core.c 194 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #ifdef CONFIG_PARAVIRT
  76. #include <asm/paravirt.h>
  77. #endif
  78. #include "sched.h"
  79. #include "../workqueue_sched.h"
  80. #define CREATE_TRACE_POINTS
  81. #include <trace/events/sched.h>
  82. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  83. {
  84. unsigned long delta;
  85. ktime_t soft, hard, now;
  86. for (;;) {
  87. if (hrtimer_active(period_timer))
  88. break;
  89. now = hrtimer_cb_get_time(period_timer);
  90. hrtimer_forward(period_timer, now, period);
  91. soft = hrtimer_get_softexpires(period_timer);
  92. hard = hrtimer_get_expires(period_timer);
  93. delta = ktime_to_ns(ktime_sub(hard, soft));
  94. __hrtimer_start_range_ns(period_timer, soft, delta,
  95. HRTIMER_MODE_ABS_PINNED, 0);
  96. }
  97. }
  98. DEFINE_MUTEX(sched_domains_mutex);
  99. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  100. static void update_rq_clock_task(struct rq *rq, s64 delta);
  101. void update_rq_clock(struct rq *rq)
  102. {
  103. s64 delta;
  104. if (rq->skip_clock_update > 0)
  105. return;
  106. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  107. rq->clock += delta;
  108. update_rq_clock_task(rq, delta);
  109. }
  110. /*
  111. * Debugging: various feature bits
  112. */
  113. #define SCHED_FEAT(name, enabled) \
  114. (1UL << __SCHED_FEAT_##name) * enabled |
  115. const_debug unsigned int sysctl_sched_features =
  116. #include "features.h"
  117. 0;
  118. #undef SCHED_FEAT
  119. #ifdef CONFIG_SCHED_DEBUG
  120. #define SCHED_FEAT(name, enabled) \
  121. #name ,
  122. static __read_mostly char *sched_feat_names[] = {
  123. #include "features.h"
  124. NULL
  125. };
  126. #undef SCHED_FEAT
  127. static int sched_feat_show(struct seq_file *m, void *v)
  128. {
  129. int i;
  130. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  131. if (!(sysctl_sched_features & (1UL << i)))
  132. seq_puts(m, "NO_");
  133. seq_printf(m, "%s ", sched_feat_names[i]);
  134. }
  135. seq_puts(m, "\n");
  136. return 0;
  137. }
  138. #ifdef HAVE_JUMP_LABEL
  139. #define jump_label_key__true jump_label_key_enabled
  140. #define jump_label_key__false jump_label_key_disabled
  141. #define SCHED_FEAT(name, enabled) \
  142. jump_label_key__##enabled ,
  143. struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
  144. #include "features.h"
  145. };
  146. #undef SCHED_FEAT
  147. static void sched_feat_disable(int i)
  148. {
  149. if (jump_label_enabled(&sched_feat_keys[i]))
  150. jump_label_dec(&sched_feat_keys[i]);
  151. }
  152. static void sched_feat_enable(int i)
  153. {
  154. if (!jump_label_enabled(&sched_feat_keys[i]))
  155. jump_label_inc(&sched_feat_keys[i]);
  156. }
  157. #else
  158. static void sched_feat_disable(int i) { };
  159. static void sched_feat_enable(int i) { };
  160. #endif /* HAVE_JUMP_LABEL */
  161. static ssize_t
  162. sched_feat_write(struct file *filp, const char __user *ubuf,
  163. size_t cnt, loff_t *ppos)
  164. {
  165. char buf[64];
  166. char *cmp;
  167. int neg = 0;
  168. int i;
  169. if (cnt > 63)
  170. cnt = 63;
  171. if (copy_from_user(&buf, ubuf, cnt))
  172. return -EFAULT;
  173. buf[cnt] = 0;
  174. cmp = strstrip(buf);
  175. if (strncmp(cmp, "NO_", 3) == 0) {
  176. neg = 1;
  177. cmp += 3;
  178. }
  179. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  180. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  181. if (neg) {
  182. sysctl_sched_features &= ~(1UL << i);
  183. sched_feat_disable(i);
  184. } else {
  185. sysctl_sched_features |= (1UL << i);
  186. sched_feat_enable(i);
  187. }
  188. break;
  189. }
  190. }
  191. if (i == __SCHED_FEAT_NR)
  192. return -EINVAL;
  193. *ppos += cnt;
  194. return cnt;
  195. }
  196. static int sched_feat_open(struct inode *inode, struct file *filp)
  197. {
  198. return single_open(filp, sched_feat_show, NULL);
  199. }
  200. static const struct file_operations sched_feat_fops = {
  201. .open = sched_feat_open,
  202. .write = sched_feat_write,
  203. .read = seq_read,
  204. .llseek = seq_lseek,
  205. .release = single_release,
  206. };
  207. static __init int sched_init_debug(void)
  208. {
  209. debugfs_create_file("sched_features", 0644, NULL, NULL,
  210. &sched_feat_fops);
  211. return 0;
  212. }
  213. late_initcall(sched_init_debug);
  214. #endif /* CONFIG_SCHED_DEBUG */
  215. /*
  216. * Number of tasks to iterate in a single balance run.
  217. * Limited because this is done with IRQs disabled.
  218. */
  219. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  220. /*
  221. * period over which we average the RT time consumption, measured
  222. * in ms.
  223. *
  224. * default: 1s
  225. */
  226. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  227. /*
  228. * period over which we measure -rt task cpu usage in us.
  229. * default: 1s
  230. */
  231. unsigned int sysctl_sched_rt_period = 1000000;
  232. __read_mostly int scheduler_running;
  233. /*
  234. * part of the period that we allow rt tasks to run in us.
  235. * default: 0.95s
  236. */
  237. int sysctl_sched_rt_runtime = 950000;
  238. /*
  239. * __task_rq_lock - lock the rq @p resides on.
  240. */
  241. static inline struct rq *__task_rq_lock(struct task_struct *p)
  242. __acquires(rq->lock)
  243. {
  244. struct rq *rq;
  245. lockdep_assert_held(&p->pi_lock);
  246. for (;;) {
  247. rq = task_rq(p);
  248. raw_spin_lock(&rq->lock);
  249. if (likely(rq == task_rq(p)))
  250. return rq;
  251. raw_spin_unlock(&rq->lock);
  252. }
  253. }
  254. /*
  255. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  256. */
  257. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  258. __acquires(p->pi_lock)
  259. __acquires(rq->lock)
  260. {
  261. struct rq *rq;
  262. for (;;) {
  263. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  264. rq = task_rq(p);
  265. raw_spin_lock(&rq->lock);
  266. if (likely(rq == task_rq(p)))
  267. return rq;
  268. raw_spin_unlock(&rq->lock);
  269. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  270. }
  271. }
  272. static void __task_rq_unlock(struct rq *rq)
  273. __releases(rq->lock)
  274. {
  275. raw_spin_unlock(&rq->lock);
  276. }
  277. static inline void
  278. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  279. __releases(rq->lock)
  280. __releases(p->pi_lock)
  281. {
  282. raw_spin_unlock(&rq->lock);
  283. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  284. }
  285. /*
  286. * this_rq_lock - lock this runqueue and disable interrupts.
  287. */
  288. static struct rq *this_rq_lock(void)
  289. __acquires(rq->lock)
  290. {
  291. struct rq *rq;
  292. local_irq_disable();
  293. rq = this_rq();
  294. raw_spin_lock(&rq->lock);
  295. return rq;
  296. }
  297. #ifdef CONFIG_SCHED_HRTICK
  298. /*
  299. * Use HR-timers to deliver accurate preemption points.
  300. *
  301. * Its all a bit involved since we cannot program an hrt while holding the
  302. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  303. * reschedule event.
  304. *
  305. * When we get rescheduled we reprogram the hrtick_timer outside of the
  306. * rq->lock.
  307. */
  308. static void hrtick_clear(struct rq *rq)
  309. {
  310. if (hrtimer_active(&rq->hrtick_timer))
  311. hrtimer_cancel(&rq->hrtick_timer);
  312. }
  313. /*
  314. * High-resolution timer tick.
  315. * Runs from hardirq context with interrupts disabled.
  316. */
  317. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  318. {
  319. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  320. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  321. raw_spin_lock(&rq->lock);
  322. update_rq_clock(rq);
  323. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  324. raw_spin_unlock(&rq->lock);
  325. return HRTIMER_NORESTART;
  326. }
  327. #ifdef CONFIG_SMP
  328. /*
  329. * called from hardirq (IPI) context
  330. */
  331. static void __hrtick_start(void *arg)
  332. {
  333. struct rq *rq = arg;
  334. raw_spin_lock(&rq->lock);
  335. hrtimer_restart(&rq->hrtick_timer);
  336. rq->hrtick_csd_pending = 0;
  337. raw_spin_unlock(&rq->lock);
  338. }
  339. /*
  340. * Called to set the hrtick timer state.
  341. *
  342. * called with rq->lock held and irqs disabled
  343. */
  344. void hrtick_start(struct rq *rq, u64 delay)
  345. {
  346. struct hrtimer *timer = &rq->hrtick_timer;
  347. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  348. hrtimer_set_expires(timer, time);
  349. if (rq == this_rq()) {
  350. hrtimer_restart(timer);
  351. } else if (!rq->hrtick_csd_pending) {
  352. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  353. rq->hrtick_csd_pending = 1;
  354. }
  355. }
  356. static int
  357. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  358. {
  359. int cpu = (int)(long)hcpu;
  360. switch (action) {
  361. case CPU_UP_CANCELED:
  362. case CPU_UP_CANCELED_FROZEN:
  363. case CPU_DOWN_PREPARE:
  364. case CPU_DOWN_PREPARE_FROZEN:
  365. case CPU_DEAD:
  366. case CPU_DEAD_FROZEN:
  367. hrtick_clear(cpu_rq(cpu));
  368. return NOTIFY_OK;
  369. }
  370. return NOTIFY_DONE;
  371. }
  372. static __init void init_hrtick(void)
  373. {
  374. hotcpu_notifier(hotplug_hrtick, 0);
  375. }
  376. #else
  377. /*
  378. * Called to set the hrtick timer state.
  379. *
  380. * called with rq->lock held and irqs disabled
  381. */
  382. void hrtick_start(struct rq *rq, u64 delay)
  383. {
  384. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  385. HRTIMER_MODE_REL_PINNED, 0);
  386. }
  387. static inline void init_hrtick(void)
  388. {
  389. }
  390. #endif /* CONFIG_SMP */
  391. static void init_rq_hrtick(struct rq *rq)
  392. {
  393. #ifdef CONFIG_SMP
  394. rq->hrtick_csd_pending = 0;
  395. rq->hrtick_csd.flags = 0;
  396. rq->hrtick_csd.func = __hrtick_start;
  397. rq->hrtick_csd.info = rq;
  398. #endif
  399. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  400. rq->hrtick_timer.function = hrtick;
  401. }
  402. #else /* CONFIG_SCHED_HRTICK */
  403. static inline void hrtick_clear(struct rq *rq)
  404. {
  405. }
  406. static inline void init_rq_hrtick(struct rq *rq)
  407. {
  408. }
  409. static inline void init_hrtick(void)
  410. {
  411. }
  412. #endif /* CONFIG_SCHED_HRTICK */
  413. /*
  414. * resched_task - mark a task 'to be rescheduled now'.
  415. *
  416. * On UP this means the setting of the need_resched flag, on SMP it
  417. * might also involve a cross-CPU call to trigger the scheduler on
  418. * the target CPU.
  419. */
  420. #ifdef CONFIG_SMP
  421. #ifndef tsk_is_polling
  422. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  423. #endif
  424. void resched_task(struct task_struct *p)
  425. {
  426. int cpu;
  427. assert_raw_spin_locked(&task_rq(p)->lock);
  428. if (test_tsk_need_resched(p))
  429. return;
  430. set_tsk_need_resched(p);
  431. cpu = task_cpu(p);
  432. if (cpu == smp_processor_id())
  433. return;
  434. /* NEED_RESCHED must be visible before we test polling */
  435. smp_mb();
  436. if (!tsk_is_polling(p))
  437. smp_send_reschedule(cpu);
  438. }
  439. void resched_cpu(int cpu)
  440. {
  441. struct rq *rq = cpu_rq(cpu);
  442. unsigned long flags;
  443. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  444. return;
  445. resched_task(cpu_curr(cpu));
  446. raw_spin_unlock_irqrestore(&rq->lock, flags);
  447. }
  448. #ifdef CONFIG_NO_HZ
  449. /*
  450. * In the semi idle case, use the nearest busy cpu for migrating timers
  451. * from an idle cpu. This is good for power-savings.
  452. *
  453. * We don't do similar optimization for completely idle system, as
  454. * selecting an idle cpu will add more delays to the timers than intended
  455. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  456. */
  457. int get_nohz_timer_target(void)
  458. {
  459. int cpu = smp_processor_id();
  460. int i;
  461. struct sched_domain *sd;
  462. rcu_read_lock();
  463. for_each_domain(cpu, sd) {
  464. for_each_cpu(i, sched_domain_span(sd)) {
  465. if (!idle_cpu(i)) {
  466. cpu = i;
  467. goto unlock;
  468. }
  469. }
  470. }
  471. unlock:
  472. rcu_read_unlock();
  473. return cpu;
  474. }
  475. /*
  476. * When add_timer_on() enqueues a timer into the timer wheel of an
  477. * idle CPU then this timer might expire before the next timer event
  478. * which is scheduled to wake up that CPU. In case of a completely
  479. * idle system the next event might even be infinite time into the
  480. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  481. * leaves the inner idle loop so the newly added timer is taken into
  482. * account when the CPU goes back to idle and evaluates the timer
  483. * wheel for the next timer event.
  484. */
  485. void wake_up_idle_cpu(int cpu)
  486. {
  487. struct rq *rq = cpu_rq(cpu);
  488. if (cpu == smp_processor_id())
  489. return;
  490. /*
  491. * This is safe, as this function is called with the timer
  492. * wheel base lock of (cpu) held. When the CPU is on the way
  493. * to idle and has not yet set rq->curr to idle then it will
  494. * be serialized on the timer wheel base lock and take the new
  495. * timer into account automatically.
  496. */
  497. if (rq->curr != rq->idle)
  498. return;
  499. /*
  500. * We can set TIF_RESCHED on the idle task of the other CPU
  501. * lockless. The worst case is that the other CPU runs the
  502. * idle task through an additional NOOP schedule()
  503. */
  504. set_tsk_need_resched(rq->idle);
  505. /* NEED_RESCHED must be visible before we test polling */
  506. smp_mb();
  507. if (!tsk_is_polling(rq->idle))
  508. smp_send_reschedule(cpu);
  509. }
  510. static inline bool got_nohz_idle_kick(void)
  511. {
  512. int cpu = smp_processor_id();
  513. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  514. }
  515. #else /* CONFIG_NO_HZ */
  516. static inline bool got_nohz_idle_kick(void)
  517. {
  518. return false;
  519. }
  520. #endif /* CONFIG_NO_HZ */
  521. void sched_avg_update(struct rq *rq)
  522. {
  523. s64 period = sched_avg_period();
  524. while ((s64)(rq->clock - rq->age_stamp) > period) {
  525. /*
  526. * Inline assembly required to prevent the compiler
  527. * optimising this loop into a divmod call.
  528. * See __iter_div_u64_rem() for another example of this.
  529. */
  530. asm("" : "+rm" (rq->age_stamp));
  531. rq->age_stamp += period;
  532. rq->rt_avg /= 2;
  533. }
  534. }
  535. #else /* !CONFIG_SMP */
  536. void resched_task(struct task_struct *p)
  537. {
  538. assert_raw_spin_locked(&task_rq(p)->lock);
  539. set_tsk_need_resched(p);
  540. }
  541. #endif /* CONFIG_SMP */
  542. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  543. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  544. /*
  545. * Iterate task_group tree rooted at *from, calling @down when first entering a
  546. * node and @up when leaving it for the final time.
  547. *
  548. * Caller must hold rcu_lock or sufficient equivalent.
  549. */
  550. int walk_tg_tree_from(struct task_group *from,
  551. tg_visitor down, tg_visitor up, void *data)
  552. {
  553. struct task_group *parent, *child;
  554. int ret;
  555. parent = from;
  556. down:
  557. ret = (*down)(parent, data);
  558. if (ret)
  559. goto out;
  560. list_for_each_entry_rcu(child, &parent->children, siblings) {
  561. parent = child;
  562. goto down;
  563. up:
  564. continue;
  565. }
  566. ret = (*up)(parent, data);
  567. if (ret || parent == from)
  568. goto out;
  569. child = parent;
  570. parent = parent->parent;
  571. if (parent)
  572. goto up;
  573. out:
  574. return ret;
  575. }
  576. int tg_nop(struct task_group *tg, void *data)
  577. {
  578. return 0;
  579. }
  580. #endif
  581. void update_cpu_load(struct rq *this_rq);
  582. static void set_load_weight(struct task_struct *p)
  583. {
  584. int prio = p->static_prio - MAX_RT_PRIO;
  585. struct load_weight *load = &p->se.load;
  586. /*
  587. * SCHED_IDLE tasks get minimal weight:
  588. */
  589. if (p->policy == SCHED_IDLE) {
  590. load->weight = scale_load(WEIGHT_IDLEPRIO);
  591. load->inv_weight = WMULT_IDLEPRIO;
  592. return;
  593. }
  594. load->weight = scale_load(prio_to_weight[prio]);
  595. load->inv_weight = prio_to_wmult[prio];
  596. }
  597. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  598. {
  599. update_rq_clock(rq);
  600. sched_info_queued(p);
  601. p->sched_class->enqueue_task(rq, p, flags);
  602. }
  603. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  604. {
  605. update_rq_clock(rq);
  606. sched_info_dequeued(p);
  607. p->sched_class->dequeue_task(rq, p, flags);
  608. }
  609. /*
  610. * activate_task - move a task to the runqueue.
  611. */
  612. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  613. {
  614. if (task_contributes_to_load(p))
  615. rq->nr_uninterruptible--;
  616. enqueue_task(rq, p, flags);
  617. }
  618. /*
  619. * deactivate_task - remove a task from the runqueue.
  620. */
  621. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  622. {
  623. if (task_contributes_to_load(p))
  624. rq->nr_uninterruptible++;
  625. dequeue_task(rq, p, flags);
  626. }
  627. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  628. /*
  629. * There are no locks covering percpu hardirq/softirq time.
  630. * They are only modified in account_system_vtime, on corresponding CPU
  631. * with interrupts disabled. So, writes are safe.
  632. * They are read and saved off onto struct rq in update_rq_clock().
  633. * This may result in other CPU reading this CPU's irq time and can
  634. * race with irq/account_system_vtime on this CPU. We would either get old
  635. * or new value with a side effect of accounting a slice of irq time to wrong
  636. * task when irq is in progress while we read rq->clock. That is a worthy
  637. * compromise in place of having locks on each irq in account_system_time.
  638. */
  639. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  640. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  641. static DEFINE_PER_CPU(u64, irq_start_time);
  642. static int sched_clock_irqtime;
  643. void enable_sched_clock_irqtime(void)
  644. {
  645. sched_clock_irqtime = 1;
  646. }
  647. void disable_sched_clock_irqtime(void)
  648. {
  649. sched_clock_irqtime = 0;
  650. }
  651. #ifndef CONFIG_64BIT
  652. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  653. static inline void irq_time_write_begin(void)
  654. {
  655. __this_cpu_inc(irq_time_seq.sequence);
  656. smp_wmb();
  657. }
  658. static inline void irq_time_write_end(void)
  659. {
  660. smp_wmb();
  661. __this_cpu_inc(irq_time_seq.sequence);
  662. }
  663. static inline u64 irq_time_read(int cpu)
  664. {
  665. u64 irq_time;
  666. unsigned seq;
  667. do {
  668. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  669. irq_time = per_cpu(cpu_softirq_time, cpu) +
  670. per_cpu(cpu_hardirq_time, cpu);
  671. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  672. return irq_time;
  673. }
  674. #else /* CONFIG_64BIT */
  675. static inline void irq_time_write_begin(void)
  676. {
  677. }
  678. static inline void irq_time_write_end(void)
  679. {
  680. }
  681. static inline u64 irq_time_read(int cpu)
  682. {
  683. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  684. }
  685. #endif /* CONFIG_64BIT */
  686. /*
  687. * Called before incrementing preempt_count on {soft,}irq_enter
  688. * and before decrementing preempt_count on {soft,}irq_exit.
  689. */
  690. void account_system_vtime(struct task_struct *curr)
  691. {
  692. unsigned long flags;
  693. s64 delta;
  694. int cpu;
  695. if (!sched_clock_irqtime)
  696. return;
  697. local_irq_save(flags);
  698. cpu = smp_processor_id();
  699. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  700. __this_cpu_add(irq_start_time, delta);
  701. irq_time_write_begin();
  702. /*
  703. * We do not account for softirq time from ksoftirqd here.
  704. * We want to continue accounting softirq time to ksoftirqd thread
  705. * in that case, so as not to confuse scheduler with a special task
  706. * that do not consume any time, but still wants to run.
  707. */
  708. if (hardirq_count())
  709. __this_cpu_add(cpu_hardirq_time, delta);
  710. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  711. __this_cpu_add(cpu_softirq_time, delta);
  712. irq_time_write_end();
  713. local_irq_restore(flags);
  714. }
  715. EXPORT_SYMBOL_GPL(account_system_vtime);
  716. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  717. #ifdef CONFIG_PARAVIRT
  718. static inline u64 steal_ticks(u64 steal)
  719. {
  720. if (unlikely(steal > NSEC_PER_SEC))
  721. return div_u64(steal, TICK_NSEC);
  722. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  723. }
  724. #endif
  725. static void update_rq_clock_task(struct rq *rq, s64 delta)
  726. {
  727. /*
  728. * In theory, the compile should just see 0 here, and optimize out the call
  729. * to sched_rt_avg_update. But I don't trust it...
  730. */
  731. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  732. s64 steal = 0, irq_delta = 0;
  733. #endif
  734. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  735. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  736. /*
  737. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  738. * this case when a previous update_rq_clock() happened inside a
  739. * {soft,}irq region.
  740. *
  741. * When this happens, we stop ->clock_task and only update the
  742. * prev_irq_time stamp to account for the part that fit, so that a next
  743. * update will consume the rest. This ensures ->clock_task is
  744. * monotonic.
  745. *
  746. * It does however cause some slight miss-attribution of {soft,}irq
  747. * time, a more accurate solution would be to update the irq_time using
  748. * the current rq->clock timestamp, except that would require using
  749. * atomic ops.
  750. */
  751. if (irq_delta > delta)
  752. irq_delta = delta;
  753. rq->prev_irq_time += irq_delta;
  754. delta -= irq_delta;
  755. #endif
  756. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  757. if (static_branch((&paravirt_steal_rq_enabled))) {
  758. u64 st;
  759. steal = paravirt_steal_clock(cpu_of(rq));
  760. steal -= rq->prev_steal_time_rq;
  761. if (unlikely(steal > delta))
  762. steal = delta;
  763. st = steal_ticks(steal);
  764. steal = st * TICK_NSEC;
  765. rq->prev_steal_time_rq += steal;
  766. delta -= steal;
  767. }
  768. #endif
  769. rq->clock_task += delta;
  770. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  771. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  772. sched_rt_avg_update(rq, irq_delta + steal);
  773. #endif
  774. }
  775. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  776. static int irqtime_account_hi_update(void)
  777. {
  778. u64 *cpustat = kcpustat_this_cpu->cpustat;
  779. unsigned long flags;
  780. u64 latest_ns;
  781. int ret = 0;
  782. local_irq_save(flags);
  783. latest_ns = this_cpu_read(cpu_hardirq_time);
  784. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  785. ret = 1;
  786. local_irq_restore(flags);
  787. return ret;
  788. }
  789. static int irqtime_account_si_update(void)
  790. {
  791. u64 *cpustat = kcpustat_this_cpu->cpustat;
  792. unsigned long flags;
  793. u64 latest_ns;
  794. int ret = 0;
  795. local_irq_save(flags);
  796. latest_ns = this_cpu_read(cpu_softirq_time);
  797. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
  798. ret = 1;
  799. local_irq_restore(flags);
  800. return ret;
  801. }
  802. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  803. #define sched_clock_irqtime (0)
  804. #endif
  805. void sched_set_stop_task(int cpu, struct task_struct *stop)
  806. {
  807. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  808. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  809. if (stop) {
  810. /*
  811. * Make it appear like a SCHED_FIFO task, its something
  812. * userspace knows about and won't get confused about.
