rt.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #include "sched.h"
  6. #include <linux/slab.h>
  7. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  8. struct rt_bandwidth def_rt_bandwidth;
  9. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  10. {
  11. struct rt_bandwidth *rt_b =
  12. container_of(timer, struct rt_bandwidth, rt_period_timer);
  13. ktime_t now;
  14. int overrun;
  15. int idle = 0;
  16. for (;;) {
  17. now = hrtimer_cb_get_time(timer);
  18. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  19. if (!overrun)
  20. break;
  21. idle = do_sched_rt_period_timer(rt_b, overrun);
  22. }
  23. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  24. }
  25. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  26. {
  27. rt_b->rt_period = ns_to_ktime(period);
  28. rt_b->rt_runtime = runtime;
  29. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  30. hrtimer_init(&rt_b->rt_period_timer,
  31. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  32. rt_b->rt_period_timer.function = sched_rt_period_timer;
  33. }
  34. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  35. {
  36. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  37. return;
  38. if (hrtimer_active(&rt_b->rt_period_timer))
  39. return;
  40. raw_spin_lock(&rt_b->rt_runtime_lock);
  41. start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
  42. raw_spin_unlock(&rt_b->rt_runtime_lock);
  43. }
  44. void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  45. {
  46. struct rt_prio_array *array;
  47. int i;
  48. array = &rt_rq->active;
  49. for (i = 0; i < MAX_RT_PRIO; i++) {
  50. INIT_LIST_HEAD(array->queue + i);
  51. __clear_bit(i, array->bitmap);
  52. }
  53. /* delimiter for bitsearch: */
  54. __set_bit(MAX_RT_PRIO, array->bitmap);
  55. #if defined CONFIG_SMP
  56. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  57. rt_rq->highest_prio.next = MAX_RT_PRIO;
  58. rt_rq->rt_nr_migratory = 0;
  59. rt_rq->overloaded = 0;
  60. plist_head_init(&rt_rq->pushable_tasks);
  61. #endif
  62. rt_rq->rt_time = 0;
  63. rt_rq->rt_throttled = 0;
  64. rt_rq->rt_runtime = 0;
  65. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  66. }
  67. #ifdef CONFIG_RT_GROUP_SCHED
  68. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  69. {
  70. hrtimer_cancel(&rt_b->rt_period_timer);
  71. }
  72. #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
  73. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  74. {
  75. #ifdef CONFIG_SCHED_DEBUG
  76. WARN_ON_ONCE(!rt_entity_is_task(rt_se));
  77. #endif
  78. return container_of(rt_se, struct task_struct, rt);
  79. }
  80. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  81. {
  82. return rt_rq->rq;
  83. }
  84. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  85. {
  86. return rt_se->rt_rq;
  87. }
  88. void free_rt_sched_group(struct task_group *tg)
  89. {
  90. int i;
  91. if (tg->rt_se)
  92. destroy_rt_bandwidth(&tg->rt_bandwidth);
  93. for_each_possible_cpu(i) {
  94. if (tg->rt_rq)
  95. kfree(tg->rt_rq[i]);
  96. if (tg->rt_se)
  97. kfree(tg->rt_se[i]);
  98. }
  99. kfree(tg->rt_rq);
  100. kfree(tg->rt_se);
  101. }
  102. void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  103. struct sched_rt_entity *rt_se, int cpu,
  104. struct sched_rt_entity *parent)
  105. {
  106. struct rq *rq = cpu_rq(cpu);
  107. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  108. rt_rq->rt_nr_boosted = 0;
  109. rt_rq->rq = rq;
  110. rt_rq->tg = tg;
  111. tg->rt_rq[cpu] = rt_rq;
  112. tg->rt_se[cpu] = rt_se;
  113. if (!rt_se)
  114. return;
  115. if (!parent)
  116. rt_se->rt_rq = &rq->rt;
  117. else
  118. rt_se->rt_rq = parent->my_q;
  119. rt_se->my_q = rt_rq;
  120. rt_se->parent = parent;
  121. INIT_LIST_HEAD(&rt_se->run_list);
  122. }
  123. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  124. {
  125. struct rt_rq *rt_rq;
  126. struct sched_rt_entity *rt_se;
  127. int i;
  128. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  129. if (!tg->rt_rq)
  130. goto err;
  131. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  132. if (!tg->rt_se)
  133. goto err;
  134. init_rt_bandwidth(&tg->rt_bandwidth,
  135. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  136. for_each_possible_cpu(i) {
  137. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  138. GFP_KERNEL, cpu_to_node(i));
  139. if (!rt_rq)
  140. goto err;
  141. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  142. GFP_KERNEL, cpu_to_node(i));
  143. if (!rt_se)
  144. goto err_free_rq;
  145. init_rt_rq(rt_rq, cpu_rq(i));
  146. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  147. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  148. }
  149. return 1;
  150. err_free_rq:
  151. kfree(rt_rq);
  152. err:
  153. return 0;
  154. }
  155. #else /* CONFIG_RT_GROUP_SCHED */
  156. #define rt_entity_is_task(rt_se) (1)
  157. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  158. {
  159. return container_of(rt_se, struct task_struct, rt);
  160. }
  161. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  162. {
  163. return container_of(rt_rq, struct rq, rt);
  164. }
  165. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  166. {
  167. struct task_struct *p = rt_task_of(rt_se);
  168. struct rq *rq = task_rq(p);
  169. return &rq->rt;
  170. }
  171. void free_rt_sched_group(struct task_group *tg) { }
  172. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  173. {
  174. return 1;
  175. }
  176. #endif /* CONFIG_RT_GROUP_SCHED */
  177. #ifdef CONFIG_SMP
  178. static inline int rt_overloaded(struct rq *rq)
  179. {
  180. return atomic_read(&rq->rd->rto_count);
  181. }
  182. static inline void rt_set_overload(struct rq *rq)
  183. {
  184. if (!rq->online)
  185. return;
  186. cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
  187. /*
  188. * Make sure the mask is visible before we set
  189. * the overload count. That is checked to determine
  190. * if we should look at the mask. It would be a shame
  191. * if we looked at the mask, but the mask was not
  192. * updated yet.
