evlist.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859
  1. /*
  2. * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
  3. *
  4. * Parts came from builtin-{top,stat,record}.c, see those files for further
  5. * copyright notes.
  6. *
  7. * Released under the GPL v2. (and only v2, not any later version)
  8. */
  9. #include "util.h"
  10. #include "debugfs.h"
  11. #include <poll.h>
  12. #include "cpumap.h"
  13. #include "thread_map.h"
  14. #include "evlist.h"
  15. #include "evsel.h"
  16. #include <unistd.h>
  17. #include "parse-events.h"
  18. #include <sys/mman.h>
  19. #include <linux/bitops.h>
  20. #include <linux/hash.h>
  21. #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  22. #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
  23. void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
  24. struct thread_map *threads)
  25. {
  26. int i;
  27. for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
  28. INIT_HLIST_HEAD(&evlist->heads[i]);
  29. INIT_LIST_HEAD(&evlist->entries);
  30. perf_evlist__set_maps(evlist, cpus, threads);
  31. evlist->workload.pid = -1;
  32. }
  33. struct perf_evlist *perf_evlist__new(struct cpu_map *cpus,
  34. struct thread_map *threads)
  35. {
  36. struct perf_evlist *evlist = zalloc(sizeof(*evlist));
  37. if (evlist != NULL)
  38. perf_evlist__init(evlist, cpus, threads);
  39. return evlist;
  40. }
  41. void perf_evlist__config_attrs(struct perf_evlist *evlist,
  42. struct perf_record_opts *opts)
  43. {
  44. struct perf_evsel *evsel;
  45. if (evlist->cpus->map[0] < 0)
  46. opts->no_inherit = true;
  47. list_for_each_entry(evsel, &evlist->entries, node) {
  48. perf_evsel__config(evsel, opts);
  49. if (evlist->nr_entries > 1)
  50. evsel->attr.sample_type |= PERF_SAMPLE_ID;
  51. }
  52. }
  53. static void perf_evlist__purge(struct perf_evlist *evlist)
  54. {
  55. struct perf_evsel *pos, *n;
  56. list_for_each_entry_safe(pos, n, &evlist->entries, node) {
  57. list_del_init(&pos->node);
  58. perf_evsel__delete(pos);
  59. }
  60. evlist->nr_entries = 0;
  61. }
  62. void perf_evlist__exit(struct perf_evlist *evlist)
  63. {
  64. free(evlist->mmap);
  65. free(evlist->pollfd);
  66. evlist->mmap = NULL;
  67. evlist->pollfd = NULL;
  68. }
  69. void perf_evlist__delete(struct perf_evlist *evlist)
  70. {
  71. perf_evlist__purge(evlist);
  72. perf_evlist__exit(evlist);
  73. free(evlist);
  74. }
  75. void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
  76. {
  77. list_add_tail(&entry->node, &evlist->entries);
  78. ++evlist->nr_entries;
  79. }
  80. static void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
  81. struct list_head *list,
  82. int nr_entries)
  83. {
  84. list_splice_tail(list, &evlist->entries);
  85. evlist->nr_entries += nr_entries;
  86. }
  87. int perf_evlist__add_default(struct perf_evlist *evlist)
  88. {
  89. struct perf_event_attr attr = {
  90. .type = PERF_TYPE_HARDWARE,
  91. .config = PERF_COUNT_HW_CPU_CYCLES,
  92. };
  93. struct perf_evsel *evsel;
  94. event_attr_init(&attr);
  95. evsel = perf_evsel__new(&attr, 0);
  96. if (evsel == NULL)
  97. goto error;
  98. /* use strdup() because free(evsel) assumes name is allocated */
  99. evsel->name = strdup("cycles");
  100. if (!evsel->name)
  101. goto error_free;
  102. perf_evlist__add(evlist, evsel);
  103. return 0;
  104. error_free:
  105. perf_evsel__delete(evsel);
  106. error:
  107. return -ENOMEM;
  108. }
  109. int perf_evlist__add_attrs(struct perf_evlist *evlist,
  110. struct perf_event_attr *attrs, size_t nr_attrs)
  111. {
  112. struct perf_evsel *evsel, *n;
  113. LIST_HEAD(head);
  114. size_t i;
  115. for (i = 0; i < nr_attrs; i++) {
  116. evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
  117. if (evsel == NULL)