  813. *
  814. * Also, it will make PI more or less work without too
  815. * much confusion -- but then, stop work should not
  816. * rely on PI working anyway.
  817. */
  818. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  819. stop->sched_class = &stop_sched_class;
  820. }
  821. cpu_rq(cpu)->stop = stop;
  822. if (old_stop) {
  823. /*
  824. * Reset it back to a normal scheduling class so that
  825. * it can die in pieces.
  826. */
  827. old_stop->sched_class = &rt_sched_class;
  828. }
  829. }
  830. /*
  831. * __normal_prio - return the priority that is based on the static prio
  832. */
  833. static inline int __normal_prio(struct task_struct *p)
  834. {
  835. return p->static_prio;
  836. }
  837. /*
  838. * Calculate the expected normal priority: i.e. priority
  839. * without taking RT-inheritance into account. Might be
  840. * boosted by interactivity modifiers. Changes upon fork,
  841. * setprio syscalls, and whenever the interactivity
  842. * estimator recalculates.
  843. */
  844. static inline int normal_prio(struct task_struct *p)
  845. {
  846. int prio;
  847. if (task_has_rt_policy(p))
  848. prio = MAX_RT_PRIO-1 - p->rt_priority;
  849. else
  850. prio = __normal_prio(p);
  851. return prio;
  852. }
  853. /*
  854. * Calculate the current priority, i.e. the priority
  855. * taken into account by the scheduler. This value might
  856. * be boosted by RT tasks, or might be boosted by
  857. * interactivity modifiers. Will be RT if the task got
  858. * RT-boosted. If not then it returns p->normal_prio.
  859. */
  860. static int effective_prio(struct task_struct *p)
  861. {
  862. p->normal_prio = normal_prio(p);
  863. /*
  864. * If we are RT tasks or we were boosted to RT priority,
  865. * keep the priority unchanged. Otherwise, update priority
  866. * to the normal priority:
  867. */
  868. if (!rt_prio(p->prio))
  869. return p->normal_prio;
  870. return p->prio;
  871. }
  872. /**
  873. * task_curr - is this task currently executing on a CPU?
  874. * @p: the task in question.
  875. */
  876. inline int task_curr(const struct task_struct *p)
  877. {
  878. return cpu_curr(task_cpu(p)) == p;
  879. }
  880. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  881. const struct sched_class *prev_class,
  882. int oldprio)
  883. {
  884. if (prev_class != p->sched_class) {
  885. if (prev_class->switched_from)
  886. prev_class->switched_from(rq, p);
  887. p->sched_class->switched_to(rq, p);
  888. } else if (oldprio != p->prio)
  889. p->sched_class->prio_changed(rq, p, oldprio);
  890. }
  891. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  892. {
  893. const struct sched_class *class;
  894. if (p->sched_class == rq->curr->sched_class) {
  895. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  896. } else {
  897. for_each_class(class) {
  898. if (class == rq->curr->sched_class)
  899. break;
  900. if (class == p->sched_class) {
  901. resched_task(rq->curr);
  902. break;
  903. }
  904. }
  905. }
  906. /*
  907. * A queue event has occurred, and we're going to schedule. In
  908. * this case, we can save a useless back to back clock update.
  909. */
  910. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  911. rq->skip_clock_update = 1;
  912. }
  913. #ifdef CONFIG_SMP
  914. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  915. {
  916. #ifdef CONFIG_SCHED_DEBUG
  917. /*
  918. * We should never call set_task_cpu() on a blocked task,
  919. * ttwu() will sort out the placement.
  920. */
  921. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  922. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  923. #ifdef CONFIG_LOCKDEP
  924. /*
  925. * The caller should hold either p->pi_lock or rq->lock, when changing
  926. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  927. *
  928. * sched_move_task() holds both and thus holding either pins the cgroup,
  929. * see set_task_rq().
  930. *
  931. * Furthermore, all task_rq users should acquire both locks, see
  932. * task_rq_lock().
  933. */
  934. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  935. lockdep_is_held(&task_rq(p)->lock)));
  936. #endif
  937. #endif
  938. trace_sched_migrate_task(p, new_cpu);
  939. if (task_cpu(p) != new_cpu) {
  940. p->se.nr_migrations++;
  941. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  942. }
  943. __set_task_cpu(p, new_cpu);
  944. }
  945. struct migration_arg {
  946. struct task_struct *task;
  947. int dest_cpu;
  948. };
  949. static int migration_cpu_stop(void *data);
  950. /*
  951. * wait_task_inactive - wait for a thread to unschedule.
  952. *
  953. * If @match_state is nonzero, it's the @p->state value just checked and
  954. * not expected to change. If it changes, i.e. @p might have woken up,
  955. * then return zero. When we succeed in waiting for @p to be off its CPU,
  956. * we return a positive number (its total switch count). If a second call
  957. * a short while later returns the same number, the caller can be sure that
  958. * @p has remained unscheduled the whole time.
  959. *
  960. * The caller must ensure that the task *will* unschedule sometime soon,
  961. * else this function might spin for a *long* time. This function can't
  962. * be called with interrupts off, or it may introduce deadlock with
  963. * smp_call_function() if an IPI is sent by the same process we are
  964. * waiting to become inactive.
  965. */
  966. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  967. {
  968. unsigned long flags;
  969. int running, on_rq;
  970. unsigned long ncsw;
  971. struct rq *rq;
  972. for (;;) {
  973. /*
  974. * We do the initial early heuristics without holding
  975. * any task-queue locks at all. We'll only try to get
  976. * the runqueue lock when things look like they will
  977. * work out!
  978. */
  979. rq = task_rq(p);
  980. /*
  981. * If the task is actively running on another CPU
  982. * still, just relax and busy-wait without holding
  983. * any locks.
  984. *
  985. * NOTE! Since we don't hold any locks, it's not
  986. * even sure that "rq" stays as the right runqueue!
  987. * But we don't care, since "task_running()" will
  988. * return false if the runqueue has changed and p
  989. * is actually now running somewhere else!
  990. */
  991. while (task_running(rq, p)) {
  992. if (match_state && unlikely(p->state != match_state))
  993. return 0;
  994. cpu_relax();
  995. }
  996. /*
  997. * Ok, time to look more closely! We need the rq
  998. * lock now, to be *sure*. If we're wrong, we'll
  999. * just go back and repeat.
  1000. */
  1001. rq = task_rq_lock(p, &flags);
  1002. trace_sched_wait_task(p);
  1003. running = task_running(rq, p);
  1004. on_rq = p->on_rq;
  1005. ncsw = 0;
  1006. if (!match_state || p->state == match_state)
  1007. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1008. task_rq_unlock(rq, p, &flags);
  1009. /*
  1010. * If it changed from the expected state, bail out now.
  1011. */
  1012. if (unlikely(!ncsw))
  1013. break;
  1014. /*
  1015. * Was it really running after all now that we
  1016. * checked with the proper locks actually held?
  1017. *
  1018. * Oops. Go back and try again..
  1019. */
  1020. if (unlikely(running)) {
  1021. cpu_relax();
  1022. continue;
  1023. }
  1024. /*
  1025. * It's not enough that it's not actively running,
  1026. * it must be off the runqueue _entirely_, and not
  1027. * preempted!
  1028. *
  1029. * So if it was still runnable (but just not actively
  1030. * running right now), it's preempted, and we should
  1031. * yield - it could be a while.
  1032. */
  1033. if (unlikely(on_rq)) {
  1034. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1035. set_current_state(TASK_UNINTERRUPTIBLE);
  1036. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1037. continue;
  1038. }
  1039. /*
  1040. * Ahh, all good. It wasn't running, and it wasn't
  1041. * runnable, which means that it will never become
  1042. * running in the future either. We're all done!
  1043. */
  1044. break;
  1045. }
  1046. return ncsw;
  1047. }
  1048. /***
  1049. * kick_process - kick a running thread to enter/exit the kernel
  1050. * @p: the to-be-kicked thread
  1051. *
  1052. * Cause a process which is running on another CPU to enter
  1053. * kernel-mode, without any delay. (to get signals handled.)
  1054. *
  1055. * NOTE: this function doesn't have to take the runqueue lock,
  1056. * because all it wants to ensure is that the remote task enters
  1057. * the kernel. If the IPI races and the task has been migrated
  1058. * to another CPU then no harm is done and the purpose has been
  1059. * achieved as well.
  1060. */
  1061. void kick_process(struct task_struct *p)
  1062. {
  1063. int cpu;
  1064. preempt_disable();
  1065. cpu = task_cpu(p);
  1066. if ((cpu != smp_processor_id()) && task_curr(p))
  1067. smp_send_reschedule(cpu);
  1068. preempt_enable();
  1069. }
  1070. EXPORT_SYMBOL_GPL(kick_process);
  1071. #endif /* CONFIG_SMP */
  1072. #ifdef CONFIG_SMP
  1073. /*
  1074. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1075. */
  1076. static int select_fallback_rq(int cpu, struct task_struct *p)
  1077. {
  1078. int dest_cpu;
  1079. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1080. /* Look for allowed, online CPU in same node. */
  1081. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1082. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1083. return dest_cpu;
  1084. /* Any allowed, online CPU? */
  1085. dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
  1086. if (dest_cpu < nr_cpu_ids)
  1087. return dest_cpu;
  1088. /* No more Mr. Nice Guy. */
  1089. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1090. /*
  1091. * Don't tell them about moving exiting tasks or
  1092. * kernel threads (both mm NULL), since they never
  1093. * leave kernel.
  1094. */
  1095. if (p->mm && printk_ratelimit()) {
  1096. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1097. task_pid_nr(p), p->comm, cpu);
  1098. }
  1099. return dest_cpu;
  1100. }
  1101. /*
  1102. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1103. */
  1104. static inline
  1105. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1106. {
  1107. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1108. /*
  1109. * In order not to call set_task_cpu() on a blocking task we need
  1110. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1111. * cpu.
  1112. *
  1113. * Since this is common to all placement strategies, this lives here.
  1114. *
  1115. * [ this allows ->select_task() to simply return task_cpu(p) and
  1116. * not worry about this generic constraint ]
  1117. */
  1118. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1119. !cpu_online(cpu)))
  1120. cpu = select_fallback_rq(task_cpu(p), p);
  1121. return cpu;
  1122. }
  1123. static void update_avg(u64 *avg, u64 sample)
  1124. {
  1125. s64 diff = sample - *avg;
  1126. *avg += diff >> 3;
  1127. }
  1128. #endif
  1129. static void
  1130. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1131. {
  1132. #ifdef CONFIG_SCHEDSTATS
  1133. struct rq *rq = this_rq();
  1134. #ifdef CONFIG_SMP
  1135. int this_cpu = smp_processor_id();
  1136. if (cpu == this_cpu) {
  1137. schedstat_inc(rq, ttwu_local);
  1138. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1139. } else {
  1140. struct sched_domain *sd;
  1141. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1142. rcu_read_lock();
  1143. for_each_domain(this_cpu, sd) {
  1144. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1145. schedstat_inc(sd, ttwu_wake_remote);
  1146. break;
  1147. }
  1148. }
  1149. rcu_read_unlock();
  1150. }
  1151. if (wake_flags & WF_MIGRATED)
  1152. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1153. #endif /* CONFIG_SMP */
  1154. schedstat_inc(rq, ttwu_count);
  1155. schedstat_inc(p, se.statistics.nr_wakeups);
  1156. if (wake_flags & WF_SYNC)
  1157. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1158. #endif /* CONFIG_SCHEDSTATS */
  1159. }
  1160. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1161. {
  1162. activate_task(rq, p, en_flags);
  1163. p->on_rq = 1;
  1164. /* if a worker is waking up, notify workqueue */
  1165. if (p->flags & PF_WQ_WORKER)
  1166. wq_worker_waking_up(p, cpu_of(rq));
  1167. }
  1168. /*
  1169. * Mark the task runnable and perform wakeup-preemption.
  1170. */
  1171. static void
  1172. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1173. {
  1174. trace_sched_wakeup(p, true);
  1175. check_preempt_curr(rq, p, wake_flags);
  1176. p->state = TASK_RUNNING;
  1177. #ifdef CONFIG_SMP
  1178. if (p->sched_class->task_woken)
  1179. p->sched_class->task_woken(rq, p);
  1180. if (rq->idle_stamp) {
  1181. u64 delta = rq->clock - rq->idle_stamp;
  1182. u64 max = 2*sysctl_sched_migration_cost;
  1183. if (delta > max)
  1184. rq->avg_idle = max;
  1185. else
  1186. update_avg(&rq->avg_idle, delta);
  1187. rq->idle_stamp = 0;
  1188. }
  1189. #endif
  1190. }
  1191. static void
  1192. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1193. {
  1194. #ifdef CONFIG_SMP
  1195. if (p->sched_contributes_to_load)
  1196. rq->nr_uninterruptible--;
  1197. #endif
  1198. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1199. ttwu_do_wakeup(rq, p, wake_flags);
  1200. }
  1201. /*
  1202. * Called in case the task @p isn't fully descheduled from its runqueue,
  1203. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1204. * since all we need to do is flip p->state to TASK_RUNNING, since
  1205. * the task is still ->on_rq.
  1206. */
  1207. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1208. {
  1209. struct rq *rq;
  1210. int ret = 0;
  1211. rq = __task_rq_lock(p);
  1212. if (p->on_rq) {
  1213. ttwu_do_wakeup(rq, p, wake_flags);
  1214. ret = 1;
  1215. }
  1216. __task_rq_unlock(rq);
  1217. return ret;
  1218. }
  1219. #ifdef CONFIG_SMP
  1220. static void sched_ttwu_pending(void)
  1221. {
  1222. struct rq *rq = this_rq();
  1223. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1224. struct task_struct *p;
  1225. raw_spin_lock(&rq->lock);
  1226. while (llist) {
  1227. p = llist_entry(llist, struct task_struct, wake_entry);
  1228. llist = llist_next(llist);
  1229. ttwu_do_activate(rq, p, 0);
  1230. }
  1231. raw_spin_unlock(&rq->lock);
  1232. }
  1233. void scheduler_ipi(void)
  1234. {
  1235. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1236. return;
  1237. /*
  1238. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1239. * traditionally all their work was done from the interrupt return
  1240. * path. Now that we actually do some work, we need to make sure
  1241. * we do call them.
  1242. *
  1243. * Some archs already do call them, luckily irq_enter/exit nest
  1244. * properly.
  1245. *
  1246. * Arguably we should visit all archs and update all handlers,
  1247. * however a fair share of IPIs are still resched only so this would
  1248. * somewhat pessimize the simple resched case.
  1249. */
  1250. irq_enter();
  1251. sched_ttwu_pending();
  1252. /*
  1253. * Check if someone kicked us for doing the nohz idle load balance.
  1254. */
  1255. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1256. this_rq()->idle_balance = 1;
  1257. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1258. }
  1259. irq_exit();
  1260. }
  1261. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1262. {
  1263. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1264. smp_send_reschedule(cpu);
  1265. }
  1266. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1267. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  1268. {
  1269. struct rq *rq;
  1270. int ret = 0;
  1271. rq = __task_rq_lock(p);
  1272. if (p->on_cpu) {
  1273. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1274. ttwu_do_wakeup(rq, p, wake_flags);
  1275. ret = 1;
  1276. }
  1277. __task_rq_unlock(rq);
  1278. return ret;
  1279. }
  1280. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1281. static inline int ttwu_share_cache(int this_cpu, int that_cpu)
  1282. {
  1283. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1284. }
  1285. #endif /* CONFIG_SMP */
  1286. static void ttwu_queue(struct task_struct *p, int cpu)
  1287. {
  1288. struct rq *rq = cpu_rq(cpu);
  1289. #if defined(CONFIG_SMP)
  1290. if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
  1291. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1292. ttwu_queue_remote(p, cpu);
  1293. return;
  1294. }
  1295. #endif
  1296. raw_spin_lock(&rq->lock);
  1297. ttwu_do_activate(rq, p, 0);
  1298. raw_spin_unlock(&rq->lock);
  1299. }
  1300. /**
  1301. * try_to_wake_up - wake up a thread
  1302. * @p: the thread to be awakened
  1303. * @state: the mask of task states that can be woken
  1304. * @wake_flags: wake modifier flags (WF_*)
  1305. *
  1306. * Put it on the run-queue if it's not already there. The "current"
  1307. * thread is always on the run-queue (except when the actual
  1308. * re-schedule is in progress), and as such you're allowed to do
  1309. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1310. * runnable without the overhead of this.
  1311. *
  1312. * Returns %true if @p was woken up, %false if it was already running
  1313. * or @state didn't match @p's state.
  1314. */
  1315. static int
  1316. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1317. {
  1318. unsigned long flags;
  1319. int cpu, success = 0;
  1320. smp_wmb();
  1321. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1322. if (!(p->state & state))
  1323. goto out;
  1324. success = 1; /* we're going to change ->state */
  1325. cpu = task_cpu(p);
  1326. if (p->on_rq && ttwu_remote(p, wake_flags))
  1327. goto stat;
  1328. #ifdef CONFIG_SMP
  1329. /*
  1330. * If the owning (remote) cpu is still in the middle of schedule() with
  1331. * this task as prev, wait until its done referencing the task.
  1332. */
  1333. while (p->on_cpu) {
  1334. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1335. /*
  1336. * In case the architecture enables interrupts in
  1337. * context_switch(), we cannot busy wait, since that
  1338. * would lead to deadlocks when an interrupt hits and
  1339. * tries to wake up @prev. So bail and do a complete
  1340. * remote wakeup.
  1341. */
  1342. if (ttwu_activate_remote(p, wake_flags))
  1343. goto stat;
  1344. #else
  1345. cpu_relax();
  1346. #endif
  1347. }
  1348. /*
  1349. * Pairs with the smp_wmb() in finish_lock_switch().
  1350. */
  1351. smp_rmb();
  1352. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1353. p->state = TASK_WAKING;
  1354. if (p->sched_class->task_waking)
  1355. p->sched_class->task_waking(p);
  1356. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1357. if (task_cpu(p) != cpu) {
  1358. wake_flags |= WF_MIGRATED;
  1359. set_task_cpu(p, cpu);
  1360. }
  1361. #endif /* CONFIG_SMP */
  1362. ttwu_queue(p, cpu);
  1363. stat:
  1364. ttwu_stat(p, cpu, wake_flags);
  1365. out:
  1366. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1367. return success;
  1368. }
  1369. /**
  1370. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1371. * @p: the thread to be awakened
  1372. *
  1373. * Put @p on the run-queue if it's not already there. The caller must
  1374. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1375. * the current task.
  1376. */
  1377. static void try_to_wake_up_local(struct task_struct *p)
  1378. {
  1379. struct rq *rq = task_rq(p);
  1380. BUG_ON(rq != this_rq());
  1381. BUG_ON(p == current);
  1382. lockdep_assert_held(&rq->lock);
  1383. if (!raw_spin_trylock(&p->pi_lock)) {
  1384. raw_spin_unlock(&rq->lock);
  1385. raw_spin_lock(&p->pi_lock);
  1386. raw_spin_lock(&rq->lock);
  1387. }
  1388. if (!(p->state & TASK_NORMAL))
  1389. goto out;
  1390. if (!p->on_rq)
  1391. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1392. ttwu_do_wakeup(rq, p, 0);
  1393. ttwu_stat(p, smp_processor_id(), 0);
  1394. out:
  1395. raw_spin_unlock(&p->pi_lock);
  1396. }
  1397. /**
  1398. * wake_up_process - Wake up a specific process
  1399. * @p: The process to be woken up.
  1400. *
  1401. * Attempt to wake up the nominated process and move it to the set of runnable
  1402. * processes. Returns 1 if the process was woken up, 0 if it was already
  1403. * running.
  1404. *
  1405. * It may be assumed that this function implies a write memory barrier before
  1406. * changing the task state if and only if any tasks are woken up.
  1407. */
  1408. int wake_up_process(struct task_struct *p)
  1409. {
  1410. return try_to_wake_up(p, TASK_ALL, 0);
  1411. }
  1412. EXPORT_SYMBOL(wake_up_process);
  1413. int wake_up_state(struct task_struct *p, unsigned int state)
  1414. {
  1415. return try_to_wake_up(p, state, 0);
  1416. }
  1417. /*
  1418. * Perform scheduler related setup for a newly forked process p.
  1419. * p is forked by current.
  1420. *
  1421. * __sched_fork() is basic setup used by init_idle() too:
  1422. */
  1423. static void __sched_fork(struct task_struct *p)
  1424. {
  1425. p->on_rq = 0;
  1426. p->se.on_rq = 0;
  1427. p->se.exec_start = 0;
  1428. p->se.sum_exec_runtime = 0;
  1429. p->se.prev_sum_exec_runtime = 0;
  1430. p->se.nr_migrations = 0;
  1431. p->se.vruntime = 0;
  1432. INIT_LIST_HEAD(&p->se.group_node);
  1433. #ifdef CONFIG_SCHEDSTATS
  1434. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1435. #endif
  1436. INIT_LIST_HEAD(&p->rt.run_list);
  1437. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1438. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1439. #endif
  1440. }
  1441. /*
  1442. * fork()/clone()-time setup:
  1443. */
  1444. void sched_fork(struct task_struct *p)
  1445. {
  1446. unsigned long flags;
  1447. int cpu = get_cpu();
  1448. __sched_fork(p);
  1449. /*
  1450. * We mark the process as running here. This guarantees that
  1451. * nobody will actually run it, and a signal or other external
  1452. * event cannot wake it up and insert it on the runqueue either.
  1453. */
  1454. p->state = TASK_RUNNING;
  1455. /*
  1456. * Make sure we do not leak PI boosting priority to the child.
  1457. */
  1458. p->prio = current->normal_prio;
  1459. /*
  1460. * Revert to default priority/policy on fork if requested.
  1461. */
  1462. if (unlikely(p->sched_reset_on_fork)) {
  1463. if (task_has_rt_policy(p)) {
  1464. p->policy = SCHED_NORMAL;
  1465. p->static_prio = NICE_TO_PRIO(0);
  1466. p->rt_priority = 0;
  1467. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1468. p->static_prio = NICE_TO_PRIO(0);
  1469. p->prio = p->normal_prio = __normal_prio(p);
  1470. set_load_weight(p);
  1471. /*
  1472. * We don't need the reset flag anymore after the fork. It has
  1473. * fulfilled its duty:
  1474. */
  1475. p->sched_reset_on_fork = 0;
  1476. }
  1477. if (!rt_prio(p->prio))
  1478. p->sched_class = &fair_sched_class;
  1479. if (p->sched_class->task_fork)
  1480. p->sched_class->task_fork(p);
  1481. /*
  1482. * The child is not yet in the pid-hash so no cgroup attach races,
  1483. * and the cgroup is pinned to this child due to cgroup_fork()
  1484. * is ran before sched_fork().
  1485. *
  1486. * Silence PROVE_RCU.
  1487. */
  1488. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1489. set_task_cpu(p, cpu);
  1490. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1491. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1492. if (likely(sched_info_on()))
  1493. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1494. #endif
  1495. #if defined(CONFIG_SMP)
  1496. p->on_cpu = 0;
  1497. #endif
  1498. #ifdef CONFIG_PREEMPT_COUNT
  1499. /* Want to start with kernel preemption disabled. */
  1500. task_thread_info(p)->preempt_count = 1;
  1501. #endif
  1502. #ifdef CONFIG_SMP
  1503. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1504. #endif
  1505. put_cpu();
  1506. }
  1507. /*
  1508. * wake_up_new_task - wake up a newly created task for the first time.
