commoncap.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. /* Common capabilities, needed by capability.o.
  2. *
  3. * This program is free software; you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation; either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. */
  9. #include <linux/capability.h>
  10. #include <linux/audit.h>
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/security.h>
  15. #include <linux/file.h>
  16. #include <linux/mm.h>
  17. #include <linux/mman.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/swap.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netlink.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/xattr.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/mount.h>
  26. #include <linux/sched.h>
  27. #include <linux/prctl.h>
  28. #include <linux/securebits.h>
  29. #include <linux/user_namespace.h>
  30. /*
  31. * If a non-root user executes a setuid-root binary in
  32. * !secure(SECURE_NOROOT) mode, then we raise capabilities.
  33. * However if fE is also set, then the intent is for only
  34. * the file capabilities to be applied, and the setuid-root
  35. * bit is left on either to change the uid (plausible) or
  36. * to get full privilege on a kernel without file capabilities
  37. * support. So in that case we do not raise capabilities.
  38. *
  39. * Warn if that happens, once per boot.
  40. */
  41. static void warn_setuid_and_fcaps_mixed(const char *fname)
  42. {
  43. static int warned;
  44. if (!warned) {
  45. printk(KERN_INFO "warning: `%s' has both setuid-root and"
  46. " effective capabilities. Therefore not raising all"
  47. " capabilities.\n", fname);
  48. warned = 1;
  49. }
  50. }
  51. int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
  52. {
  53. return 0;
  54. }
  55. /**
  56. * cap_capable - Determine whether a task has a particular effective capability
  57. * @cred: The credentials to use
  58. * @ns: The user namespace in which we need the capability
  59. * @cap: The capability to check for
  60. * @audit: Whether to write an audit message or not
  61. *
  62. * Determine whether the nominated task has the specified capability amongst
  63. * its effective set, returning 0 if it does, -ve if it does not.
  64. *
  65. * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
  66. * and has_capability() functions. That is, it has the reverse semantics:
  67. * cap_has_capability() returns 0 when a task has a capability, but the
  68. * kernel's capable() and has_capability() returns 1 for this case.
  69. */
  70. int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
  71. int cap, int audit)
  72. {
  73. for (;;) {
  74. /* The creator of the user namespace has all caps. */
  75. if (targ_ns != &init_user_ns && targ_ns->creator == cred->user)
  76. return 0;
  77. /* Do we have the necessary capabilities? */
  78. if (targ_ns == cred->user->user_ns)
  79. return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
  80. /* Have we tried all of the parent namespaces? */
  81. if (targ_ns == &init_user_ns)
  82. return -EPERM;
  83. /*
  84. *If you have a capability in a parent user ns, then you have
  85. * it over all children user namespaces as well.
  86. */
  87. targ_ns = targ_ns->creator->user_ns;
  88. }
  89. /* We never get here */
  90. }
  91. /**
  92. * cap_settime - Determine whether the current process may set the system clock
  93. * @ts: The time to set
  94. * @tz: The timezone to set
  95. *
  96. * Determine whether the current process may set the system clock and timezone
  97. * information, returning 0 if permission granted, -ve if denied.
  98. */
  99. int cap_settime(const struct timespec *ts, const struct timezone *tz)
  100. {
  101. if (!capable(CAP_SYS_TIME))
  102. return -EPERM;
  103. return 0;
  104. }
  105. /**
  106. * cap_ptrace_access_check - Determine whether the current process may access
  107. * another
  108. * @child: The process to be accessed
  109. * @mode: The mode of attachment.
  110. *
  111. * If we are in the same or an ancestor user_ns and have all the target
  112. * task's capabilities, then ptrace access is allowed.
  113. * If we have the ptrace capability to the target user_ns, then ptrace
  114. * access is allowed.
  115. * Else denied.
  116. *
  117. * Determine whether a process may access another, returning 0 if permission
  118. * granted, -ve if denied.