  193. */
  194. wmb();
  195. atomic_inc(&rq->rd->rto_count);
  196. }
  197. static inline void rt_clear_overload(struct rq *rq)
  198. {
  199. if (!rq->online)
  200. return;
  201. /* the order here really doesn't matter */
  202. atomic_dec(&rq->rd->rto_count);
  203. cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
  204. }
  205. static void update_rt_migration(struct rt_rq *rt_rq)
  206. {
  207. if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
  208. if (!rt_rq->overloaded) {
  209. rt_set_overload(rq_of_rt_rq(rt_rq));
  210. rt_rq->overloaded = 1;
  211. }
  212. } else if (rt_rq->overloaded) {
  213. rt_clear_overload(rq_of_rt_rq(rt_rq));
  214. rt_rq->overloaded = 0;
  215. }
  216. }
  217. static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  218. {
  219. if (!rt_entity_is_task(rt_se))
  220. return;
  221. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  222. rt_rq->rt_nr_total++;
  223. if (rt_se->nr_cpus_allowed > 1)
  224. rt_rq->rt_nr_migratory++;
  225. update_rt_migration(rt_rq);
  226. }
  227. static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  228. {
  229. if (!rt_entity_is_task(rt_se))
  230. return;
  231. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  232. rt_rq->rt_nr_total--;
  233. if (rt_se->nr_cpus_allowed > 1)
  234. rt_rq->rt_nr_migratory--;
  235. update_rt_migration(rt_rq);
  236. }
  237. static inline int has_pushable_tasks(struct rq *rq)
  238. {
  239. return !plist_head_empty(&rq->rt.pushable_tasks);
  240. }
  241. static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  242. {
  243. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  244. plist_node_init(&p->pushable_tasks, p->prio);
  245. plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
  246. /* Update the highest prio pushable task */
  247. if (p->prio < rq->rt.highest_prio.next)
  248. rq->rt.highest_prio.next = p->prio;
  249. }
  250. static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  251. {
  252. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  253. /* Update the new highest prio pushable task */
  254. if (has_pushable_tasks(rq)) {
  255. p = plist_first_entry(&rq->rt.pushable_tasks,
  256. struct task_struct, pushable_tasks);
  257. rq->rt.highest_prio.next = p->prio;
  258. } else
  259. rq->rt.highest_prio.next = MAX_RT_PRIO;
  260. }
  261. #else
  262. static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  263. {
  264. }
  265. static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  266. {
  267. }
  268. static inline
  269. void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  270. {
  271. }
  272. static inline
  273. void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  274. {
  275. }
  276. #endif /* CONFIG_SMP */
  277. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  278. {
  279. return !list_empty(&rt_se->run_list);
  280. }
  281. #ifdef CONFIG_RT_GROUP_SCHED
  282. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  283. {
  284. if (!rt_rq->tg)
  285. return RUNTIME_INF;
  286. return rt_rq->rt_runtime;
  287. }
  288. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  289. {
  290. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  291. }
  292. typedef struct task_group *rt_rq_iter_t;
  293. static inline struct task_group *next_task_group(struct task_group *tg)
  294. {
  295. do {
  296. tg = list_entry_rcu(tg->list.next,
  297. typeof(struct task_group), list);
  298. } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
  299. if (&tg->list == &task_groups)
  300. tg = NULL;
  301. return tg;
  302. }
  303. #define for_each_rt_rq(rt_rq, iter, rq) \
  304. for (iter = container_of(&task_groups, typeof(*iter), list); \
  305. (iter = next_task_group(iter)) && \
  306. (rt_rq = iter->rt_rq[cpu_of(rq)]);)
  307. static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
  308. {
  309. list_add_rcu(&rt_rq->leaf_rt_rq_list,
  310. &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
  311. }
  312. static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
  313. {
  314. list_del_rcu(&rt_rq->leaf_rt_rq_list);
  315. }
  316. #define for_each_leaf_rt_rq(rt_rq, rq) \
  317. list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  318. #define for_each_sched_rt_entity(rt_se) \
  319. for (; rt_se; rt_se = rt_se->parent)
  320. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  321. {
  322. return rt_se->my_q;
  323. }
  324. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
  325. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  326. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  327. {
  328. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  329. struct sched_rt_entity *rt_se;
  330. int cpu = cpu_of(rq_of_rt_rq(rt_rq));
  331. rt_se = rt_rq->tg->rt_se[cpu];
  332. if (rt_rq->rt_nr_running) {
  333. if (rt_se && !on_rt_rq(rt_se))
  334. enqueue_rt_entity(rt_se, false);
  335. if (rt_rq->highest_prio.curr < curr->prio)
  336. resched_task(curr);
  337. }
  338. }
  339. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  340. {
  341. struct sched_rt_entity *rt_se;
  342. int cpu = cpu_of(rq_of_rt_rq(rt_rq));
  343. rt_se = rt_rq->tg->rt_se[cpu];
  344. if (rt_se && on_rt_rq(rt_se))
  345. dequeue_rt_entity(rt_se);
  346. }
  347. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  348. {
  349. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  350. }
  351. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  352. {
  353. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  354. struct task_struct *p;
  355. if (rt_rq)
  356. return !!rt_rq->rt_nr_boosted;
  357. p = rt_task_of(rt_se);
  358. return p->prio != p->normal_prio;
  359. }
  360. #ifdef CONFIG_SMP
  361. static inline const struct cpumask *sched_rt_period_mask(void)
  362. {
  363. return cpu_rq(smp_processor_id())->rd->span;
  364. }
  365. #else
  366. static inline const struct cpumask *sched_rt_period_mask(void)
  367. {
  368. return cpu_online_mask;
  369. }
  370. #endif
  371. static inline
  372. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  373. {
  374. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  375. }
  376. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  377. {
  378. return &rt_rq->tg->rt_bandwidth;
  379. }
  380. #else /* !CONFIG_RT_GROUP_SCHED */
  381. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  382. {
  383. return rt_rq->rt_runtime;
  384. }
  385. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  386. {
  387. return ktime_to_ns(def_rt_bandwidth.rt_period);
  388. }
  389. typedef struct rt_rq *rt_rq_iter_t;
  390. #define for_each_rt_rq(rt_rq, iter, rq) \
  391. for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  392. static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
  393. {
  394. }
  395. static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
  396. {
  397. }
  398. #define for_each_leaf_rt_rq(rt_rq, rq) \
  399. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  400. #define for_each_sched_rt_entity(rt_se) \
  401. for (; rt_se; rt_se = NULL)
  402. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  403. {
  404. return NULL;
  405. }
  406. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  407. {
  408. if (rt_rq->rt_nr_running)
  409. resched_task(rq_of_rt_rq(rt_rq)->curr);
  410. }
  411. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  412. {
  413. }
  414. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  415. {
  416. return rt_rq->rt_throttled;
  417. }
  418. static inline const struct cpumask *sched_rt_period_mask(void)
  419. {
  420. return cpu_online_mask;
  421. }
  422. static inline
  423. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  424. {
  425. return &cpu_rq(cpu)->rt;
  426. }
  427. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  428. {
  429. return &def_rt_bandwidth;
  430. }
  431. #endif /* CONFIG_RT_GROUP_SCHED */
  432. #ifdef CONFIG_SMP
  433. /*
  434. * We ran out of runtime, see if we can borrow some from our neighbours.
  435. */
  436. static int do_balance_runtime(struct rt_rq *rt_rq)
  437. {
  438. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  439. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  440. int i, weight, more = 0;
  441. u64 rt_period;
  442. weight = cpumask_weight(rd->span);
  443. raw_spin_lock(&rt_b->rt_runtime_lock);
  444. rt_period = ktime_to_ns(rt_b->rt_period);
  445. for_each_cpu(i, rd->span) {
  446. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  447. s64 diff;
  448. if (iter == rt_rq)
  449. continue;
  450. raw_spin_lock(&iter->rt_runtime_lock);
  451. /*
  452. * Either all rqs have inf runtime and there's nothing to steal
  453. * or __disable_runtime() below sets a specific rq to inf to
  454. * indicate its been disabled and disalow stealing.
  455. */
  456. if (iter->rt_runtime == RUNTIME_INF)
  457. goto next;
  458. /*
  459. * From runqueues with spare time, take 1/n part of their
  460. * spare time, but no more than our period.
