ntp.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990
  1. /*
  2. * NTP state machine interfaces and logic.
  3. *
  4. * This code was mainly moved from kernel/timer.c and kernel/time.c
  5. * Please see those files for relevant copyright info and historical
  6. * changelogs.
  7. */
  8. #include <linux/capability.h>
  9. #include <linux/clocksource.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/hrtimer.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/math64.h>
  14. #include <linux/timex.h>
  15. #include <linux/time.h>
  16. #include <linux/mm.h>
  17. #include <linux/module.h>
  18. #include "tick-internal.h"
  19. /*
  20. * NTP timekeeping variables:
  21. */
  22. /* USER_HZ period (usecs): */
  23. unsigned long tick_usec = TICK_USEC;
  24. /* ACTHZ period (nsecs): */
  25. unsigned long tick_nsec;
  26. static u64 tick_length;
  27. static u64 tick_length_base;
  28. static struct hrtimer leap_timer;
  29. #define MAX_TICKADJ 500LL /* usecs */
  30. #define MAX_TICKADJ_SCALED \
  31. (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  32. /*
  33. * phase-lock loop variables
  34. */
  35. /*
  36. * clock synchronization status
  37. *
  38. * (TIME_ERROR prevents overwriting the CMOS clock)
  39. */
  40. static int time_state = TIME_OK;
  41. /* clock status bits: */
  42. static int time_status = STA_UNSYNC;
  43. /* TAI offset (secs): */
  44. static long time_tai;
  45. /* time adjustment (nsecs): */
  46. static s64 time_offset;
  47. /* pll time constant: */
  48. static long time_constant = 2;
  49. /* maximum error (usecs): */
  50. static long time_maxerror = NTP_PHASE_LIMIT;
  51. /* estimated error (usecs): */
  52. static long time_esterror = NTP_PHASE_LIMIT;
  53. /* frequency offset (scaled nsecs/secs): */
  54. static s64 time_freq;
  55. /* time at last adjustment (secs): */
  56. static long time_reftime;
  57. static long time_adjust;
  58. /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
  59. static s64 ntp_tick_adj;
  60. #ifdef CONFIG_NTP_PPS
  61. /*
  62. * The following variables are used when a pulse-per-second (PPS) signal
  63. * is available. They establish the engineering parameters of the clock
  64. * discipline loop when controlled by the PPS signal.
  65. */
  66. #define PPS_VALID 10 /* PPS signal watchdog max (s) */
  67. #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
  68. #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
  69. #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
  70. #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
  71. increase pps_shift or consecutive bad
  72. intervals to decrease it */
  73. #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
  74. static int pps_valid; /* signal watchdog counter */
  75. static long pps_tf[3]; /* phase median filter */
  76. static long pps_jitter; /* current jitter (ns) */
  77. static struct timespec pps_fbase; /* beginning of the last freq interval */
  78. static int pps_shift; /* current interval duration (s) (shift) */
  79. static int pps_intcnt; /* interval counter */
  80. static s64 pps_freq; /* frequency offset (scaled ns/s) */
  81. static long pps_stabil; /* current stability (scaled ns/s) */
  82. /*
  83. * PPS signal quality monitors
  84. */
  85. static long pps_calcnt; /* calibration intervals */
  86. static long pps_jitcnt; /* jitter limit exceeded */
  87. static long pps_stbcnt; /* stability limit exceeded */
  88. static long pps_errcnt; /* calibration errors */
  89. /* PPS kernel consumer compensates the whole phase error immediately.
  90. * Otherwise, reduce the offset by a fixed factor times the time constant.
  91. */
  92. static inline s64 ntp_offset_chunk(s64 offset)
  93. {
  94. if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
  95. return offset;
  96. else
  97. return shift_right(offset, SHIFT_PLL + time_constant);
  98. }
  99. static inline void pps_reset_freq_interval(void)
  100. {
  101. /* the PPS calibration interval may end
  102. surprisingly early */
  103. pps_shift = PPS_INTMIN;
  104. pps_intcnt = 0;
  105. }
  106. /**
  107. * pps_clear - Clears the PPS state variables
  108. *
  109. * Must be called while holding a write on the xtime_lock
  110. */
  111. static inline void pps_clear(void)
  112. {
  113. pps_reset_freq_interval();
  114. pps_tf[0] = 0;
  115. pps_tf[1] = 0;
  116. pps_tf[2] = 0;
  117. pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
  118. pps_freq = 0;
  119. }
  120. /* Decrease pps_valid to indicate that another second has passed since
  121. * the last PPS signal. When it reaches 0, indicate that PPS signal is
  122. * missing.