  119. */
  120. int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
  121. {
  122. int ret = 0;
  123. const struct cred *cred, *child_cred;
  124. rcu_read_lock();
  125. cred = current_cred();
  126. child_cred = __task_cred(child);
  127. if (cred->user->user_ns == child_cred->user->user_ns &&
  128. cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
  129. goto out;
  130. if (ns_capable(child_cred->user->user_ns, CAP_SYS_PTRACE))
  131. goto out;
  132. ret = -EPERM;
  133. out:
  134. rcu_read_unlock();
  135. return ret;
  136. }
  137. /**
  138. * cap_ptrace_traceme - Determine whether another process may trace the current
  139. * @parent: The task proposed to be the tracer
  140. *
  141. * If parent is in the same or an ancestor user_ns and has all current's
  142. * capabilities, then ptrace access is allowed.
  143. * If parent has the ptrace capability to current's user_ns, then ptrace
  144. * access is allowed.
  145. * Else denied.
  146. *
  147. * Determine whether the nominated task is permitted to trace the current
  148. * process, returning 0 if permission is granted, -ve if denied.
  149. */
  150. int cap_ptrace_traceme(struct task_struct *parent)
  151. {
  152. int ret = 0;
  153. const struct cred *cred, *child_cred;
  154. rcu_read_lock();
  155. cred = __task_cred(parent);
  156. child_cred = current_cred();
  157. if (cred->user->user_ns == child_cred->user->user_ns &&
  158. cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
  159. goto out;
  160. if (has_ns_capability(parent, child_cred->user->user_ns, CAP_SYS_PTRACE))
  161. goto out;
  162. ret = -EPERM;
  163. out:
  164. rcu_read_unlock();
  165. return ret;
  166. }
  167. /**
  168. * cap_capget - Retrieve a task's capability sets
  169. * @target: The task from which to retrieve the capability sets
  170. * @effective: The place to record the effective set
  171. * @inheritable: The place to record the inheritable set
  172. * @permitted: The place to record the permitted set
  173. *
  174. * This function retrieves the capabilities of the nominated task and returns
  175. * them to the caller.
  176. */
  177. int cap_capget(struct task_struct *target, kernel_cap_t *effective,
  178. kernel_cap_t *inheritable, kernel_cap_t *permitted)
  179. {
  180. const struct cred *cred;
  181. /* Derived from kernel/capability.c:sys_capget. */
  182. rcu_read_lock();
  183. cred = __task_cred(target);
  184. *effective = cred->cap_effective;
  185. *inheritable = cred->cap_inheritable;
  186. *permitted = cred->cap_permitted;
  187. rcu_read_unlock();
  188. return 0;
  189. }
  190. /*
  191. * Determine whether the inheritable capabilities are limited to the old
  192. * permitted set. Returns 1 if they are limited, 0 if they are not.
  193. */
  194. static inline int cap_inh_is_capped(void)
  195. {
  196. /* they are so limited unless the current task has the CAP_SETPCAP
  197. * capability
  198. */
  199. if (cap_capable(current_cred(), current_cred()->user->user_ns,
  200. CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
  201. return 0;
  202. return 1;
  203. }
  204. /**
  205. * cap_capset - Validate and apply proposed changes to current's capabilities
  206. * @new: The proposed new credentials; alterations should be made here
  207. * @old: The current task's current credentials
  208. * @effective: A pointer to the proposed new effective capabilities set
  209. * @inheritable: A pointer to the proposed new inheritable capabilities set
  210. * @permitted: A pointer to the proposed new permitted capabilities set
  211. *
  212. * This function validates and applies a proposed mass change to the current
  213. * process's capability sets. The changes are made to the proposed new
  214. * credentials, and assuming no error, will be committed by the caller of LSM.