  461. */
  462. diff = iter->rt_runtime - iter->rt_time;
  463. if (diff > 0) {
  464. diff = div_u64((u64)diff, weight);
  465. if (rt_rq->rt_runtime + diff > rt_period)
  466. diff = rt_period - rt_rq->rt_runtime;
  467. iter->rt_runtime -= diff;
  468. rt_rq->rt_runtime += diff;
  469. more = 1;
  470. if (rt_rq->rt_runtime == rt_period) {
  471. raw_spin_unlock(&iter->rt_runtime_lock);
  472. break;
  473. }
  474. }
  475. next:
  476. raw_spin_unlock(&iter->rt_runtime_lock);
  477. }
  478. raw_spin_unlock(&rt_b->rt_runtime_lock);
  479. return more;
  480. }
  481. /*
  482. * Ensure this RQ takes back all the runtime it lend to its neighbours.
  483. */
  484. static void __disable_runtime(struct rq *rq)
  485. {
  486. struct root_domain *rd = rq->rd;
  487. rt_rq_iter_t iter;
  488. struct rt_rq *rt_rq;
  489. if (unlikely(!scheduler_running))
  490. return;
  491. for_each_rt_rq(rt_rq, iter, rq) {
  492. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  493. s64 want;
  494. int i;
  495. raw_spin_lock(&rt_b->rt_runtime_lock);
  496. raw_spin_lock(&rt_rq->rt_runtime_lock);
  497. /*
  498. * Either we're all inf and nobody needs to borrow, or we're
  499. * already disabled and thus have nothing to do, or we have
  500. * exactly the right amount of runtime to take out.
  501. */
  502. if (rt_rq->rt_runtime == RUNTIME_INF ||
  503. rt_rq->rt_runtime == rt_b->rt_runtime)
  504. goto balanced;
  505. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  506. /*
  507. * Calculate the difference between what we started out with
  508. * and what we current have, that's the amount of runtime
  509. * we lend and now have to reclaim.
  510. */
  511. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  512. /*
  513. * Greedy reclaim, take back as much as we can.
  514. */
  515. for_each_cpu(i, rd->span) {
  516. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  517. s64 diff;
  518. /*
  519. * Can't reclaim from ourselves or disabled runqueues.
  520. */
  521. if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
  522. continue;
  523. raw_spin_lock(&iter->rt_runtime_lock);
  524. if (want > 0) {
  525. diff = min_t(s64, iter->rt_runtime, want);
  526. iter->rt_runtime -= diff;
  527. want -= diff;
  528. } else {
  529. iter->rt_runtime -= want;
  530. want -= want;
  531. }
  532. raw_spin_unlock(&iter->rt_runtime_lock);
  533. if (!want)
  534. break;
  535. }
  536. raw_spin_lock(&rt_rq->rt_runtime_lock);
  537. /*
  538. * We cannot be left wanting - that would mean some runtime
  539. * leaked out of the system.
  540. */
  541. BUG_ON(want);
  542. balanced:
  543. /*
  544. * Disable all the borrow logic by pretending we have inf
  545. * runtime - in which case borrowing doesn't make sense.
  546. */
  547. rt_rq->rt_runtime = RUNTIME_INF;
  548. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  549. raw_spin_unlock(&rt_b->rt_runtime_lock);
  550. }
  551. }
  552. static void disable_runtime(struct rq *rq)
  553. {
  554. unsigned long flags;
  555. raw_spin_lock_irqsave(&rq->lock, flags);
  556. __disable_runtime(rq);
  557. raw_spin_unlock_irqrestore(&rq->lock, flags);
  558. }
  559. static void __enable_runtime(struct rq *rq)
  560. {
  561. rt_rq_iter_t iter;
  562. struct rt_rq *rt_rq;
  563. if (unlikely(!scheduler_running))
  564. return;
  565. /*
  566. * Reset each runqueue's bandwidth settings
  567. */
  568. for_each_rt_rq(rt_rq, iter, rq) {
  569. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  570. raw_spin_lock(&rt_b->rt_runtime_lock);
  571. raw_spin_lock(&rt_rq->rt_runtime_lock);
  572. rt_rq->rt_runtime = rt_b->rt_runtime;
  573. rt_rq->rt_time = 0;
  574. rt_rq->rt_throttled = 0;
  575. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  576. raw_spin_unlock(&rt_b->rt_runtime_lock);
  577. }
  578. }
  579. static void enable_runtime(struct rq *rq)
  580. {
  581. unsigned long flags;
  582. raw_spin_lock_irqsave(&rq->lock, flags);
  583. __enable_runtime(rq);
  584. raw_spin_unlock_irqrestore(&rq->lock, flags);
  585. }
  586. int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
  587. {
  588. int cpu = (int)(long)hcpu;
  589. switch (action) {
  590. case CPU_DOWN_PREPARE:
  591. case CPU_DOWN_PREPARE_FROZEN:
  592. disable_runtime(cpu_rq(cpu));
  593. return NOTIFY_OK;
  594. case CPU_DOWN_FAILED:
  595. case CPU_DOWN_FAILED_FROZEN:
  596. case CPU_ONLINE:
  597. case CPU_ONLINE_FROZEN:
  598. enable_runtime(cpu_rq(cpu));
  599. return NOTIFY_OK;
  600. default:
  601. return NOTIFY_DONE;
  602. }
  603. }
  604. static int balance_runtime(struct rt_rq *rt_rq)
  605. {
  606. int more = 0;
  607. if (!sched_feat(RT_RUNTIME_SHARE))
  608. return more;
  609. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  610. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  611. more = do_balance_runtime(rt_rq);
  612. raw_spin_lock(&rt_rq->rt_runtime_lock);
  613. }
  614. return more;
  615. }
  616. #else /* !CONFIG_SMP */
  617. static inline int balance_runtime(struct rt_rq *rt_rq)
  618. {
  619. return 0;
  620. }
  621. #endif /* CONFIG_SMP */
  622. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  623. {
  624. int i, idle = 1;
  625. const struct cpumask *span;
  626. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  627. return 1;
  628. span = sched_rt_period_mask();
  629. for_each_cpu(i, span) {
  630. int enqueue = 0;
  631. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  632. struct rq *rq = rq_of_rt_rq(rt_rq);
  633. raw_spin_lock(&rq->lock);
  634. if (rt_rq->rt_time) {
  635. u64 runtime;
  636. raw_spin_lock(&rt_rq->rt_runtime_lock);
  637. if (rt_rq->rt_throttled)
  638. balance_runtime(rt_rq);
  639. runtime = rt_rq->rt_runtime;
  640. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  641. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  642. rt_rq->rt_throttled = 0;
  643. enqueue = 1;
  644. /*
  645. * Force a clock update if the CPU was idle,
  646. * lest wakeup -> unthrottle time accumulate.
