sch_sfb.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723
  1. /*
  2. * net/sched/sch_sfb.c Stochastic Fair Blue
  3. *
  4. * Copyright (c) 2008-2011 Juliusz Chroboczek <jch@pps.jussieu.fr>
  5. * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * version 2 as published by the Free Software Foundation.
  10. *
  11. * W. Feng, D. Kandlur, D. Saha, K. Shin. Blue:
  12. * A New Class of Active Queue Management Algorithms.
  13. * U. Michigan CSE-TR-387-99, April 1999.
  14. *
  15. * http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf
  16. *
  17. */
  18. #include <linux/module.h>
  19. #include <linux/types.h>
  20. #include <linux/kernel.h>
  21. #include <linux/errno.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/random.h>
  24. #include <linux/jhash.h>
  25. #include <net/ip.h>
  26. #include <net/pkt_sched.h>
  27. #include <net/inet_ecn.h>
  28. #include <net/flow_keys.h>
  29. /*
  30. * SFB uses two B[l][n] : L x N arrays of bins (L levels, N bins per level)
  31. * This implementation uses L = 8 and N = 16
  32. * This permits us to split one 32bit hash (provided per packet by rxhash or
  33. * external classifier) into 8 subhashes of 4 bits.
  34. */
  35. #define SFB_BUCKET_SHIFT 4
  36. #define SFB_NUMBUCKETS (1 << SFB_BUCKET_SHIFT) /* N bins per Level */
  37. #define SFB_BUCKET_MASK (SFB_NUMBUCKETS - 1)
  38. #define SFB_LEVELS (32 / SFB_BUCKET_SHIFT) /* L */
  39. /* SFB algo uses a virtual queue, named "bin" */
  40. struct sfb_bucket {
  41. u16 qlen; /* length of virtual queue */
  42. u16 p_mark; /* marking probability */
  43. };
  44. /* We use a double buffering right before hash change
  45. * (Section 4.4 of SFB reference : moving hash functions)
  46. */
  47. struct sfb_bins {
  48. u32 perturbation; /* jhash perturbation */
  49. struct sfb_bucket bins[SFB_LEVELS][SFB_NUMBUCKETS];
  50. };
  51. struct sfb_sched_data {
  52. struct Qdisc *qdisc;
  53. struct tcf_proto *filter_list;
  54. unsigned long rehash_interval;
  55. unsigned long warmup_time; /* double buffering warmup time in jiffies */
  56. u32 max;
  57. u32 bin_size; /* maximum queue length per bin */
  58. u32 increment; /* d1 */
  59. u32 decrement; /* d2 */
  60. u32 limit; /* HARD maximal queue length */
  61. u32 penalty_rate;
  62. u32 penalty_burst;
  63. u32 tokens_avail;
  64. unsigned long rehash_time;
  65. unsigned long token_time;
  66. u8 slot; /* current active bins (0 or 1) */
  67. bool double_buffering;
  68. struct sfb_bins bins[2];
  69. struct {
  70. u32 earlydrop;
  71. u32 penaltydrop;
  72. u32 bucketdrop;
  73. u32 queuedrop;
  74. u32 childdrop; /* drops in child qdisc */
  75. u32 marked; /* ECN mark */
  76. } stats;
  77. };
  78. /*
  79. * Each queued skb might be hashed on one or two bins
  80. * We store in skb_cb the two hash values.
  81. * (A zero value means double buffering was not used)
  82. */
  83. struct sfb_skb_cb {
  84. u32 hashes[2];
  85. };
  86. static inline struct sfb_skb_cb *sfb_skb_cb(const struct sk_buff *skb)
  87. {
  88. BUILD_BUG_ON(sizeof(skb->cb) <
  89. sizeof(struct qdisc_skb_cb) + sizeof(struct sfb_skb_cb));
  90. return (struct sfb_skb_cb *)qdisc_skb_cb(skb)->data;
  91. }
  92. /*
  93. * If using 'internal' SFB flow classifier, hash comes from skb rxhash
  94. * If using external classifier, hash comes from the classid.