  215. */
  216. int cap_capset(struct cred *new,
  217. const struct cred *old,
  218. const kernel_cap_t *effective,
  219. const kernel_cap_t *inheritable,
  220. const kernel_cap_t *permitted)
  221. {
  222. if (cap_inh_is_capped() &&
  223. !cap_issubset(*inheritable,
  224. cap_combine(old->cap_inheritable,
  225. old->cap_permitted)))
  226. /* incapable of using this inheritable set */
  227. return -EPERM;
  228. if (!cap_issubset(*inheritable,
  229. cap_combine(old->cap_inheritable,
  230. old->cap_bset)))
  231. /* no new pI capabilities outside bounding set */
  232. return -EPERM;
  233. /* verify restrictions on target's new Permitted set */
  234. if (!cap_issubset(*permitted, old->cap_permitted))
  235. return -EPERM;
  236. /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
  237. if (!cap_issubset(*effective, *permitted))
  238. return -EPERM;
  239. new->cap_effective = *effective;
  240. new->cap_inheritable = *inheritable;
  241. new->cap_permitted = *permitted;
  242. return 0;
  243. }
  244. /*
  245. * Clear proposed capability sets for execve().
  246. */
  247. static inline void bprm_clear_caps(struct linux_binprm *bprm)
  248. {
  249. cap_clear(bprm->cred->cap_permitted);
  250. bprm->cap_effective = false;
  251. }
  252. /**
  253. * cap_inode_need_killpriv - Determine if inode change affects privileges
  254. * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
  255. *
  256. * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
  257. * affects the security markings on that inode, and if it is, should
  258. * inode_killpriv() be invoked or the change rejected?
  259. *
  260. * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
  261. * -ve to deny the change.
  262. */
  263. int cap_inode_need_killpriv(struct dentry *dentry)
  264. {
  265. struct inode *inode = dentry->d_inode;
  266. int error;
  267. if (!inode->i_op->getxattr)
  268. return 0;
  269. error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
  270. if (error <= 0)
  271. return 0;
  272. return 1;
  273. }
  274. /**
  275. * cap_inode_killpriv - Erase the security markings on an inode
  276. * @dentry: The inode/dentry to alter
  277. *
  278. * Erase the privilege-enhancing security markings on an inode.
  279. *
  280. * Returns 0 if successful, -ve on error.
  281. */
  282. int cap_inode_killpriv(struct dentry *dentry)
  283. {
  284. struct inode *inode = dentry->d_inode;
  285. if (!inode->i_op->removexattr)
  286. return 0;
  287. return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
  288. }
  289. /*
  290. * Calculate the new process capability sets from the capability sets attached
  291. * to a file.
  292. */
  293. static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
  294. struct linux_binprm *bprm,
  295. bool *effective,
  296. bool *has_cap)
  297. {
  298. struct cred *new = bprm->cred;
  299. unsigned i;
  300. int ret = 0;
  301. if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
  302. *effective = true;
  303. if (caps->magic_etc & VFS_CAP_REVISION_MASK)
  304. *has_cap = true;
  305. CAP_FOR_EACH_U32(i) {
  306. __u32 permitted = caps->permitted.cap[i];
  307. __u32 inheritable = caps->inheritable.cap[i];
  308. /*
  309. * pP' = (X & fP) | (pI & fI)
  310. */
  311. new->cap_permitted.cap[i] =
  312. (new->cap_bset.cap[i] & permitted) |
  313. (new->cap_inheritable.cap[i] & inheritable);
  314. if (permitted & ~new->cap_permitted.cap[i])
  315. /* insufficient to execute correctly */
  316. ret = -EPERM;
  317. }
  318. /*
  319. * For legacy apps, with no internal support for recognizing they
  320. * do not have enough capabilities, we return an error if they are
  321. * missing some "forced" (aka file-permitted) capabilities.
  322. */
  323. return *effective ? ret : 0;
  324. }
  325. /*
  326. * Extract the on-exec-apply capability sets for an executable file.
