NULL;
  3512. obj->phys_obj = NULL;
  3513. }
  3514. int
  3515. i915_gem_attach_phys_object(struct drm_device *dev,
  3516. struct drm_i915_gem_object *obj,
  3517. int id,
  3518. int align)
  3519. {
  3520. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3521. drm_i915_private_t *dev_priv = dev->dev_private;
  3522. int ret = 0;
  3523. int page_count;
  3524. int i;
  3525. if (id > I915_MAX_PHYS_OBJECT)
  3526. return -EINVAL;
  3527. if (obj->phys_obj) {
  3528. if (obj->phys_obj->id == id)
  3529. return 0;
  3530. i915_gem_detach_phys_object(dev, obj);
  3531. }
  3532. /* create a new object */
  3533. if (!dev_priv->mm.phys_objs[id - 1]) {
  3534. ret = i915_gem_init_phys_object(dev, id,
  3535. obj->base.size, align);
  3536. if (ret) {
  3537. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3538. id, obj->base.size);
  3539. return ret;
  3540. }
  3541. }
  3542. /* bind to the object */
  3543. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3544. obj->phys_obj->cur_obj = obj;
  3545. page_count = obj->base.size / PAGE_SIZE;
  3546. for (i = 0; i < page_count; i++) {
  3547. struct page *page;
  3548. char *dst, *src;
  3549. page = shmem_read_mapping_page(mapping, i);
  3550. if (IS_ERR(page))
  3551. return PTR_ERR(page);
  3552. src = kmap_atomic(page);
  3553. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3554. memcpy(dst, src, PAGE_SIZE);
  3555. kunmap_atomic(src);
  3556. mark_page_accessed(page);
  3557. page_cache_release(page);
  3558. }
  3559. return 0;
  3560. }
  3561. static int
  3562. i915_gem_phys_pwrite(struct drm_device *dev,
  3563. struct drm_i915_gem_object *obj,
  3564. struct drm_i915_gem_pwrite *args,
  3565. struct drm_file *file_priv)
  3566. {
  3567. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3568. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3569. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3570. unsigned long unwritten;
  3571. /* The physical object once assigned is fixed for the lifetime
  3572. * of the obj, so we can safely drop the lock and continue
  3573. * to access vaddr.
  3574. */
  3575. mutex_unlock(&dev->struct_mutex);
  3576. unwritten = copy_from_user(vaddr, user_data, args->size);
  3577. mutex_lock(&dev->struct_mutex);
  3578. if (unwritten)
  3579. return -EFAULT;
  3580. }
  3581. i915_gem_chipset_flush(dev);
  3582. return 0;
  3583. }
  3584. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3585. {
  3586. struct drm_i915_file_private *file_priv = file->driver_priv;
  3587. /* Clean up our request list when the client is going away, so that
  3588. * later retire_requests won't dereference our soon-to-be-gone
  3589. * file_priv.
  3590. */
  3591. spin_lock(&file_priv->mm.lock);
  3592. while (!list_empty(&file_priv->mm.request_list)) {
  3593. struct drm_i915_gem_request *request;
  3594. request = list_first_entry(&file_priv->mm.request_list,
  3595. struct drm_i915_gem_request,
  3596. client_list);
  3597. list_del(&request->client_list);
  3598. request->file_priv = NULL;
  3599. }
  3600. spin_unlock(&file_priv->mm.lock);
  3601. }
  3602. static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
  3603. {
  3604. if (!mutex_is_locked(mutex))
  3605. return false;
  3606. #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
  3607. return mutex->owner == task;
  3608. #else
  3609. /* Since UP may be pre-empted, we cannot assume that we own the lock */
  3610. return false;
  3611. #endif
  3612. }
  3613. static int
  3614. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3615. {
  3616. struct drm_i915_private *dev_priv =
  3617. container_of(shrinker,
  3618. struct drm_i915_private,
  3619. mm.inactive_shrinker);
  3620. struct drm_device *dev = dev_priv->dev;
  3621. struct drm_i915_gem_object *obj;
  3622. int nr_to_scan = sc->nr_to_scan;
  3623. bool unlock = true;
  3624. int cnt;
  3625. if (!mutex_trylock(&dev->struct_mutex)) {
  3626. if (!mutex_is_locked_by(&dev->struct_mutex, current))
  3627. return 0;
  3628. unlock = false;
  3629. }
  3630. if (nr_to_scan) {
  3631. nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
  3632. if (nr_to_scan > 0)
  3633. i915_gem_shrink_all(dev_priv);
  3634. }
  3635. cnt = 0;
  3636. list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
  3637. if (obj->pages_pin_count == 0)
  3638. cnt += obj->base.size >> PAGE_SHIFT;
  3639. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  3640. if (obj->pin_count == 0 && obj->pages_pin_count == 0)
  3641. cnt += obj->base.size >> PAGE_SHIFT;
  3642. if (unlock)
  3643. mutex_unlock(&dev->struct_mutex);
  3644. return cnt;
  3645. }