  647. */
  648. if (rt_rq->rt_nr_running && rq->curr == rq->idle)
  649. rq->skip_clock_update = -1;
  650. }
  651. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  652. idle = 0;
  653. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  654. } else if (rt_rq->rt_nr_running) {
  655. idle = 0;
  656. if (!rt_rq_throttled(rt_rq))
  657. enqueue = 1;
  658. }
  659. if (enqueue)
  660. sched_rt_rq_enqueue(rt_rq);
  661. raw_spin_unlock(&rq->lock);
  662. }
  663. return idle;
  664. }
  665. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  666. {
  667. #ifdef CONFIG_RT_GROUP_SCHED
  668. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  669. if (rt_rq)
  670. return rt_rq->highest_prio.curr;
  671. #endif
  672. return rt_task_of(rt_se)->prio;
  673. }
  674. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  675. {
  676. u64 runtime = sched_rt_runtime(rt_rq);
  677. if (rt_rq->rt_throttled)
  678. return rt_rq_throttled(rt_rq);
  679. if (runtime >= sched_rt_period(rt_rq))
  680. return 0;
  681. balance_runtime(rt_rq);
  682. runtime = sched_rt_runtime(rt_rq);
  683. if (runtime == RUNTIME_INF)
  684. return 0;
  685. if (rt_rq->rt_time > runtime) {
  686. rt_rq->rt_throttled = 1;
  687. printk_once(KERN_WARNING "sched: RT throttling activated\n");
  688. if (rt_rq_throttled(rt_rq)) {
  689. sched_rt_rq_dequeue(rt_rq);
  690. return 1;
  691. }
  692. }
  693. return 0;
  694. }
  695. /*
  696. * Update the current task's runtime statistics. Skip current tasks that
  697. * are not in our scheduling class.
  698. */
  699. static void update_curr_rt(struct rq *rq)
  700. {
  701. struct task_struct *curr = rq->curr;
  702. struct sched_rt_entity *rt_se = &curr->rt;
  703. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  704. u64 delta_exec;
  705. if (curr->sched_class != &rt_sched_class)
  706. return;
  707. delta_exec = rq->clock_task - curr->se.exec_start;
  708. if (unlikely((s64)delta_exec < 0))
  709. delta_exec = 0;
  710. schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
  711. curr->se.sum_exec_runtime += delta_exec;
  712. account_group_exec_runtime(curr, delta_exec);
  713. curr->se.exec_start = rq->clock_task;
  714. cpuacct_charge(curr, delta_exec);
  715. sched_rt_avg_update(rq, delta_exec);
  716. if (!rt_bandwidth_enabled())
  717. return;
  718. for_each_sched_rt_entity(rt_se) {
  719. rt_rq = rt_rq_of_se(rt_se);
  720. if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
  721. raw_spin_lock(&rt_rq->rt_runtime_lock);
  722. rt_rq->rt_time += delta_exec;
  723. if (sched_rt_runtime_exceeded(rt_rq))
  724. resched_task(curr);
  725. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  726. }
  727. }
  728. }
  729. #if defined CONFIG_SMP
  730. static void
  731. inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  732. {
  733. struct rq *rq = rq_of_rt_rq(rt_rq);
  734. if (rq->online && prio < prev_prio)
  735. cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
  736. }
  737. static void
  738. dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  739. {
  740. struct rq *rq = rq_of_rt_rq(rt_rq);
  741. if (rq->online && rt_rq->highest_prio.curr != prev_prio)
  742. cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
  743. }
  744. #else /* CONFIG_SMP */
  745. static inline
  746. void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  747. static inline
  748. void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  749. #endif /* CONFIG_SMP */
  750. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  751. static void
  752. inc_rt_prio(struct rt_rq *rt_rq, int prio)
  753. {
  754. int prev_prio = rt_rq->highest_prio.curr;
  755. if (prio < prev_prio)
  756. rt_rq->highest_prio.curr = prio;
  757. inc_rt_prio_smp(rt_rq, prio, prev_prio);
  758. }
  759. static void
  760. dec_rt_prio(struct rt_rq *rt_rq, int prio)
  761. {
  762. int prev_prio = rt_rq->highest_prio.curr;
  763. if (rt_rq->rt_nr_running) {
  764. WARN_ON(prio < prev_prio);
  765. /*
  766. * This may have been our highest task, and therefore
  767. * we may have some recomputation to do
  768. */
  769. if (prio == prev_prio) {
  770. struct rt_prio_array *array = &rt_rq->active;
  771. rt_rq->highest_prio.curr =
  772. sched_find_first_bit(array->bitmap);
  773. }
  774. } else
  775. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  776. dec_rt_prio_smp(rt_rq, prio, prev_prio);
  777. }
  778. #else
  779. static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
  780. static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
  781. #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
  782. #ifdef CONFIG_RT_GROUP_SCHED
  783. static void
  784. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  785. {
  786. if (rt_se_boosted(rt_se))
  787. rt_rq->rt_nr_boosted++;
  788. if (rt_rq->tg)
  789. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  790. }
  791. static void
  792. dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  793. {
  794. if (rt_se_boosted(rt_se))
  795. rt_rq->rt_nr_boosted--;
  796. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  797. }
  798. #else /* CONFIG_RT_GROUP_SCHED */
  799. static void
  800. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  801. {
  802. start_rt_bandwidth(&def_rt_bandwidth);
  803. }
  804. static inline
  805. void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
  806. #endif /* CONFIG_RT_GROUP_SCHED */
  807. static inline
  808. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  809. {
  810. int prio = rt_se_prio(rt_se);
  811. WARN_ON(!rt_prio(prio));
  812. rt_rq->rt_nr_running++;
  813. inc_rt_prio(rt_rq, prio);
  814. inc_rt_migration(rt_se, rt_rq);
  815. inc_rt_group(rt_se, rt_rq);
  816. }
  817. static inline
  818. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  819. {
  820. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  821. WARN_ON(!rt_rq->rt_nr_running);
  822. rt_rq->rt_nr_running--;
  823. dec_rt_prio(rt_rq, rt_se_prio(rt_se));
  824. dec_rt_migration(rt_se, rt_rq);
  825. dec_rt_group(rt_se, rt_rq);
  826. }
  827. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  828. {
  829. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  830. struct rt_prio_array *array = &rt_rq->active;
  831. struct rt_rq *group_rq = group_rt_rq(rt_se);
  832. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  833. /*
  834. * Don't enqueue the group if its throttled, or when empty.
  835. * The latter is a consequence of the former when a child group
  836. * get throttled and the current group doesn't have any other
  837. * active members.
  838. */
  839. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  840. return;
  841. if (!rt_rq->rt_nr_running)
  842. list_add_leaf_rt_rq(rt_rq);
  843. if (head)
  844. list_add(&rt_se->run_list, queue);
  845. else
  846. list_add_tail(&rt_se->run_list, queue);
  847. __set_bit(rt_se_prio(rt_se), array->bitmap);
  848. inc_rt_tasks(rt_se, rt_rq);
  849. }
  850. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  851. {
  852. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  853. struct rt_prio_array *array = &rt_rq->active;
  854. list_del_init(&rt_se->run_list);
  855. if (list_empty(array->queue + rt_se_prio(rt_se)))
  856. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  857. dec_rt_tasks(rt_se, rt_rq);
  858. if (!rt_rq->rt_nr_running)
  859. list_del_leaf_rt_rq(rt_rq);
  860. }
  861. /*
  862. * Because the prio of an upper entry depends on the lower
  863. * entries, we must remove entries top - down.