  95. */
  96. static u32 sfb_hash(const struct sk_buff *skb, u32 slot)
  97. {
  98. return sfb_skb_cb(skb)->hashes[slot];
  99. }
  100. /* Probabilities are coded as Q0.16 fixed-point values,
  101. * with 0xFFFF representing 65535/65536 (almost 1.0)
  102. * Addition and subtraction are saturating in [0, 65535]
  103. */
  104. static u32 prob_plus(u32 p1, u32 p2)
  105. {
  106. u32 res = p1 + p2;
  107. return min_t(u32, res, SFB_MAX_PROB);
  108. }
  109. static u32 prob_minus(u32 p1, u32 p2)
  110. {
  111. return p1 > p2 ? p1 - p2 : 0;
  112. }
  113. static void increment_one_qlen(u32 sfbhash, u32 slot, struct sfb_sched_data *q)
  114. {
  115. int i;
  116. struct sfb_bucket *b = &q->bins[slot].bins[0][0];
  117. for (i = 0; i < SFB_LEVELS; i++) {
  118. u32 hash = sfbhash & SFB_BUCKET_MASK;
  119. sfbhash >>= SFB_BUCKET_SHIFT;
  120. if (b[hash].qlen < 0xFFFF)
  121. b[hash].qlen++;
  122. b += SFB_NUMBUCKETS; /* next level */
  123. }
  124. }
  125. static void increment_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
  126. {
  127. u32 sfbhash;
  128. sfbhash = sfb_hash(skb, 0);
  129. if (sfbhash)
  130. increment_one_qlen(sfbhash, 0, q);
  131. sfbhash = sfb_hash(skb, 1);
  132. if (sfbhash)
  133. increment_one_qlen(sfbhash, 1, q);
  134. }
  135. static void decrement_one_qlen(u32 sfbhash, u32 slot,
  136. struct sfb_sched_data *q)
  137. {
  138. int i;
  139. struct sfb_bucket *b = &q->bins[slot].bins[0][0];
  140. for (i = 0; i < SFB_LEVELS; i++) {
  141. u32 hash = sfbhash & SFB_BUCKET_MASK;
  142. sfbhash >>= SFB_BUCKET_SHIFT;
  143. if (b[hash].qlen > 0)
  144. b[hash].qlen--;
  145. b += SFB_NUMBUCKETS; /* next level */
  146. }
  147. }
  148. static void decrement_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
  149. {
  150. u32 sfbhash;
  151. sfbhash = sfb_hash(skb, 0);
  152. if (sfbhash)
  153. decrement_one_qlen(sfbhash, 0, q);
  154. sfbhash = sfb_hash(skb, 1);
  155. if (sfbhash)
  156. decrement_one_qlen(sfbhash, 1, q);
  157. }
  158. static void decrement_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
  159. {
  160. b->p_mark = prob_minus(b->p_mark, q->decrement);
  161. }
  162. static void increment_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
  163. {
  164. b->p_mark = prob_plus(b->p_mark, q->increment);
  165. }
  166. static void sfb_zero_all_buckets(struct sfb_sched_data *q)
  167. {
  168. memset(&q->bins, 0, sizeof(q->bins));
  169. }
  170. /*
  171. * compute max qlen, max p_mark, and avg p_mark
  172. */
  173. static u32 sfb_compute_qlen(u32 *prob_r, u32 *avgpm_r, const struct sfb_sched_data *q)
  174. {
  175. int i;
  176. u32 qlen = 0, prob = 0, totalpm = 0;
  177. const struct sfb_bucket *b = &q->bins[q->slot].bins[0][0];
  178. for (i = 0; i < SFB_LEVELS * SFB_NUMBUCKETS; i++) {
  179. if (qlen < b->qlen)
  180. qlen = b->qlen;
  181. totalpm += b->p_mark;
  182. if (prob < b->p_mark)
  183. prob = b->p_mark;
  184. b++;
  185. }
  186. *prob_r = prob;
  187. *avgpm_r = totalpm / (SFB_LEVELS * SFB_NUMBUCKETS);
  188. return qlen;
  189. }
  190. static void sfb_init_perturbation(u32 slot, struct sfb_sched_data *q)
  191. {
  192. q->bins[slot].perturbation = net_random();
  193. }
  194. static void sfb_swap_slot(struct sfb_sched_data *q)
  195. {
  196. sfb_init_perturbation(q->slot, q);
  197. q->slot ^= 1;
  198. q->double_buffering = false;
  199. }
  200. /* Non elastic flows are allowed to use part of the bandwidth, expressed
  201. * in "penalty_rate" packets per second, with "penalty_burst" burst
  202. */
  203. static bool sfb_rate_limit(struct sk_buff *skb, struct sfb_sched_data *q)
  204. {
  205. if (q->penalty_rate == 0 || q->penalty_burst == 0)
  206. return true;
  207. if (q->tokens_avail < 1) {
  208. unsigned long age = min(10UL * HZ, jiffies - q->token_time);
  209. q->tokens_avail = (age * q->penalty_rate) / HZ;
  210. if (q->tokens_avail > q->penalty_burst)