  327. */
  328. int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
  329. {
  330. struct inode *inode = dentry->d_inode;
  331. __u32 magic_etc;
  332. unsigned tocopy, i;
  333. int size;
  334. struct vfs_cap_data caps;
  335. memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
  336. if (!inode || !inode->i_op->getxattr)
  337. return -ENODATA;
  338. size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
  339. XATTR_CAPS_SZ);
  340. if (size == -ENODATA || size == -EOPNOTSUPP)
  341. /* no data, that's ok */
  342. return -ENODATA;
  343. if (size < 0)
  344. return size;
  345. if (size < sizeof(magic_etc))
  346. return -EINVAL;
  347. cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
  348. switch (magic_etc & VFS_CAP_REVISION_MASK) {
  349. case VFS_CAP_REVISION_1:
  350. if (size != XATTR_CAPS_SZ_1)
  351. return -EINVAL;
  352. tocopy = VFS_CAP_U32_1;
  353. break;
  354. case VFS_CAP_REVISION_2:
  355. if (size != XATTR_CAPS_SZ_2)
  356. return -EINVAL;
  357. tocopy = VFS_CAP_U32_2;
  358. break;
  359. default:
  360. return -EINVAL;
  361. }
  362. CAP_FOR_EACH_U32(i) {
  363. if (i >= tocopy)
  364. break;
  365. cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
  366. cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
  367. }
  368. return 0;
  369. }
  370. /*
  371. * Attempt to get the on-exec apply capability sets for an executable file from
  372. * its xattrs and, if present, apply them to the proposed credentials being
  373. * constructed by execve().
  374. */
  375. static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
  376. {
  377. struct dentry *dentry;
  378. int rc = 0;
  379. struct cpu_vfs_cap_data vcaps;
  380. bprm_clear_caps(bprm);
  381. if (!file_caps_enabled)
  382. return 0;
  383. if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
  384. return 0;
  385. dentry = dget(bprm->file->f_dentry);
  386. rc = get_vfs_caps_from_disk(dentry, &vcaps);
  387. if (rc < 0) {
  388. if (rc == -EINVAL)
  389. printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
  390. __func__, rc, bprm->filename);
  391. else if (rc == -ENODATA)
  392. rc = 0;
  393. goto out;
  394. }
  395. rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
  396. if (rc == -EINVAL)
  397. printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
  398. __func__, rc, bprm->filename);
  399. out:
  400. dput(dentry);
  401. if (rc)
  402. bprm_clear_caps(bprm);
  403. return rc;
  404. }
  405. /**
  406. * cap_bprm_set_creds - Set up the proposed credentials for execve().
  407. * @bprm: The execution parameters, including the proposed creds
  408. *
  409. * Set up the proposed credentials for a new execution context being
  410. * constructed by execve(). The proposed creds in @bprm->cred is altered,
  411. * which won't take effect immediately. Returns 0 if successful, -ve on error.
  412. */
  413. int cap_bprm_set_creds(struct linux_binprm *bprm)
  414. {
  415. const struct cred *old = current_cred();
  416. struct cred *new = bprm->cred;
  417. bool effective, has_cap = false;
  418. int ret;
  419. effective = false;
  420. ret = get_file_caps(bprm, &effective, &has_cap);
  421. if (ret < 0)
  422. return ret;
  423. if (!issecure(SECURE_NOROOT)) {
  424. /*
  425. * If the legacy file capability is set, then don't set privs
  426. * for a setuid root binary run by a non-root user. Do set it
  427. * for a root user just to cause least surprise to an admin.
  428. */
  429. if (has_cap && new->uid != 0 && new->euid == 0) {
  430. warn_setuid_and_fcaps_mixed(bprm->filename);
  431. goto skip;
  432. }
  433. /*
  434. * To support inheritance of root-permissions and suid-root
  435. * executables under compatibility mode, we override the
  436. * capability sets for the file.
  437. *
  438. * If only the real uid is 0, we do not set the effective bit.