  864. */
  865. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  866. {
  867. struct sched_rt_entity *back = NULL;
  868. for_each_sched_rt_entity(rt_se) {
  869. rt_se->back = back;
  870. back = rt_se;
  871. }
  872. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  873. if (on_rt_rq(rt_se))
  874. __dequeue_rt_entity(rt_se);
  875. }
  876. }
  877. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  878. {
  879. dequeue_rt_stack(rt_se);
  880. for_each_sched_rt_entity(rt_se)
  881. __enqueue_rt_entity(rt_se, head);
  882. }
  883. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  884. {
  885. dequeue_rt_stack(rt_se);
  886. for_each_sched_rt_entity(rt_se) {
  887. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  888. if (rt_rq && rt_rq->rt_nr_running)
  889. __enqueue_rt_entity(rt_se, false);
  890. }
  891. }
  892. /*
  893. * Adding/removing a task to/from a priority array:
  894. */
  895. static void
  896. enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  897. {
  898. struct sched_rt_entity *rt_se = &p->rt;
  899. if (flags & ENQUEUE_WAKEUP)
  900. rt_se->timeout = 0;
  901. enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
  902. if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
  903. enqueue_pushable_task(rq, p);
  904. inc_nr_running(rq);
  905. }
  906. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  907. {
  908. struct sched_rt_entity *rt_se = &p->rt;
  909. update_curr_rt(rq);
  910. dequeue_rt_entity(rt_se);
  911. dequeue_pushable_task(rq, p);
  912. dec_nr_running(rq);
  913. }
  914. /*
  915. * Put task to the head or the end of the run list without the overhead of
  916. * dequeue followed by enqueue.
  917. */
  918. static void
  919. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  920. {
  921. if (on_rt_rq(rt_se)) {
  922. struct rt_prio_array *array = &rt_rq->active;
  923. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  924. if (head)
  925. list_move(&rt_se->run_list, queue);
  926. else
  927. list_move_tail(&rt_se->run_list, queue);
  928. }
  929. }
  930. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  931. {
  932. struct sched_rt_entity *rt_se = &p->rt;
  933. struct rt_rq *rt_rq;
  934. for_each_sched_rt_entity(rt_se) {
  935. rt_rq = rt_rq_of_se(rt_se);
  936. requeue_rt_entity(rt_rq, rt_se, head);
  937. }
  938. }
  939. static void yield_task_rt(struct rq *rq)
  940. {
  941. requeue_task_rt(rq, rq->curr, 0);
  942. }
  943. #ifdef CONFIG_SMP
  944. static int find_lowest_rq(struct task_struct *task);
  945. static int
  946. select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
  947. {
  948. struct task_struct *curr;
  949. struct rq *rq;
  950. int cpu;
  951. cpu = task_cpu(p);
  952. if (p->rt.nr_cpus_allowed == 1)
  953. goto out;
  954. /* For anything but wake ups, just return the task_cpu */
  955. if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
  956. goto out;
  957. rq = cpu_rq(cpu);
  958. rcu_read_lock();
  959. curr = ACCESS_ONCE(rq->curr); /* unlocked access */
  960. /*
  961. * If the current task on @p's runqueue is an RT task, then
  962. * try to see if we can wake this RT task up on another
  963. * runqueue. Otherwise simply start this RT task
  964. * on its current runqueue.
  965. *
  966. * We want to avoid overloading runqueues. If the woken
  967. * task is a higher priority, then it will stay on this CPU
  968. * and the lower prio task should be moved to another CPU.
  969. * Even though this will probably make the lower prio task
  970. * lose its cache, we do not want to bounce a higher task
  971. * around just because it gave up its CPU, perhaps for a
  972. * lock?
  973. *
  974. * For equal prio tasks, we just let the scheduler sort it out.
  975. *
  976. * Otherwise, just let it ride on the affined RQ and the
  977. * post-schedule router will push the preempted task away
  978. *
  979. * This test is optimistic, if we get it wrong the load-balancer
  980. * will have to sort it out.
  981. */
  982. if (curr && unlikely(rt_task(curr)) &&
  983. (curr->rt.nr_cpus_allowed < 2 ||
  984. curr->prio <= p->prio) &&
  985. (p->rt.nr_cpus_allowed > 1)) {
  986. int target = find_lowest_rq(p);
  987. if (target != -1)
  988. cpu = target;
  989. }
  990. rcu_read_unlock();
  991. out:
  992. return cpu;
  993. }
  994. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  995. {
  996. if (rq->curr->rt.nr_cpus_allowed == 1)
  997. return;
  998. if (p->rt.nr_cpus_allowed != 1
  999. && cpupri_find(&rq->rd->cpupri, p, NULL))
  1000. return;
  1001. if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
  1002. return;
  1003. /*
  1004. * There appears to be other cpus that can accept
  1005. * current and none to run 'p', so lets reschedule
  1006. * to try and push current away:
  1007. */
  1008. requeue_task_rt(rq, p, 1);
  1009. resched_task(rq->curr);
  1010. }
  1011. #endif /* CONFIG_SMP */
  1012. /*
  1013. * Preempt the current task with a newly woken task if needed:
  1014. */
  1015. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
  1016. {
  1017. if (p->prio < rq->curr->prio) {
  1018. resched_task(rq->curr);
  1019. return;
  1020. }
  1021. #ifdef CONFIG_SMP
  1022. /*
  1023. * If:
  1024. *
  1025. * - the newly woken task is of equal priority to the current task
  1026. * - the newly woken task is non-migratable while current is migratable
  1027. * - current will be preempted on the next reschedule
  1028. *
  1029. * we should check to see if current can readily move to a different
  1030. * cpu. If so, we will reschedule to allow the push logic to try
  1031. * to move current somewhere else, making room for our non-migratable
  1032. * task.