  123. *
  124. * Must be called while holding a write on the xtime_lock
  125. */
  126. static inline void pps_dec_valid(void)
  127. {
  128. if (pps_valid > 0)
  129. pps_valid--;
  130. else {
  131. time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
  132. STA_PPSWANDER | STA_PPSERROR);
  133. pps_clear();
  134. }
  135. }
  136. static inline void pps_set_freq(s64 freq)
  137. {
  138. pps_freq = freq;
  139. }
  140. static inline int is_error_status(int status)
  141. {
  142. return (time_status & (STA_UNSYNC|STA_CLOCKERR))
  143. /* PPS signal lost when either PPS time or
  144. * PPS frequency synchronization requested
  145. */
  146. || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
  147. && !(time_status & STA_PPSSIGNAL))
  148. /* PPS jitter exceeded when
  149. * PPS time synchronization requested */
  150. || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
  151. == (STA_PPSTIME|STA_PPSJITTER))
  152. /* PPS wander exceeded or calibration error when
  153. * PPS frequency synchronization requested
  154. */
  155. || ((time_status & STA_PPSFREQ)
  156. && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
  157. }
  158. static inline void pps_fill_timex(struct timex *txc)
  159. {
  160. txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
  161. PPM_SCALE_INV, NTP_SCALE_SHIFT);
  162. txc->jitter = pps_jitter;
  163. if (!(time_status & STA_NANO))
  164. txc->jitter /= NSEC_PER_USEC;
  165. txc->shift = pps_shift;
  166. txc->stabil = pps_stabil;
  167. txc->jitcnt = pps_jitcnt;
  168. txc->calcnt = pps_calcnt;
  169. txc->errcnt = pps_errcnt;
  170. txc->stbcnt = pps_stbcnt;
  171. }
  172. #else /* !CONFIG_NTP_PPS */
  173. static inline s64 ntp_offset_chunk(s64 offset)
  174. {
  175. return shift_right(offset, SHIFT_PLL + time_constant);
  176. }
  177. static inline void pps_reset_freq_interval(void) {}
  178. static inline void pps_clear(void) {}
  179. static inline void pps_dec_valid(void) {}
  180. static inline void pps_set_freq(s64 freq) {}
  181. static inline int is_error_status(int status)
  182. {
  183. return status & (STA_UNSYNC|STA_CLOCKERR);
  184. }
  185. static inline void pps_fill_timex(struct timex *txc)
  186. {
  187. /* PPS is not implemented, so these are zero */
  188. txc->ppsfreq = 0;
  189. txc->jitter = 0;
  190. txc->shift = 0;
  191. txc->stabil = 0;
  192. txc->jitcnt = 0;
  193. txc->calcnt = 0;
  194. txc->errcnt = 0;
  195. txc->stbcnt = 0;
  196. }
  197. #endif /* CONFIG_NTP_PPS */
  198. /**
  199. * ntp_synced - Returns 1 if the NTP status is not UNSYNC
  200. *
  201. */
  202. static inline int ntp_synced(void)
  203. {
  204. return !(time_status & STA_UNSYNC);
  205. }
  206. /*
  207. * NTP methods:
  208. */
  209. /*
  210. * Update (tick_length, tick_length_base, tick_nsec), based
  211. * on (tick_usec, ntp_tick_adj, time_freq):
  212. */
  213. static void ntp_update_frequency(void)
  214. {
  215. u64 second_length;
  216. u64 new_base;
  217. second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
  218. << NTP_SCALE_SHIFT;
  219. second_length += ntp_tick_adj;
  220. second_length += time_freq;
  221. tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
  222. new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
  223. /*
  224. * Don't wait for the next second_overflow, apply
  225. * the change to the tick length immediately:
  226. */
  227. tick_length += new_base - tick_length_base;
  228. tick_length_base = new_base;
  229. }
  230. static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
  231. {
  232. time_status &= ~STA_MODE;
  233. if (secs < MINSEC)
  234. return 0;
  235. if (!(time_status & STA_FLL) && (secs <= MAXSEC))
  236. return 0;
  237. time_status |= STA_MODE;
  238. return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
  239. }
  240. static void ntp_update_offset(long offset)
  241. {
  242. s64 freq_adj;
  243. s64 offset64;
  244. long secs;
  245. if (!(time_status & STA_PLL))
  246. return;
  247. if (!(time_status & STA_NANO))
  248. offset *= NSEC_PER_USEC;
  249. /*
  250. * Scale the phase adjustment and
  251. * clamp to the operating range.