  439. */
  440. if (new->euid == 0 || new->uid == 0) {
  441. /* pP' = (cap_bset & ~0) | (pI & ~0) */
  442. new->cap_permitted = cap_combine(old->cap_bset,
  443. old->cap_inheritable);
  444. }
  445. if (new->euid == 0)
  446. effective = true;
  447. }
  448. skip:
  449. /* Don't let someone trace a set[ug]id/setpcap binary with the revised
  450. * credentials unless they have the appropriate permit
  451. */
  452. if ((new->euid != old->uid ||
  453. new->egid != old->gid ||
  454. !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
  455. bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
  456. /* downgrade; they get no more than they had, and maybe less */
  457. if (!capable(CAP_SETUID)) {
  458. new->euid = new->uid;
  459. new->egid = new->gid;
  460. }
  461. new->cap_permitted = cap_intersect(new->cap_permitted,
  462. old->cap_permitted);
  463. }
  464. new->suid = new->fsuid = new->euid;
  465. new->sgid = new->fsgid = new->egid;
  466. if (effective)
  467. new->cap_effective = new->cap_permitted;
  468. else
  469. cap_clear(new->cap_effective);
  470. bprm->cap_effective = effective;
  471. /*
  472. * Audit candidate if current->cap_effective is set
  473. *
  474. * We do not bother to audit if 3 things are true:
  475. * 1) cap_effective has all caps
  476. * 2) we are root
  477. * 3) root is supposed to have all caps (SECURE_NOROOT)
  478. * Since this is just a normal root execing a process.
  479. *
  480. * Number 1 above might fail if you don't have a full bset, but I think
  481. * that is interesting information to audit.
  482. */
  483. if (!cap_isclear(new->cap_effective)) {
  484. if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
  485. new->euid != 0 || new->uid != 0 ||
  486. issecure(SECURE_NOROOT)) {
  487. ret = audit_log_bprm_fcaps(bprm, new, old);
  488. if (ret < 0)
  489. return ret;
  490. }
  491. }
  492. new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
  493. return 0;
  494. }
  495. /**
  496. * cap_bprm_secureexec - Determine whether a secure execution is required
  497. * @bprm: The execution parameters
  498. *
  499. * Determine whether a secure execution is required, return 1 if it is, and 0
  500. * if it is not.
  501. *
  502. * The credentials have been committed by this point, and so are no longer
  503. * available through @bprm->cred.
  504. */
  505. int cap_bprm_secureexec(struct linux_binprm *bprm)
  506. {
  507. const struct cred *cred = current_cred();
  508. if (cred->uid != 0) {
  509. if (bprm->cap_effective)
  510. return 1;
  511. if (!cap_isclear(cred->cap_permitted))
  512. return 1;
  513. }
  514. return (cred->euid != cred->uid ||
  515. cred->egid != cred->gid);
  516. }
  517. /**
  518. * cap_inode_setxattr - Determine whether an xattr may be altered
  519. * @dentry: The inode/dentry being altered
  520. * @name: The name of the xattr to be changed
  521. * @value: The value that the xattr will be changed to
  522. * @size: The size of value
  523. * @flags: The replacement flag
  524. *
  525. * Determine whether an xattr may be altered or set on an inode, returning 0 if
  526. * permission is granted, -ve if denied.
  527. *
  528. * This is used to make sure security xattrs don't get updated or set by those
  529. * who aren't privileged to do so.
  530. */
  531. int cap_inode_setxattr(struct dentry *dentry, const char *name,
  532. const void *value, size_t size, int flags)
  533. {
  534. if (!strcmp(name, XATTR_NAME_CAPS)) {
  535. if (!capable(CAP_SETFCAP))
  536. return -EPERM;
  537. return 0;
  538. }
  539. if (!strncmp(name, XATTR_SECURITY_PREFIX,
  540. sizeof(XATTR_SECURITY_PREFIX) - 1) &&
  541. !capable(CAP_SYS_ADMIN))
  542. return -EPERM;
  543. return 0;
  544. }
  545. /**
  546. * cap_inode_removexattr - Determine whether an xattr may be removed
  547. * @dentry: The inode/dentry being altered
  548. * @name: The name of the xattr to be changed
  549. *
  550. * Determine whether an xattr may be removed from an inode, returning 0 if
  551. * permission is granted, -ve if denied.