  1033. */
  1034. if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
  1035. check_preempt_equal_prio(rq, p);
  1036. #endif
  1037. }
  1038. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  1039. struct rt_rq *rt_rq)
  1040. {
  1041. struct rt_prio_array *array = &rt_rq->active;
  1042. struct sched_rt_entity *next = NULL;
  1043. struct list_head *queue;
  1044. int idx;
  1045. idx = sched_find_first_bit(array->bitmap);
  1046. BUG_ON(idx >= MAX_RT_PRIO);
  1047. queue = array->queue + idx;
  1048. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  1049. return next;
  1050. }
  1051. static struct task_struct *_pick_next_task_rt(struct rq *rq)
  1052. {
  1053. struct sched_rt_entity *rt_se;
  1054. struct task_struct *p;
  1055. struct rt_rq *rt_rq;
  1056. rt_rq = &rq->rt;
  1057. if (!rt_rq->rt_nr_running)
  1058. return NULL;
  1059. if (rt_rq_throttled(rt_rq))
  1060. return NULL;
  1061. do {
  1062. rt_se = pick_next_rt_entity(rq, rt_rq);
  1063. BUG_ON(!rt_se);
  1064. rt_rq = group_rt_rq(rt_se);
  1065. } while (rt_rq);
  1066. p = rt_task_of(rt_se);
  1067. p->se.exec_start = rq->clock_task;
  1068. return p;
  1069. }
  1070. static struct task_struct *pick_next_task_rt(struct rq *rq)
  1071. {
  1072. struct task_struct *p = _pick_next_task_rt(rq);
  1073. /* The running task is never eligible for pushing */
  1074. if (p)
  1075. dequeue_pushable_task(rq, p);
  1076. #ifdef CONFIG_SMP
  1077. /*
  1078. * We detect this state here so that we can avoid taking the RQ
  1079. * lock again later if there is no need to push
  1080. */
  1081. rq->post_schedule = has_pushable_tasks(rq);
  1082. #endif
  1083. return p;
  1084. }
  1085. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  1086. {
  1087. update_curr_rt(rq);
  1088. /*
  1089. * The previous task needs to be made eligible for pushing
  1090. * if it is still active
  1091. */
  1092. if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
  1093. enqueue_pushable_task(rq, p);
  1094. }
  1095. #ifdef CONFIG_SMP
  1096. /* Only try algorithms three times */
  1097. #define RT_MAX_TRIES 3
  1098. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  1099. {
  1100. if (!task_running(rq, p) &&
  1101. (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
  1102. (p->rt.nr_cpus_allowed > 1))
  1103. return 1;
  1104. return 0;
  1105. }
  1106. /* Return the second highest RT task, NULL otherwise */
  1107. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  1108. {
  1109. struct task_struct *next = NULL;
  1110. struct sched_rt_entity *rt_se;
  1111. struct rt_prio_array *array;
  1112. struct rt_rq *rt_rq;
  1113. int idx;
  1114. for_each_leaf_rt_rq(rt_rq, rq) {
  1115. array = &rt_rq->active;
  1116. idx = sched_find_first_bit(array->bitmap);
  1117. next_idx:
  1118. if (idx >= MAX_RT_PRIO)
  1119. continue;
  1120. if (next && next->prio < idx)
  1121. continue;
  1122. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  1123. struct task_struct *p;
  1124. if (!rt_entity_is_task(rt_se))
  1125. continue;
  1126. p = rt_task_of(rt_se);
  1127. if (pick_rt_task(rq, p, cpu)) {
  1128. next = p;
  1129. break;
  1130. }
  1131. }
  1132. if (!next) {
  1133. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  1134. goto next_idx;
  1135. }
  1136. }
  1137. return next;
  1138. }
  1139. static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
  1140. static int find_lowest_rq(struct task_struct *task)
  1141. {
  1142. struct sched_domain *sd;
  1143. struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
  1144. int this_cpu = smp_processor_id();
  1145. int cpu = task_cpu(task);
  1146. /* Make sure the mask is initialized first */
  1147. if (unlikely(!lowest_mask))
  1148. return -1;
  1149. if (task->rt.nr_cpus_allowed == 1)
  1150. return -1; /* No other targets possible */
  1151. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  1152. return -1; /* No targets found */
  1153. /*
  1154. * At this point we have built a mask of cpus representing the
  1155. * lowest priority tasks in the system. Now we want to elect
  1156. * the best one based on our affinity and topology.
  1157. *
  1158. * We prioritize the last cpu that the task executed on since
  1159. * it is most likely cache-hot in that location.
  1160. */
  1161. if (cpumask_test_cpu(cpu, lowest_mask))
  1162. return cpu;
  1163. /*
  1164. * Otherwise, we consult the sched_domains span maps to figure
  1165. * out which cpu is logically closest to our hot cache data.
  1166. */
  1167. if (!cpumask_test_cpu(this_cpu, lowest_mask))
  1168. this_cpu = -1; /* Skip this_cpu opt if not among lowest */
  1169. rcu_read_lock();
  1170. for_each_domain(cpu, sd) {
  1171. if (sd->flags & SD_WAKE_AFFINE) {
  1172. int best_cpu;
  1173. /*
  1174. * "this_cpu" is cheaper to preempt than a
  1175. * remote processor.
  1176. */
  1177. if (this_cpu != -1 &&
  1178. cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
  1179. rcu_read_unlock();
  1180. return this_cpu;
  1181. }
  1182. best_cpu = cpumask_first_and(lowest_mask,
  1183. sched_domain_span(sd));
  1184. if (best_cpu < nr_cpu_ids) {
  1185. rcu_read_unlock();
  1186. return best_cpu;
  1187. }
  1188. }
  1189. }
  1190. rcu_read_unlock();
  1191. /*
  1192. * And finally, if there were no matches within the domains
  1193. * just give the caller *something* to work with from the compatible
  1194. * locations.
  1195. */
  1196. if (this_cpu != -1)
  1197. return this_cpu;
  1198. cpu = cpumask_any(lowest_mask);
  1199. if (cpu < nr_cpu_ids)
  1200. return cpu;
  1201. return -1;
  1202. }
  1203. /* Will lock the rq it finds */
  1204. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  1205. {
  1206. struct rq *lowest_rq = NULL;
  1207. int tries;
  1208. int cpu;
  1209. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  1210. cpu = find_lowest_rq(task);
  1211. if ((cpu == -1) || (cpu == rq->cpu))
  1212. break;
  1213. lowest_rq = cpu_rq(cpu);
  1214. /* if the prio of this runqueue changed, try again */
  1215. if (double_lock_balance(rq, lowest_rq)) {
  1216. /*
  1217. * We had to unlock the run queue. In
  1218. * the mean time, task could have
  1219. * migrated already or had its affinity changed.
  1220. * Also make sure that it wasn't scheduled on its rq.
  1221. */
  1222. if (unlikely(task_rq(task) != rq ||
  1223. !cpumask_test_cpu(lowest_rq->cpu,
  1224. tsk_cpus_allowed(task)) ||
  1225. task_running(rq, task) ||
  1226. !task->on_rq)) {
  1227. raw_spin_unlock(&lowest_rq->lock);
  1228. lowest_rq = NULL;
  1229. break;
  1230. }
  1231. }
  1232. /* If this rq is still suitable use it. */
  1233. if (lowest_rq->rt.highest_prio.curr > task->prio)
  1234. break;
  1235. /* try again */
  1236. double_unlock_balance(rq, lowest_rq);
  1237. lowest_rq = NULL;
  1238. }
  1239. return lowest_rq;
  1240. }
  1241. static struct task_struct *pick_next_pushable_task(struct rq *rq)
  1242. {
  1243. struct task_struct *p;
  1244. if (!has_pushable_tasks(rq))
  1245. return NULL;
  1246. p = plist_first_entry(&rq->rt.pushable_tasks,
  1247. struct task_struct, pushable_tasks);
  1248. BUG_ON(rq->cpu != task_cpu(p));
  1249. BUG_ON(task_current(rq, p));
  1250. BUG_ON(p->rt.nr_cpus_allowed <= 1);
  1251. BUG_ON(!p->on_rq);
  1252. BUG_ON(!rt_task(p));
  1253. return p;
  1254. }
  1255. /*
  1256. * If the current CPU has more than one RT task, see if the non
  1257. * running task can migrate over to a CPU that is running a task
  1258. * of lesser priority.
  1259. */
  1260. static int push_rt_task(struct rq *rq)
  1261. {
  1262. struct task_struct *next_task;
  1263. struct rq *lowest_rq;
  1264. int ret = 0;
  1265. if (!rq->rt.overloaded)
  1266. return 0;
  1267. next_task = pick_next_pushable_task(rq);
  1268. if (!next_task)
  1269. return 0;
  1270. retry:
  1271. if (unlikely(next_task == rq->curr)) {
  1272. WARN_ON(1);
  1273. return 0;
  1274. }
  1275. /*
  1276. * It's possible that the next_task slipped in of
  1277. * higher priority than current. If that's the case
  1278. * just reschedule current.