  118. goto out_delete_partial_list;
  119. list_add_tail(&evsel->node, &head);
  120. }
  121. perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
  122. return 0;
  123. out_delete_partial_list:
  124. list_for_each_entry_safe(evsel, n, &head, node)
  125. perf_evsel__delete(evsel);
  126. return -1;
  127. }
  128. static int trace_event__id(const char *evname)
  129. {
  130. char *filename, *colon;
  131. int err = -1, fd;
  132. if (asprintf(&filename, "%s/%s/id", tracing_events_path, evname) < 0)
  133. return -1;
  134. colon = strrchr(filename, ':');
  135. if (colon != NULL)
  136. *colon = '/';
  137. fd = open(filename, O_RDONLY);
  138. if (fd >= 0) {
  139. char id[16];
  140. if (read(fd, id, sizeof(id)) > 0)
  141. err = atoi(id);
  142. close(fd);
  143. }
  144. free(filename);
  145. return err;
  146. }
  147. int perf_evlist__add_tracepoints(struct perf_evlist *evlist,
  148. const char *tracepoints[],
  149. size_t nr_tracepoints)
  150. {
  151. int err;
  152. size_t i;
  153. struct perf_event_attr *attrs = zalloc(nr_tracepoints * sizeof(*attrs));
  154. if (attrs == NULL)
  155. return -1;
  156. for (i = 0; i < nr_tracepoints; i++) {
  157. err = trace_event__id(tracepoints[i]);
  158. if (err < 0)
  159. goto out_free_attrs;
  160. attrs[i].type = PERF_TYPE_TRACEPOINT;
  161. attrs[i].config = err;
  162. attrs[i].sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
  163. PERF_SAMPLE_CPU);
  164. attrs[i].sample_period = 1;
  165. }
  166. err = perf_evlist__add_attrs(evlist, attrs, nr_tracepoints);
  167. out_free_attrs:
  168. free(attrs);
  169. return err;
  170. }
  171. static struct perf_evsel *
  172. perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
  173. {
  174. struct perf_evsel *evsel;
  175. list_for_each_entry(evsel, &evlist->entries, node) {
  176. if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
  177. (int)evsel->attr.config == id)
  178. return evsel;
  179. }
  180. return NULL;
  181. }
  182. int perf_evlist__set_tracepoints_handlers(struct perf_evlist *evlist,
  183. const struct perf_evsel_str_handler *assocs,
  184. size_t nr_assocs)
  185. {
  186. struct perf_evsel *evsel;
  187. int err;
  188. size_t i;
  189. for (i = 0; i < nr_assocs; i++) {
  190. err = trace_event__id(assocs[i].name);
  191. if (err < 0)
  192. goto out;
  193. evsel = perf_evlist__find_tracepoint_by_id(evlist, err);
  194. if (evsel == NULL)
  195. continue;
  196. err = -EEXIST;
  197. if (evsel->handler.func != NULL)
  198. goto out;
  199. evsel->handler.func = assocs[i].handler;
  200. }
  201. err = 0;
  202. out:
  203. return err;
  204. }
  205. void perf_evlist__disable(struct perf_evlist *evlist)
  206. {
  207. int cpu, thread;
  208. struct perf_evsel *pos;
  209. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  210. list_for_each_entry(pos, &evlist->entries, node) {
  211. for (thread = 0; thread < evlist->threads->nr; thread++)
  212. ioctl(FD(pos, cpu, thread), PERF_EVENT_IOC_DISABLE);
  213. }
  214. }
  215. }
  216. void perf_evlist__enable(struct perf_evlist *evlist)
  217. {
  218. int cpu, thread;
  219. struct perf_evsel *pos;
  220. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  221. list_for_each_entry(pos, &evlist->entries, node) {
  222. for (thread = 0; thread < evlist->threads->nr; thread++)
  223. ioctl(FD(pos, cpu, thread), PERF_EVENT_IOC_ENABLE);
  224. }
  225. }
  226. }
  227. static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
  228. {
  229. int nfds = evlist->cpus->nr * evlist->threads->nr * evlist->nr_entries;
  230. evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
  231. return evlist->pollfd != NULL ? 0 : -ENOMEM;
  232. }
  233. void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
  234. {