  1509. *
  1510. * This function will do some initial scheduler statistics housekeeping
  1511. * that must be done for every newly created context, then puts the task
  1512. * on the runqueue and wakes it.
  1513. */
  1514. void wake_up_new_task(struct task_struct *p)
  1515. {
  1516. unsigned long flags;
  1517. struct rq *rq;
  1518. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1519. #ifdef CONFIG_SMP
  1520. /*
  1521. * Fork balancing, do it here and not earlier because:
  1522. * - cpus_allowed can change in the fork path
  1523. * - any previously selected cpu might disappear through hotplug
  1524. */
  1525. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1526. #endif
  1527. rq = __task_rq_lock(p);
  1528. activate_task(rq, p, 0);
  1529. p->on_rq = 1;
  1530. trace_sched_wakeup_new(p, true);
  1531. check_preempt_curr(rq, p, WF_FORK);
  1532. #ifdef CONFIG_SMP
  1533. if (p->sched_class->task_woken)
  1534. p->sched_class->task_woken(rq, p);
  1535. #endif
  1536. task_rq_unlock(rq, p, &flags);
  1537. }
  1538. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1539. /**
  1540. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1541. * @notifier: notifier struct to register
  1542. */
  1543. void preempt_notifier_register(struct preempt_notifier *notifier)
  1544. {
  1545. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1546. }
  1547. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1548. /**
  1549. * preempt_notifier_unregister - no longer interested in preemption notifications
  1550. * @notifier: notifier struct to unregister
  1551. *
  1552. * This is safe to call from within a preemption notifier.
  1553. */
  1554. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1555. {
  1556. hlist_del(&notifier->link);
  1557. }
  1558. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1559. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1560. {
  1561. struct preempt_notifier *notifier;
  1562. struct hlist_node *node;
  1563. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1564. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1565. }
  1566. static void
  1567. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1568. struct task_struct *next)
  1569. {
  1570. struct preempt_notifier *notifier;
  1571. struct hlist_node *node;
  1572. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1573. notifier->ops->sched_out(notifier, next);
  1574. }
  1575. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1576. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1577. {
  1578. }
  1579. static void
  1580. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1581. struct task_struct *next)
  1582. {
  1583. }
  1584. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1585. /**
  1586. * prepare_task_switch - prepare to switch tasks
  1587. * @rq: the runqueue preparing to switch
  1588. * @prev: the current task that is being switched out
  1589. * @next: the task we are going to switch to.
  1590. *
  1591. * This is called with the rq lock held and interrupts off. It must
  1592. * be paired with a subsequent finish_task_switch after the context
  1593. * switch.
  1594. *
  1595. * prepare_task_switch sets up locking and calls architecture specific
  1596. * hooks.
  1597. */
  1598. static inline void
  1599. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1600. struct task_struct *next)
  1601. {
  1602. sched_info_switch(prev, next);
  1603. perf_event_task_sched_out(prev, next);
  1604. fire_sched_out_preempt_notifiers(prev, next);
  1605. prepare_lock_switch(rq, next);
  1606. prepare_arch_switch(next);
  1607. trace_sched_switch(prev, next);
  1608. }
  1609. /**
  1610. * finish_task_switch - clean up after a task-switch
  1611. * @rq: runqueue associated with task-switch
  1612. * @prev: the thread we just switched away from.
  1613. *
  1614. * finish_task_switch must be called after the context switch, paired
  1615. * with a prepare_task_switch call before the context switch.
  1616. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1617. * and do any other architecture-specific cleanup actions.
  1618. *
  1619. * Note that we may have delayed dropping an mm in context_switch(). If
  1620. * so, we finish that here outside of the runqueue lock. (Doing it
  1621. * with the lock held can cause deadlocks; see schedule() for
  1622. * details.)
  1623. */
  1624. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1625. __releases(rq->lock)
  1626. {
  1627. struct mm_struct *mm = rq->prev_mm;
  1628. long prev_state;
  1629. rq->prev_mm = NULL;
  1630. /*
  1631. * A task struct has one reference for the use as "current".
  1632. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1633. * schedule one last time. The schedule call will never return, and
  1634. * the scheduled task must drop that reference.
  1635. * The test for TASK_DEAD must occur while the runqueue locks are
  1636. * still held, otherwise prev could be scheduled on another cpu, die
  1637. * there before we look at prev->state, and then the reference would
  1638. * be dropped twice.
  1639. * Manfred Spraul <manfred@colorfullife.com>
  1640. */
  1641. prev_state = prev->state;
  1642. finish_arch_switch(prev);
  1643. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1644. local_irq_disable();
  1645. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1646. perf_event_task_sched_in(prev, current);
  1647. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1648. local_irq_enable();
  1649. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1650. finish_lock_switch(rq, prev);
  1651. trace_sched_stat_sleeptime(current, rq->clock);
  1652. fire_sched_in_preempt_notifiers(current);
  1653. if (mm)
  1654. mmdrop(mm);
  1655. if (unlikely(prev_state == TASK_DEAD)) {
  1656. /*
  1657. * Remove function-return probe instances associated with this
  1658. * task and put them back on the free list.
  1659. */
  1660. kprobe_flush_task(prev);
  1661. put_task_struct(prev);
  1662. }
  1663. }
  1664. #ifdef CONFIG_SMP
  1665. /* assumes rq->lock is held */
  1666. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1667. {
  1668. if (prev->sched_class->pre_schedule)
  1669. prev->sched_class->pre_schedule(rq, prev);
  1670. }
  1671. /* rq->lock is NOT held, but preemption is disabled */
  1672. static inline void post_schedule(struct rq *rq)
  1673. {
  1674. if (rq->post_schedule) {
  1675. unsigned long flags;
  1676. raw_spin_lock_irqsave(&rq->lock, flags);
  1677. if (rq->curr->sched_class->post_schedule)
  1678. rq->curr->sched_class->post_schedule(rq);
  1679. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1680. rq->post_schedule = 0;
  1681. }
  1682. }
  1683. #else
  1684. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1685. {
  1686. }
  1687. static inline void post_schedule(struct rq *rq)
  1688. {
  1689. }
  1690. #endif
  1691. /**
  1692. * schedule_tail - first thing a freshly forked thread must call.
  1693. * @prev: the thread we just switched away from.
  1694. */
  1695. asmlinkage void schedule_tail(struct task_struct *prev)
  1696. __releases(rq->lock)
  1697. {
  1698. struct rq *rq = this_rq();
  1699. finish_task_switch(rq, prev);
  1700. /*
  1701. * FIXME: do we need to worry about rq being invalidated by the
  1702. * task_switch?
  1703. */
  1704. post_schedule(rq);
  1705. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1706. /* In this case, finish_task_switch does not reenable preemption */
  1707. preempt_enable();
  1708. #endif
  1709. if (current->set_child_tid)
  1710. put_user(task_pid_vnr(current), current->set_child_tid);
  1711. }
  1712. /*
  1713. * context_switch - switch to the new MM and the new
  1714. * thread's register state.
  1715. */
  1716. static inline void
  1717. context_switch(struct rq *rq, struct task_struct *prev,
  1718. struct task_struct *next)
  1719. {
  1720. struct mm_struct *mm, *oldmm;
  1721. prepare_task_switch(rq, prev, next);
  1722. mm = next->mm;
  1723. oldmm = prev->active_mm;
  1724. /*
  1725. * For paravirt, this is coupled with an exit in switch_to to
  1726. * combine the page table reload and the switch backend into
  1727. * one hypercall.
  1728. */
  1729. arch_start_context_switch(prev);
  1730. if (!mm) {
  1731. next->active_mm = oldmm;
  1732. atomic_inc(&oldmm->mm_count);
  1733. enter_lazy_tlb(oldmm, next);
  1734. } else
  1735. switch_mm(oldmm, mm, next);
  1736. if (!prev->mm) {
  1737. prev->active_mm = NULL;
  1738. rq->prev_mm = oldmm;
  1739. }
  1740. /*
  1741. * Since the runqueue lock will be released by the next
  1742. * task (which is an invalid locking op but in the case
  1743. * of the scheduler it's an obvious special-case), so we
  1744. * do an early lockdep release here:
  1745. */
  1746. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1747. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1748. #endif
  1749. /* Here we just switch the register state and the stack. */
  1750. switch_to(prev, next, prev);
  1751. barrier();
  1752. /*
  1753. * this_rq must be evaluated again because prev may have moved
  1754. * CPUs since it called schedule(), thus the 'rq' on its stack
  1755. * frame will be invalid.
  1756. */
  1757. finish_task_switch(this_rq(), prev);
  1758. }
  1759. /*
  1760. * nr_running, nr_uninterruptible and nr_context_switches:
  1761. *
  1762. * externally visible scheduler statistics: current number of runnable
  1763. * threads, current number of uninterruptible-sleeping threads, total
  1764. * number of context switches performed since bootup.
  1765. */
  1766. unsigned long nr_running(void)
  1767. {
  1768. unsigned long i, sum = 0;
  1769. for_each_online_cpu(i)
  1770. sum += cpu_rq(i)->nr_running;
  1771. return sum;
  1772. }
  1773. unsigned long nr_uninterruptible(void)
  1774. {
  1775. unsigned long i, sum = 0;
  1776. for_each_possible_cpu(i)
  1777. sum += cpu_rq(i)->nr_uninterruptible;
  1778. /*
  1779. * Since we read the counters lockless, it might be slightly
  1780. * inaccurate. Do not allow it to go below zero though:
  1781. */
  1782. if (unlikely((long)sum < 0))
  1783. sum = 0;
  1784. return sum;
  1785. }
  1786. unsigned long long nr_context_switches(void)
  1787. {
  1788. int i;
  1789. unsigned long long sum = 0;
  1790. for_each_possible_cpu(i)
  1791. sum += cpu_rq(i)->nr_switches;
  1792. return sum;
  1793. }
  1794. unsigned long nr_iowait(void)
  1795. {
  1796. unsigned long i, sum = 0;
  1797. for_each_possible_cpu(i)
  1798. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1799. return sum;
  1800. }
  1801. unsigned long nr_iowait_cpu(int cpu)
  1802. {
  1803. struct rq *this = cpu_rq(cpu);
  1804. return atomic_read(&this->nr_iowait);
  1805. }
  1806. unsigned long this_cpu_load(void)
  1807. {
  1808. struct rq *this = this_rq();
  1809. return this->cpu_load[0];
  1810. }
  1811. /* Variables and functions for calc_load */
  1812. static atomic_long_t calc_load_tasks;
  1813. static unsigned long calc_load_update;
  1814. unsigned long avenrun[3];
  1815. EXPORT_SYMBOL(avenrun);
  1816. static long calc_load_fold_active(struct rq *this_rq)
  1817. {
  1818. long nr_active, delta = 0;
  1819. nr_active = this_rq->nr_running;
  1820. nr_active += (long) this_rq->nr_uninterruptible;
  1821. if (nr_active != this_rq->calc_load_active) {
  1822. delta = nr_active - this_rq->calc_load_active;
  1823. this_rq->calc_load_active = nr_active;
  1824. }
  1825. return delta;
  1826. }
  1827. static unsigned long
  1828. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1829. {
  1830. load *= exp;
  1831. load += active * (FIXED_1 - exp);
  1832. load += 1UL << (FSHIFT - 1);
  1833. return load >> FSHIFT;
  1834. }
  1835. #ifdef CONFIG_NO_HZ
  1836. /*
  1837. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  1838. *
  1839. * When making the ILB scale, we should try to pull this in as well.
  1840. */
  1841. static atomic_long_t calc_load_tasks_idle;
  1842. void calc_load_account_idle(struct rq *this_rq)
  1843. {
  1844. long delta;
  1845. delta = calc_load_fold_active(this_rq);
  1846. if (delta)
  1847. atomic_long_add(delta, &calc_load_tasks_idle);
  1848. }
  1849. static long calc_load_fold_idle(void)
  1850. {
  1851. long delta = 0;
  1852. /*
  1853. * Its got a race, we don't care...
  1854. */
  1855. if (atomic_long_read(&calc_load_tasks_idle))
  1856. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  1857. return delta;
  1858. }
  1859. /**
  1860. * fixed_power_int - compute: x^n, in O(log n) time
  1861. *
  1862. * @x: base of the power
  1863. * @frac_bits: fractional bits of @x
  1864. * @n: power to raise @x to.
  1865. *
  1866. * By exploiting the relation between the definition of the natural power
  1867. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1868. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1869. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1870. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1871. * of course trivially computable in O(log_2 n), the length of our binary
  1872. * vector.
  1873. */
  1874. static unsigned long
  1875. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1876. {
  1877. unsigned long result = 1UL << frac_bits;
  1878. if (n) for (;;) {
  1879. if (n & 1) {
  1880. result *= x;
  1881. result += 1UL << (frac_bits - 1);
  1882. result >>= frac_bits;
  1883. }
  1884. n >>= 1;
  1885. if (!n)
  1886. break;
  1887. x *= x;
  1888. x += 1UL << (frac_bits - 1);
  1889. x >>= frac_bits;
  1890. }
  1891. return result;
  1892. }
  1893. /*
  1894. * a1 = a0 * e + a * (1 - e)
  1895. *
  1896. * a2 = a1 * e + a * (1 - e)
  1897. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1898. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1899. *
  1900. * a3 = a2 * e + a * (1 - e)
  1901. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1902. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1903. *
  1904. * ...
  1905. *
  1906. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1907. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1908. * = a0 * e^n + a * (1 - e^n)
  1909. *
  1910. * [1] application of the geometric series:
  1911. *
  1912. * n 1 - x^(n+1)
  1913. * S_n := \Sum x^i = -------------
  1914. * i=0 1 - x
  1915. */
  1916. static unsigned long
  1917. calc_load_n(unsigned long load, unsigned long exp,
  1918. unsigned long active, unsigned int n)
  1919. {
  1920. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1921. }
  1922. /*
  1923. * NO_HZ can leave us missing all per-cpu ticks calling
  1924. * calc_load_account_active(), but since an idle CPU folds its delta into
  1925. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1926. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1927. *
  1928. * Once we've updated the global active value, we need to apply the exponential
  1929. * weights adjusted to the number of cycles missed.
  1930. */
  1931. static void calc_global_nohz(unsigned long ticks)
  1932. {
  1933. long delta, active, n;
  1934. if (time_before(jiffies, calc_load_update))
  1935. return;
  1936. /*
  1937. * If we crossed a calc_load_update boundary, make sure to fold
  1938. * any pending idle changes, the respective CPUs might have
  1939. * missed the tick driven calc_load_account_active() update
  1940. * due to NO_HZ.
  1941. */
  1942. delta = calc_load_fold_idle();
  1943. if (delta)
  1944. atomic_long_add(delta, &calc_load_tasks);
  1945. /*
  1946. * If we were idle for multiple load cycles, apply them.
  1947. */
  1948. if (ticks >= LOAD_FREQ) {
  1949. n = ticks / LOAD_FREQ;
  1950. active = atomic_long_read(&calc_load_tasks);
  1951. active = active > 0 ? active * FIXED_1 : 0;
  1952. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  1953. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  1954. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  1955. calc_load_update += n * LOAD_FREQ;
  1956. }
  1957. /*
  1958. * Its possible the remainder of the above division also crosses
  1959. * a LOAD_FREQ period, the regular check in calc_global_load()
  1960. * which comes after this will take care of that.
  1961. *
  1962. * Consider us being 11 ticks before a cycle completion, and us
  1963. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  1964. * age us 4 cycles, and the test in calc_global_load() will
  1965. * pick up the final one.
  1966. */
  1967. }
  1968. #else
  1969. void calc_load_account_idle(struct rq *this_rq)
  1970. {
  1971. }
  1972. static inline long calc_load_fold_idle(void)
  1973. {
  1974. return 0;
  1975. }
  1976. static void calc_global_nohz(unsigned long ticks)
  1977. {
  1978. }
  1979. #endif
  1980. /**
  1981. * get_avenrun - get the load average array
  1982. * @loads: pointer to dest load array
  1983. * @offset: offset to add
  1984. * @shift: shift count to shift the result left
  1985. *
  1986. * These values are estimates at best, so no need for locking.
  1987. */
  1988. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1989. {
  1990. loads[0] = (avenrun[0] + offset) << shift;
  1991. loads[1] = (avenrun[1] + offset) << shift;
  1992. loads[2] = (avenrun[2] + offset) << shift;
  1993. }
  1994. /*
  1995. * calc_load - update the avenrun load estimates 10 ticks after the
  1996. * CPUs have updated calc_load_tasks.
  1997. */
  1998. void calc_global_load(unsigned long ticks)
  1999. {
  2000. long active;
  2001. calc_global_nohz(ticks);
  2002. if (time_before(jiffies, calc_load_update + 10))
  2003. return;
  2004. active = atomic_long_read(&calc_load_tasks);
  2005. active = active > 0 ? active * FIXED_1 : 0;
  2006. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2007. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2008. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2009. calc_load_update += LOAD_FREQ;
  2010. }
  2011. /*
  2012. * Called from update_cpu_load() to periodically update this CPU's
  2013. * active count.
  2014. */
  2015. static void calc_load_account_active(struct rq *this_rq)
  2016. {
  2017. long delta;
  2018. if (time_before(jiffies, this_rq->calc_load_update))
  2019. return;
  2020. delta = calc_load_fold_active(this_rq);
  2021. delta += calc_load_fold_idle();
  2022. if (delta)
  2023. atomic_long_add(delta, &calc_load_tasks);
  2024. this_rq->calc_load_update += LOAD_FREQ;
  2025. }
  2026. /*
  2027. * The exact cpuload at various idx values, calculated at every tick would be
  2028. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2029. *
  2030. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2031. * on nth tick when cpu may be busy, then we have:
  2032. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2033. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2034. *
  2035. * decay_load_missed() below does efficient calculation of
  2036. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2037. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2038. *
  2039. * The calculation is approximated on a 128 point scale.
  2040. * degrade_zero_ticks is the number of ticks after which load at any
  2041. * particular idx is approximated to be zero.
  2042. * degrade_factor is a precomputed table, a row for each load idx.
  2043. * Each column corresponds to degradation factor for a power of two ticks,
  2044. * based on 128 point scale.
  2045. * Example:
  2046. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2047. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2048. *
  2049. * With this power of 2 load factors, we can degrade the load n times
  2050. * by looking at 1 bits in n and doing as many mult/shift instead of
  2051. * n mult/shifts needed by the exact degradation.
  2052. */
  2053. #define DEGRADE_SHIFT 7
  2054. static const unsigned char
  2055. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2056. static const unsigned char
  2057. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2058. {0, 0, 0, 0, 0, 0, 0, 0},
  2059. {64, 32, 8, 0, 0, 0, 0, 0},
  2060. {96, 72, 40, 12, 1, 0, 0},
  2061. {112, 98, 75, 43, 15, 1, 0},
  2062. {120, 112, 98, 76, 45, 16, 2} };
  2063. /*
  2064. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2065. * would be when CPU is idle and so we just decay the old load without
  2066. * adding any new load.
  2067. */
  2068. static unsigned long
  2069. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2070. {
  2071. int j = 0;
  2072. if (!missed_updates)
  2073. return load;
  2074. if (missed_updates >= degrade_zero_ticks[idx])
  2075. return 0;
  2076. if (idx == 1)
  2077. return load >> missed_updates;
  2078. while (missed_updates) {
  2079. if (missed_updates % 2)
  2080. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2081. missed_updates >>= 1;
  2082. j++;
  2083. }
  2084. return load;
  2085. }
  2086. /*
  2087. * Update rq->cpu_load[] statistics. This function is usually called every
  2088. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2089. * every tick. We fix it up based on jiffies.
  2090. */
  2091. void update_cpu_load(struct rq *this_rq)
  2092. {
  2093. unsigned long this_load = this_rq->load.weight;
  2094. unsigned long curr_jiffies = jiffies;
  2095. unsigned long pending_updates;
  2096. int i, scale;
  2097. this_rq->nr_load_updates++;
  2098. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2099. if (curr_jiffies == this_rq->last_load_update_tick)
  2100. return;
  2101. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2102. this_rq->last_load_update_tick = curr_jiffies;
  2103. /* Update our load: */
  2104. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2105. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2106. unsigned long old_load, new_load;
  2107. /* scale is effectively 1 << i now, and >> i divides by scale */
  2108. old_load = this_rq->cpu_load[i];
  2109. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2110. new_load = this_load;
  2111. /*
  2112. * Round up the averaging division if load is increasing. This
  2113. * prevents us from getting stuck on 9 if the load is 10, for
  2114. * example.
  2115. */
  2116. if (new_load > old_load)
  2117. new_load += scale - 1;
  2118. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2119. }
  2120. sched_avg_update(this_rq);
  2121. }
  2122. static void update_cpu_load_active(struct rq *this_rq)
  2123. {
  2124. update_cpu_load(this_rq);
  2125. calc_load_account_active(this_rq);
  2126. }
  2127. #ifdef CONFIG_SMP
  2128. /*
  2129. * sched_exec - execve() is a valuable balancing opportunity, because at
  2130. * this point the task has the smallest effective memory and cache footprint.
  2131. */
  2132. void sched_exec(void)
  2133. {
  2134. struct task_struct *p = current;
  2135. unsigned long flags;
  2136. int dest_cpu;
  2137. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2138. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2139. if (dest_cpu == smp_processor_id())
  2140. goto unlock;
  2141. if (likely(cpu_active(dest_cpu))) {
  2142. struct migration_arg arg = { p, dest_cpu };
  2143. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2144. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2145. return;
  2146. }
  2147. unlock:
  2148. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2149. }
  2150. #endif
  2151. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2152. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2153. EXPORT_PER_CPU_SYMBOL(kstat);
  2154. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2155. /*
  2156. * Return any ns on the sched_clock that have not yet been accounted in
  2157. * @p in case that task is currently running.
  2158. *
  2159. * Called with task_rq_lock() held on @rq.
  2160. */
  2161. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2162. {
  2163. u64 ns = 0;
  2164. if (task_current(rq, p)) {
  2165. update_rq_clock(rq);
  2166. ns = rq->clock_task - p->se.exec_start;
  2167. if ((s64)ns < 0)
  2168. ns = 0;
  2169. }
  2170. return ns;
  2171. }
  2172. unsigned long long task_delta_exec(struct task_struct *p)
  2173. {
  2174. unsigned long flags;
  2175. struct rq *rq;
  2176. u64 ns = 0;
  2177. rq = task_rq_lock(p, &flags);
  2178. ns = do_task_delta_exec(p, rq);
  2179. task_rq_unlock(rq, p, &flags);
  2180. return ns;
  2181. }
  2182. /*
  2183. * Return accounted runtime for the task.
  2184. * In case the task is currently running, return the runtime plus current's
  2185. * pending runtime that have not been accounted yet.
  2186. */
  2187. unsigned long long task_sched_runtime(struct task_struct *p)
  2188. {
  2189. unsigned long flags;
  2190. struct rq *rq;
  2191. u64 ns = 0;
  2192. rq = task_rq_lock(p, &flags);
  2193. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2194. task_rq_unlock(rq, p, &flags);
  2195. return ns;
  2196. }
  2197. #ifdef CONFIG_CGROUP_CPUACCT
  2198. struct cgroup_subsys cpuacct_subsys;
  2199. struct cpuacct root_cpuacct;
  2200. #endif
  2201. static inline void task_group_account_field(struct task_struct *p, int index,
  2202. u64 tmp)
  2203. {
  2204. #ifdef CONFIG_CGROUP_CPUACCT
  2205. struct kernel_cpustat *kcpustat;
  2206. struct cpuacct *ca;
  2207. #endif
  2208. /*
  2209. * Since all updates are sure to touch the root cgroup, we
  2210. * get ourselves ahead and touch it first. If the root cgroup
  2211. * is the only cgroup, then nothing else should be necessary.