  1279. */
  1280. if (unlikely(next_task->prio < rq->curr->prio)) {
  1281. resched_task(rq->curr);
  1282. return 0;
  1283. }
  1284. /* We might release rq lock */
  1285. get_task_struct(next_task);
  1286. /* find_lock_lowest_rq locks the rq if found */
  1287. lowest_rq = find_lock_lowest_rq(next_task, rq);
  1288. if (!lowest_rq) {
  1289. struct task_struct *task;
  1290. /*
  1291. * find_lock_lowest_rq releases rq->lock
  1292. * so it is possible that next_task has migrated.
  1293. *
  1294. * We need to make sure that the task is still on the same
  1295. * run-queue and is also still the next task eligible for
  1296. * pushing.
  1297. */
  1298. task = pick_next_pushable_task(rq);
  1299. if (task_cpu(next_task) == rq->cpu && task == next_task) {
  1300. /*
  1301. * The task hasn't migrated, and is still the next
  1302. * eligible task, but we failed to find a run-queue
  1303. * to push it to. Do not retry in this case, since
  1304. * other cpus will pull from us when ready.
  1305. */
  1306. goto out;
  1307. }
  1308. if (!task)
  1309. /* No more tasks, just exit */
  1310. goto out;
  1311. /*
  1312. * Something has shifted, try again.
  1313. */
  1314. put_task_struct(next_task);
  1315. next_task = task;
  1316. goto retry;
  1317. }
  1318. deactivate_task(rq, next_task, 0);
  1319. set_task_cpu(next_task, lowest_rq->cpu);
  1320. activate_task(lowest_rq, next_task, 0);
  1321. ret = 1;
  1322. resched_task(lowest_rq->curr);
  1323. double_unlock_balance(rq, lowest_rq);
  1324. out:
  1325. put_task_struct(next_task);
  1326. return ret;
  1327. }
  1328. static void push_rt_tasks(struct rq *rq)
  1329. {
  1330. /* push_rt_task will return true if it moved an RT */
  1331. while (push_rt_task(rq))
  1332. ;
  1333. }
  1334. static int pull_rt_task(struct rq *this_rq)
  1335. {
  1336. int this_cpu = this_rq->cpu, ret = 0, cpu;
  1337. struct task_struct *p;
  1338. struct rq *src_rq;
  1339. if (likely(!rt_overloaded(this_rq)))
  1340. return 0;
  1341. for_each_cpu(cpu, this_rq->rd->rto_mask) {
  1342. if (this_cpu == cpu)
  1343. continue;
  1344. src_rq = cpu_rq(cpu);
  1345. /*
  1346. * Don't bother taking the src_rq->lock if the next highest
  1347. * task is known to be lower-priority than our current task.
  1348. * This may look racy, but if this value is about to go
  1349. * logically higher, the src_rq will push this task away.
  1350. * And if its going logically lower, we do not care
  1351. */
  1352. if (src_rq->rt.highest_prio.next >=
  1353. this_rq->rt.highest_prio.curr)
  1354. continue;
  1355. /*
  1356. * We can potentially drop this_rq's lock in
  1357. * double_lock_balance, and another CPU could
  1358. * alter this_rq
  1359. */
  1360. double_lock_balance(this_rq, src_rq);
  1361. /*
  1362. * Are there still pullable RT tasks?
  1363. */
  1364. if (src_rq->rt.rt_nr_running <= 1)
  1365. goto skip;
  1366. p = pick_next_highest_task_rt(src_rq, this_cpu);
  1367. /*
  1368. * Do we have an RT task that preempts
  1369. * the to-be-scheduled task?
  1370. */
  1371. if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
  1372. WARN_ON(p == src_rq->curr);
  1373. WARN_ON(!p->on_rq);
  1374. /*
  1375. * There's a chance that p is higher in priority
  1376. * than what's currently running on its cpu.
  1377. * This is just that p is wakeing up and hasn't
  1378. * had a chance to schedule. We only pull
  1379. * p if it is lower in priority than the
  1380. * current task on the run queue
  1381. */
  1382. if (p->prio < src_rq->curr->prio)
  1383. goto skip;
  1384. ret = 1;
  1385. deactivate_task(src_rq, p, 0);
  1386. set_task_cpu(p, this_cpu);
  1387. activate_task(this_rq, p, 0);
  1388. /*
  1389. * We continue with the search, just in
  1390. * case there's an even higher prio task
  1391. * in another runqueue. (low likelihood
  1392. * but possible)
  1393. */
  1394. }
  1395. skip:
  1396. double_unlock_balance(this_rq, src_rq);
  1397. }
  1398. return ret;
  1399. }
  1400. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  1401. {
  1402. /* Try to pull RT tasks here if we lower this rq's prio */
  1403. if (rq->rt.highest_prio.curr > prev->prio)
  1404. pull_rt_task(rq);
  1405. }
  1406. static void post_schedule_rt(struct rq *rq)
  1407. {
  1408. push_rt_tasks(rq);
  1409. }
  1410. /*
  1411. * If we are not running and we are not going to reschedule soon, we should
  1412. * try to push tasks away now
  1413. */
  1414. static void task_woken_rt(struct rq *rq, struct task_struct *p)
  1415. {
  1416. if (!task_running(rq, p) &&
  1417. !test_tsk_need_resched(rq->curr) &&
  1418. has_pushable_tasks(rq) &&
  1419. p->rt.nr_cpus_allowed > 1 &&
  1420. rt_task(rq->curr) &&
  1421. (rq->curr->rt.nr_cpus_allowed < 2 ||
  1422. rq->curr->prio <= p->prio))
  1423. push_rt_tasks(rq);
  1424. }
  1425. static void set_cpus_allowed_rt(struct task_struct *p,
  1426. const struct cpumask *new_mask)
  1427. {
  1428. int weight = cpumask_weight(new_mask);
  1429. BUG_ON(!rt_task(p));
  1430. /*
  1431. * Update the migration status of the RQ if we have an RT task
  1432. * which is running AND changing its weight value.
  1433. */
  1434. if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
  1435. struct rq *rq = task_rq(p);
  1436. if (!task_current(rq, p)) {
  1437. /*
  1438. * Make sure we dequeue this task from the pushable list
  1439. * before going further. It will either remain off of
  1440. * the list because we are no longer pushable, or it
  1441. * will be requeued.
  1442. */
  1443. if (p->rt.nr_cpus_allowed > 1)
  1444. dequeue_pushable_task(rq, p);
  1445. /*
  1446. * Requeue if our weight is changing and still > 1
  1447. */
  1448. if (weight > 1)
  1449. enqueue_pushable_task(rq, p);
  1450. }
  1451. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  1452. rq->rt.rt_nr_migratory++;
  1453. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  1454. BUG_ON(!rq->rt.rt_nr_migratory);
  1455. rq->rt.rt_nr_migratory--;
  1456. }
  1457. update_rt_migration(&rq->rt);
  1458. }
  1459. }
  1460. /* Assumes rq->lock is held */
  1461. static void rq_online_rt(struct rq *rq)
  1462. {
  1463. if (rq->rt.overloaded)
  1464. rt_set_overload(rq);
  1465. __enable_runtime(rq);
  1466. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
  1467. }
  1468. /* Assumes rq->lock is held */
  1469. static void rq_offline_rt(struct rq *rq)
  1470. {
  1471. if (rq->rt.overloaded)
  1472. rt_clear_overload(rq);
  1473. __disable_runtime(rq);
  1474. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1475. }
  1476. /*
  1477. * When switch from the rt queue, we bring ourselves to a position
  1478. * that we might want to pull RT tasks from other runqueues.