  235. fcntl(fd, F_SETFL, O_NONBLOCK);
  236. evlist->pollfd[evlist->nr_fds].fd = fd;
  237. evlist->pollfd[evlist->nr_fds].events = POLLIN;
  238. evlist->nr_fds++;
  239. }
  240. static void perf_evlist__id_hash(struct perf_evlist *evlist,
  241. struct perf_evsel *evsel,
  242. int cpu, int thread, u64 id)
  243. {
  244. int hash;
  245. struct perf_sample_id *sid = SID(evsel, cpu, thread);
  246. sid->id = id;
  247. sid->evsel = evsel;
  248. hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
  249. hlist_add_head(&sid->node, &evlist->heads[hash]);
  250. }
  251. void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
  252. int cpu, int thread, u64 id)
  253. {
  254. perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
  255. evsel->id[evsel->ids++] = id;
  256. }
  257. static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
  258. struct perf_evsel *evsel,
  259. int cpu, int thread, int fd)
  260. {
  261. u64 read_data[4] = { 0, };
  262. int id_idx = 1; /* The first entry is the counter value */
  263. if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
  264. read(fd, &read_data, sizeof(read_data)) == -1)
  265. return -1;
  266. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  267. ++id_idx;
  268. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  269. ++id_idx;
  270. perf_evlist__id_add(evlist, evsel, cpu, thread, read_data[id_idx]);
  271. return 0;
  272. }
  273. struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
  274. {
  275. struct hlist_head *head;
  276. struct hlist_node *pos;
  277. struct perf_sample_id *sid;
  278. int hash;
  279. if (evlist->nr_entries == 1)
  280. return list_entry(evlist->entries.next, struct perf_evsel, node);
  281. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  282. head = &evlist->heads[hash];
  283. hlist_for_each_entry(sid, pos, head, node)
  284. if (sid->id == id)
  285. return sid->evsel;
  286. return NULL;
  287. }
  288. union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
  289. {
  290. /* XXX Move this to perf.c, making it generally available */
  291. unsigned int page_size = sysconf(_SC_PAGE_SIZE);
  292. struct perf_mmap *md = &evlist->mmap[idx];
  293. unsigned int head = perf_mmap__read_head(md);
  294. unsigned int old = md->prev;
  295. unsigned char *data = md->base + page_size;
  296. union perf_event *event = NULL;
  297. if (evlist->overwrite) {
  298. /*
  299. * If we're further behind than half the buffer, there's a chance
  300. * the writer will bite our tail and mess up the samples under us.
  301. *
  302. * If we somehow ended up ahead of the head, we got messed up.
  303. *
  304. * In either case, truncate and restart at head.
  305. */
  306. int diff = head - old;
  307. if (diff > md->mask / 2 || diff < 0) {
  308. fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
  309. /*
  310. * head points to a known good entry, start there.
  311. */
  312. old = head;
  313. }
  314. }
  315. if (old != head) {
  316. size_t size;
  317. event = (union perf_event *)&data[old & md->mask];
  318. size = event->header.size;
  319. /*
  320. * Event straddles the mmap boundary -- header should always
  321. * be inside due to u64 alignment of output.
  322. */
  323. if ((old & md->mask) + size != ((old + size) & md->mask)) {
  324. unsigned int offset = old;
  325. unsigned int len = min(sizeof(*event), size), cpy;
  326. void *dst = &evlist->event_copy;
  327. do {
  328. cpy = min(md->mask + 1 - (offset & md->mask), len);
  329. memcpy(dst, &data[offset & md->mask], cpy);
  330. offset += cpy;
  331. dst += cpy;
  332. len -= cpy;
  333. } while (len);
  334. event = &evlist->event_copy;
  335. }
  336. old += size;
  337. }
  338. md->prev = old;
  339. if (!evlist->overwrite)
  340. perf_mmap__write_tail(md, old);