  2212. *
  2213. */
  2214. __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
  2215. #ifdef CONFIG_CGROUP_CPUACCT
  2216. if (unlikely(!cpuacct_subsys.active))
  2217. return;
  2218. rcu_read_lock();
  2219. ca = task_ca(p);
  2220. while (ca && (ca != &root_cpuacct)) {
  2221. kcpustat = this_cpu_ptr(ca->cpustat);
  2222. kcpustat->cpustat[index] += tmp;
  2223. ca = parent_ca(ca);
  2224. }
  2225. rcu_read_unlock();
  2226. #endif
  2227. }
  2228. /*
  2229. * Account user cpu time to a process.
  2230. * @p: the process that the cpu time gets accounted to
  2231. * @cputime: the cpu time spent in user space since the last update
  2232. * @cputime_scaled: cputime scaled by cpu frequency
  2233. */
  2234. void account_user_time(struct task_struct *p, cputime_t cputime,
  2235. cputime_t cputime_scaled)
  2236. {
  2237. int index;
  2238. /* Add user time to process. */
  2239. p->utime += cputime;
  2240. p->utimescaled += cputime_scaled;
  2241. account_group_user_time(p, cputime);
  2242. index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
  2243. /* Add user time to cpustat. */
  2244. task_group_account_field(p, index, (__force u64) cputime);
  2245. /* Account for user time used */
  2246. acct_update_integrals(p);
  2247. }
  2248. /*
  2249. * Account guest cpu time to a process.
  2250. * @p: the process that the cpu time gets accounted to
  2251. * @cputime: the cpu time spent in virtual machine since the last update
  2252. * @cputime_scaled: cputime scaled by cpu frequency
  2253. */
  2254. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2255. cputime_t cputime_scaled)
  2256. {
  2257. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2258. /* Add guest time to process. */
  2259. p->utime += cputime;
  2260. p->utimescaled += cputime_scaled;
  2261. account_group_user_time(p, cputime);
  2262. p->gtime += cputime;
  2263. /* Add guest time to cpustat. */
  2264. if (TASK_NICE(p) > 0) {
  2265. cpustat[CPUTIME_NICE] += (__force u64) cputime;
  2266. cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
  2267. } else {
  2268. cpustat[CPUTIME_USER] += (__force u64) cputime;
  2269. cpustat[CPUTIME_GUEST] += (__force u64) cputime;
  2270. }
  2271. }
  2272. /*
  2273. * Account system cpu time to a process and desired cpustat field
  2274. * @p: the process that the cpu time gets accounted to
  2275. * @cputime: the cpu time spent in kernel space since the last update
  2276. * @cputime_scaled: cputime scaled by cpu frequency
  2277. * @target_cputime64: pointer to cpustat field that has to be updated
  2278. */
  2279. static inline
  2280. void __account_system_time(struct task_struct *p, cputime_t cputime,
  2281. cputime_t cputime_scaled, int index)
  2282. {
  2283. /* Add system time to process. */
  2284. p->stime += cputime;
  2285. p->stimescaled += cputime_scaled;
  2286. account_group_system_time(p, cputime);
  2287. /* Add system time to cpustat. */
  2288. task_group_account_field(p, index, (__force u64) cputime);
  2289. /* Account for system time used */
  2290. acct_update_integrals(p);
  2291. }
  2292. /*
  2293. * Account system cpu time to a process.
  2294. * @p: the process that the cpu time gets accounted to
  2295. * @hardirq_offset: the offset to subtract from hardirq_count()
  2296. * @cputime: the cpu time spent in kernel space since the last update
  2297. * @cputime_scaled: cputime scaled by cpu frequency
  2298. */
  2299. void account_system_time(struct task_struct *p, int hardirq_offset,
  2300. cputime_t cputime, cputime_t cputime_scaled)
  2301. {
  2302. int index;
  2303. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2304. account_guest_time(p, cputime, cputime_scaled);
  2305. return;
  2306. }
  2307. if (hardirq_count() - hardirq_offset)
  2308. index = CPUTIME_IRQ;
  2309. else if (in_serving_softirq())
  2310. index = CPUTIME_SOFTIRQ;
  2311. else
  2312. index = CPUTIME_SYSTEM;
  2313. __account_system_time(p, cputime, cputime_scaled, index);
  2314. }
  2315. /*
  2316. * Account for involuntary wait time.
  2317. * @cputime: the cpu time spent in involuntary wait
  2318. */
  2319. void account_steal_time(cputime_t cputime)
  2320. {
  2321. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2322. cpustat[CPUTIME_STEAL] += (__force u64) cputime;
  2323. }
  2324. /*
  2325. * Account for idle time.
  2326. * @cputime: the cpu time spent in idle wait
  2327. */
  2328. void account_idle_time(cputime_t cputime)
  2329. {
  2330. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2331. struct rq *rq = this_rq();
  2332. if (atomic_read(&rq->nr_iowait) > 0)
  2333. cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
  2334. else
  2335. cpustat[CPUTIME_IDLE] += (__force u64) cputime;
  2336. }
  2337. static __always_inline bool steal_account_process_tick(void)
  2338. {
  2339. #ifdef CONFIG_PARAVIRT
  2340. if (static_branch(&paravirt_steal_enabled)) {
  2341. u64 steal, st = 0;
  2342. steal = paravirt_steal_clock(smp_processor_id());
  2343. steal -= this_rq()->prev_steal_time;
  2344. st = steal_ticks(steal);
  2345. this_rq()->prev_steal_time += st * TICK_NSEC;
  2346. account_steal_time(st);
  2347. return st;
  2348. }
  2349. #endif
  2350. return false;
  2351. }
  2352. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2353. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  2354. /*
  2355. * Account a tick to a process and cpustat
  2356. * @p: the process that the cpu time gets accounted to
  2357. * @user_tick: is the tick from userspace
  2358. * @rq: the pointer to rq
  2359. *
  2360. * Tick demultiplexing follows the order
  2361. * - pending hardirq update
  2362. * - pending softirq update
  2363. * - user_time
  2364. * - idle_time
  2365. * - system time
  2366. * - check for guest_time
  2367. * - else account as system_time
  2368. *
  2369. * Check for hardirq is done both for system and user time as there is
  2370. * no timer going off while we are on hardirq and hence we may never get an
  2371. * opportunity to update it solely in system time.
  2372. * p->stime and friends are only updated on system time and not on irq
  2373. * softirq as those do not count in task exec_runtime any more.
  2374. */
  2375. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2376. struct rq *rq)
  2377. {
  2378. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2379. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2380. if (steal_account_process_tick())
  2381. return;
  2382. if (irqtime_account_hi_update()) {
  2383. cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
  2384. } else if (irqtime_account_si_update()) {
  2385. cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
  2386. } else if (this_cpu_ksoftirqd() == p) {
  2387. /*
  2388. * ksoftirqd time do not get accounted in cpu_softirq_time.
  2389. * So, we have to handle it separately here.
  2390. * Also, p->stime needs to be updated for ksoftirqd.
  2391. */
  2392. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2393. CPUTIME_SOFTIRQ);
  2394. } else if (user_tick) {
  2395. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2396. } else if (p == rq->idle) {
  2397. account_idle_time(cputime_one_jiffy);
  2398. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  2399. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2400. } else {
  2401. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2402. CPUTIME_SYSTEM);
  2403. }
  2404. }
  2405. static void irqtime_account_idle_ticks(int ticks)
  2406. {
  2407. int i;
  2408. struct rq *rq = this_rq();
  2409. for (i = 0; i < ticks; i++)
  2410. irqtime_account_process_tick(current, 0, rq);
  2411. }
  2412. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  2413. static void irqtime_account_idle_ticks(int ticks) {}
  2414. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2415. struct rq *rq) {}
  2416. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  2417. /*
  2418. * Account a single tick of cpu time.
  2419. * @p: the process that the cpu time gets accounted to
  2420. * @user_tick: indicates if the tick is a user or a system tick
  2421. */
  2422. void account_process_tick(struct task_struct *p, int user_tick)
  2423. {
  2424. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2425. struct rq *rq = this_rq();
  2426. if (sched_clock_irqtime) {
  2427. irqtime_account_process_tick(p, user_tick, rq);
  2428. return;
  2429. }
  2430. if (steal_account_process_tick())
  2431. return;
  2432. if (user_tick)
  2433. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2434. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2435. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2436. one_jiffy_scaled);
  2437. else
  2438. account_idle_time(cputime_one_jiffy);
  2439. }
  2440. /*
  2441. * Account multiple ticks of steal time.
  2442. * @p: the process from which the cpu time has been stolen
  2443. * @ticks: number of stolen ticks
  2444. */
  2445. void account_steal_ticks(unsigned long ticks)
  2446. {
  2447. account_steal_time(jiffies_to_cputime(ticks));
  2448. }
  2449. /*
  2450. * Account multiple ticks of idle time.
  2451. * @ticks: number of stolen ticks
  2452. */
  2453. void account_idle_ticks(unsigned long ticks)
  2454. {
  2455. if (sched_clock_irqtime) {
  2456. irqtime_account_idle_ticks(ticks);
  2457. return;
  2458. }
  2459. account_idle_time(jiffies_to_cputime(ticks));
  2460. }
  2461. #endif
  2462. /*
  2463. * Use precise platform statistics if available:
  2464. */
  2465. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2466. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2467. {
  2468. *ut = p->utime;
  2469. *st = p->stime;
  2470. }
  2471. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2472. {
  2473. struct task_cputime cputime;
  2474. thread_group_cputime(p, &cputime);
  2475. *ut = cputime.utime;
  2476. *st = cputime.stime;
  2477. }
  2478. #else
  2479. #ifndef nsecs_to_cputime
  2480. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2481. #endif
  2482. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2483. {
  2484. cputime_t rtime, utime = p->utime, total = utime + p->stime;
  2485. /*
  2486. * Use CFS's precise accounting:
  2487. */
  2488. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2489. if (total) {
  2490. u64 temp = (__force u64) rtime;
  2491. temp *= (__force u64) utime;
  2492. do_div(temp, (__force u32) total);
  2493. utime = (__force cputime_t) temp;
  2494. } else
  2495. utime = rtime;
  2496. /*
  2497. * Compare with previous values, to keep monotonicity:
  2498. */
  2499. p->prev_utime = max(p->prev_utime, utime);
  2500. p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
  2501. *ut = p->prev_utime;
  2502. *st = p->prev_stime;
  2503. }
  2504. /*
  2505. * Must be called with siglock held.
  2506. */
  2507. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2508. {
  2509. struct signal_struct *sig = p->signal;
  2510. struct task_cputime cputime;
  2511. cputime_t rtime, utime, total;
  2512. thread_group_cputime(p, &cputime);
  2513. total = cputime.utime + cputime.stime;
  2514. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2515. if (total) {
  2516. u64 temp = (__force u64) rtime;
  2517. temp *= (__force u64) cputime.utime;
  2518. do_div(temp, (__force u32) total);
  2519. utime = (__force cputime_t) temp;
  2520. } else
  2521. utime = rtime;
  2522. sig->prev_utime = max(sig->prev_utime, utime);
  2523. sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
  2524. *ut = sig->prev_utime;
  2525. *st = sig->prev_stime;
  2526. }
  2527. #endif
  2528. /*
  2529. * This function gets called by the timer code, with HZ frequency.
  2530. * We call it with interrupts disabled.
  2531. */
  2532. void scheduler_tick(void)
  2533. {
  2534. int cpu = smp_processor_id();
  2535. struct rq *rq = cpu_rq(cpu);
  2536. struct task_struct *curr = rq->curr;
  2537. sched_clock_tick();
  2538. raw_spin_lock(&rq->lock);
  2539. update_rq_clock(rq);
  2540. update_cpu_load_active(rq);
  2541. curr->sched_class->task_tick(rq, curr, 0);
  2542. raw_spin_unlock(&rq->lock);
  2543. perf_event_task_tick();
  2544. #ifdef CONFIG_SMP
  2545. rq->idle_balance = idle_cpu(cpu);
  2546. trigger_load_balance(rq, cpu);
  2547. #endif
  2548. }
  2549. notrace unsigned long get_parent_ip(unsigned long addr)
  2550. {
  2551. if (in_lock_functions(addr)) {
  2552. addr = CALLER_ADDR2;
  2553. if (in_lock_functions(addr))
  2554. addr = CALLER_ADDR3;
  2555. }
  2556. return addr;
  2557. }
  2558. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2559. defined(CONFIG_PREEMPT_TRACER))
  2560. void __kprobes add_preempt_count(int val)
  2561. {
  2562. #ifdef CONFIG_DEBUG_PREEMPT
  2563. /*
  2564. * Underflow?
  2565. */
  2566. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2567. return;
  2568. #endif
  2569. preempt_count() += val;
  2570. #ifdef CONFIG_DEBUG_PREEMPT
  2571. /*
  2572. * Spinlock count overflowing soon?
  2573. */
  2574. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2575. PREEMPT_MASK - 10);
  2576. #endif
  2577. if (preempt_count() == val)
  2578. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2579. }
  2580. EXPORT_SYMBOL(add_preempt_count);
  2581. void __kprobes sub_preempt_count(int val)
  2582. {
  2583. #ifdef CONFIG_DEBUG_PREEMPT
  2584. /*
  2585. * Underflow?
  2586. */
  2587. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2588. return;
  2589. /*
  2590. * Is the spinlock portion underflowing?
  2591. */
  2592. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2593. !(preempt_count() & PREEMPT_MASK)))
  2594. return;
  2595. #endif
  2596. if (preempt_count() == val)
  2597. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2598. preempt_count() -= val;
  2599. }
  2600. EXPORT_SYMBOL(sub_preempt_count);
  2601. #endif
  2602. /*
  2603. * Print scheduling while atomic bug:
  2604. */
  2605. static noinline void __schedule_bug(struct task_struct *prev)
  2606. {
  2607. struct pt_regs *regs = get_irq_regs();
  2608. if (oops_in_progress)
  2609. return;
  2610. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2611. prev->comm, prev->pid, preempt_count());
  2612. debug_show_held_locks(prev);
  2613. print_modules();
  2614. if (irqs_disabled())
  2615. print_irqtrace_events(prev);
  2616. if (regs)
  2617. show_regs(regs);
  2618. else
  2619. dump_stack();
  2620. }
  2621. /*
  2622. * Various schedule()-time debugging checks and statistics:
  2623. */
  2624. static inline void schedule_debug(struct task_struct *prev)
  2625. {
  2626. /*
  2627. * Test if we are atomic. Since do_exit() needs to call into
  2628. * schedule() atomically, we ignore that path for now.
  2629. * Otherwise, whine if we are scheduling when we should not be.
  2630. */
  2631. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2632. __schedule_bug(prev);
  2633. rcu_sleep_check();
  2634. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2635. schedstat_inc(this_rq(), sched_count);
  2636. }
  2637. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2638. {
  2639. if (prev->on_rq || rq->skip_clock_update < 0)
  2640. update_rq_clock(rq);
  2641. prev->sched_class->put_prev_task(rq, prev);
  2642. }
  2643. /*
  2644. * Pick up the highest-prio task:
  2645. */
  2646. static inline struct task_struct *
  2647. pick_next_task(struct rq *rq)
  2648. {
  2649. const struct sched_class *class;
  2650. struct task_struct *p;
  2651. /*
  2652. * Optimization: we know that if all tasks are in
  2653. * the fair class we can call that function directly:
  2654. */
  2655. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2656. p = fair_sched_class.pick_next_task(rq);
  2657. if (likely(p))
  2658. return p;
  2659. }
  2660. for_each_class(class) {
  2661. p = class->pick_next_task(rq);
  2662. if (p)
  2663. return p;
  2664. }
  2665. BUG(); /* the idle class will always have a runnable task */
  2666. }
  2667. /*
  2668. * __schedule() is the main scheduler function.
  2669. */
  2670. static void __sched __schedule(void)
  2671. {
  2672. struct task_struct *prev, *next;
  2673. unsigned long *switch_count;
  2674. struct rq *rq;
  2675. int cpu;
  2676. need_resched:
  2677. preempt_disable();
  2678. cpu = smp_processor_id();
  2679. rq = cpu_rq(cpu);
  2680. rcu_note_context_switch(cpu);
  2681. prev = rq->curr;
  2682. schedule_debug(prev);
  2683. if (sched_feat(HRTICK))
  2684. hrtick_clear(rq);
  2685. raw_spin_lock_irq(&rq->lock);
  2686. switch_count = &prev->nivcsw;
  2687. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2688. if (unlikely(signal_pending_state(prev->state, prev))) {
  2689. prev->state = TASK_RUNNING;
  2690. } else {
  2691. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2692. prev->on_rq = 0;
  2693. /*
  2694. * If a worker went to sleep, notify and ask workqueue
  2695. * whether it wants to wake up a task to maintain
  2696. * concurrency.
  2697. */
  2698. if (prev->flags & PF_WQ_WORKER) {
  2699. struct task_struct *to_wakeup;
  2700. to_wakeup = wq_worker_sleeping(prev, cpu);
  2701. if (to_wakeup)
  2702. try_to_wake_up_local(to_wakeup);
  2703. }
  2704. }
  2705. switch_count = &prev->nvcsw;
  2706. }
  2707. pre_schedule(rq, prev);
  2708. if (unlikely(!rq->nr_running))
  2709. idle_balance(cpu, rq);
  2710. put_prev_task(rq, prev);
  2711. next = pick_next_task(rq);
  2712. clear_tsk_need_resched(prev);
  2713. rq->skip_clock_update = 0;
  2714. if (likely(prev != next)) {
  2715. rq->nr_switches++;
  2716. rq->curr = next;
  2717. ++*switch_count;
  2718. context_switch(rq, prev, next); /* unlocks the rq */
  2719. /*
  2720. * The context switch have flipped the stack from under us
  2721. * and restored the local variables which were saved when
  2722. * this task called schedule() in the past. prev == current
  2723. * is still correct, but it can be moved to another cpu/rq.
  2724. */
  2725. cpu = smp_processor_id();
  2726. rq = cpu_rq(cpu);
  2727. } else
  2728. raw_spin_unlock_irq(&rq->lock);
  2729. post_schedule(rq);
  2730. preempt_enable_no_resched();
  2731. if (need_resched())
  2732. goto need_resched;
  2733. }
  2734. static inline void sched_submit_work(struct task_struct *tsk)
  2735. {
  2736. if (!tsk->state)
  2737. return;
  2738. /*
  2739. * If we are going to sleep and we have plugged IO queued,
  2740. * make sure to submit it to avoid deadlocks.
  2741. */
  2742. if (blk_needs_flush_plug(tsk))
  2743. blk_schedule_flush_plug(tsk);
  2744. }
  2745. asmlinkage void __sched schedule(void)
  2746. {
  2747. struct task_struct *tsk = current;
  2748. sched_submit_work(tsk);
  2749. __schedule();
  2750. }
  2751. EXPORT_SYMBOL(schedule);
  2752. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2753. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2754. {
  2755. if (lock->owner != owner)
  2756. return false;
  2757. /*
  2758. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2759. * lock->owner still matches owner, if that fails, owner might
  2760. * point to free()d memory, if it still matches, the rcu_read_lock()
  2761. * ensures the memory stays valid.
  2762. */
  2763. barrier();
  2764. return owner->on_cpu;
  2765. }
  2766. /*
  2767. * Look out! "owner" is an entirely speculative pointer
  2768. * access and not reliable.
  2769. */
  2770. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2771. {
  2772. if (!sched_feat(OWNER_SPIN))
  2773. return 0;
  2774. rcu_read_lock();
  2775. while (owner_running(lock, owner)) {
  2776. if (need_resched())
  2777. break;
  2778. arch_mutex_cpu_relax();
  2779. }
  2780. rcu_read_unlock();
  2781. /*
  2782. * We break out the loop above on need_resched() and when the
  2783. * owner changed, which is a sign for heavy contention. Return
  2784. * success only when lock->owner is NULL.
  2785. */
  2786. return lock->owner == NULL;
  2787. }
  2788. #endif
  2789. #ifdef CONFIG_PREEMPT
  2790. /*
  2791. * this is the entry point to schedule() from in-kernel preemption
  2792. * off of preempt_enable. Kernel preemptions off return from interrupt
  2793. * occur there and call schedule directly.
  2794. */
  2795. asmlinkage void __sched notrace preempt_schedule(void)
  2796. {
  2797. struct thread_info *ti = current_thread_info();
  2798. /*
  2799. * If there is a non-zero preempt_count or interrupts are disabled,
  2800. * we do not want to preempt the current task. Just return..
  2801. */
  2802. if (likely(ti->preempt_count || irqs_disabled()))
  2803. return;
  2804. do {
  2805. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2806. __schedule();
  2807. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2808. /*
  2809. * Check again in case we missed a preemption opportunity
  2810. * between schedule and now.
  2811. */
  2812. barrier();
  2813. } while (need_resched());
  2814. }
  2815. EXPORT_SYMBOL(preempt_schedule);
  2816. /*
  2817. * this is the entry point to schedule() from kernel preemption
  2818. * off of irq context.
  2819. * Note, that this is called and return with irqs disabled. This will
  2820. * protect us against recursive calling from irq.
  2821. */
  2822. asmlinkage void __sched preempt_schedule_irq(void)
  2823. {
  2824. struct thread_info *ti = current_thread_info();
  2825. /* Catch callers which need to be fixed */
  2826. BUG_ON(ti->preempt_count || !irqs_disabled());
  2827. do {
  2828. add_preempt_count(PREEMPT_ACTIVE);
  2829. local_irq_enable();
  2830. __schedule();
  2831. local_irq_disable();
  2832. sub_preempt_count(PREEMPT_ACTIVE);
  2833. /*
  2834. * Check again in case we missed a preemption opportunity
  2835. * between schedule and now.
  2836. */
  2837. barrier();
  2838. } while (need_resched());
  2839. }
  2840. #endif /* CONFIG_PREEMPT */
  2841. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2842. void *key)
  2843. {
  2844. return try_to_wake_up(curr->private, mode, wake_flags);
  2845. }
  2846. EXPORT_SYMBOL(default_wake_function);
  2847. /*
  2848. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2849. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2850. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2851. *
  2852. * There are circumstances in which we can try to wake a task which has already
  2853. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2854. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2855. */
  2856. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2857. int nr_exclusive, int wake_flags, void *key)
  2858. {
  2859. wait_queue_t *curr, *next;
  2860. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2861. unsigned flags = curr->flags;
  2862. if (curr->func(curr, mode, wake_flags, key) &&
  2863. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2864. break;
  2865. }
  2866. }
  2867. /**
  2868. * __wake_up - wake up threads blocked on a waitqueue.
  2869. * @q: the waitqueue
  2870. * @mode: which threads
  2871. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2872. * @key: is directly passed to the wakeup function
  2873. *
  2874. * It may be assumed that this function implies a write memory barrier before
  2875. * changing the task state if and only if any tasks are woken up.
  2876. */
  2877. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2878. int nr_exclusive, void *key)
  2879. {
  2880. unsigned long flags;
  2881. spin_lock_irqsave(&q->lock, flags);
  2882. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2883. spin_unlock_irqrestore(&q->lock, flags);
  2884. }
  2885. EXPORT_SYMBOL(__wake_up);
  2886. /*
  2887. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2888. */
  2889. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  2890. {
  2891. __wake_up_common(q, mode, 1, 0, NULL);
  2892. }
  2893. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2894. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2895. {
  2896. __wake_up_common(q, mode, 1, 0, key);
  2897. }
  2898. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2899. /**
  2900. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2901. * @q: the waitqueue
  2902. * @mode: which threads
  2903. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2904. * @key: opaque value to be passed to wakeup targets
  2905. *
  2906. * The sync wakeup differs that the waker knows that it will schedule
  2907. * away soon, so while the target thread will be woken up, it will not
  2908. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2909. * with each other. This can prevent needless bouncing between CPUs.
  2910. *
  2911. * On UP it can prevent extra preemption.