  1479. */
  1480. static void switched_from_rt(struct rq *rq, struct task_struct *p)
  1481. {
  1482. /*
  1483. * If there are other RT tasks then we will reschedule
  1484. * and the scheduling of the other RT tasks will handle
  1485. * the balancing. But if we are the last RT task
  1486. * we may need to handle the pulling of RT tasks
  1487. * now.
  1488. */
  1489. if (p->on_rq && !rq->rt.rt_nr_running)
  1490. pull_rt_task(rq);
  1491. }
  1492. void init_sched_rt_class(void)
  1493. {
  1494. unsigned int i;
  1495. for_each_possible_cpu(i) {
  1496. zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
  1497. GFP_KERNEL, cpu_to_node(i));
  1498. }
  1499. }
  1500. #endif /* CONFIG_SMP */
  1501. /*
  1502. * When switching a task to RT, we may overload the runqueue
  1503. * with RT tasks. In this case we try to push them off to
  1504. * other runqueues.
  1505. */
  1506. static void switched_to_rt(struct rq *rq, struct task_struct *p)
  1507. {
  1508. int check_resched = 1;
  1509. /*
  1510. * If we are already running, then there's nothing
  1511. * that needs to be done. But if we are not running
  1512. * we may need to preempt the current running task.
  1513. * If that current running task is also an RT task
  1514. * then see if we can move to another run queue.
  1515. */
  1516. if (p->on_rq && rq->curr != p) {
  1517. #ifdef CONFIG_SMP
  1518. if (rq->rt.overloaded && push_rt_task(rq) &&
  1519. /* Don't resched if we changed runqueues */
  1520. rq != task_rq(p))
  1521. check_resched = 0;
  1522. #endif /* CONFIG_SMP */
  1523. if (check_resched && p->prio < rq->curr->prio)
  1524. resched_task(rq->curr);
  1525. }
  1526. }
  1527. /*
  1528. * Priority of the task has changed. This may cause
  1529. * us to initiate a push or pull.
  1530. */
  1531. static void
  1532. prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
  1533. {
  1534. if (!p->on_rq)
  1535. return;
  1536. if (rq->curr == p) {
  1537. #ifdef CONFIG_SMP
  1538. /*
  1539. * If our priority decreases while running, we
  1540. * may need to pull tasks to this runqueue.
  1541. */
  1542. if (oldprio < p->prio)
  1543. pull_rt_task(rq);
  1544. /*
  1545. * If there's a higher priority task waiting to run
  1546. * then reschedule. Note, the above pull_rt_task
  1547. * can release the rq lock and p could migrate.
  1548. * Only reschedule if p is still on the same runqueue.
  1549. */
  1550. if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
  1551. resched_task(p);
  1552. #else
  1553. /* For UP simply resched on drop of prio */
  1554. if (oldprio < p->prio)
  1555. resched_task(p);
  1556. #endif /* CONFIG_SMP */
  1557. } else {
  1558. /*
  1559. * This task is not running, but if it is
  1560. * greater than the current running task
  1561. * then reschedule.
  1562. */
  1563. if (p->prio < rq->curr->prio)
  1564. resched_task(rq->curr);
  1565. }
  1566. }
  1567. static void watchdog(struct rq *rq, struct task_struct *p)
  1568. {
  1569. unsigned long soft, hard;
  1570. /* max may change after cur was read, this will be fixed next tick */
  1571. soft = task_rlimit(p, RLIMIT_RTTIME);
  1572. hard = task_rlimit_max(p, RLIMIT_RTTIME);
  1573. if (soft != RLIM_INFINITY) {
  1574. unsigned long next;
  1575. p->rt.timeout++;
  1576. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1577. if (p->rt.timeout > next)
  1578. p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
  1579. }
  1580. }
  1581. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1582. {
  1583. update_curr_rt(rq);
  1584. watchdog(rq, p);
  1585. /*
  1586. * RR tasks need a special form of timeslice management.
  1587. * FIFO tasks have no timeslices.
  1588. */
  1589. if (p->policy != SCHED_RR)
  1590. return;
  1591. if (--p->rt.time_slice)
  1592. return;
  1593. p->rt.time_slice = DEF_TIMESLICE;
  1594. /*
  1595. * Requeue to the end of queue if we are not the only element
  1596. * on the queue:
  1597. */
  1598. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1599. requeue_task_rt(rq, p, 0);
  1600. set_tsk_need_resched(p);
  1601. }
  1602. }
  1603. static void set_curr_task_rt(struct rq *rq)
  1604. {
  1605. struct task_struct *p = rq->curr;
  1606. p->se.exec_start = rq->clock_task;
  1607. /* The running task is never eligible for pushing */
  1608. dequeue_pushable_task(rq, p);
  1609. }
  1610. static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
  1611. {
  1612. /*
  1613. * Time slice is 0 for SCHED_FIFO tasks
  1614. */
  1615. if (task->policy == SCHED_RR)
  1616. return DEF_TIMESLICE;
  1617. else
  1618. return 0;
  1619. }
  1620. const struct sched_class rt_sched_class = {
  1621. .next = &fair_sched_class,
  1622. .enqueue_task = enqueue_task_rt,
  1623. .dequeue_task = dequeue_task_rt,
  1624. .yield_task = yield_task_rt,
  1625. .check_preempt_curr = check_preempt_curr_rt,
  1626. .pick_next_task = pick_next_task_rt,
  1627. .put_prev_task = put_prev_task_rt,
  1628. #ifdef CONFIG_SMP
  1629. .select_task_rq = select_task_rq_rt,
  1630. .set_cpus_allowed = set_cpus_allowed_rt,
  1631. .rq_online = rq_online_rt,
  1632. .rq_offline = rq_offline_rt,
  1633. .pre_schedule = pre_schedule_rt,
  1634. .post_schedule = post_schedule_rt,
  1635. .task_woken = task_woken_rt,
  1636. .switched_from = switched_from_rt,
  1637. #endif
  1638. .set_curr_task = set_curr_task_rt,
  1639. .task_tick = task_tick_rt,
  1640. .get_rr_interval = get_rr_interval_rt,
  1641. .prio_changed = prio_changed_rt,
  1642. .switched_to = switched_to_rt,
  1643. };
  1644. #ifdef CONFIG_SCHED_DEBUG
  1645. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1646. void print_rt_stats(struct seq_file *m, int cpu)
  1647. {
  1648. rt_rq_iter_t iter;
  1649. struct rt_rq *rt_rq;
  1650. rcu_read_lock();
  1651. for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
  1652. print_rt_rq(m, cpu, rt_rq);
  1653. rcu_read_unlock();
  1654. }
  1655. #endif /* CONFIG_SCHED_DEBUG */