  341. return event;
  342. }
  343. void perf_evlist__munmap(struct perf_evlist *evlist)
  344. {
  345. int i;
  346. for (i = 0; i < evlist->nr_mmaps; i++) {
  347. if (evlist->mmap[i].base != NULL) {
  348. munmap(evlist->mmap[i].base, evlist->mmap_len);
  349. evlist->mmap[i].base = NULL;
  350. }
  351. }
  352. free(evlist->mmap);
  353. evlist->mmap = NULL;
  354. }
  355. static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
  356. {
  357. evlist->nr_mmaps = evlist->cpus->nr;
  358. if (evlist->cpus->map[0] == -1)
  359. evlist->nr_mmaps = evlist->threads->nr;
  360. evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
  361. return evlist->mmap != NULL ? 0 : -ENOMEM;
  362. }
  363. static int __perf_evlist__mmap(struct perf_evlist *evlist,
  364. int idx, int prot, int mask, int fd)
  365. {
  366. evlist->mmap[idx].prev = 0;
  367. evlist->mmap[idx].mask = mask;
  368. evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
  369. MAP_SHARED, fd, 0);
  370. if (evlist->mmap[idx].base == MAP_FAILED) {
  371. evlist->mmap[idx].base = NULL;
  372. return -1;
  373. }
  374. perf_evlist__add_pollfd(evlist, fd);
  375. return 0;
  376. }
  377. static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
  378. {
  379. struct perf_evsel *evsel;
  380. int cpu, thread;
  381. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  382. int output = -1;
  383. for (thread = 0; thread < evlist->threads->nr; thread++) {
  384. list_for_each_entry(evsel, &evlist->entries, node) {
  385. int fd = FD(evsel, cpu, thread);
  386. if (output == -1) {
  387. output = fd;
  388. if (__perf_evlist__mmap(evlist, cpu,
  389. prot, mask, output) < 0)
  390. goto out_unmap;
  391. } else {
  392. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  393. goto out_unmap;
  394. }
  395. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  396. perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
  397. goto out_unmap;
  398. }
  399. }
  400. }
  401. return 0;
  402. out_unmap:
  403. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  404. if (evlist->mmap[cpu].base != NULL) {
  405. munmap(evlist->mmap[cpu].base, evlist->mmap_len);
  406. evlist->mmap[cpu].base = NULL;
  407. }
  408. }
  409. return -1;
  410. }
  411. static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
  412. {
  413. struct perf_evsel *evsel;
  414. int thread;
  415. for (thread = 0; thread < evlist->threads->nr; thread++) {
  416. int output = -1;
  417. list_for_each_entry(evsel, &evlist->entries, node) {
  418. int fd = FD(evsel, 0, thread);
  419. if (output == -1) {
  420. output = fd;
  421. if (__perf_evlist__mmap(evlist, thread,
  422. prot, mask, output) < 0)
  423. goto out_unmap;
  424. } else {
  425. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  426. goto out_unmap;
  427. }
  428. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  429. perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
  430. goto out_unmap;
  431. }
  432. }
  433. return 0;
  434. out_unmap:
  435. for (thread = 0; thread < evlist->threads->nr; thread++) {
  436. if (evlist->mmap[thread].base != NULL) {
  437. munmap(evlist->mmap[thread].base, evlist->mmap_len);
  438. evlist->mmap[thread].base = NULL;
  439. }
  440. }
  441. return -1;
  442. }
  443. /** perf_evlist__mmap - Create per cpu maps to receive events
  444. *
  445. * @evlist - list of events
  446. * @pages - map length in pages
  447. * @overwrite - overwrite older events?
  448. *
  449. * If overwrite is false the user needs to signal event consuption using:
  450. *
  451. * struct perf_mmap *m = &evlist->mmap[cpu];
  452. * unsigned int head = perf_mmap__read_head(m);
  453. *
  454. * perf_mmap__write_tail(m, head)
  455. *
  456. * Using perf_evlist__read_on_cpu does this automatically.