  2912. *
  2913. * It may be assumed that this function implies a write memory barrier before
  2914. * changing the task state if and only if any tasks are woken up.
  2915. */
  2916. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2917. int nr_exclusive, void *key)
  2918. {
  2919. unsigned long flags;
  2920. int wake_flags = WF_SYNC;
  2921. if (unlikely(!q))
  2922. return;
  2923. if (unlikely(!nr_exclusive))
  2924. wake_flags = 0;
  2925. spin_lock_irqsave(&q->lock, flags);
  2926. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2927. spin_unlock_irqrestore(&q->lock, flags);
  2928. }
  2929. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2930. /*
  2931. * __wake_up_sync - see __wake_up_sync_key()
  2932. */
  2933. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2934. {
  2935. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2936. }
  2937. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2938. /**
  2939. * complete: - signals a single thread waiting on this completion
  2940. * @x: holds the state of this particular completion
  2941. *
  2942. * This will wake up a single thread waiting on this completion. Threads will be
  2943. * awakened in the same order in which they were queued.
  2944. *
  2945. * See also complete_all(), wait_for_completion() and related routines.
  2946. *
  2947. * It may be assumed that this function implies a write memory barrier before
  2948. * changing the task state if and only if any tasks are woken up.
  2949. */
  2950. void complete(struct completion *x)
  2951. {
  2952. unsigned long flags;
  2953. spin_lock_irqsave(&x->wait.lock, flags);
  2954. x->done++;
  2955. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2956. spin_unlock_irqrestore(&x->wait.lock, flags);
  2957. }
  2958. EXPORT_SYMBOL(complete);
  2959. /**
  2960. * complete_all: - signals all threads waiting on this completion
  2961. * @x: holds the state of this particular completion
  2962. *
  2963. * This will wake up all threads waiting on this particular completion event.
  2964. *
  2965. * It may be assumed that this function implies a write memory barrier before
  2966. * changing the task state if and only if any tasks are woken up.
  2967. */
  2968. void complete_all(struct completion *x)
  2969. {
  2970. unsigned long flags;
  2971. spin_lock_irqsave(&x->wait.lock, flags);
  2972. x->done += UINT_MAX/2;
  2973. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2974. spin_unlock_irqrestore(&x->wait.lock, flags);
  2975. }
  2976. EXPORT_SYMBOL(complete_all);
  2977. static inline long __sched
  2978. do_wait_for_common(struct completion *x, long timeout, int state)
  2979. {
  2980. if (!x->done) {
  2981. DECLARE_WAITQUEUE(wait, current);
  2982. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2983. do {
  2984. if (signal_pending_state(state, current)) {
  2985. timeout = -ERESTARTSYS;
  2986. break;
  2987. }
  2988. __set_current_state(state);
  2989. spin_unlock_irq(&x->wait.lock);
  2990. timeout = schedule_timeout(timeout);
  2991. spin_lock_irq(&x->wait.lock);
  2992. } while (!x->done && timeout);
  2993. __remove_wait_queue(&x->wait, &wait);
  2994. if (!x->done)
  2995. return timeout;
  2996. }
  2997. x->done--;
  2998. return timeout ?: 1;
  2999. }
  3000. static long __sched
  3001. wait_for_common(struct completion *x, long timeout, int state)
  3002. {
  3003. might_sleep();
  3004. spin_lock_irq(&x->wait.lock);
  3005. timeout = do_wait_for_common(x, timeout, state);
  3006. spin_unlock_irq(&x->wait.lock);
  3007. return timeout;
  3008. }
  3009. /**
  3010. * wait_for_completion: - waits for completion of a task
  3011. * @x: holds the state of this particular completion
  3012. *
  3013. * This waits to be signaled for completion of a specific task. It is NOT
  3014. * interruptible and there is no timeout.
  3015. *
  3016. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3017. * and interrupt capability. Also see complete().
  3018. */
  3019. void __sched wait_for_completion(struct completion *x)
  3020. {
  3021. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3022. }
  3023. EXPORT_SYMBOL(wait_for_completion);
  3024. /**
  3025. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3026. * @x: holds the state of this particular completion
  3027. * @timeout: timeout value in jiffies
  3028. *
  3029. * This waits for either a completion of a specific task to be signaled or for a
  3030. * specified timeout to expire. The timeout is in jiffies. It is not
  3031. * interruptible.
  3032. *
  3033. * The return value is 0 if timed out, and positive (at least 1, or number of
  3034. * jiffies left till timeout) if completed.
  3035. */
  3036. unsigned long __sched
  3037. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3038. {
  3039. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3040. }
  3041. EXPORT_SYMBOL(wait_for_completion_timeout);
  3042. /**
  3043. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3044. * @x: holds the state of this particular completion
  3045. *
  3046. * This waits for completion of a specific task to be signaled. It is
  3047. * interruptible.
  3048. *
  3049. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3050. */
  3051. int __sched wait_for_completion_interruptible(struct completion *x)
  3052. {
  3053. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3054. if (t == -ERESTARTSYS)
  3055. return t;
  3056. return 0;
  3057. }
  3058. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3059. /**
  3060. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3061. * @x: holds the state of this particular completion
  3062. * @timeout: timeout value in jiffies
  3063. *
  3064. * This waits for either a completion of a specific task to be signaled or for a
  3065. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3066. *
  3067. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3068. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3069. */
  3070. long __sched
  3071. wait_for_completion_interruptible_timeout(struct completion *x,
  3072. unsigned long timeout)
  3073. {
  3074. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3075. }
  3076. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3077. /**
  3078. * wait_for_completion_killable: - waits for completion of a task (killable)
  3079. * @x: holds the state of this particular completion
  3080. *
  3081. * This waits to be signaled for completion of a specific task. It can be
  3082. * interrupted by a kill signal.
  3083. *
  3084. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3085. */
  3086. int __sched wait_for_completion_killable(struct completion *x)
  3087. {
  3088. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3089. if (t == -ERESTARTSYS)
  3090. return t;
  3091. return 0;
  3092. }
  3093. EXPORT_SYMBOL(wait_for_completion_killable);
  3094. /**
  3095. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3096. * @x: holds the state of this particular completion
  3097. * @timeout: timeout value in jiffies
  3098. *
  3099. * This waits for either a completion of a specific task to be
  3100. * signaled or for a specified timeout to expire. It can be
  3101. * interrupted by a kill signal. The timeout is in jiffies.
  3102. *
  3103. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3104. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3105. */
  3106. long __sched
  3107. wait_for_completion_killable_timeout(struct completion *x,
  3108. unsigned long timeout)
  3109. {
  3110. return wait_for_common(x, timeout, TASK_KILLABLE);
  3111. }
  3112. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3113. /**
  3114. * try_wait_for_completion - try to decrement a completion without blocking
  3115. * @x: completion structure
  3116. *
  3117. * Returns: 0 if a decrement cannot be done without blocking
  3118. * 1 if a decrement succeeded.
  3119. *
  3120. * If a completion is being used as a counting completion,
  3121. * attempt to decrement the counter without blocking. This
  3122. * enables us to avoid waiting if the resource the completion
  3123. * is protecting is not available.
  3124. */
  3125. bool try_wait_for_completion(struct completion *x)
  3126. {
  3127. unsigned long flags;
  3128. int ret = 1;
  3129. spin_lock_irqsave(&x->wait.lock, flags);
  3130. if (!x->done)
  3131. ret = 0;
  3132. else
  3133. x->done--;
  3134. spin_unlock_irqrestore(&x->wait.lock, flags);
  3135. return ret;
  3136. }
  3137. EXPORT_SYMBOL(try_wait_for_completion);
  3138. /**
  3139. * completion_done - Test to see if a completion has any waiters
  3140. * @x: completion structure
  3141. *
  3142. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3143. * 1 if there are no waiters.
  3144. *
  3145. */
  3146. bool completion_done(struct completion *x)
  3147. {
  3148. unsigned long flags;
  3149. int ret = 1;
  3150. spin_lock_irqsave(&x->wait.lock, flags);
  3151. if (!x->done)
  3152. ret = 0;
  3153. spin_unlock_irqrestore(&x->wait.lock, flags);
  3154. return ret;
  3155. }
  3156. EXPORT_SYMBOL(completion_done);
  3157. static long __sched
  3158. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3159. {
  3160. unsigned long flags;
  3161. wait_queue_t wait;
  3162. init_waitqueue_entry(&wait, current);
  3163. __set_current_state(state);
  3164. spin_lock_irqsave(&q->lock, flags);
  3165. __add_wait_queue(q, &wait);
  3166. spin_unlock(&q->lock);
  3167. timeout = schedule_timeout(timeout);
  3168. spin_lock_irq(&q->lock);
  3169. __remove_wait_queue(q, &wait);
  3170. spin_unlock_irqrestore(&q->lock, flags);
  3171. return timeout;
  3172. }
  3173. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3174. {
  3175. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3176. }
  3177. EXPORT_SYMBOL(interruptible_sleep_on);
  3178. long __sched
  3179. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3180. {
  3181. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3182. }
  3183. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3184. void __sched sleep_on(wait_queue_head_t *q)
  3185. {
  3186. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3187. }
  3188. EXPORT_SYMBOL(sleep_on);
  3189. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3190. {
  3191. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3192. }
  3193. EXPORT_SYMBOL(sleep_on_timeout);
  3194. #ifdef CONFIG_RT_MUTEXES
  3195. /*
  3196. * rt_mutex_setprio - set the current priority of a task
  3197. * @p: task
  3198. * @prio: prio value (kernel-internal form)
  3199. *
  3200. * This function changes the 'effective' priority of a task. It does
  3201. * not touch ->normal_prio like __setscheduler().
  3202. *
  3203. * Used by the rt_mutex code to implement priority inheritance logic.
  3204. */
  3205. void rt_mutex_setprio(struct task_struct *p, int prio)
  3206. {
  3207. int oldprio, on_rq, running;
  3208. struct rq *rq;
  3209. const struct sched_class *prev_class;
  3210. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3211. rq = __task_rq_lock(p);
  3212. trace_sched_pi_setprio(p, prio);
  3213. oldprio = p->prio;
  3214. prev_class = p->sched_class;
  3215. on_rq = p->on_rq;
  3216. running = task_current(rq, p);
  3217. if (on_rq)
  3218. dequeue_task(rq, p, 0);
  3219. if (running)
  3220. p->sched_class->put_prev_task(rq, p);
  3221. if (rt_prio(prio))
  3222. p->sched_class = &rt_sched_class;
  3223. else
  3224. p->sched_class = &fair_sched_class;
  3225. p->prio = prio;
  3226. if (running)
  3227. p->sched_class->set_curr_task(rq);
  3228. if (on_rq)
  3229. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3230. check_class_changed(rq, p, prev_class, oldprio);
  3231. __task_rq_unlock(rq);
  3232. }
  3233. #endif
  3234. void set_user_nice(struct task_struct *p, long nice)
  3235. {
  3236. int old_prio, delta, on_rq;
  3237. unsigned long flags;
  3238. struct rq *rq;
  3239. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3240. return;
  3241. /*
  3242. * We have to be careful, if called from sys_setpriority(),
  3243. * the task might be in the middle of scheduling on another CPU.
  3244. */
  3245. rq = task_rq_lock(p, &flags);
  3246. /*
  3247. * The RT priorities are set via sched_setscheduler(), but we still
  3248. * allow the 'normal' nice value to be set - but as expected
  3249. * it wont have any effect on scheduling until the task is
  3250. * SCHED_FIFO/SCHED_RR:
  3251. */
  3252. if (task_has_rt_policy(p)) {
  3253. p->static_prio = NICE_TO_PRIO(nice);
  3254. goto out_unlock;
  3255. }
  3256. on_rq = p->on_rq;
  3257. if (on_rq)
  3258. dequeue_task(rq, p, 0);
  3259. p->static_prio = NICE_TO_PRIO(nice);
  3260. set_load_weight(p);
  3261. old_prio = p->prio;
  3262. p->prio = effective_prio(p);
  3263. delta = p->prio - old_prio;
  3264. if (on_rq) {
  3265. enqueue_task(rq, p, 0);
  3266. /*
  3267. * If the task increased its priority or is running and
  3268. * lowered its priority, then reschedule its CPU:
  3269. */
  3270. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3271. resched_task(rq->curr);
  3272. }
  3273. out_unlock:
  3274. task_rq_unlock(rq, p, &flags);
  3275. }
  3276. EXPORT_SYMBOL(set_user_nice);
  3277. /*
  3278. * can_nice - check if a task can reduce its nice value
  3279. * @p: task
  3280. * @nice: nice value
  3281. */
  3282. int can_nice(const struct task_struct *p, const int nice)
  3283. {
  3284. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3285. int nice_rlim = 20 - nice;
  3286. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3287. capable(CAP_SYS_NICE));
  3288. }
  3289. #ifdef __ARCH_WANT_SYS_NICE
  3290. /*
  3291. * sys_nice - change the priority of the current process.
  3292. * @increment: priority increment
  3293. *
  3294. * sys_setpriority is a more generic, but much slower function that
  3295. * does similar things.
  3296. */
  3297. SYSCALL_DEFINE1(nice, int, increment)
  3298. {
  3299. long nice, retval;
  3300. /*
  3301. * Setpriority might change our priority at the same moment.
  3302. * We don't have to worry. Conceptually one call occurs first
  3303. * and we have a single winner.
  3304. */
  3305. if (increment < -40)
  3306. increment = -40;
  3307. if (increment > 40)
  3308. increment = 40;
  3309. nice = TASK_NICE(current) + increment;
  3310. if (nice < -20)
  3311. nice = -20;
  3312. if (nice > 19)
  3313. nice = 19;
  3314. if (increment < 0 && !can_nice(current, nice))
  3315. return -EPERM;
  3316. retval = security_task_setnice(current, nice);
  3317. if (retval)
  3318. return retval;
  3319. set_user_nice(current, nice);
  3320. return 0;
  3321. }
  3322. #endif
  3323. /**
  3324. * task_prio - return the priority value of a given task.
  3325. * @p: the task in question.
  3326. *
  3327. * This is the priority value as seen by users in /proc.
  3328. * RT tasks are offset by -200. Normal tasks are centered
  3329. * around 0, value goes from -16 to +15.
  3330. */
  3331. int task_prio(const struct task_struct *p)
  3332. {
  3333. return p->prio - MAX_RT_PRIO;
  3334. }
  3335. /**
  3336. * task_nice - return the nice value of a given task.
  3337. * @p: the task in question.
  3338. */
  3339. int task_nice(const struct task_struct *p)
  3340. {
  3341. return TASK_NICE(p);
  3342. }
  3343. EXPORT_SYMBOL(task_nice);
  3344. /**
  3345. * idle_cpu - is a given cpu idle currently?
  3346. * @cpu: the processor in question.
  3347. */
  3348. int idle_cpu(int cpu)
  3349. {
  3350. struct rq *rq = cpu_rq(cpu);
  3351. if (rq->curr != rq->idle)
  3352. return 0;
  3353. if (rq->nr_running)
  3354. return 0;
  3355. #ifdef CONFIG_SMP
  3356. if (!llist_empty(&rq->wake_list))
  3357. return 0;
  3358. #endif
  3359. return 1;
  3360. }
  3361. /**
  3362. * idle_task - return the idle task for a given cpu.
  3363. * @cpu: the processor in question.
  3364. */
  3365. struct task_struct *idle_task(int cpu)
  3366. {
  3367. return cpu_rq(cpu)->idle;
  3368. }
  3369. /**
  3370. * find_process_by_pid - find a process with a matching PID value.
  3371. * @pid: the pid in question.
  3372. */
  3373. static struct task_struct *find_process_by_pid(pid_t pid)
  3374. {
  3375. return pid ? find_task_by_vpid(pid) : current;
  3376. }
  3377. /* Actually do priority change: must hold rq lock. */
  3378. static void
  3379. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3380. {
  3381. p->policy = policy;
  3382. p->rt_priority = prio;
  3383. p->normal_prio = normal_prio(p);
  3384. /* we are holding p->pi_lock already */
  3385. p->prio = rt_mutex_getprio(p);
  3386. if (rt_prio(p->prio))
  3387. p->sched_class = &rt_sched_class;
  3388. else
  3389. p->sched_class = &fair_sched_class;
  3390. set_load_weight(p);
  3391. }
  3392. /*
  3393. * check the target process has a UID that matches the current process's
  3394. */
  3395. static bool check_same_owner(struct task_struct *p)
  3396. {
  3397. const struct cred *cred = current_cred(), *pcred;
  3398. bool match;
  3399. rcu_read_lock();
  3400. pcred = __task_cred(p);
  3401. if (cred->user->user_ns == pcred->user->user_ns)
  3402. match = (cred->euid == pcred->euid ||
  3403. cred->euid == pcred->uid);
  3404. else
  3405. match = false;
  3406. rcu_read_unlock();
  3407. return match;
  3408. }
  3409. static int __sched_setscheduler(struct task_struct *p, int policy,
  3410. const struct sched_param *param, bool user)
  3411. {
  3412. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3413. unsigned long flags;
  3414. const struct sched_class *prev_class;
  3415. struct rq *rq;
  3416. int reset_on_fork;
  3417. /* may grab non-irq protected spin_locks */
  3418. BUG_ON(in_interrupt());
  3419. recheck:
  3420. /* double check policy once rq lock held */
  3421. if (policy < 0) {
  3422. reset_on_fork = p->sched_reset_on_fork;
  3423. policy = oldpolicy = p->policy;
  3424. } else {
  3425. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3426. policy &= ~SCHED_RESET_ON_FORK;
  3427. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3428. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3429. policy != SCHED_IDLE)
  3430. return -EINVAL;
  3431. }
  3432. /*
  3433. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3434. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3435. * SCHED_BATCH and SCHED_IDLE is 0.
  3436. */
  3437. if (param->sched_priority < 0 ||
  3438. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3439. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3440. return -EINVAL;
  3441. if (rt_policy(policy) != (param->sched_priority != 0))
  3442. return -EINVAL;
  3443. /*
  3444. * Allow unprivileged RT tasks to decrease priority:
  3445. */
  3446. if (user && !capable(CAP_SYS_NICE)) {
  3447. if (rt_policy(policy)) {
  3448. unsigned long rlim_rtprio =
  3449. task_rlimit(p, RLIMIT_RTPRIO);
  3450. /* can't set/change the rt policy */
  3451. if (policy != p->policy && !rlim_rtprio)
  3452. return -EPERM;
  3453. /* can't increase priority */
  3454. if (param->sched_priority > p->rt_priority &&
  3455. param->sched_priority > rlim_rtprio)
  3456. return -EPERM;
  3457. }
  3458. /*
  3459. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3460. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3461. */
  3462. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3463. if (!can_nice(p, TASK_NICE(p)))
  3464. return -EPERM;
  3465. }
  3466. /* can't change other user's priorities */
  3467. if (!check_same_owner(p))
  3468. return -EPERM;
  3469. /* Normal users shall not reset the sched_reset_on_fork flag */
  3470. if (p->sched_reset_on_fork && !reset_on_fork)
  3471. return -EPERM;
  3472. }
  3473. if (user) {
  3474. retval = security_task_setscheduler(p);
  3475. if (retval)
  3476. return retval;
  3477. }
  3478. /*
  3479. * make sure no PI-waiters arrive (or leave) while we are
  3480. * changing the priority of the task:
  3481. *
  3482. * To be able to change p->policy safely, the appropriate
  3483. * runqueue lock must be held.
  3484. */
  3485. rq = task_rq_lock(p, &flags);
  3486. /*
  3487. * Changing the policy of the stop threads its a very bad idea
  3488. */
  3489. if (p == rq->stop) {
  3490. task_rq_unlock(rq, p, &flags);
  3491. return -EINVAL;
  3492. }
  3493. /*
  3494. * If not changing anything there's no need to proceed further:
  3495. */
  3496. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3497. param->sched_priority == p->rt_priority))) {
  3498. __task_rq_unlock(rq);
  3499. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3500. return 0;
  3501. }
  3502. #ifdef CONFIG_RT_GROUP_SCHED
  3503. if (user) {
  3504. /*
  3505. * Do not allow realtime tasks into groups that have no runtime
  3506. * assigned.
  3507. */
  3508. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3509. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3510. !task_group_is_autogroup(task_group(p))) {
  3511. task_rq_unlock(rq, p, &flags);
  3512. return -EPERM;
  3513. }
  3514. }
  3515. #endif
  3516. /* recheck policy now with rq lock held */
  3517. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3518. policy = oldpolicy = -1;
  3519. task_rq_unlock(rq, p, &flags);
  3520. goto recheck;
  3521. }
  3522. on_rq = p->on_rq;
  3523. running = task_current(rq, p);
  3524. if (on_rq)
  3525. deactivate_task(rq, p, 0);
  3526. if (running)
  3527. p->sched_class->put_prev_task(rq, p);
  3528. p->sched_reset_on_fork = reset_on_fork;
  3529. oldprio = p->prio;
  3530. prev_class = p->sched_class;
  3531. __setscheduler(rq, p, policy, param->sched_priority);
  3532. if (running)
  3533. p->sched_class->set_curr_task(rq);
  3534. if (on_rq)
  3535. activate_task(rq, p, 0);
  3536. check_class_changed(rq, p, prev_class, oldprio);
  3537. task_rq_unlock(rq, p, &flags);
  3538. rt_mutex_adjust_pi(p);
  3539. return 0;
  3540. }
  3541. /**
  3542. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3543. * @p: the task in question.
  3544. * @policy: new policy.
  3545. * @param: structure containing the new RT priority.
  3546. *
  3547. * NOTE that the task may be already dead.
  3548. */
  3549. int sched_setscheduler(struct task_struct *p, int policy,
  3550. const struct sched_param *param)
  3551. {
  3552. return __sched_setscheduler(p, policy, param, true);
  3553. }
  3554. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3555. /**
  3556. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3557. * @p: the task in question.
  3558. * @policy: new policy.
  3559. * @param: structure containing the new RT priority.
  3560. *
  3561. * Just like sched_setscheduler, only don't bother checking if the
  3562. * current context has permission. For example, this is needed in
  3563. * stop_machine(): we create temporary high priority worker threads,
  3564. * but our caller might not have that capability.
  3565. */
  3566. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3567. const struct sched_param *param)
  3568. {
  3569. return __sched_setscheduler(p, policy, param, false);
  3570. }
  3571. static int
  3572. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3573. {
  3574. struct sched_param lparam;
  3575. struct task_struct *p;
  3576. int retval;
  3577. if (!param || pid < 0)
  3578. return -EINVAL;
  3579. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3580. return -EFAULT;
  3581. rcu_read_lock();
  3582. retval = -ESRCH;
  3583. p = find_process_by_pid(pid);
  3584. if (p != NULL)
  3585. retval = sched_setscheduler(p, policy, &lparam);
  3586. rcu_read_unlock();
  3587. return retval;
  3588. }
  3589. /**
  3590. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3591. * @pid: the pid in question.
  3592. * @policy: new policy.
  3593. * @param: structure containing the new RT priority.
  3594. */
  3595. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3596. struct sched_param __user *, param)
  3597. {
  3598. /* negative values for policy are not valid */
  3599. if (policy < 0)
  3600. return -EINVAL;
  3601. return do_sched_setscheduler(pid, policy, param);
  3602. }
  3603. /**
  3604. * sys_sched_setparam - set/change the RT priority of a thread
  3605. * @pid: the pid in question.
  3606. * @param: structure containing the new RT priority.
  3607. */
  3608. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3609. {
  3610. return do_sched_setscheduler(pid, -1, param);
  3611. }
  3612. /**
  3613. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3614. * @pid: the pid in question.
  3615. */
  3616. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3617. {
  3618. struct task_struct *p;
  3619. int retval;
  3620. if (pid < 0)
  3621. return -EINVAL;
  3622. retval = -ESRCH;
  3623. rcu_read_lock();
  3624. p = find_process_by_pid(pid);
  3625. if (p) {
  3626. retval = security_task_getscheduler(p);
  3627. if (!retval)
  3628. retval = p->policy
  3629. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3630. }
  3631. rcu_read_unlock();
  3632. return retval;
  3633. }
  3634. /**
  3635. * sys_sched_getparam - get the RT priority of a thread
  3636. * @pid: the pid in question.