  211. q->tokens_avail = q->penalty_burst;
  212. q->token_time = jiffies;
  213. if (q->tokens_avail < 1)
  214. return true;
  215. }
  216. q->tokens_avail--;
  217. return false;
  218. }
  219. static bool sfb_classify(struct sk_buff *skb, struct sfb_sched_data *q,
  220. int *qerr, u32 *salt)
  221. {
  222. struct tcf_result res;
  223. int result;
  224. result = tc_classify(skb, q->filter_list, &res);
  225. if (result >= 0) {
  226. #ifdef CONFIG_NET_CLS_ACT
  227. switch (result) {
  228. case TC_ACT_STOLEN:
  229. case TC_ACT_QUEUED:
  230. *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
  231. case TC_ACT_SHOT:
  232. return false;
  233. }
  234. #endif
  235. *salt = TC_H_MIN(res.classid);
  236. return true;
  237. }
  238. return false;
  239. }
  240. static int sfb_enqueue(struct sk_buff *skb, struct Qdisc *sch)
  241. {
  242. struct sfb_sched_data *q = qdisc_priv(sch);
  243. struct Qdisc *child = q->qdisc;
  244. int i;
  245. u32 p_min = ~0;
  246. u32 minqlen = ~0;
  247. u32 r, slot, salt, sfbhash;
  248. int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
  249. struct flow_keys keys;
  250. if (unlikely(sch->q.qlen >= q->limit)) {
  251. sch->qstats.overlimits++;
  252. q->stats.queuedrop++;
  253. goto drop;
  254. }
  255. if (q->rehash_interval > 0) {
  256. unsigned long limit = q->rehash_time + q->rehash_interval;
  257. if (unlikely(time_after(jiffies, limit))) {
  258. sfb_swap_slot(q);
  259. q->rehash_time = jiffies;
  260. } else if (unlikely(!q->double_buffering && q->warmup_time > 0 &&
  261. time_after(jiffies, limit - q->warmup_time))) {
  262. q->double_buffering = true;
  263. }
  264. }
  265. if (q->filter_list) {
  266. /* If using external classifiers, get result and record it. */
  267. if (!sfb_classify(skb, q, &ret, &salt))
  268. goto other_drop;
  269. keys.src = salt;
  270. keys.dst = 0;
  271. keys.ports = 0;
  272. } else {
  273. skb_flow_dissect(skb, &keys);
  274. }
  275. slot = q->slot;
  276. sfbhash = jhash_3words((__force u32)keys.dst,
  277. (__force u32)keys.src,
  278. (__force u32)keys.ports,
  279. q->bins[slot].perturbation);
  280. if (!sfbhash)
  281. sfbhash = 1;
  282. sfb_skb_cb(skb)->hashes[slot] = sfbhash;
  283. for (i = 0; i < SFB_LEVELS; i++) {
  284. u32 hash = sfbhash & SFB_BUCKET_MASK;
  285. struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
  286. sfbhash >>= SFB_BUCKET_SHIFT;
  287. if (b->qlen == 0)
  288. decrement_prob(b, q);
  289. else if (b->qlen >= q->bin_size)
  290. increment_prob(b, q);
  291. if (minqlen > b->qlen)
  292. minqlen = b->qlen;
  293. if (p_min > b->p_mark)
  294. p_min = b->p_mark;
  295. }
  296. slot ^= 1;
  297. sfb_skb_cb(skb)->hashes[slot] = 0;
  298. if (unlikely(minqlen >= q->max)) {
  299. sch->qstats.overlimits++;
  300. q->stats.bucketdrop++;
  301. goto drop;
  302. }
  303. if (unlikely(p_min >= SFB_MAX_PROB)) {
  304. /* Inelastic flow */
  305. if (q->double_buffering) {
  306. sfbhash = jhash_3words((__force u32)keys.dst,
  307. (__force u32)keys.src,
  308. (__force u32)keys.ports,
  309. q->bins[slot].perturbation);
  310. if (!sfbhash)
  311. sfbhash = 1;
  312. sfb_skb_cb(skb)->hashes[slot] = sfbhash;
  313. for (i = 0; i < SFB_LEVELS; i++) {
  314. u32 hash = sfbhash & SFB_BUCKET_MASK;
  315. struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
  316. sfbhash >>= SFB_BUCKET_SHIFT;
  317. if (b->qlen == 0)
  318. decrement_prob(b, q);
  319. else if (b->qlen >= q->bin_size)
  320. increment_prob(b, q);
  321. }
  322. }
  323. if (sfb_rate_limit(skb, q)) {
  324. sch->qstats.overlimits++;
  325. q->stats.penaltydrop++;
  326. goto drop;
  327. }
  328. goto enqueue;
  329. }
  330. r = net_random() & SFB_MAX_PROB;
  331. if (unlikely(r < p_min)) {
  332. if (unlikely(p_min > SFB_MAX_PROB / 2)) {
  333. /* If we're marking that many packets, then either
  334. * this flow is unresponsive, or we're badly congested.