  457. */
  458. int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
  459. bool overwrite)
  460. {
  461. unsigned int page_size = sysconf(_SC_PAGE_SIZE);
  462. struct perf_evsel *evsel;
  463. const struct cpu_map *cpus = evlist->cpus;
  464. const struct thread_map *threads = evlist->threads;
  465. int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
  466. /* 512 kiB: default amount of unprivileged mlocked memory */
  467. if (pages == UINT_MAX)
  468. pages = (512 * 1024) / page_size;
  469. else if (!is_power_of_2(pages))
  470. return -EINVAL;
  471. mask = pages * page_size - 1;
  472. if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
  473. return -ENOMEM;
  474. if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
  475. return -ENOMEM;
  476. evlist->overwrite = overwrite;
  477. evlist->mmap_len = (pages + 1) * page_size;
  478. list_for_each_entry(evsel, &evlist->entries, node) {
  479. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  480. evsel->sample_id == NULL &&
  481. perf_evsel__alloc_id(evsel, cpus->nr, threads->nr) < 0)
  482. return -ENOMEM;
  483. }
  484. if (evlist->cpus->map[0] == -1)
  485. return perf_evlist__mmap_per_thread(evlist, prot, mask);
  486. return perf_evlist__mmap_per_cpu(evlist, prot, mask);
  487. }
  488. int perf_evlist__create_maps(struct perf_evlist *evlist, pid_t target_pid,
  489. pid_t target_tid, const char *cpu_list)
  490. {
  491. evlist->threads = thread_map__new(target_pid, target_tid);
  492. if (evlist->threads == NULL)
  493. return -1;
  494. if (cpu_list == NULL && target_tid != -1)
  495. evlist->cpus = cpu_map__dummy_new();
  496. else
  497. evlist->cpus = cpu_map__new(cpu_list);
  498. if (evlist->cpus == NULL)
  499. goto out_delete_threads;
  500. return 0;
  501. out_delete_threads:
  502. thread_map__delete(evlist->threads);
  503. return -1;
  504. }
  505. void perf_evlist__delete_maps(struct perf_evlist *evlist)
  506. {
  507. cpu_map__delete(evlist->cpus);
  508. thread_map__delete(evlist->threads);
  509. evlist->cpus = NULL;
  510. evlist->threads = NULL;
  511. }
  512. int perf_evlist__set_filters(struct perf_evlist *evlist)
  513. {
  514. const struct thread_map *threads = evlist->threads;
  515. const struct cpu_map *cpus = evlist->cpus;
  516. struct perf_evsel *evsel;
  517. char *filter;
  518. int thread;
  519. int cpu;
  520. int err;
  521. int fd;
  522. list_for_each_entry(evsel, &evlist->entries, node) {
  523. filter = evsel->filter;
  524. if (!filter)
  525. continue;
  526. for (cpu = 0; cpu < cpus->nr; cpu++) {
  527. for (thread = 0; thread < threads->nr; thread++) {
  528. fd = FD(evsel, cpu, thread);
  529. err = ioctl(fd, PERF_EVENT_IOC_SET_FILTER, filter);
  530. if (err)
  531. return err;
  532. }
  533. }
  534. }
  535. return 0;
  536. }
  537. bool perf_evlist__valid_sample_type(const struct perf_evlist *evlist)
  538. {
  539. struct perf_evsel *pos, *first;
  540. pos = first = list_entry(evlist->entries.next, struct perf_evsel, node);
  541. list_for_each_entry_continue(pos, &evlist->entries, node) {
  542. if (first->attr.sample_type != pos->attr.sample_type)
  543. return false;
  544. }
  545. return true;
  546. }
  547. u64 perf_evlist__sample_type(const struct perf_evlist *evlist)
  548. {
  549. struct perf_evsel *first;
  550. first = list_entry(evlist->entries.next, struct perf_evsel, node);
  551. return first->attr.sample_type;
  552. }
  553. u16 perf_evlist__id_hdr_size(const struct perf_evlist *evlist)
  554. {
  555. struct perf_evsel *first;
  556. struct perf_sample *data;
  557. u64 sample_type;
  558. u16 size = 0;
  559. first = list_entry(evlist->entries.next, struct perf_evsel, node);
  560. if (!first->attr.sample_id_all)
  561. goto out;
  562. sample_type = first->attr.sample_type;
  563. if (sample_type & PERF_SAMPLE_TID)
  564. size += sizeof(data->tid) * 2;
  565. if (sample_type & PERF_SAMPLE_TIME)
  566. size += sizeof(data->time);
  567. if (sample_type & PERF_SAMPLE_ID)
  568. size += sizeof(data->id);
  569. if (sample_type & PERF_SAMPLE_STREAM_ID)