  252. */
  253. offset = min(offset, MAXPHASE);
  254. offset = max(offset, -MAXPHASE);
  255. /*
  256. * Select how the frequency is to be controlled
  257. * and in which mode (PLL or FLL).
  258. */
  259. secs = get_seconds() - time_reftime;
  260. if (unlikely(time_status & STA_FREQHOLD))
  261. secs = 0;
  262. time_reftime = get_seconds();
  263. offset64 = offset;
  264. freq_adj = ntp_update_offset_fll(offset64, secs);
  265. /*
  266. * Clamp update interval to reduce PLL gain with low
  267. * sampling rate (e.g. intermittent network connection)
  268. * to avoid instability.
  269. */
  270. if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
  271. secs = 1 << (SHIFT_PLL + 1 + time_constant);
  272. freq_adj += (offset64 * secs) <<
  273. (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
  274. freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
  275. time_freq = max(freq_adj, -MAXFREQ_SCALED);
  276. time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
  277. }
  278. /**
  279. * ntp_clear - Clears the NTP state variables
  280. *
  281. * Must be called while holding a write on the xtime_lock
  282. */
  283. void ntp_clear(void)
  284. {
  285. time_adjust = 0; /* stop active adjtime() */
  286. time_status |= STA_UNSYNC;
  287. time_maxerror = NTP_PHASE_LIMIT;
  288. time_esterror = NTP_PHASE_LIMIT;
  289. ntp_update_frequency();
  290. tick_length = tick_length_base;
  291. time_offset = 0;
  292. /* Clear PPS state variables */
  293. pps_clear();
  294. }
  295. u64 ntp_tick_length(void)
  296. {
  297. return tick_length;
  298. }
  299. /*
  300. * Leap second processing. If in leap-insert state at the end of the
  301. * day, the system clock is set back one second; if in leap-delete
  302. * state, the system clock is set ahead one second.
  303. */
  304. static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
  305. {
  306. enum hrtimer_restart res = HRTIMER_NORESTART;
  307. write_seqlock(&xtime_lock);
  308. switch (time_state) {
  309. case TIME_OK:
  310. break;
  311. case TIME_INS:
  312. timekeeping_leap_insert(-1);
  313. time_state = TIME_OOP;
  314. printk(KERN_NOTICE
  315. "Clock: inserting leap second 23:59:60 UTC\n");
  316. hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
  317. res = HRTIMER_RESTART;
  318. break;
  319. case TIME_DEL:
  320. timekeeping_leap_insert(1);
  321. time_tai--;
  322. time_state = TIME_WAIT;
  323. printk(KERN_NOTICE
  324. "Clock: deleting leap second 23:59:59 UTC\n");
  325. break;
  326. case TIME_OOP:
  327. time_tai++;
  328. time_state = TIME_WAIT;
  329. /* fall through */
  330. case TIME_WAIT:
  331. if (!(time_status & (STA_INS | STA_DEL)))
  332. time_state = TIME_OK;
  333. break;
  334. }
  335. write_sequnlock(&xtime_lock);
  336. return res;
  337. }
  338. /*
  339. * this routine handles the overflow of the microsecond field
  340. *
  341. * The tricky bits of code to handle the accurate clock support
  342. * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
  343. * They were originally developed for SUN and DEC kernels.
  344. * All the kudos should go to Dave for this stuff.