  335. * In either case, we want to start dropping packets.
  336. */
  337. if (r < (p_min - SFB_MAX_PROB / 2) * 2) {
  338. q->stats.earlydrop++;
  339. goto drop;
  340. }
  341. }
  342. if (INET_ECN_set_ce(skb)) {
  343. q->stats.marked++;
  344. } else {
  345. q->stats.earlydrop++;
  346. goto drop;
  347. }
  348. }
  349. enqueue:
  350. ret = qdisc_enqueue(skb, child);
  351. if (likely(ret == NET_XMIT_SUCCESS)) {
  352. sch->q.qlen++;
  353. increment_qlen(skb, q);
  354. } else if (net_xmit_drop_count(ret)) {
  355. q->stats.childdrop++;
  356. sch->qstats.drops++;
  357. }
  358. return ret;
  359. drop:
  360. qdisc_drop(skb, sch);
  361. return NET_XMIT_CN;
  362. other_drop:
  363. if (ret & __NET_XMIT_BYPASS)
  364. sch->qstats.drops++;
  365. kfree_skb(skb);
  366. return ret;
  367. }
  368. static struct sk_buff *sfb_dequeue(struct Qdisc *sch)
  369. {
  370. struct sfb_sched_data *q = qdisc_priv(sch);
  371. struct Qdisc *child = q->qdisc;
  372. struct sk_buff *skb;
  373. skb = child->dequeue(q->qdisc);
  374. if (skb) {
  375. qdisc_bstats_update(sch, skb);
  376. sch->q.qlen--;
  377. decrement_qlen(skb, q);
  378. }
  379. return skb;
  380. }
  381. static struct sk_buff *sfb_peek(struct Qdisc *sch)
  382. {
  383. struct sfb_sched_data *q = qdisc_priv(sch);
  384. struct Qdisc *child = q->qdisc;
  385. return child->ops->peek(child);
  386. }
  387. /* No sfb_drop -- impossible since the child doesn't return the dropped skb. */
  388. static void sfb_reset(struct Qdisc *sch)
  389. {
  390. struct sfb_sched_data *q = qdisc_priv(sch);
  391. qdisc_reset(q->qdisc);
  392. sch->q.qlen = 0;
  393. q->slot = 0;
  394. q->double_buffering = false;
  395. sfb_zero_all_buckets(q);
  396. sfb_init_perturbation(0, q);
  397. }
  398. static void sfb_destroy(struct Qdisc *sch)
  399. {
  400. struct sfb_sched_data *q = qdisc_priv(sch);
  401. tcf_destroy_chain(&q->filter_list);
  402. qdisc_destroy(q->qdisc);
  403. }
  404. static const struct nla_policy sfb_policy[TCA_SFB_MAX + 1] = {
  405. [TCA_SFB_PARMS] = { .len = sizeof(struct tc_sfb_qopt) },
  406. };
  407. static const struct tc_sfb_qopt sfb_default_ops = {
  408. .rehash_interval = 600 * MSEC_PER_SEC,
  409. .warmup_time = 60 * MSEC_PER_SEC,
  410. .limit = 0,
  411. .max = 25,
  412. .bin_size = 20,
  413. .increment = (SFB_MAX_PROB + 500) / 1000, /* 0.1 % */
  414. .decrement = (SFB_MAX_PROB + 3000) / 6000,
  415. .penalty_rate = 10,
  416. .penalty_burst = 20,
  417. };
  418. static int sfb_change(struct Qdisc *sch, struct nlattr *opt)
  419. {
  420. struct sfb_sched_data *q = qdisc_priv(sch);
  421. struct Qdisc *child;
  422. struct nlattr *tb[TCA_SFB_MAX + 1];
  423. const struct tc_sfb_qopt *ctl = &sfb_default_ops;
  424. u32 limit;
  425. int err;
  426. if (opt) {
  427. err = nla_parse_nested(tb, TCA_SFB_MAX, opt, sfb_policy);
  428. if (err < 0)
  429. return -EINVAL;
  430. if (tb[TCA_SFB_PARMS] == NULL)