  570. size += sizeof(data->stream_id);
  571. if (sample_type & PERF_SAMPLE_CPU)
  572. size += sizeof(data->cpu) * 2;
  573. out:
  574. return size;
  575. }
  576. bool perf_evlist__valid_sample_id_all(const struct perf_evlist *evlist)
  577. {
  578. struct perf_evsel *pos, *first;
  579. pos = first = list_entry(evlist->entries.next, struct perf_evsel, node);
  580. list_for_each_entry_continue(pos, &evlist->entries, node) {
  581. if (first->attr.sample_id_all != pos->attr.sample_id_all)
  582. return false;
  583. }
  584. return true;
  585. }
  586. bool perf_evlist__sample_id_all(const struct perf_evlist *evlist)
  587. {
  588. struct perf_evsel *first;
  589. first = list_entry(evlist->entries.next, struct perf_evsel, node);
  590. return first->attr.sample_id_all;
  591. }
  592. void perf_evlist__set_selected(struct perf_evlist *evlist,
  593. struct perf_evsel *evsel)
  594. {
  595. evlist->selected = evsel;
  596. }
  597. int perf_evlist__open(struct perf_evlist *evlist, bool group)
  598. {
  599. struct perf_evsel *evsel, *first;
  600. int err, ncpus, nthreads;
  601. first = list_entry(evlist->entries.next, struct perf_evsel, node);
  602. list_for_each_entry(evsel, &evlist->entries, node) {
  603. struct xyarray *group_fd = NULL;
  604. if (group && evsel != first)
  605. group_fd = first->fd;
  606. err = perf_evsel__open(evsel, evlist->cpus, evlist->threads,
  607. group, group_fd);
  608. if (err < 0)
  609. goto out_err;
  610. }
  611. return 0;
  612. out_err:
  613. ncpus = evlist->cpus ? evlist->cpus->nr : 1;
  614. nthreads = evlist->threads ? evlist->threads->nr : 1;
  615. list_for_each_entry_reverse(evsel, &evlist->entries, node)
  616. perf_evsel__close(evsel, ncpus, nthreads);
  617. return err;
  618. }
  619. int perf_evlist__prepare_workload(struct perf_evlist *evlist,
  620. struct perf_record_opts *opts,
  621. const char *argv[])
  622. {
  623. int child_ready_pipe[2], go_pipe[2];
  624. char bf;
  625. if (pipe(child_ready_pipe) < 0) {
  626. perror("failed to create 'ready' pipe");
  627. return -1;
  628. }
  629. if (pipe(go_pipe) < 0) {
  630. perror("failed to create 'go' pipe");
  631. goto out_close_ready_pipe;
  632. }
  633. evlist->workload.pid = fork();
  634. if (evlist->workload.pid < 0) {
  635. perror("failed to fork");
  636. goto out_close_pipes;
  637. }
  638. if (!evlist->workload.pid) {
  639. if (opts->pipe_output)
  640. dup2(2, 1);
  641. close(child_ready_pipe[0]);
  642. close(go_pipe[1]);
  643. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  644. /*
  645. * Do a dummy execvp to get the PLT entry resolved,
  646. * so we avoid the resolver overhead on the real
  647. * execvp call.
  648. */
  649. execvp("", (char **)argv);
  650. /*
  651. * Tell the parent we're ready to go
  652. */
  653. close(child_ready_pipe[1]);
  654. /*
  655. * Wait until the parent tells us to go.
  656. */
  657. if (read(go_pipe[0], &bf, 1) == -1)
  658. perror("unable to read pipe");
  659. execvp(argv[0], (char **)argv);
  660. perror(argv[0]);
  661. kill(getppid(), SIGUSR1);
  662. exit(-1);
  663. }
  664. if (!opts->system_wide && opts->target_tid == -1 && opts->target_pid == -1)
  665. evlist->threads->map[0] = evlist->workload.pid;
  666. close(child_ready_pipe[1]);
  667. close(go_pipe[0]);
  668. /*
  669. * wait for child to settle
  670. */
  671. if (read(child_ready_pipe[0], &bf, 1) == -1) {
  672. perror("unable to read pipe");
  673. goto out_close_pipes;
  674. }
  675. evlist->workload.cork_fd = go_pipe[1];
  676. close(child_ready_pipe[0]);
  677. return 0;
  678. out_close_pipes:
  679. close(go_pipe[0]);
  680. close(go_pipe[1]);
  681. out_close_ready_pipe:
  682. close(child_ready_pipe[0]);
  683. close(child_ready_pipe[1]);
  684. return -1;
  685. }
  686. int perf_evlist__start_workload(struct perf_evlist *evlist)
  687. {
  688. if (evlist->workload.cork_fd > 0) {
  689. /*
  690. * Remove the cork, let it rip!
  691. */
  692. return close(evlist->workload.cork_fd);
  693. }
  694. return 0;
  695. }