  345. */
  346. void second_overflow(void)
  347. {
  348. s64 delta;
  349. /* Bump the maxerror field */
  350. time_maxerror += MAXFREQ / NSEC_PER_USEC;
  351. if (time_maxerror > NTP_PHASE_LIMIT) {
  352. time_maxerror = NTP_PHASE_LIMIT;
  353. time_status |= STA_UNSYNC;
  354. }
  355. /* Compute the phase adjustment for the next second */
  356. tick_length = tick_length_base;
  357. delta = ntp_offset_chunk(time_offset);
  358. time_offset -= delta;
  359. tick_length += delta;
  360. /* Check PPS signal */
  361. pps_dec_valid();
  362. if (!time_adjust)
  363. return;
  364. if (time_adjust > MAX_TICKADJ) {
  365. time_adjust -= MAX_TICKADJ;
  366. tick_length += MAX_TICKADJ_SCALED;
  367. return;
  368. }
  369. if (time_adjust < -MAX_TICKADJ) {
  370. time_adjust += MAX_TICKADJ;
  371. tick_length -= MAX_TICKADJ_SCALED;
  372. return;
  373. }
  374. tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
  375. << NTP_SCALE_SHIFT;
  376. time_adjust = 0;
  377. }
  378. #ifdef CONFIG_GENERIC_CMOS_UPDATE
  379. /* Disable the cmos update - used by virtualization and embedded */
  380. int no_sync_cmos_clock __read_mostly;
  381. static void sync_cmos_clock(struct work_struct *work);
  382. static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
  383. static void sync_cmos_clock(struct work_struct *work)
  384. {
  385. struct timespec now, next;
  386. int fail = 1;
  387. /*
  388. * If we have an externally synchronized Linux clock, then update
  389. * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
  390. * called as close as possible to 500 ms before the new second starts.
  391. * This code is run on a timer. If the clock is set, that timer
  392. * may not expire at the correct time. Thus, we adjust...
  393. */
  394. if (!ntp_synced()) {
  395. /*
  396. * Not synced, exit, do not restart a timer (if one is
  397. * running, let it run out).
  398. */
  399. return;
  400. }
  401. getnstimeofday(&now);
  402. if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
  403. fail = update_persistent_clock(now);
  404. next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
  405. if (next.tv_nsec <= 0)
  406. next.tv_nsec += NSEC_PER_SEC;
  407. if (!fail)
  408. next.tv_sec = 659;
  409. else
  410. next.tv_sec = 0;
  411. if (next.tv_nsec >= NSEC_PER_SEC) {
  412. next.tv_sec++;
  413. next.tv_nsec -= NSEC_PER_SEC;
  414. }
  415. schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
  416. }
  417. static void notify_cmos_timer(void)
  418. {
  419. if (!no_sync_cmos_clock)
  420. schedule_delayed_work(&sync_cmos_work, 0);
  421. }
  422. #else
  423. static inline void notify_cmos_timer(void) { }
  424. #endif
  425. /*
  426. * Start the leap seconds timer:
  427. */
  428. static inline void ntp_start_leap_timer(struct timespec *ts)
  429. {
  430. long now = ts->tv_sec;
  431. if (time_status & STA_INS) {
  432. time_state = TIME_INS;
  433. now += 86400 - now % 86400;
  434. hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
  435. return;
  436. }
  437. if (time_status & STA_DEL) {
  438. time_state = TIME_DEL;
  439. now += 86400 - (now + 1) % 86400;
  440. hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
  441. }
  442. }
  443. /*
  444. * Propagate a new txc->status value into the NTP state:
  445. */
  446. static inline void process_adj_status(struct timex *txc, struct timespec *ts)
  447. {
  448. if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
  449. time_state = TIME_OK;
  450. time_status = STA_UNSYNC;
  451. /* restart PPS frequency calibration */
  452. pps_reset_freq_interval();
  453. }
  454. /*
  455. * If we turn on PLL adjustments then reset the
  456. * reference time to current time.