  431. return -EINVAL;
  432. ctl = nla_data(tb[TCA_SFB_PARMS]);
  433. }
  434. limit = ctl->limit;
  435. if (limit == 0)
  436. limit = max_t(u32, qdisc_dev(sch)->tx_queue_len, 1);
  437. child = fifo_create_dflt(sch, &pfifo_qdisc_ops, limit);
  438. if (IS_ERR(child))
  439. return PTR_ERR(child);
  440. sch_tree_lock(sch);
  441. qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
  442. qdisc_destroy(q->qdisc);
  443. q->qdisc = child;
  444. q->rehash_interval = msecs_to_jiffies(ctl->rehash_interval);
  445. q->warmup_time = msecs_to_jiffies(ctl->warmup_time);
  446. q->rehash_time = jiffies;
  447. q->limit = limit;
  448. q->increment = ctl->increment;
  449. q->decrement = ctl->decrement;
  450. q->max = ctl->max;
  451. q->bin_size = ctl->bin_size;
  452. q->penalty_rate = ctl->penalty_rate;
  453. q->penalty_burst = ctl->penalty_burst;
  454. q->tokens_avail = ctl->penalty_burst;
  455. q->token_time = jiffies;
  456. q->slot = 0;
  457. q->double_buffering = false;
  458. sfb_zero_all_buckets(q);
  459. sfb_init_perturbation(0, q);
  460. sfb_init_perturbation(1, q);
  461. sch_tree_unlock(sch);
  462. return 0;
  463. }
  464. static int sfb_init(struct Qdisc *sch, struct nlattr *opt)
  465. {
  466. struct sfb_sched_data *q = qdisc_priv(sch);
  467. q->qdisc = &noop_qdisc;
  468. return sfb_change(sch, opt);
  469. }
  470. static int sfb_dump(struct Qdisc *sch, struct sk_buff *skb)
  471. {
  472. struct sfb_sched_data *q = qdisc_priv(sch);
  473. struct nlattr *opts;
  474. struct tc_sfb_qopt opt = {
  475. .rehash_interval = jiffies_to_msecs(q->rehash_interval),
  476. .warmup_time = jiffies_to_msecs(q->warmup_time),
  477. .limit = q->limit,
  478. .max = q->max,
  479. .bin_size = q->bin_size,
  480. .increment = q->increment,
  481. .decrement = q->decrement,
  482. .penalty_rate = q->penalty_rate,
  483. .penalty_burst = q->penalty_burst,
  484. };
  485. sch->qstats.backlog = q->qdisc->qstats.backlog;
  486. opts = nla_nest_start(skb, TCA_OPTIONS);
  487. NLA_PUT(skb, TCA_SFB_PARMS, sizeof(opt), &opt);
  488. return nla_nest_end(skb, opts);
  489. nla_put_failure:
  490. nla_nest_cancel(skb, opts);
  491. return -EMSGSIZE;
  492. }
  493. static int sfb_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
  494. {
  495. struct sfb_sched_data *q = qdisc_priv(sch);
  496. struct tc_sfb_xstats st = {
  497. .earlydrop = q->stats.earlydrop,
  498. .penaltydrop = q->stats.penaltydrop,
  499. .bucketdrop = q->stats.bucketdrop,
  500. .queuedrop = q->stats.queuedrop,
  501. .childdrop = q->stats.childdrop,
  502. .marked = q->stats.marked,
  503. };
  504. st.maxqlen = sfb_compute_qlen(&st.maxprob, &st.avgprob, q);
  505. return gnet_stats_copy_app(d, &st, sizeof(st));
  506. }
  507. static int sfb_dump_class(struct Qdisc *sch, unsigned long cl,
  508. struct sk_buff *skb, struct tcmsg *tcm)
  509. {
  510. return -ENOSYS;
  511. }
  512. static int sfb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