  3637. * @param: structure containing the RT priority.
  3638. */
  3639. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3640. {
  3641. struct sched_param lp;
  3642. struct task_struct *p;
  3643. int retval;
  3644. if (!param || pid < 0)
  3645. return -EINVAL;
  3646. rcu_read_lock();
  3647. p = find_process_by_pid(pid);
  3648. retval = -ESRCH;
  3649. if (!p)
  3650. goto out_unlock;
  3651. retval = security_task_getscheduler(p);
  3652. if (retval)
  3653. goto out_unlock;
  3654. lp.sched_priority = p->rt_priority;
  3655. rcu_read_unlock();
  3656. /*
  3657. * This one might sleep, we cannot do it with a spinlock held ...
  3658. */
  3659. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3660. return retval;
  3661. out_unlock:
  3662. rcu_read_unlock();
  3663. return retval;
  3664. }
  3665. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3666. {
  3667. cpumask_var_t cpus_allowed, new_mask;
  3668. struct task_struct *p;
  3669. int retval;
  3670. get_online_cpus();
  3671. rcu_read_lock();
  3672. p = find_process_by_pid(pid);
  3673. if (!p) {
  3674. rcu_read_unlock();
  3675. put_online_cpus();
  3676. return -ESRCH;
  3677. }
  3678. /* Prevent p going away */
  3679. get_task_struct(p);
  3680. rcu_read_unlock();
  3681. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3682. retval = -ENOMEM;
  3683. goto out_put_task;
  3684. }
  3685. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3686. retval = -ENOMEM;
  3687. goto out_free_cpus_allowed;
  3688. }
  3689. retval = -EPERM;
  3690. if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
  3691. goto out_unlock;
  3692. retval = security_task_setscheduler(p);
  3693. if (retval)
  3694. goto out_unlock;
  3695. cpuset_cpus_allowed(p, cpus_allowed);
  3696. cpumask_and(new_mask, in_mask, cpus_allowed);
  3697. again:
  3698. retval = set_cpus_allowed_ptr(p, new_mask);
  3699. if (!retval) {
  3700. cpuset_cpus_allowed(p, cpus_allowed);
  3701. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3702. /*
  3703. * We must have raced with a concurrent cpuset
  3704. * update. Just reset the cpus_allowed to the
  3705. * cpuset's cpus_allowed
  3706. */
  3707. cpumask_copy(new_mask, cpus_allowed);
  3708. goto again;
  3709. }
  3710. }
  3711. out_unlock:
  3712. free_cpumask_var(new_mask);
  3713. out_free_cpus_allowed:
  3714. free_cpumask_var(cpus_allowed);
  3715. out_put_task:
  3716. put_task_struct(p);
  3717. put_online_cpus();
  3718. return retval;
  3719. }
  3720. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3721. struct cpumask *new_mask)
  3722. {
  3723. if (len < cpumask_size())
  3724. cpumask_clear(new_mask);
  3725. else if (len > cpumask_size())
  3726. len = cpumask_size();
  3727. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3728. }
  3729. /**
  3730. * sys_sched_setaffinity - set the cpu affinity of a process
  3731. * @pid: pid of the process
  3732. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3733. * @user_mask_ptr: user-space pointer to the new cpu mask
  3734. */
  3735. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3736. unsigned long __user *, user_mask_ptr)
  3737. {
  3738. cpumask_var_t new_mask;
  3739. int retval;
  3740. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3741. return -ENOMEM;
  3742. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3743. if (retval == 0)
  3744. retval = sched_setaffinity(pid, new_mask);
  3745. free_cpumask_var(new_mask);
  3746. return retval;
  3747. }
  3748. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3749. {
  3750. struct task_struct *p;
  3751. unsigned long flags;
  3752. int retval;
  3753. get_online_cpus();
  3754. rcu_read_lock();
  3755. retval = -ESRCH;
  3756. p = find_process_by_pid(pid);
  3757. if (!p)
  3758. goto out_unlock;
  3759. retval = security_task_getscheduler(p);
  3760. if (retval)
  3761. goto out_unlock;
  3762. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3763. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3764. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3765. out_unlock:
  3766. rcu_read_unlock();
  3767. put_online_cpus();
  3768. return retval;
  3769. }
  3770. /**
  3771. * sys_sched_getaffinity - get the cpu affinity of a process
  3772. * @pid: pid of the process
  3773. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3774. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3775. */
  3776. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3777. unsigned long __user *, user_mask_ptr)
  3778. {
  3779. int ret;
  3780. cpumask_var_t mask;
  3781. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3782. return -EINVAL;
  3783. if (len & (sizeof(unsigned long)-1))
  3784. return -EINVAL;
  3785. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3786. return -ENOMEM;
  3787. ret = sched_getaffinity(pid, mask);
  3788. if (ret == 0) {
  3789. size_t retlen = min_t(size_t, len, cpumask_size());
  3790. if (copy_to_user(user_mask_ptr, mask, retlen))
  3791. ret = -EFAULT;
  3792. else
  3793. ret = retlen;
  3794. }
  3795. free_cpumask_var(mask);
  3796. return ret;
  3797. }
  3798. /**
  3799. * sys_sched_yield - yield the current processor to other threads.
  3800. *
  3801. * This function yields the current CPU to other tasks. If there are no
  3802. * other threads running on this CPU then this function will return.
  3803. */
  3804. SYSCALL_DEFINE0(sched_yield)
  3805. {
  3806. struct rq *rq = this_rq_lock();
  3807. schedstat_inc(rq, yld_count);
  3808. current->sched_class->yield_task(rq);
  3809. /*
  3810. * Since we are going to call schedule() anyway, there's
  3811. * no need to preempt or enable interrupts:
  3812. */
  3813. __release(rq->lock);
  3814. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3815. do_raw_spin_unlock(&rq->lock);
  3816. preempt_enable_no_resched();
  3817. schedule();
  3818. return 0;
  3819. }
  3820. static inline int should_resched(void)
  3821. {
  3822. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3823. }
  3824. static void __cond_resched(void)
  3825. {
  3826. add_preempt_count(PREEMPT_ACTIVE);
  3827. __schedule();
  3828. sub_preempt_count(PREEMPT_ACTIVE);
  3829. }
  3830. int __sched _cond_resched(void)
  3831. {
  3832. if (should_resched()) {
  3833. __cond_resched();
  3834. return 1;
  3835. }
  3836. return 0;
  3837. }
  3838. EXPORT_SYMBOL(_cond_resched);
  3839. /*
  3840. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3841. * call schedule, and on return reacquire the lock.
  3842. *
  3843. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3844. * operations here to prevent schedule() from being called twice (once via
  3845. * spin_unlock(), once by hand).
  3846. */
  3847. int __cond_resched_lock(spinlock_t *lock)
  3848. {
  3849. int resched = should_resched();
  3850. int ret = 0;
  3851. lockdep_assert_held(lock);
  3852. if (spin_needbreak(lock) || resched) {
  3853. spin_unlock(lock);
  3854. if (resched)
  3855. __cond_resched();
  3856. else
  3857. cpu_relax();
  3858. ret = 1;
  3859. spin_lock(lock);
  3860. }
  3861. return ret;
  3862. }
  3863. EXPORT_SYMBOL(__cond_resched_lock);
  3864. int __sched __cond_resched_softirq(void)
  3865. {
  3866. BUG_ON(!in_softirq());
  3867. if (should_resched()) {
  3868. local_bh_enable();
  3869. __cond_resched();
  3870. local_bh_disable();
  3871. return 1;
  3872. }
  3873. return 0;
  3874. }
  3875. EXPORT_SYMBOL(__cond_resched_softirq);
  3876. /**
  3877. * yield - yield the current processor to other threads.
  3878. *
  3879. * This is a shortcut for kernel-space yielding - it marks the
  3880. * thread runnable and calls sys_sched_yield().
  3881. */
  3882. void __sched yield(void)
  3883. {
  3884. set_current_state(TASK_RUNNING);
  3885. sys_sched_yield();
  3886. }
  3887. EXPORT_SYMBOL(yield);
  3888. /**
  3889. * yield_to - yield the current processor to another thread in
  3890. * your thread group, or accelerate that thread toward the
  3891. * processor it's on.
  3892. * @p: target task
  3893. * @preempt: whether task preemption is allowed or not
  3894. *
  3895. * It's the caller's job to ensure that the target task struct
  3896. * can't go away on us before we can do any checks.
  3897. *
  3898. * Returns true if we indeed boosted the target task.
  3899. */
  3900. bool __sched yield_to(struct task_struct *p, bool preempt)
  3901. {
  3902. struct task_struct *curr = current;
  3903. struct rq *rq, *p_rq;
  3904. unsigned long flags;
  3905. bool yielded = 0;
  3906. local_irq_save(flags);
  3907. rq = this_rq();
  3908. again:
  3909. p_rq = task_rq(p);
  3910. double_rq_lock(rq, p_rq);
  3911. while (task_rq(p) != p_rq) {
  3912. double_rq_unlock(rq, p_rq);
  3913. goto again;
  3914. }
  3915. if (!curr->sched_class->yield_to_task)
  3916. goto out;
  3917. if (curr->sched_class != p->sched_class)
  3918. goto out;
  3919. if (task_running(p_rq, p) || p->state)
  3920. goto out;
  3921. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3922. if (yielded) {
  3923. schedstat_inc(rq, yld_count);
  3924. /*
  3925. * Make p's CPU reschedule; pick_next_entity takes care of
  3926. * fairness.
  3927. */
  3928. if (preempt && rq != p_rq)
  3929. resched_task(p_rq->curr);
  3930. } else {
  3931. /*
  3932. * We might have set it in task_yield_fair(), but are
  3933. * not going to schedule(), so don't want to skip
  3934. * the next update.
  3935. */
  3936. rq->skip_clock_update = 0;
  3937. }
  3938. out:
  3939. double_rq_unlock(rq, p_rq);
  3940. local_irq_restore(flags);
  3941. if (yielded)
  3942. schedule();
  3943. return yielded;
  3944. }
  3945. EXPORT_SYMBOL_GPL(yield_to);
  3946. /*
  3947. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3948. * that process accounting knows that this is a task in IO wait state.
  3949. */
  3950. void __sched io_schedule(void)
  3951. {
  3952. struct rq *rq = raw_rq();
  3953. delayacct_blkio_start();
  3954. atomic_inc(&rq->nr_iowait);
  3955. blk_flush_plug(current);
  3956. current->in_iowait = 1;
  3957. schedule();
  3958. current->in_iowait = 0;
  3959. atomic_dec(&rq->nr_iowait);
  3960. delayacct_blkio_end();
  3961. }
  3962. EXPORT_SYMBOL(io_schedule);
  3963. long __sched io_schedule_timeout(long timeout)
  3964. {
  3965. struct rq *rq = raw_rq();
  3966. long ret;
  3967. delayacct_blkio_start();
  3968. atomic_inc(&rq->nr_iowait);
  3969. blk_flush_plug(current);
  3970. current->in_iowait = 1;
  3971. ret = schedule_timeout(timeout);
  3972. current->in_iowait = 0;
  3973. atomic_dec(&rq->nr_iowait);
  3974. delayacct_blkio_end();
  3975. return ret;
  3976. }
  3977. /**
  3978. * sys_sched_get_priority_max - return maximum RT priority.
  3979. * @policy: scheduling class.
  3980. *
  3981. * this syscall returns the maximum rt_priority that can be used
  3982. * by a given scheduling class.
  3983. */
  3984. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3985. {
  3986. int ret = -EINVAL;
  3987. switch (policy) {
  3988. case SCHED_FIFO:
  3989. case SCHED_RR:
  3990. ret = MAX_USER_RT_PRIO-1;
  3991. break;
  3992. case SCHED_NORMAL:
  3993. case SCHED_BATCH:
  3994. case SCHED_IDLE:
  3995. ret = 0;
  3996. break;
  3997. }
  3998. return ret;
  3999. }
  4000. /**
  4001. * sys_sched_get_priority_min - return minimum RT priority.
  4002. * @policy: scheduling class.
  4003. *
  4004. * this syscall returns the minimum rt_priority that can be used
  4005. * by a given scheduling class.
  4006. */
  4007. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4008. {
  4009. int ret = -EINVAL;
  4010. switch (policy) {
  4011. case SCHED_FIFO:
  4012. case SCHED_RR:
  4013. ret = 1;
  4014. break;
  4015. case SCHED_NORMAL:
  4016. case SCHED_BATCH:
  4017. case SCHED_IDLE:
  4018. ret = 0;
  4019. }
  4020. return ret;
  4021. }
  4022. /**
  4023. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4024. * @pid: pid of the process.
  4025. * @interval: userspace pointer to the timeslice value.
  4026. *
  4027. * this syscall writes the default timeslice value of a given process
  4028. * into the user-space timespec buffer. A value of '0' means infinity.
  4029. */
  4030. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4031. struct timespec __user *, interval)
  4032. {
  4033. struct task_struct *p;
  4034. unsigned int time_slice;
  4035. unsigned long flags;
  4036. struct rq *rq;
  4037. int retval;
  4038. struct timespec t;
  4039. if (pid < 0)
  4040. return -EINVAL;
  4041. retval = -ESRCH;
  4042. rcu_read_lock();
  4043. p = find_process_by_pid(pid);
  4044. if (!p)
  4045. goto out_unlock;
  4046. retval = security_task_getscheduler(p);
  4047. if (retval)
  4048. goto out_unlock;
  4049. rq = task_rq_lock(p, &flags);
  4050. time_slice = p->sched_class->get_rr_interval(rq, p);
  4051. task_rq_unlock(rq, p, &flags);
  4052. rcu_read_unlock();
  4053. jiffies_to_timespec(time_slice, &t);
  4054. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4055. return retval;
  4056. out_unlock:
  4057. rcu_read_unlock();
  4058. return retval;
  4059. }
  4060. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4061. void sched_show_task(struct task_struct *p)
  4062. {
  4063. unsigned long free = 0;
  4064. unsigned state;
  4065. state = p->state ? __ffs(p->state) + 1 : 0;
  4066. printk(KERN_INFO "%-15.15s %c", p->comm,
  4067. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4068. #if BITS_PER_LONG == 32
  4069. if (state == TASK_RUNNING)
  4070. printk(KERN_CONT " running ");
  4071. else
  4072. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4073. #else
  4074. if (state == TASK_RUNNING)
  4075. printk(KERN_CONT " running task ");
  4076. else
  4077. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4078. #endif
  4079. #ifdef CONFIG_DEBUG_STACK_USAGE
  4080. free = stack_not_used(p);
  4081. #endif
  4082. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4083. task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
  4084. (unsigned long)task_thread_info(p)->flags);
  4085. show_stack(p, NULL);
  4086. }
  4087. void show_state_filter(unsigned long state_filter)
  4088. {
  4089. struct task_struct *g, *p;
  4090. #if BITS_PER_LONG == 32
  4091. printk(KERN_INFO
  4092. " task PC stack pid father\n");
  4093. #else
  4094. printk(KERN_INFO
  4095. " task PC stack pid father\n");
  4096. #endif
  4097. rcu_read_lock();
  4098. do_each_thread(g, p) {
  4099. /*
  4100. * reset the NMI-timeout, listing all files on a slow
  4101. * console might take a lot of time:
  4102. */
  4103. touch_nmi_watchdog();
  4104. if (!state_filter || (p->state & state_filter))
  4105. sched_show_task(p);
  4106. } while_each_thread(g, p);
  4107. touch_all_softlockup_watchdogs();
  4108. #ifdef CONFIG_SCHED_DEBUG
  4109. sysrq_sched_debug_show();
  4110. #endif
  4111. rcu_read_unlock();
  4112. /*
  4113. * Only show locks if all tasks are dumped:
  4114. */
  4115. if (!state_filter)
  4116. debug_show_all_locks();
  4117. }
  4118. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4119. {
  4120. idle->sched_class = &idle_sched_class;
  4121. }
  4122. /**
  4123. * init_idle - set up an idle thread for a given CPU
  4124. * @idle: task in question
  4125. * @cpu: cpu the idle task belongs to
  4126. *
  4127. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4128. * flag, to make booting more robust.
  4129. */
  4130. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4131. {
  4132. struct rq *rq = cpu_rq(cpu);
  4133. unsigned long flags;
  4134. raw_spin_lock_irqsave(&rq->lock, flags);
  4135. __sched_fork(idle);
  4136. idle->state = TASK_RUNNING;
  4137. idle->se.exec_start = sched_clock();
  4138. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4139. /*
  4140. * We're having a chicken and egg problem, even though we are
  4141. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4142. * lockdep check in task_group() will fail.
  4143. *
  4144. * Similar case to sched_fork(). / Alternatively we could
  4145. * use task_rq_lock() here and obtain the other rq->lock.
  4146. *
  4147. * Silence PROVE_RCU
  4148. */
  4149. rcu_read_lock();
  4150. __set_task_cpu(idle, cpu);
  4151. rcu_read_unlock();
  4152. rq->curr = rq->idle = idle;
  4153. #if defined(CONFIG_SMP)
  4154. idle->on_cpu = 1;
  4155. #endif
  4156. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4157. /* Set the preempt count _outside_ the spinlocks! */
  4158. task_thread_info(idle)->preempt_count = 0;
  4159. /*
  4160. * The idle tasks have their own, simple scheduling class:
  4161. */
  4162. idle->sched_class = &idle_sched_class;
  4163. ftrace_graph_init_idle_task(idle, cpu);
  4164. #if defined(CONFIG_SMP)
  4165. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4166. #endif
  4167. }
  4168. #ifdef CONFIG_SMP
  4169. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4170. {
  4171. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4172. p->sched_class->set_cpus_allowed(p, new_mask);
  4173. cpumask_copy(&p->cpus_allowed, new_mask);
  4174. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4175. }
  4176. /*
  4177. * This is how migration works:
  4178. *
  4179. * 1) we invoke migration_cpu_stop() on the target CPU using
  4180. * stop_one_cpu().
  4181. * 2) stopper starts to run (implicitly forcing the migrated thread
  4182. * off the CPU)
  4183. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4184. * 4) if it's in the wrong runqueue then the migration thread removes
  4185. * it and puts it into the right queue.
  4186. * 5) stopper completes and stop_one_cpu() returns and the migration
  4187. * is done.
  4188. */
  4189. /*
  4190. * Change a given task's CPU affinity. Migrate the thread to a
  4191. * proper CPU and schedule it away if the CPU it's executing on
  4192. * is removed from the allowed bitmask.
  4193. *
  4194. * NOTE: the caller must have a valid reference to the task, the
  4195. * task must not exit() & deallocate itself prematurely. The
  4196. * call is not atomic; no spinlocks may be held.
  4197. */
  4198. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4199. {
  4200. unsigned long flags;
  4201. struct rq *rq;
  4202. unsigned int dest_cpu;
  4203. int ret = 0;
  4204. rq = task_rq_lock(p, &flags);
  4205. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4206. goto out;
  4207. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4208. ret = -EINVAL;
  4209. goto out;
  4210. }
  4211. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4212. ret = -EINVAL;
  4213. goto out;
  4214. }
  4215. do_set_cpus_allowed(p, new_mask);
  4216. /* Can the task run on the task's current CPU? If so, we're done */
  4217. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4218. goto out;
  4219. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4220. if (p->on_rq) {
  4221. struct migration_arg arg = { p, dest_cpu };
  4222. /* Need help from migration thread: drop lock and wait. */
  4223. task_rq_unlock(rq, p, &flags);
  4224. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4225. tlb_migrate_finish(p->mm);
  4226. return 0;
  4227. }
  4228. out:
  4229. task_rq_unlock(rq, p, &flags);
  4230. return ret;
  4231. }
  4232. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4233. /*
  4234. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4235. * this because either it can't run here any more (set_cpus_allowed()
  4236. * away from this CPU, or CPU going down), or because we're
  4237. * attempting to rebalance this task on exec (sched_exec).
  4238. *
  4239. * So we race with normal scheduler movements, but that's OK, as long
  4240. * as the task is no longer on this CPU.
  4241. *
  4242. * Returns non-zero if task was successfully migrated.
  4243. */
  4244. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4245. {
  4246. struct rq *rq_dest, *rq_src;
  4247. int ret = 0;
  4248. if (unlikely(!cpu_active(dest_cpu)))
  4249. return ret;
  4250. rq_src = cpu_rq(src_cpu);
  4251. rq_dest = cpu_rq(dest_cpu);
  4252. raw_spin_lock(&p->pi_lock);
  4253. double_rq_lock(rq_src, rq_dest);
  4254. /* Already moved. */
  4255. if (task_cpu(p) != src_cpu)
  4256. goto done;
  4257. /* Affinity changed (again). */
  4258. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4259. goto fail;
  4260. /*
  4261. * If we're not on a rq, the next wake-up will ensure we're
  4262. * placed properly.
  4263. */
  4264. if (p->on_rq) {
  4265. deactivate_task(rq_src, p, 0);
  4266. set_task_cpu(p, dest_cpu);
  4267. activate_task(rq_dest, p, 0);
  4268. check_preempt_curr(rq_dest, p, 0);
  4269. }
  4270. done:
  4271. ret = 1;
  4272. fail:
  4273. double_rq_unlock(rq_src, rq_dest);
  4274. raw_spin_unlock(&p->pi_lock);
  4275. return ret;
  4276. }
  4277. /*
  4278. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4279. * and performs thread migration by bumping thread off CPU then
  4280. * 'pushing' onto another runqueue.
  4281. */
  4282. static int migration_cpu_stop(void *data)
  4283. {
  4284. struct migration_arg *arg = data;
  4285. /*
  4286. * The original target cpu might have gone down and we might
  4287. * be on another cpu but it doesn't matter.
  4288. */
  4289. local_irq_disable();
  4290. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4291. local_irq_enable();
  4292. return 0;
  4293. }
  4294. #ifdef CONFIG_HOTPLUG_CPU
  4295. /*
  4296. * Ensures that the idle task is using init_mm right before its cpu goes
  4297. * offline.
  4298. */
  4299. void idle_task_exit(void)
  4300. {
  4301. struct mm_struct *mm = current->active_mm;
  4302. BUG_ON(cpu_online(smp_processor_id()));
  4303. if (mm != &init_mm)
  4304. switch_mm(mm, &init_mm, current);
  4305. mmdrop(mm);
  4306. }
  4307. /*
  4308. * While a dead CPU has no uninterruptible tasks queued at this point,
  4309. * it might still have a nonzero ->nr_uninterruptible counter, because
  4310. * for performance reasons the counter is not stricly tracking tasks to
  4311. * their home CPUs. So we just add the counter to another CPU's counter,
  4312. * to keep the global sum constant after CPU-down:
  4313. */
  4314. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4315. {
  4316. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4317. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4318. rq_src->nr_uninterruptible = 0;
  4319. }
  4320. /*
  4321. * remove the tasks which were accounted by rq from calc_load_tasks.
  4322. */
  4323. static void calc_global_load_remove(struct rq *rq)
  4324. {
  4325. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4326. rq->calc_load_active = 0;
  4327. }
  4328. /*
  4329. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4330. * try_to_wake_up()->select_task_rq().
  4331. *
  4332. * Called with rq->lock held even though we'er in stop_machine() and
  4333. * there's no concurrency possible, we hold the required locks anyway
  4334. * because of lock validation efforts.
  4335. */
  4336. static void migrate_tasks(unsigned int dead_cpu)
  4337. {
  4338. struct rq *rq = cpu_rq(dead_cpu);
  4339. struct task_struct *next, *stop = rq->stop;
  4340. int dest_cpu;
  4341. /*
  4342. * Fudge the rq selection such that the below task selection loop
  4343. * doesn't get stuck on the currently eligible stop task.