  552. *
  553. * This is used to make sure security xattrs don't get removed by those who
  554. * aren't privileged to remove them.
  555. */
  556. int cap_inode_removexattr(struct dentry *dentry, const char *name)
  557. {
  558. if (!strcmp(name, XATTR_NAME_CAPS)) {
  559. if (!capable(CAP_SETFCAP))
  560. return -EPERM;
  561. return 0;
  562. }
  563. if (!strncmp(name, XATTR_SECURITY_PREFIX,
  564. sizeof(XATTR_SECURITY_PREFIX) - 1) &&
  565. !capable(CAP_SYS_ADMIN))
  566. return -EPERM;
  567. return 0;
  568. }
  569. /*
  570. * cap_emulate_setxuid() fixes the effective / permitted capabilities of
  571. * a process after a call to setuid, setreuid, or setresuid.
  572. *
  573. * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
  574. * {r,e,s}uid != 0, the permitted and effective capabilities are
  575. * cleared.
  576. *
  577. * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
  578. * capabilities of the process are cleared.
  579. *
  580. * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
  581. * capabilities are set to the permitted capabilities.
  582. *
  583. * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
  584. * never happen.
  585. *
  586. * -astor
  587. *
  588. * cevans - New behaviour, Oct '99
  589. * A process may, via prctl(), elect to keep its capabilities when it
  590. * calls setuid() and switches away from uid==0. Both permitted and
  591. * effective sets will be retained.
  592. * Without this change, it was impossible for a daemon to drop only some
  593. * of its privilege. The call to setuid(!=0) would drop all privileges!
  594. * Keeping uid 0 is not an option because uid 0 owns too many vital
  595. * files..
  596. * Thanks to Olaf Kirch and Peter Benie for spotting this.
  597. */
  598. static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
  599. {
  600. if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
  601. (new->uid != 0 && new->euid != 0 && new->suid != 0) &&
  602. !issecure(SECURE_KEEP_CAPS)) {
  603. cap_clear(new->cap_permitted);
  604. cap_clear(new->cap_effective);
  605. }
  606. if (old->euid == 0 && new->euid != 0)
  607. cap_clear(new->cap_effective);
  608. if (old->euid != 0 && new->euid == 0)
  609. new->cap_effective = new->cap_permitted;
  610. }
  611. /**
  612. * cap_task_fix_setuid - Fix up the results of setuid() call
  613. * @new: The proposed credentials
  614. * @old: The current task's current credentials
  615. * @flags: Indications of what has changed
  616. *
  617. * Fix up the results of setuid() call before the credential changes are
  618. * actually applied, returning 0 to grant the changes, -ve to deny them.
  619. */
  620. int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
  621. {
  622. switch (flags) {
  623. case LSM_SETID_RE:
  624. case LSM_SETID_ID:
  625. case LSM_SETID_RES:
  626. /* juggle the capabilities to follow [RES]UID changes unless
  627. * otherwise suppressed */
  628. if (!issecure(SECURE_NO_SETUID_FIXUP))
  629. cap_emulate_setxuid(new, old);
  630. break;
  631. case LSM_SETID_FS:
  632. /* juggle the capabilties to follow FSUID changes, unless
  633. * otherwise suppressed
  634. *
  635. * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
  636. * if not, we might be a bit too harsh here.
  637. */
  638. if (!issecure(SECURE_NO_SETUID_FIXUP)) {
  639. if (old->fsuid == 0 && new->fsuid != 0)
  640. new->cap_effective =
  641. cap_drop_fs_set(new->cap_effective);
  642. if (old->fsuid != 0 && new->fsuid == 0)
  643. new->cap_effective =
  644. cap_raise_fs_set(new->cap_effective,
  645. new->cap_permitted);
  646. }
  647. break;
  648. default:
  649. return -EINVAL;
  650. }
  651. return 0;
  652. }
  653. /*
  654. * Rationale: code calling task_setscheduler, task_setioprio, and
  655. * task_setnice, assumes that
  656. * . if capable(cap_sys_nice), then those actions should be allowed
  657. * . if not capable(cap_sys_nice), but acting on your own processes,
  658. * then those actions should be allowed
  659. * This is insufficient now since you can call code without suid, but
  660. * yet with increased caps.