  513. struct Qdisc **old)
  514. {
  515. struct sfb_sched_data *q = qdisc_priv(sch);
  516. if (new == NULL)
  517. new = &noop_qdisc;
  518. sch_tree_lock(sch);
  519. *old = q->qdisc;
  520. q->qdisc = new;
  521. qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
  522. qdisc_reset(*old);
  523. sch_tree_unlock(sch);
  524. return 0;
  525. }
  526. static struct Qdisc *sfb_leaf(struct Qdisc *sch, unsigned long arg)
  527. {
  528. struct sfb_sched_data *q = qdisc_priv(sch);
  529. return q->qdisc;
  530. }
  531. static unsigned long sfb_get(struct Qdisc *sch, u32 classid)
  532. {
  533. return 1;
  534. }
  535. static void sfb_put(struct Qdisc *sch, unsigned long arg)
  536. {
  537. }
  538. static int sfb_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
  539. struct nlattr **tca, unsigned long *arg)
  540. {
  541. return -ENOSYS;
  542. }
  543. static int sfb_delete(struct Qdisc *sch, unsigned long cl)
  544. {
  545. return -ENOSYS;
  546. }
  547. static void sfb_walk(struct Qdisc *sch, struct qdisc_walker *walker)
  548. {
  549. if (!walker->stop) {
  550. if (walker->count >= walker->skip)
  551. if (walker->fn(sch, 1, walker) < 0) {
  552. walker->stop = 1;
  553. return;
  554. }
  555. walker->count++;
  556. }
  557. }
  558. static struct tcf_proto **sfb_find_tcf(struct Qdisc *sch, unsigned long cl)
  559. {
  560. struct sfb_sched_data *q = qdisc_priv(sch);
  561. if (cl)
  562. return NULL;
  563. return &q->filter_list;
  564. }
  565. static unsigned long sfb_bind(struct Qdisc *sch, unsigned long parent,
  566. u32 classid)
  567. {
  568. return 0;
  569. }
  570. static const struct Qdisc_class_ops sfb_class_ops = {
  571. .graft = sfb_graft,
  572. .leaf = sfb_leaf,
  573. .get = sfb_get,
  574. .put = sfb_put,
  575. .change = sfb_change_class,
  576. .delete = sfb_delete,
  577. .walk = sfb_walk,
  578. .tcf_chain = sfb_find_tcf,
  579. .bind_tcf = sfb_bind,
  580. .unbind_tcf = sfb_put,
  581. .dump = sfb_dump_class,
  582. };
  583. static struct Qdisc_ops sfb_qdisc_ops __read_mostly = {
  584. .id = "sfb",
  585. .priv_size = sizeof(struct sfb_sched_data),
  586. .cl_ops = &sfb_class_ops,
  587. .enqueue = sfb_enqueue,
  588. .dequeue = sfb_dequeue,
  589. .peek = sfb_peek,
  590. .init = sfb_init,
  591. .reset = sfb_reset,
  592. .destroy = sfb_destroy,
  593. .change = sfb_change,
  594. .dump = sfb_dump,
  595. .dump_stats = sfb_dump_stats,
  596. .owner = THIS_MODULE,
  597. };
  598. static int __init sfb_module_init(void)
  599. {
  600. return register_qdisc(&sfb_qdisc_ops);
  601. }
  602. static void __exit sfb_module_exit(void)
  603. {
  604. unregister_qdisc(&sfb_qdisc_ops);
  605. }
  606. module_init(sfb_module_init)
  607. module_exit(sfb_module_exit)
  608. MODULE_DESCRIPTION("Stochastic Fair Blue queue discipline");
  609. MODULE_AUTHOR("Juliusz Chroboczek");
  610. MODULE_AUTHOR("Eric Dumazet");
  611. MODULE_LICENSE("GPL");