  4344. *
  4345. * We're currently inside stop_machine() and the rq is either stuck
  4346. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4347. * either way we should never end up calling schedule() until we're
  4348. * done here.
  4349. */
  4350. rq->stop = NULL;
  4351. /* Ensure any throttled groups are reachable by pick_next_task */
  4352. unthrottle_offline_cfs_rqs(rq);
  4353. for ( ; ; ) {
  4354. /*
  4355. * There's this thread running, bail when that's the only
  4356. * remaining thread.
  4357. */
  4358. if (rq->nr_running == 1)
  4359. break;
  4360. next = pick_next_task(rq);
  4361. BUG_ON(!next);
  4362. next->sched_class->put_prev_task(rq, next);
  4363. /* Find suitable destination for @next, with force if needed. */
  4364. dest_cpu = select_fallback_rq(dead_cpu, next);
  4365. raw_spin_unlock(&rq->lock);
  4366. __migrate_task(next, dead_cpu, dest_cpu);
  4367. raw_spin_lock(&rq->lock);
  4368. }
  4369. rq->stop = stop;
  4370. }
  4371. #endif /* CONFIG_HOTPLUG_CPU */
  4372. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4373. static struct ctl_table sd_ctl_dir[] = {
  4374. {
  4375. .procname = "sched_domain",
  4376. .mode = 0555,
  4377. },
  4378. {}
  4379. };
  4380. static struct ctl_table sd_ctl_root[] = {
  4381. {
  4382. .procname = "kernel",
  4383. .mode = 0555,
  4384. .child = sd_ctl_dir,
  4385. },
  4386. {}
  4387. };
  4388. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4389. {
  4390. struct ctl_table *entry =
  4391. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4392. return entry;
  4393. }
  4394. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4395. {
  4396. struct ctl_table *entry;
  4397. /*
  4398. * In the intermediate directories, both the child directory and
  4399. * procname are dynamically allocated and could fail but the mode
  4400. * will always be set. In the lowest directory the names are
  4401. * static strings and all have proc handlers.
  4402. */
  4403. for (entry = *tablep; entry->mode; entry++) {
  4404. if (entry->child)
  4405. sd_free_ctl_entry(&entry->child);
  4406. if (entry->proc_handler == NULL)
  4407. kfree(entry->procname);
  4408. }
  4409. kfree(*tablep);
  4410. *tablep = NULL;
  4411. }
  4412. static void
  4413. set_table_entry(struct ctl_table *entry,
  4414. const char *procname, void *data, int maxlen,
  4415. umode_t mode, proc_handler *proc_handler)
  4416. {
  4417. entry->procname = procname;
  4418. entry->data = data;
  4419. entry->maxlen = maxlen;
  4420. entry->mode = mode;
  4421. entry->proc_handler = proc_handler;
  4422. }
  4423. static struct ctl_table *
  4424. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4425. {
  4426. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4427. if (table == NULL)
  4428. return NULL;
  4429. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4430. sizeof(long), 0644, proc_doulongvec_minmax);
  4431. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4432. sizeof(long), 0644, proc_doulongvec_minmax);
  4433. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4434. sizeof(int), 0644, proc_dointvec_minmax);
  4435. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4436. sizeof(int), 0644, proc_dointvec_minmax);
  4437. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4438. sizeof(int), 0644, proc_dointvec_minmax);
  4439. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4440. sizeof(int), 0644, proc_dointvec_minmax);
  4441. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4442. sizeof(int), 0644, proc_dointvec_minmax);
  4443. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4444. sizeof(int), 0644, proc_dointvec_minmax);
  4445. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4446. sizeof(int), 0644, proc_dointvec_minmax);
  4447. set_table_entry(&table[9], "cache_nice_tries",
  4448. &sd->cache_nice_tries,
  4449. sizeof(int), 0644, proc_dointvec_minmax);
  4450. set_table_entry(&table[10], "flags", &sd->flags,
  4451. sizeof(int), 0644, proc_dointvec_minmax);
  4452. set_table_entry(&table[11], "name", sd->name,
  4453. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4454. /* &table[12] is terminator */
  4455. return table;
  4456. }
  4457. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4458. {
  4459. struct ctl_table *entry, *table;
  4460. struct sched_domain *sd;
  4461. int domain_num = 0, i;
  4462. char buf[32];
  4463. for_each_domain(cpu, sd)
  4464. domain_num++;
  4465. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4466. if (table == NULL)
  4467. return NULL;
  4468. i = 0;
  4469. for_each_domain(cpu, sd) {
  4470. snprintf(buf, 32, "domain%d", i);
  4471. entry->procname = kstrdup(buf, GFP_KERNEL);
  4472. entry->mode = 0555;
  4473. entry->child = sd_alloc_ctl_domain_table(sd);
  4474. entry++;
  4475. i++;
  4476. }
  4477. return table;
  4478. }
  4479. static struct ctl_table_header *sd_sysctl_header;
  4480. static void register_sched_domain_sysctl(void)
  4481. {
  4482. int i, cpu_num = num_possible_cpus();
  4483. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4484. char buf[32];
  4485. WARN_ON(sd_ctl_dir[0].child);
  4486. sd_ctl_dir[0].child = entry;
  4487. if (entry == NULL)
  4488. return;
  4489. for_each_possible_cpu(i) {
  4490. snprintf(buf, 32, "cpu%d", i);
  4491. entry->procname = kstrdup(buf, GFP_KERNEL);
  4492. entry->mode = 0555;
  4493. entry->child = sd_alloc_ctl_cpu_table(i);
  4494. entry++;
  4495. }
  4496. WARN_ON(sd_sysctl_header);
  4497. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4498. }
  4499. /* may be called multiple times per register */
  4500. static void unregister_sched_domain_sysctl(void)
  4501. {
  4502. if (sd_sysctl_header)
  4503. unregister_sysctl_table(sd_sysctl_header);
  4504. sd_sysctl_header = NULL;
  4505. if (sd_ctl_dir[0].child)
  4506. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4507. }
  4508. #else
  4509. static void register_sched_domain_sysctl(void)
  4510. {
  4511. }
  4512. static void unregister_sched_domain_sysctl(void)
  4513. {
  4514. }
  4515. #endif
  4516. static void set_rq_online(struct rq *rq)
  4517. {
  4518. if (!rq->online) {
  4519. const struct sched_class *class;
  4520. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4521. rq->online = 1;
  4522. for_each_class(class) {
  4523. if (class->rq_online)
  4524. class->rq_online(rq);
  4525. }
  4526. }
  4527. }
  4528. static void set_rq_offline(struct rq *rq)
  4529. {
  4530. if (rq->online) {
  4531. const struct sched_class *class;
  4532. for_each_class(class) {
  4533. if (class->rq_offline)
  4534. class->rq_offline(rq);
  4535. }
  4536. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4537. rq->online = 0;
  4538. }
  4539. }
  4540. /*
  4541. * migration_call - callback that gets triggered when a CPU is added.
  4542. * Here we can start up the necessary migration thread for the new CPU.
  4543. */
  4544. static int __cpuinit
  4545. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4546. {
  4547. int cpu = (long)hcpu;
  4548. unsigned long flags;
  4549. struct rq *rq = cpu_rq(cpu);
  4550. switch (action & ~CPU_TASKS_FROZEN) {
  4551. case CPU_UP_PREPARE:
  4552. rq->calc_load_update = calc_load_update;
  4553. break;
  4554. case CPU_ONLINE:
  4555. /* Update our root-domain */
  4556. raw_spin_lock_irqsave(&rq->lock, flags);
  4557. if (rq->rd) {
  4558. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4559. set_rq_online(rq);
  4560. }
  4561. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4562. break;
  4563. #ifdef CONFIG_HOTPLUG_CPU
  4564. case CPU_DYING:
  4565. sched_ttwu_pending();
  4566. /* Update our root-domain */
  4567. raw_spin_lock_irqsave(&rq->lock, flags);
  4568. if (rq->rd) {
  4569. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4570. set_rq_offline(rq);
  4571. }
  4572. migrate_tasks(cpu);
  4573. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4574. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4575. migrate_nr_uninterruptible(rq);
  4576. calc_global_load_remove(rq);
  4577. break;
  4578. #endif
  4579. }
  4580. update_max_interval();
  4581. return NOTIFY_OK;
  4582. }
  4583. /*
  4584. * Register at high priority so that task migration (migrate_all_tasks)
  4585. * happens before everything else. This has to be lower priority than
  4586. * the notifier in the perf_event subsystem, though.
  4587. */
  4588. static struct notifier_block __cpuinitdata migration_notifier = {
  4589. .notifier_call = migration_call,
  4590. .priority = CPU_PRI_MIGRATION,
  4591. };
  4592. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4593. unsigned long action, void *hcpu)
  4594. {
  4595. switch (action & ~CPU_TASKS_FROZEN) {
  4596. case CPU_ONLINE:
  4597. case CPU_DOWN_FAILED:
  4598. set_cpu_active((long)hcpu, true);
  4599. return NOTIFY_OK;
  4600. default:
  4601. return NOTIFY_DONE;
  4602. }
  4603. }
  4604. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4605. unsigned long action, void *hcpu)
  4606. {
  4607. switch (action & ~CPU_TASKS_FROZEN) {
  4608. case CPU_DOWN_PREPARE:
  4609. set_cpu_active((long)hcpu, false);
  4610. return NOTIFY_OK;
  4611. default:
  4612. return NOTIFY_DONE;
  4613. }
  4614. }
  4615. static int __init migration_init(void)
  4616. {
  4617. void *cpu = (void *)(long)smp_processor_id();
  4618. int err;
  4619. /* Initialize migration for the boot CPU */
  4620. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4621. BUG_ON(err == NOTIFY_BAD);
  4622. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4623. register_cpu_notifier(&migration_notifier);
  4624. /* Register cpu active notifiers */
  4625. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4626. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4627. return 0;
  4628. }
  4629. early_initcall(migration_init);
  4630. #endif
  4631. #ifdef CONFIG_SMP
  4632. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4633. #ifdef CONFIG_SCHED_DEBUG
  4634. static __read_mostly int sched_domain_debug_enabled;
  4635. static int __init sched_domain_debug_setup(char *str)
  4636. {
  4637. sched_domain_debug_enabled = 1;
  4638. return 0;
  4639. }
  4640. early_param("sched_debug", sched_domain_debug_setup);
  4641. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4642. struct cpumask *groupmask)
  4643. {
  4644. struct sched_group *group = sd->groups;
  4645. char str[256];
  4646. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4647. cpumask_clear(groupmask);
  4648. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4649. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4650. printk("does not load-balance\n");
  4651. if (sd->parent)
  4652. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4653. " has parent");
  4654. return -1;
  4655. }
  4656. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4657. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4658. printk(KERN_ERR "ERROR: domain->span does not contain "
  4659. "CPU%d\n", cpu);
  4660. }
  4661. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4662. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4663. " CPU%d\n", cpu);
  4664. }
  4665. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4666. do {
  4667. if (!group) {
  4668. printk("\n");
  4669. printk(KERN_ERR "ERROR: group is NULL\n");
  4670. break;
  4671. }
  4672. if (!group->sgp->power) {
  4673. printk(KERN_CONT "\n");
  4674. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4675. "set\n");
  4676. break;
  4677. }
  4678. if (!cpumask_weight(sched_group_cpus(group))) {
  4679. printk(KERN_CONT "\n");
  4680. printk(KERN_ERR "ERROR: empty group\n");
  4681. break;
  4682. }
  4683. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4684. printk(KERN_CONT "\n");
  4685. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4686. break;
  4687. }
  4688. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4689. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4690. printk(KERN_CONT " %s", str);
  4691. if (group->sgp->power != SCHED_POWER_SCALE) {
  4692. printk(KERN_CONT " (cpu_power = %d)",
  4693. group->sgp->power);
  4694. }
  4695. group = group->next;
  4696. } while (group != sd->groups);
  4697. printk(KERN_CONT "\n");
  4698. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4699. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4700. if (sd->parent &&
  4701. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4702. printk(KERN_ERR "ERROR: parent span is not a superset "
  4703. "of domain->span\n");
  4704. return 0;
  4705. }
  4706. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4707. {
  4708. int level = 0;
  4709. if (!sched_domain_debug_enabled)
  4710. return;
  4711. if (!sd) {
  4712. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4713. return;
  4714. }
  4715. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4716. for (;;) {
  4717. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4718. break;
  4719. level++;
  4720. sd = sd->parent;
  4721. if (!sd)
  4722. break;
  4723. }
  4724. }
  4725. #else /* !CONFIG_SCHED_DEBUG */
  4726. # define sched_domain_debug(sd, cpu) do { } while (0)
  4727. #endif /* CONFIG_SCHED_DEBUG */
  4728. static int sd_degenerate(struct sched_domain *sd)
  4729. {
  4730. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4731. return 1;
  4732. /* Following flags need at least 2 groups */
  4733. if (sd->flags & (SD_LOAD_BALANCE |
  4734. SD_BALANCE_NEWIDLE |
  4735. SD_BALANCE_FORK |
  4736. SD_BALANCE_EXEC |
  4737. SD_SHARE_CPUPOWER |
  4738. SD_SHARE_PKG_RESOURCES)) {
  4739. if (sd->groups != sd->groups->next)
  4740. return 0;
  4741. }
  4742. /* Following flags don't use groups */
  4743. if (sd->flags & (SD_WAKE_AFFINE))
  4744. return 0;
  4745. return 1;
  4746. }
  4747. static int
  4748. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4749. {
  4750. unsigned long cflags = sd->flags, pflags = parent->flags;
  4751. if (sd_degenerate(parent))
  4752. return 1;
  4753. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4754. return 0;
  4755. /* Flags needing groups don't count if only 1 group in parent */
  4756. if (parent->groups == parent->groups->next) {
  4757. pflags &= ~(SD_LOAD_BALANCE |
  4758. SD_BALANCE_NEWIDLE |
  4759. SD_BALANCE_FORK |
  4760. SD_BALANCE_EXEC |
  4761. SD_SHARE_CPUPOWER |
  4762. SD_SHARE_PKG_RESOURCES);
  4763. if (nr_node_ids == 1)
  4764. pflags &= ~SD_SERIALIZE;
  4765. }
  4766. if (~cflags & pflags)
  4767. return 0;
  4768. return 1;
  4769. }
  4770. static void free_rootdomain(struct rcu_head *rcu)
  4771. {
  4772. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4773. cpupri_cleanup(&rd->cpupri);
  4774. free_cpumask_var(rd->rto_mask);
  4775. free_cpumask_var(rd->online);
  4776. free_cpumask_var(rd->span);
  4777. kfree(rd);
  4778. }
  4779. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4780. {
  4781. struct root_domain *old_rd = NULL;
  4782. unsigned long flags;
  4783. raw_spin_lock_irqsave(&rq->lock, flags);
  4784. if (rq->rd) {
  4785. old_rd = rq->rd;
  4786. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4787. set_rq_offline(rq);
  4788. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4789. /*
  4790. * If we dont want to free the old_rt yet then
  4791. * set old_rd to NULL to skip the freeing later
  4792. * in this function:
  4793. */
  4794. if (!atomic_dec_and_test(&old_rd->refcount))
  4795. old_rd = NULL;
  4796. }
  4797. atomic_inc(&rd->refcount);
  4798. rq->rd = rd;
  4799. cpumask_set_cpu(rq->cpu, rd->span);
  4800. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4801. set_rq_online(rq);
  4802. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4803. if (old_rd)
  4804. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4805. }
  4806. static int init_rootdomain(struct root_domain *rd)
  4807. {
  4808. memset(rd, 0, sizeof(*rd));
  4809. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4810. goto out;
  4811. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4812. goto free_span;
  4813. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4814. goto free_online;
  4815. if (cpupri_init(&rd->cpupri) != 0)
  4816. goto free_rto_mask;
  4817. return 0;
  4818. free_rto_mask:
  4819. free_cpumask_var(rd->rto_mask);
  4820. free_online:
  4821. free_cpumask_var(rd->online);
  4822. free_span:
  4823. free_cpumask_var(rd->span);
  4824. out:
  4825. return -ENOMEM;
  4826. }
  4827. /*
  4828. * By default the system creates a single root-domain with all cpus as
  4829. * members (mimicking the global state we have today).
  4830. */
  4831. struct root_domain def_root_domain;
  4832. static void init_defrootdomain(void)
  4833. {
  4834. init_rootdomain(&def_root_domain);
  4835. atomic_set(&def_root_domain.refcount, 1);
  4836. }
  4837. static struct root_domain *alloc_rootdomain(void)
  4838. {
  4839. struct root_domain *rd;
  4840. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4841. if (!rd)
  4842. return NULL;
  4843. if (init_rootdomain(rd) != 0) {
  4844. kfree(rd);
  4845. return NULL;
  4846. }
  4847. return rd;
  4848. }
  4849. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4850. {
  4851. struct sched_group *tmp, *first;
  4852. if (!sg)
  4853. return;
  4854. first = sg;
  4855. do {
  4856. tmp = sg->next;
  4857. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4858. kfree(sg->sgp);
  4859. kfree(sg);
  4860. sg = tmp;
  4861. } while (sg != first);
  4862. }
  4863. static void free_sched_domain(struct rcu_head *rcu)
  4864. {
  4865. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4866. /*
  4867. * If its an overlapping domain it has private groups, iterate and
  4868. * nuke them all.
  4869. */
  4870. if (sd->flags & SD_OVERLAP) {
  4871. free_sched_groups(sd->groups, 1);
  4872. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4873. kfree(sd->groups->sgp);
  4874. kfree(sd->groups);
  4875. }
  4876. kfree(sd);
  4877. }
  4878. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4879. {
  4880. call_rcu(&sd->rcu, free_sched_domain);
  4881. }
  4882. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4883. {
  4884. for (; sd; sd = sd->parent)
  4885. destroy_sched_domain(sd, cpu);
  4886. }
  4887. /*
  4888. * Keep a special pointer to the highest sched_domain that has
  4889. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4890. * allows us to avoid some pointer chasing select_idle_sibling().
  4891. *
  4892. * Also keep a unique ID per domain (we use the first cpu number in
  4893. * the cpumask of the domain), this allows us to quickly tell if
  4894. * two cpus are in the same cache domain, see ttwu_share_cache().
  4895. */
  4896. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4897. DEFINE_PER_CPU(int, sd_llc_id);
  4898. static void update_top_cache_domain(int cpu)
  4899. {
  4900. struct sched_domain *sd;
  4901. int id = cpu;
  4902. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4903. if (sd)
  4904. id = cpumask_first(sched_domain_span(sd));
  4905. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4906. per_cpu(sd_llc_id, cpu) = id;
  4907. }
  4908. /*
  4909. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4910. * hold the hotplug lock.
  4911. */
  4912. static void
  4913. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4914. {
  4915. struct rq *rq = cpu_rq(cpu);
  4916. struct sched_domain *tmp;
  4917. /* Remove the sched domains which do not contribute to scheduling. */
  4918. for (tmp = sd; tmp; ) {
  4919. struct sched_domain *parent = tmp->parent;
  4920. if (!parent)
  4921. break;
  4922. if (sd_parent_degenerate(tmp, parent)) {
  4923. tmp->parent = parent->parent;
  4924. if (parent->parent)
  4925. parent->parent->child = tmp;
  4926. destroy_sched_domain(parent, cpu);
  4927. } else
  4928. tmp = tmp->parent;
  4929. }
  4930. if (sd && sd_degenerate(sd)) {
  4931. tmp = sd;
  4932. sd = sd->parent;
  4933. destroy_sched_domain(tmp, cpu);
  4934. if (sd)
  4935. sd->child = NULL;
  4936. }
  4937. sched_domain_debug(sd, cpu);
  4938. rq_attach_root(rq, rd);
  4939. tmp = rq->sd;
  4940. rcu_assign_pointer(rq->sd, sd);
  4941. destroy_sched_domains(tmp, cpu);
  4942. update_top_cache_domain(cpu);
  4943. }
  4944. /* cpus with isolated domains */
  4945. static cpumask_var_t cpu_isolated_map;
  4946. /* Setup the mask of cpus configured for isolated domains */
  4947. static int __init isolated_cpu_setup(char *str)
  4948. {
  4949. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4950. cpulist_parse(str, cpu_isolated_map);
  4951. return 1;
  4952. }
  4953. __setup("isolcpus=", isolated_cpu_setup);
  4954. #ifdef CONFIG_NUMA
  4955. /**
  4956. * find_next_best_node - find the next node to include in a sched_domain
  4957. * @node: node whose sched_domain we're building
  4958. * @used_nodes: nodes already in the sched_domain
  4959. *
  4960. * Find the next node to include in a given scheduling domain. Simply
  4961. * finds the closest node not already in the @used_nodes map.
  4962. *
  4963. * Should use nodemask_t.
  4964. */
  4965. static int find_next_best_node(int node, nodemask_t *used_nodes)
  4966. {
  4967. int i, n, val, min_val, best_node = -1;
  4968. min_val = INT_MAX;
  4969. for (i = 0; i < nr_node_ids; i++) {
  4970. /* Start at @node */
  4971. n = (node + i) % nr_node_ids;
  4972. if (!nr_cpus_node(n))
  4973. continue;
  4974. /* Skip already used nodes */
  4975. if (node_isset(n, *used_nodes))
  4976. continue;
  4977. /* Simple min distance search */
  4978. val = node_distance(node, n);
  4979. if (val < min_val) {
  4980. min_val = val;
  4981. best_node = n;
  4982. }
  4983. }
  4984. if (best_node != -1)
  4985. node_set(best_node, *used_nodes);
  4986. return best_node;
  4987. }
  4988. /**
  4989. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4990. * @node: node whose cpumask we're constructing
  4991. * @span: resulting cpumask
  4992. *
  4993. * Given a node, construct a good cpumask for its sched_domain to span. It
  4994. * should be one that prevents unnecessary balancing, but also spreads tasks
  4995. * out optimally.
  4996. */
  4997. static void sched_domain_node_span(int node, struct cpumask *span)
  4998. {
  4999. nodemask_t used_nodes;
  5000. int i;
  5001. cpumask_clear(span);
  5002. nodes_clear(used_nodes);
  5003. cpumask_or(span, span, cpumask_of_node(node));
  5004. node_set(node, used_nodes);
  5005. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5006. int next_node = find_next_best_node(node, &used_nodes);
  5007. if (next_node < 0)
  5008. break;
  5009. cpumask_or(span, span, cpumask_of_node(next_node));
  5010. }
  5011. }
  5012. static const struct cpumask *cpu_node_mask(int cpu)
  5013. {
  5014. lockdep_assert_held(&sched_domains_mutex);
  5015. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5016. return sched_domains_tmpmask;
  5017. }
  5018. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5019. {
  5020. return cpu_possible_mask;
  5021. }
  5022. #endif /* CONFIG_NUMA */
  5023. static const struct cpumask *cpu_cpu_mask(int cpu)
  5024. {
  5025. return cpumask_of_node(cpu_to_node(cpu));
  5026. }
  5027. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5028. struct sd_data {
  5029. struct sched_domain **__percpu sd;
  5030. struct sched_group **__percpu sg;
  5031. struct sched_group_power **__percpu sgp;
  5032. };
  5033. struct s_data {
  5034. struct sched_domain ** __percpu sd;
  5035. struct root_domain *rd;
  5036. };
  5037. enum s_alloc {
  5038. sa_rootdomain,
  5039. sa_sd,
  5040. sa_sd_storage,
  5041. sa_none,
  5042. };
  5043. struct sched_domain_topology_level;
  5044. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5045. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5046. #define SDTL_OVERLAP 0x01
  5047. struct sched_domain_topology_level {
  5048. sched_domain_init_f init;
  5049. sched_domain_mask_f mask;
  5050. int flags;
  5051. struct sd_data data;
  5052. };
  5053. static int
  5054. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5055. {
  5056. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5057. const struct cpumask *span = sched_domain_span(sd);
  5058. struct cpumask *covered = sched_domains_tmpmask;
  5059. struct sd_data *sdd = sd->private;
  5060. struct sched_domain *child;
  5061. int i;
  5062. cpumask_clear(covered);
  5063. for_each_cpu(i, span) {
  5064. struct cpumask *sg_span;
  5065. if (cpumask_test_cpu(i, covered))
  5066. continue;
  5067. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5068. GFP_KERNEL, cpu_to_node(cpu));
  5069. if (!sg)
  5070. goto fail;
  5071. sg_span = sched_group_cpus(sg);
  5072. child = *per_cpu_ptr(sdd->sd, i);
  5073. if (child->child) {
  5074. child = child->child;
  5075. cpumask_copy(sg_span, sched_domain_span(child));
  5076. } else
  5077. cpumask_set_cpu(i, sg_span);
  5078. cpumask_or(covered, covered, sg_span);
  5079. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  5080. atomic_inc(&sg->sgp->ref);
  5081. if (cpumask_test_cpu(cpu, sg_span))
  5082. groups = sg;
  5083. if (!first)
  5084. first = sg;
  5085. if (last)
  5086. last->next = sg;
  5087. last = sg;
  5088. last->next = first;
  5089. }
  5090. sd->groups = groups;
  5091. return 0;
  5092. fail:
  5093. free_sched_groups(first, 0);
  5094. return -ENOMEM;
  5095. }
  5096. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5097. {
  5098. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5099. struct sched_domain *child = sd->child;
  5100. if (child)
  5101. cpu = cpumask_first(sched_domain_span(child));
  5102. if (sg) {
  5103. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5104. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5105. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5106. }
  5107. return cpu;
  5108. }
  5109. /*
  5110. * build_sched_groups will build a circular linked list of the groups
  5111. * covered by the given span, and will set each group's ->cpumask correctly,
  5112. * and ->cpu_power to 0.