  661. * So we check for increased caps on the target process.
  662. */
  663. static int cap_safe_nice(struct task_struct *p)
  664. {
  665. int is_subset;
  666. rcu_read_lock();
  667. is_subset = cap_issubset(__task_cred(p)->cap_permitted,
  668. current_cred()->cap_permitted);
  669. rcu_read_unlock();
  670. if (!is_subset && !capable(CAP_SYS_NICE))
  671. return -EPERM;
  672. return 0;
  673. }
  674. /**
  675. * cap_task_setscheduler - Detemine if scheduler policy change is permitted
  676. * @p: The task to affect
  677. *
  678. * Detemine if the requested scheduler policy change is permitted for the
  679. * specified task, returning 0 if permission is granted, -ve if denied.
  680. */
  681. int cap_task_setscheduler(struct task_struct *p)
  682. {
  683. return cap_safe_nice(p);
  684. }
  685. /**
  686. * cap_task_ioprio - Detemine if I/O priority change is permitted
  687. * @p: The task to affect
  688. * @ioprio: The I/O priority to set
  689. *
  690. * Detemine if the requested I/O priority change is permitted for the specified
  691. * task, returning 0 if permission is granted, -ve if denied.
  692. */
  693. int cap_task_setioprio(struct task_struct *p, int ioprio)
  694. {
  695. return cap_safe_nice(p);
  696. }
  697. /**
  698. * cap_task_ioprio - Detemine if task priority change is permitted
  699. * @p: The task to affect
  700. * @nice: The nice value to set
  701. *
  702. * Detemine if the requested task priority change is permitted for the
  703. * specified task, returning 0 if permission is granted, -ve if denied.
  704. */
  705. int cap_task_setnice(struct task_struct *p, int nice)
  706. {
  707. return cap_safe_nice(p);
  708. }
  709. /*
  710. * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
  711. * the current task's bounding set. Returns 0 on success, -ve on error.
  712. */
  713. static long cap_prctl_drop(struct cred *new, unsigned long cap)
  714. {
  715. if (!capable(CAP_SETPCAP))
  716. return -EPERM;
  717. if (!cap_valid(cap))
  718. return -EINVAL;
  719. cap_lower(new->cap_bset, cap);
  720. return 0;
  721. }
  722. /**
  723. * cap_task_prctl - Implement process control functions for this security module
  724. * @option: The process control function requested
  725. * @arg2, @arg3, @arg4, @arg5: The argument data for this function
  726. *
  727. * Allow process control functions (sys_prctl()) to alter capabilities; may
  728. * also deny access to other functions not otherwise implemented here.
  729. *
  730. * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
  731. * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
  732. * modules will consider performing the function.
  733. */
  734. int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  735. unsigned long arg4, unsigned long arg5)
  736. {
  737. struct cred *new;
  738. long error = 0;
  739. new = prepare_creds();
  740. if (!new)
  741. return -ENOMEM;
  742. switch (option) {
  743. case PR_CAPBSET_READ:
  744. error = -EINVAL;
  745. if (!cap_valid(arg2))
  746. goto error;
  747. error = !!cap_raised(new->cap_bset, arg2);
  748. goto no_change;
  749. case PR_CAPBSET_DROP:
  750. error = cap_prctl_drop(new, arg2);
  751. if (error < 0)
  752. goto error;
  753. goto changed;
  754. /*
  755. * The next four prctl's remain to assist with transitioning a
  756. * system from legacy UID=0 based privilege (when filesystem
  757. * capabilities are not in use) to a system using filesystem
  758. * capabilities only - as the POSIX.1e draft intended.