  457. */
  458. if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
  459. time_reftime = get_seconds();
  460. /* only set allowed bits */
  461. time_status &= STA_RONLY;
  462. time_status |= txc->status & ~STA_RONLY;
  463. switch (time_state) {
  464. case TIME_OK:
  465. ntp_start_leap_timer(ts);
  466. break;
  467. case TIME_INS:
  468. case TIME_DEL:
  469. time_state = TIME_OK;
  470. ntp_start_leap_timer(ts);
  471. case TIME_WAIT:
  472. if (!(time_status & (STA_INS | STA_DEL)))
  473. time_state = TIME_OK;
  474. break;
  475. case TIME_OOP:
  476. hrtimer_restart(&leap_timer);
  477. break;
  478. }
  479. }
  480. /*
  481. * Called with the xtime lock held, so we can access and modify
  482. * all the global NTP state:
  483. */
  484. static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
  485. {
  486. if (txc->modes & ADJ_STATUS)
  487. process_adj_status(txc, ts);
  488. if (txc->modes & ADJ_NANO)
  489. time_status |= STA_NANO;
  490. if (txc->modes & ADJ_MICRO)
  491. time_status &= ~STA_NANO;
  492. if (txc->modes & ADJ_FREQUENCY) {
  493. time_freq = txc->freq * PPM_SCALE;
  494. time_freq = min(time_freq, MAXFREQ_SCALED);
  495. time_freq = max(time_freq, -MAXFREQ_SCALED);
  496. /* update pps_freq */
  497. pps_set_freq(time_freq);
  498. }
  499. if (txc->modes & ADJ_MAXERROR)
  500. time_maxerror = txc->maxerror;
  501. if (txc->modes & ADJ_ESTERROR)
  502. time_esterror = txc->esterror;
  503. if (txc->modes & ADJ_TIMECONST) {
  504. time_constant = txc->constant;
  505. if (!(time_status & STA_NANO))
  506. time_constant += 4;
  507. time_constant = min(time_constant, (long)MAXTC);
  508. time_constant = max(time_constant, 0l);
  509. }
  510. if (txc->modes & ADJ_TAI && txc->constant > 0)
  511. time_tai = txc->constant;
  512. if (txc->modes & ADJ_OFFSET)
  513. ntp_update_offset(txc->offset);
  514. if (txc->modes & ADJ_TICK)
  515. tick_usec = txc->tick;
  516. if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
  517. ntp_update_frequency();
  518. }
  519. /*
  520. * adjtimex mainly allows reading (and writing, if superuser) of
  521. * kernel time-keeping variables. used by xntpd.
  522. */
  523. int do_adjtimex(struct timex *txc)
  524. {
  525. struct timespec ts;
  526. int result;
  527. /* Validate the data before disabling interrupts */
  528. if (txc->modes & ADJ_ADJTIME) {
  529. /* singleshot must not be used with any other mode bits */
  530. if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
  531. return -EINVAL;
  532. if (!(txc->modes & ADJ_OFFSET_READONLY) &&
  533. !capable(CAP_SYS_TIME))
  534. return -EPERM;
  535. } else {
  536. /* In order to modify anything, you gotta be super-user! */
  537. if (txc->modes && !capable(CAP_SYS_TIME))
  538. return -EPERM;
  539. /*
  540. * if the quartz is off by more than 10% then
  541. * something is VERY wrong!
  542. */
  543. if (txc->modes & ADJ_TICK &&
  544. (txc->tick < 900000/USER_HZ ||
  545. txc->tick > 1100000/USER_HZ))
  546. return -EINVAL;
  547. if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
  548. hrtimer_cancel(&leap_timer);
  549. }
  550. if (txc->modes & ADJ_SETOFFSET) {
  551. struct timespec delta;
  552. delta.tv_sec = txc->time.tv_sec;
  553. delta.tv_nsec = txc->time.tv_usec;
  554. if (!capable(CAP_SYS_TIME))
  555. return -EPERM;
  556. if (!(txc->modes & ADJ_NANO))
  557. delta.tv_nsec *= 1000;
  558. result = timekeeping_inject_offset(&delta);
  559. if (result)
  560. return result;
  561. }
  562. getnstimeofday(&ts);
  563. write_seqlock_irq(&xtime_lock);
  564. if (txc->modes & ADJ_ADJTIME) {
  565. long save_adjust = time_adjust;
  566. if (!(txc->modes & ADJ_OFFSET_READONLY)) {
  567. /* adjtime() is independent from ntp_adjtime() */
  568. time_adjust = txc->offset;
  569. ntp_update_frequency();
  570. }
  571. txc->offset = save_adjust;
  572. } else {
  573. /* If there are input parameters, then process them: */
  574. if (txc->modes)
  575. process_adjtimex_modes(txc, &ts);
  576. txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
  577. NTP_SCALE_SHIFT);
  578. if (!(time_status & STA_NANO))