  759. *
  760. * Note:
  761. *
  762. * PR_SET_SECUREBITS =
  763. * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
  764. * | issecure_mask(SECURE_NOROOT)
  765. * | issecure_mask(SECURE_NOROOT_LOCKED)
  766. * | issecure_mask(SECURE_NO_SETUID_FIXUP)
  767. * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
  768. *
  769. * will ensure that the current process and all of its
  770. * children will be locked into a pure
  771. * capability-based-privilege environment.
  772. */
  773. case PR_SET_SECUREBITS:
  774. error = -EPERM;
  775. if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
  776. & (new->securebits ^ arg2)) /*[1]*/
  777. || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
  778. || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
  779. || (cap_capable(current_cred(),
  780. current_cred()->user->user_ns, CAP_SETPCAP,
  781. SECURITY_CAP_AUDIT) != 0) /*[4]*/
  782. /*
  783. * [1] no changing of bits that are locked
  784. * [2] no unlocking of locks
  785. * [3] no setting of unsupported bits
  786. * [4] doing anything requires privilege (go read about
  787. * the "sendmail capabilities bug")
  788. */
  789. )
  790. /* cannot change a locked bit */
  791. goto error;
  792. new->securebits = arg2;
  793. goto changed;
  794. case PR_GET_SECUREBITS:
  795. error = new->securebits;
  796. goto no_change;
  797. case PR_GET_KEEPCAPS:
  798. if (issecure(SECURE_KEEP_CAPS))
  799. error = 1;
  800. goto no_change;
  801. case PR_SET_KEEPCAPS:
  802. error = -EINVAL;
  803. if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
  804. goto error;
  805. error = -EPERM;
  806. if (issecure(SECURE_KEEP_CAPS_LOCKED))
  807. goto error;
  808. if (arg2)
  809. new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
  810. else
  811. new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
  812. goto changed;
  813. default:
  814. /* No functionality available - continue with default */
  815. error = -ENOSYS;
  816. goto error;
  817. }
  818. /* Functionality provided */
  819. changed:
  820. return commit_creds(new);
  821. no_change:
  822. error:
  823. abort_creds(new);
  824. return error;
  825. }
  826. /**
  827. * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
  828. * @mm: The VM space in which the new mapping is to be made
  829. * @pages: The size of the mapping
  830. *
  831. * Determine whether the allocation of a new virtual mapping by the current
  832. * task is permitted, returning 0 if permission is granted, -ve if not.
  833. */
  834. int cap_vm_enough_memory(struct mm_struct *mm, long pages)
  835. {
  836. int cap_sys_admin = 0;
  837. if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
  838. SECURITY_CAP_NOAUDIT) == 0)
  839. cap_sys_admin = 1;
  840. return __vm_enough_memory(mm, pages, cap_sys_admin);
  841. }
  842. /*
  843. * cap_file_mmap - check if able to map given addr
  844. * @file: unused
  845. * @reqprot: unused
  846. * @prot: unused
  847. * @flags: unused
  848. * @addr: address attempting to be mapped
  849. * @addr_only: unused
  850. *
  851. * If the process is attempting to map memory below dac_mmap_min_addr they need
  852. * CAP_SYS_RAWIO. The other parameters to this function are unused by the
  853. * capability security module. Returns 0 if this mapping should be allowed
  854. * -EPERM if not.
  855. */
  856. int cap_file_mmap(struct file *file, unsigned long reqprot,
  857. unsigned long prot, unsigned long flags,
  858. unsigned long addr, unsigned long addr_only)
  859. {
  860. int ret = 0;
  861. if (addr < dac_mmap_min_addr) {
  862. ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
  863. SECURITY_CAP_AUDIT);
  864. /* set PF_SUPERPRIV if it turns out we allow the low mmap */
  865. if (ret == 0)
  866. current->flags |= PF_SUPERPRIV;
  867. }
  868. return ret;
  869. }