  579. txc->offset /= NSEC_PER_USEC;
  580. }
  581. result = time_state; /* mostly `TIME_OK' */
  582. /* check for errors */
  583. if (is_error_status(time_status))
  584. result = TIME_ERROR;
  585. txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
  586. PPM_SCALE_INV, NTP_SCALE_SHIFT);
  587. txc->maxerror = time_maxerror;
  588. txc->esterror = time_esterror;
  589. txc->status = time_status;
  590. txc->constant = time_constant;
  591. txc->precision = 1;
  592. txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
  593. txc->tick = tick_usec;
  594. txc->tai = time_tai;
  595. /* fill PPS status fields */
  596. pps_fill_timex(txc);
  597. write_sequnlock_irq(&xtime_lock);
  598. txc->time.tv_sec = ts.tv_sec;
  599. txc->time.tv_usec = ts.tv_nsec;
  600. if (!(time_status & STA_NANO))
  601. txc->time.tv_usec /= NSEC_PER_USEC;
  602. notify_cmos_timer();
  603. return result;
  604. }
  605. #ifdef CONFIG_NTP_PPS
  606. /* actually struct pps_normtime is good old struct timespec, but it is
  607. * semantically different (and it is the reason why it was invented):
  608. * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
  609. * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
  610. struct pps_normtime {
  611. __kernel_time_t sec; /* seconds */
  612. long nsec; /* nanoseconds */
  613. };
  614. /* normalize the timestamp so that nsec is in the
  615. ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
  616. static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
  617. {
  618. struct pps_normtime norm = {
  619. .sec = ts.tv_sec,
  620. .nsec = ts.tv_nsec
  621. };
  622. if (norm.nsec > (NSEC_PER_SEC >> 1)) {
  623. norm.nsec -= NSEC_PER_SEC;
  624. norm.sec++;
  625. }
  626. return norm;
  627. }
  628. /* get current phase correction and jitter */
  629. static inline long pps_phase_filter_get(long *jitter)
  630. {
  631. *jitter = pps_tf[0] - pps_tf[1];
  632. if (*jitter < 0)
  633. *jitter = -*jitter;
  634. /* TODO: test various filters */
  635. return pps_tf[0];
  636. }
  637. /* add the sample to the phase filter */
  638. static inline void pps_phase_filter_add(long err)
  639. {
  640. pps_tf[2] = pps_tf[1];
  641. pps_tf[1] = pps_tf[0];
  642. pps_tf[0] = err;
  643. }
  644. /* decrease frequency calibration interval length.
  645. * It is halved after four consecutive unstable intervals.
  646. */
  647. static inline void pps_dec_freq_interval(void)
  648. {
  649. if (--pps_intcnt <= -PPS_INTCOUNT) {
  650. pps_intcnt = -PPS_INTCOUNT;
  651. if (pps_shift > PPS_INTMIN) {
  652. pps_shift--;
  653. pps_intcnt = 0;
  654. }
  655. }
  656. }
  657. /* increase frequency calibration interval length.
  658. * It is doubled after four consecutive stable intervals.
  659. */
  660. static inline void pps_inc_freq_interval(void)
  661. {
  662. if (++pps_intcnt >= PPS_INTCOUNT) {
  663. pps_intcnt = PPS_INTCOUNT;
  664. if (pps_shift < PPS_INTMAX) {
  665. pps_shift++;
  666. pps_intcnt = 0;
  667. }
  668. }
  669. }
  670. /* update clock frequency based on MONOTONIC_RAW clock PPS signal
  671. * timestamps
  672. *
  673. * At the end of the calibration interval the difference between the
  674. * first and last MONOTONIC_RAW clock timestamps divided by the length
  675. * of the interval becomes the frequency update. If the interval was
  676. * too long, the data are discarded.
  677. * Returns the difference between old and new frequency values.
  678. */
  679. static long hardpps_update_freq(struct pps_normtime freq_norm)
  680. {
  681. long delta, delta_mod;
  682. s64 ftemp;
  683. /* check if the frequency interval was too long */
  684. if (freq_norm.sec > (2 << pps_shift)) {
  685. time_status |= STA_PPSERROR;
  686. pps_errcnt++;
  687. pps_dec_freq_interval();
  688. pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
  689. freq_norm.sec);
  690. return 0;
  691. }
  692. /* here the raw frequency offset and wander (stability) is
  693. * calculated. If the wander is less than the wander threshold
  694. * the interval is increased; otherwise it is decreased.
  695. */
  696. ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
  697. freq_norm.sec);
  698. delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
  699. pps_freq = ftemp;
  700. if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
  701. pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
  702. time_status |= STA_PPSWANDER;
  703. pps_stbcnt++;
  704. pps_dec_freq_interval();
  705. } else { /* good sample */
  706. pps_inc_freq_interval();
  707. }
  708. /* the stability metric is calculated as the average of recent
  709. * frequency changes, but is used only for performance
  710. * monitoring
  711. */
  712. delta_mod = delta;
  713. if (delta_mod < 0)
  714. delta_mod = -delta_mod;
  715. pps_stabil += (div_s64(((s64)delta_mod) <<
  716. (NTP_SCALE_SHIFT - SHIFT_USEC),
  717. NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
  718. /* if enabled, the system clock frequency is updated */
  719. if ((time_status & STA_PPSFREQ) != 0 &&
  720. (time_status & STA_FREQHOLD) == 0) {
  721. time_freq = pps_freq;
  722. ntp_update_frequency();
  723. }
  724. return delta;
  725. }
  726. /* correct REALTIME clock phase error against PPS signal */
  727. static void hardpps_update_phase(long error)
  728. {
  729. long correction = -error;
  730. long jitter;
  731. /* add the sample to the median filter */
  732. pps_phase_filter_add(correction);
  733. correction = pps_phase_filter_get(&jitter);
  734. /* Nominal jitter is due to PPS signal noise. If it exceeds the
  735. * threshold, the sample is discarded; otherwise, if so enabled,
  736. * the time offset is updated.
  737. */
  738. if (jitter > (pps_jitter << PPS_POPCORN)) {
  739. pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
  740. jitter, (pps_jitter << PPS_POPCORN));
  741. time_status |= STA_PPSJITTER;
  742. pps_jitcnt++;
  743. } else if (time_status & STA_PPSTIME) {
  744. /* correct the time using the phase offset */
  745. time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
  746. NTP_INTERVAL_FREQ);
  747. /* cancel running adjtime() */
  748. time_adjust = 0;
  749. }
  750. /* update jitter */
  751. pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
  752. }
  753. /*
  754. * hardpps() - discipline CPU clock oscillator to external PPS signal
  755. *
  756. * This routine is called at each PPS signal arrival in order to
  757. * discipline the CPU clock oscillator to the PPS signal. It takes two
  758. * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
  759. * is used to correct clock phase error and the latter is used to
  760. * correct the frequency.
  761. *
  762. * This code is based on David Mills's reference nanokernel
  763. * implementation. It was mostly rewritten but keeps the same idea.
  764. */
  765. void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
  766. {
  767. struct pps_normtime pts_norm, freq_norm;
  768. unsigned long flags;
  769. pts_norm = pps_normalize_ts(*phase_ts);
  770. write_seqlock_irqsave(&xtime_lock, flags);
  771. /* clear the error bits, they will be set again if needed */
  772. time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
  773. /* indicate signal presence */
  774. time_status |= STA_PPSSIGNAL;
  775. pps_valid = PPS_VALID;
  776. /* when called for the first time,
  777. * just start the frequency interval */
  778. if (unlikely(pps_fbase.tv_sec == 0)) {
  779. pps_fbase = *raw_ts;
  780. write_sequnlock_irqrestore(&xtime_lock, flags);
  781. return;
  782. }
  783. /* ok, now we have a base for frequency calculation */
  784. freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
  785. /* check that the signal is in the range
  786. * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
  787. if ((freq_norm.sec == 0) ||
  788. (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
  789. (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
  790. time_status |= STA_PPSJITTER;
  791. /* restart the frequency calibration interval */
  792. pps_fbase = *raw_ts;
  793. write_sequnlock_irqrestore(&xtime_lock, flags);
  794. pr_err("hardpps: PPSJITTER: bad pulse\n");
  795. return;
  796. }
  797. /* signal is ok */
  798. /* check if the current frequency interval is finished */
  799. if (freq_norm.sec >= (1 << pps_shift)) {
  800. pps_calcnt++;
  801. /* restart the frequency calibration interval */
  802. pps_fbase = *raw_ts;
  803. hardpps_update_freq(freq_norm);
  804. }
  805. hardpps_update_phase(pts_norm.nsec);
  806. write_sequnlock_irqrestore(&xtime_lock, flags);
  807. }
  808. EXPORT_SYMBOL(hardpps);
  809. #endif /* CONFIG_NTP_PPS */
  810. static int __init ntp_tick_adj_setup(char *str)
  811. {
  812. ntp_tick_adj = simple_strtol(str, NULL, 0);
  813. ntp_tick_adj <<= NTP_SCALE_SHIFT;
  814. return 1;
  815. }
  816. __setup("ntp_tick_adj=", ntp_tick_adj_setup);
  817. void __init ntp_init(void)
  818. {
  819. ntp_clear();
  820. hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
  821. leap_timer.function = ntp_leap_second;
  822. }