  5113. *
  5114. * Assumes the sched_domain tree is fully constructed
  5115. */
  5116. static int
  5117. build_sched_groups(struct sched_domain *sd, int cpu)
  5118. {
  5119. struct sched_group *first = NULL, *last = NULL;
  5120. struct sd_data *sdd = sd->private;
  5121. const struct cpumask *span = sched_domain_span(sd);
  5122. struct cpumask *covered;
  5123. int i;
  5124. get_group(cpu, sdd, &sd->groups);
  5125. atomic_inc(&sd->groups->ref);
  5126. if (cpu != cpumask_first(sched_domain_span(sd)))
  5127. return 0;
  5128. lockdep_assert_held(&sched_domains_mutex);
  5129. covered = sched_domains_tmpmask;
  5130. cpumask_clear(covered);
  5131. for_each_cpu(i, span) {
  5132. struct sched_group *sg;
  5133. int group = get_group(i, sdd, &sg);
  5134. int j;
  5135. if (cpumask_test_cpu(i, covered))
  5136. continue;
  5137. cpumask_clear(sched_group_cpus(sg));
  5138. sg->sgp->power = 0;
  5139. for_each_cpu(j, span) {
  5140. if (get_group(j, sdd, NULL) != group)
  5141. continue;
  5142. cpumask_set_cpu(j, covered);
  5143. cpumask_set_cpu(j, sched_group_cpus(sg));
  5144. }
  5145. if (!first)
  5146. first = sg;
  5147. if (last)
  5148. last->next = sg;
  5149. last = sg;
  5150. }
  5151. last->next = first;
  5152. return 0;
  5153. }
  5154. /*
  5155. * Initialize sched groups cpu_power.
  5156. *
  5157. * cpu_power indicates the capacity of sched group, which is used while
  5158. * distributing the load between different sched groups in a sched domain.
  5159. * Typically cpu_power for all the groups in a sched domain will be same unless
  5160. * there are asymmetries in the topology. If there are asymmetries, group
  5161. * having more cpu_power will pickup more load compared to the group having
  5162. * less cpu_power.
  5163. */
  5164. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5165. {
  5166. struct sched_group *sg = sd->groups;
  5167. WARN_ON(!sd || !sg);
  5168. do {
  5169. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5170. sg = sg->next;
  5171. } while (sg != sd->groups);
  5172. if (cpu != group_first_cpu(sg))
  5173. return;
  5174. update_group_power(sd, cpu);
  5175. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5176. }
  5177. int __weak arch_sd_sibling_asym_packing(void)
  5178. {
  5179. return 0*SD_ASYM_PACKING;
  5180. }
  5181. /*
  5182. * Initializers for schedule domains
  5183. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5184. */
  5185. #ifdef CONFIG_SCHED_DEBUG
  5186. # define SD_INIT_NAME(sd, type) sd->name = #type
  5187. #else
  5188. # define SD_INIT_NAME(sd, type) do { } while (0)
  5189. #endif
  5190. #define SD_INIT_FUNC(type) \
  5191. static noinline struct sched_domain * \
  5192. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5193. { \
  5194. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5195. *sd = SD_##type##_INIT; \
  5196. SD_INIT_NAME(sd, type); \
  5197. sd->private = &tl->data; \
  5198. return sd; \
  5199. }
  5200. SD_INIT_FUNC(CPU)
  5201. #ifdef CONFIG_NUMA
  5202. SD_INIT_FUNC(ALLNODES)
  5203. SD_INIT_FUNC(NODE)
  5204. #endif
  5205. #ifdef CONFIG_SCHED_SMT
  5206. SD_INIT_FUNC(SIBLING)
  5207. #endif
  5208. #ifdef CONFIG_SCHED_MC
  5209. SD_INIT_FUNC(MC)
  5210. #endif
  5211. #ifdef CONFIG_SCHED_BOOK
  5212. SD_INIT_FUNC(BOOK)
  5213. #endif
  5214. static int default_relax_domain_level = -1;
  5215. int sched_domain_level_max;
  5216. static int __init setup_relax_domain_level(char *str)
  5217. {
  5218. unsigned long val;
  5219. val = simple_strtoul(str, NULL, 0);
  5220. if (val < sched_domain_level_max)
  5221. default_relax_domain_level = val;
  5222. return 1;
  5223. }
  5224. __setup("relax_domain_level=", setup_relax_domain_level);
  5225. static void set_domain_attribute(struct sched_domain *sd,
  5226. struct sched_domain_attr *attr)
  5227. {
  5228. int request;
  5229. if (!attr || attr->relax_domain_level < 0) {
  5230. if (default_relax_domain_level < 0)
  5231. return;
  5232. else
  5233. request = default_relax_domain_level;
  5234. } else
  5235. request = attr->relax_domain_level;
  5236. if (request < sd->level) {
  5237. /* turn off idle balance on this domain */
  5238. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5239. } else {
  5240. /* turn on idle balance on this domain */
  5241. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5242. }
  5243. }
  5244. static void __sdt_free(const struct cpumask *cpu_map);
  5245. static int __sdt_alloc(const struct cpumask *cpu_map);
  5246. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5247. const struct cpumask *cpu_map)
  5248. {
  5249. switch (what) {
  5250. case sa_rootdomain:
  5251. if (!atomic_read(&d->rd->refcount))
  5252. free_rootdomain(&d->rd->rcu); /* fall through */
  5253. case sa_sd:
  5254. free_percpu(d->sd); /* fall through */
  5255. case sa_sd_storage:
  5256. __sdt_free(cpu_map); /* fall through */
  5257. case sa_none:
  5258. break;
  5259. }
  5260. }
  5261. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5262. const struct cpumask *cpu_map)
  5263. {
  5264. memset(d, 0, sizeof(*d));
  5265. if (__sdt_alloc(cpu_map))
  5266. return sa_sd_storage;
  5267. d->sd = alloc_percpu(struct sched_domain *);
  5268. if (!d->sd)
  5269. return sa_sd_storage;
  5270. d->rd = alloc_rootdomain();
  5271. if (!d->rd)
  5272. return sa_sd;
  5273. return sa_rootdomain;
  5274. }
  5275. /*
  5276. * NULL the sd_data elements we've used to build the sched_domain and
  5277. * sched_group structure so that the subsequent __free_domain_allocs()
  5278. * will not free the data we're using.
  5279. */
  5280. static void claim_allocations(int cpu, struct sched_domain *sd)
  5281. {
  5282. struct sd_data *sdd = sd->private;
  5283. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5284. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5285. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5286. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5287. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5288. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5289. }
  5290. #ifdef CONFIG_SCHED_SMT
  5291. static const struct cpumask *cpu_smt_mask(int cpu)
  5292. {
  5293. return topology_thread_cpumask(cpu);
  5294. }
  5295. #endif
  5296. /*
  5297. * Topology list, bottom-up.
  5298. */
  5299. static struct sched_domain_topology_level default_topology[] = {
  5300. #ifdef CONFIG_SCHED_SMT
  5301. { sd_init_SIBLING, cpu_smt_mask, },
  5302. #endif
  5303. #ifdef CONFIG_SCHED_MC
  5304. { sd_init_MC, cpu_coregroup_mask, },
  5305. #endif
  5306. #ifdef CONFIG_SCHED_BOOK
  5307. { sd_init_BOOK, cpu_book_mask, },
  5308. #endif
  5309. { sd_init_CPU, cpu_cpu_mask, },
  5310. #ifdef CONFIG_NUMA
  5311. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  5312. { sd_init_ALLNODES, cpu_allnodes_mask, },
  5313. #endif
  5314. { NULL, },
  5315. };
  5316. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5317. static int __sdt_alloc(const struct cpumask *cpu_map)
  5318. {
  5319. struct sched_domain_topology_level *tl;
  5320. int j;
  5321. for (tl = sched_domain_topology; tl->init; tl++) {
  5322. struct sd_data *sdd = &tl->data;
  5323. sdd->sd = alloc_percpu(struct sched_domain *);
  5324. if (!sdd->sd)
  5325. return -ENOMEM;
  5326. sdd->sg = alloc_percpu(struct sched_group *);
  5327. if (!sdd->sg)
  5328. return -ENOMEM;
  5329. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5330. if (!sdd->sgp)
  5331. return -ENOMEM;
  5332. for_each_cpu(j, cpu_map) {
  5333. struct sched_domain *sd;
  5334. struct sched_group *sg;
  5335. struct sched_group_power *sgp;
  5336. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5337. GFP_KERNEL, cpu_to_node(j));
  5338. if (!sd)
  5339. return -ENOMEM;
  5340. *per_cpu_ptr(sdd->sd, j) = sd;
  5341. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5342. GFP_KERNEL, cpu_to_node(j));
  5343. if (!sg)
  5344. return -ENOMEM;
  5345. *per_cpu_ptr(sdd->sg, j) = sg;
  5346. sgp = kzalloc_node(sizeof(struct sched_group_power),
  5347. GFP_KERNEL, cpu_to_node(j));
  5348. if (!sgp)
  5349. return -ENOMEM;
  5350. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5351. }
  5352. }
  5353. return 0;
  5354. }
  5355. static void __sdt_free(const struct cpumask *cpu_map)
  5356. {
  5357. struct sched_domain_topology_level *tl;
  5358. int j;
  5359. for (tl = sched_domain_topology; tl->init; tl++) {
  5360. struct sd_data *sdd = &tl->data;
  5361. for_each_cpu(j, cpu_map) {
  5362. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  5363. if (sd && (sd->flags & SD_OVERLAP))
  5364. free_sched_groups(sd->groups, 0);
  5365. kfree(*per_cpu_ptr(sdd->sd, j));
  5366. kfree(*per_cpu_ptr(sdd->sg, j));
  5367. kfree(*per_cpu_ptr(sdd->sgp, j));
  5368. }
  5369. free_percpu(sdd->sd);
  5370. free_percpu(sdd->sg);
  5371. free_percpu(sdd->sgp);
  5372. }
  5373. }
  5374. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5375. struct s_data *d, const struct cpumask *cpu_map,
  5376. struct sched_domain_attr *attr, struct sched_domain *child,
  5377. int cpu)
  5378. {
  5379. struct sched_domain *sd = tl->init(tl, cpu);
  5380. if (!sd)
  5381. return child;
  5382. set_domain_attribute(sd, attr);
  5383. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5384. if (child) {
  5385. sd->level = child->level + 1;
  5386. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5387. child->parent = sd;
  5388. }
  5389. sd->child = child;
  5390. return sd;
  5391. }
  5392. /*
  5393. * Build sched domains for a given set of cpus and attach the sched domains
  5394. * to the individual cpus
  5395. */
  5396. static int build_sched_domains(const struct cpumask *cpu_map,
  5397. struct sched_domain_attr *attr)
  5398. {
  5399. enum s_alloc alloc_state = sa_none;
  5400. struct sched_domain *sd;
  5401. struct s_data d;
  5402. int i, ret = -ENOMEM;
  5403. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5404. if (alloc_state != sa_rootdomain)
  5405. goto error;
  5406. /* Set up domains for cpus specified by the cpu_map. */
  5407. for_each_cpu(i, cpu_map) {
  5408. struct sched_domain_topology_level *tl;
  5409. sd = NULL;
  5410. for (tl = sched_domain_topology; tl->init; tl++) {
  5411. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5412. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5413. sd->flags |= SD_OVERLAP;
  5414. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5415. break;
  5416. }
  5417. while (sd->child)
  5418. sd = sd->child;
  5419. *per_cpu_ptr(d.sd, i) = sd;
  5420. }
  5421. /* Build the groups for the domains */
  5422. for_each_cpu(i, cpu_map) {
  5423. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5424. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5425. if (sd->flags & SD_OVERLAP) {
  5426. if (build_overlap_sched_groups(sd, i))
  5427. goto error;
  5428. } else {
  5429. if (build_sched_groups(sd, i))
  5430. goto error;
  5431. }
  5432. }
  5433. }
  5434. /* Calculate CPU power for physical packages and nodes */
  5435. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5436. if (!cpumask_test_cpu(i, cpu_map))
  5437. continue;
  5438. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5439. claim_allocations(i, sd);
  5440. init_sched_groups_power(i, sd);
  5441. }
  5442. }
  5443. /* Attach the domains */
  5444. rcu_read_lock();
  5445. for_each_cpu(i, cpu_map) {
  5446. sd = *per_cpu_ptr(d.sd, i);
  5447. cpu_attach_domain(sd, d.rd, i);
  5448. }
  5449. rcu_read_unlock();
  5450. ret = 0;
  5451. error:
  5452. __free_domain_allocs(&d, alloc_state, cpu_map);
  5453. return ret;
  5454. }
  5455. static cpumask_var_t *doms_cur; /* current sched domains */
  5456. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5457. static struct sched_domain_attr *dattr_cur;
  5458. /* attribues of custom domains in 'doms_cur' */
  5459. /*
  5460. * Special case: If a kmalloc of a doms_cur partition (array of
  5461. * cpumask) fails, then fallback to a single sched domain,
  5462. * as determined by the single cpumask fallback_doms.
  5463. */
  5464. static cpumask_var_t fallback_doms;
  5465. /*
  5466. * arch_update_cpu_topology lets virtualized architectures update the
  5467. * cpu core maps. It is supposed to return 1 if the topology changed
  5468. * or 0 if it stayed the same.
  5469. */
  5470. int __attribute__((weak)) arch_update_cpu_topology(void)
  5471. {
  5472. return 0;
  5473. }
  5474. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5475. {
  5476. int i;
  5477. cpumask_var_t *doms;
  5478. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5479. if (!doms)
  5480. return NULL;
  5481. for (i = 0; i < ndoms; i++) {
  5482. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5483. free_sched_domains(doms, i);
  5484. return NULL;
  5485. }
  5486. }
  5487. return doms;
  5488. }
  5489. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5490. {
  5491. unsigned int i;
  5492. for (i = 0; i < ndoms; i++)
  5493. free_cpumask_var(doms[i]);
  5494. kfree(doms);
  5495. }
  5496. /*
  5497. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5498. * For now this just excludes isolated cpus, but could be used to
  5499. * exclude other special cases in the future.
  5500. */
  5501. static int init_sched_domains(const struct cpumask *cpu_map)
  5502. {
  5503. int err;
  5504. arch_update_cpu_topology();
  5505. ndoms_cur = 1;
  5506. doms_cur = alloc_sched_domains(ndoms_cur);
  5507. if (!doms_cur)
  5508. doms_cur = &fallback_doms;
  5509. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5510. dattr_cur = NULL;
  5511. err = build_sched_domains(doms_cur[0], NULL);
  5512. register_sched_domain_sysctl();
  5513. return err;
  5514. }
  5515. /*
  5516. * Detach sched domains from a group of cpus specified in cpu_map
  5517. * These cpus will now be attached to the NULL domain
  5518. */
  5519. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5520. {
  5521. int i;
  5522. rcu_read_lock();
  5523. for_each_cpu(i, cpu_map)
  5524. cpu_attach_domain(NULL, &def_root_domain, i);
  5525. rcu_read_unlock();
  5526. }
  5527. /* handle null as "default" */
  5528. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5529. struct sched_domain_attr *new, int idx_new)
  5530. {
  5531. struct sched_domain_attr tmp;
  5532. /* fast path */
  5533. if (!new && !cur)
  5534. return 1;
  5535. tmp = SD_ATTR_INIT;
  5536. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5537. new ? (new + idx_new) : &tmp,
  5538. sizeof(struct sched_domain_attr));
  5539. }
  5540. /*
  5541. * Partition sched domains as specified by the 'ndoms_new'
  5542. * cpumasks in the array doms_new[] of cpumasks. This compares
  5543. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5544. * It destroys each deleted domain and builds each new domain.
  5545. *
  5546. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5547. * The masks don't intersect (don't overlap.) We should setup one
  5548. * sched domain for each mask. CPUs not in any of the cpumasks will
  5549. * not be load balanced. If the same cpumask appears both in the
  5550. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5551. * it as it is.
  5552. *
  5553. * The passed in 'doms_new' should be allocated using
  5554. * alloc_sched_domains. This routine takes ownership of it and will
  5555. * free_sched_domains it when done with it. If the caller failed the
  5556. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5557. * and partition_sched_domains() will fallback to the single partition
  5558. * 'fallback_doms', it also forces the domains to be rebuilt.
  5559. *
  5560. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5561. * ndoms_new == 0 is a special case for destroying existing domains,
  5562. * and it will not create the default domain.
  5563. *
  5564. * Call with hotplug lock held
  5565. */
  5566. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5567. struct sched_domain_attr *dattr_new)
  5568. {
  5569. int i, j, n;
  5570. int new_topology;
  5571. mutex_lock(&sched_domains_mutex);
  5572. /* always unregister in case we don't destroy any domains */
  5573. unregister_sched_domain_sysctl();
  5574. /* Let architecture update cpu core mappings. */
  5575. new_topology = arch_update_cpu_topology();
  5576. n = doms_new ? ndoms_new : 0;
  5577. /* Destroy deleted domains */
  5578. for (i = 0; i < ndoms_cur; i++) {
  5579. for (j = 0; j < n && !new_topology; j++) {
  5580. if (cpumask_equal(doms_cur[i], doms_new[j])
  5581. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5582. goto match1;
  5583. }
  5584. /* no match - a current sched domain not in new doms_new[] */
  5585. detach_destroy_domains(doms_cur[i]);
  5586. match1:
  5587. ;
  5588. }
  5589. if (doms_new == NULL) {
  5590. ndoms_cur = 0;
  5591. doms_new = &fallback_doms;
  5592. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5593. WARN_ON_ONCE(dattr_new);
  5594. }
  5595. /* Build new domains */
  5596. for (i = 0; i < ndoms_new; i++) {
  5597. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5598. if (cpumask_equal(doms_new[i], doms_cur[j])
  5599. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5600. goto match2;
  5601. }
  5602. /* no match - add a new doms_new */
  5603. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5604. match2:
  5605. ;
  5606. }
  5607. /* Remember the new sched domains */
  5608. if (doms_cur != &fallback_doms)
  5609. free_sched_domains(doms_cur, ndoms_cur);
  5610. kfree(dattr_cur); /* kfree(NULL) is safe */
  5611. doms_cur = doms_new;
  5612. dattr_cur = dattr_new;
  5613. ndoms_cur = ndoms_new;
  5614. register_sched_domain_sysctl();
  5615. mutex_unlock(&sched_domains_mutex);
  5616. }
  5617. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5618. static void reinit_sched_domains(void)
  5619. {
  5620. get_online_cpus();
  5621. /* Destroy domains first to force the rebuild */
  5622. partition_sched_domains(0, NULL, NULL);
  5623. rebuild_sched_domains();
  5624. put_online_cpus();
  5625. }
  5626. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5627. {
  5628. unsigned int level = 0;
  5629. if (sscanf(buf, "%u", &level) != 1)
  5630. return -EINVAL;
  5631. /*
  5632. * level is always be positive so don't check for
  5633. * level < POWERSAVINGS_BALANCE_NONE which is 0
  5634. * What happens on 0 or 1 byte write,
  5635. * need to check for count as well?
  5636. */
  5637. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  5638. return -EINVAL;
  5639. if (smt)
  5640. sched_smt_power_savings = level;
  5641. else
  5642. sched_mc_power_savings = level;
  5643. reinit_sched_domains();
  5644. return count;
  5645. }
  5646. #ifdef CONFIG_SCHED_MC
  5647. static ssize_t sched_mc_power_savings_show(struct device *dev,
  5648. struct device_attribute *attr,
  5649. char *buf)
  5650. {
  5651. return sprintf(buf, "%u\n", sched_mc_power_savings);
  5652. }
  5653. static ssize_t sched_mc_power_savings_store(struct device *dev,
  5654. struct device_attribute *attr,
  5655. const char *buf, size_t count)
  5656. {
  5657. return sched_power_savings_store(buf, count, 0);
  5658. }
  5659. static DEVICE_ATTR(sched_mc_power_savings, 0644,
  5660. sched_mc_power_savings_show,
  5661. sched_mc_power_savings_store);
  5662. #endif
  5663. #ifdef CONFIG_SCHED_SMT
  5664. static ssize_t sched_smt_power_savings_show(struct device *dev,
  5665. struct device_attribute *attr,
  5666. char *buf)
  5667. {
  5668. return sprintf(buf, "%u\n", sched_smt_power_savings);
  5669. }
  5670. static ssize_t sched_smt_power_savings_store(struct device *dev,
  5671. struct device_attribute *attr,
  5672. const char *buf, size_t count)
  5673. {
  5674. return sched_power_savings_store(buf, count, 1);
  5675. }
  5676. static DEVICE_ATTR(sched_smt_power_savings, 0644,
  5677. sched_smt_power_savings_show,
  5678. sched_smt_power_savings_store);
  5679. #endif
  5680. int __init sched_create_sysfs_power_savings_entries(struct device *dev)
  5681. {
  5682. int err = 0;
  5683. #ifdef CONFIG_SCHED_SMT
  5684. if (smt_capable())
  5685. err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
  5686. #endif
  5687. #ifdef CONFIG_SCHED_MC
  5688. if (!err && mc_capable())
  5689. err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
  5690. #endif
  5691. return err;
  5692. }
  5693. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  5694. /*
  5695. * Update cpusets according to cpu_active mask. If cpusets are
  5696. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5697. * around partition_sched_domains().
  5698. */
  5699. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5700. void *hcpu)
  5701. {
  5702. switch (action & ~CPU_TASKS_FROZEN) {
  5703. case CPU_ONLINE:
  5704. case CPU_DOWN_FAILED:
  5705. cpuset_update_active_cpus();
  5706. return NOTIFY_OK;
  5707. default:
  5708. return NOTIFY_DONE;
  5709. }
  5710. }
  5711. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5712. void *hcpu)
  5713. {
  5714. switch (action & ~CPU_TASKS_FROZEN) {
  5715. case CPU_DOWN_PREPARE:
  5716. cpuset_update_active_cpus();
  5717. return NOTIFY_OK;
  5718. default:
  5719. return NOTIFY_DONE;
  5720. }
  5721. }
  5722. void __init sched_init_smp(void)
  5723. {
  5724. cpumask_var_t non_isolated_cpus;
  5725. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5726. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5727. get_online_cpus();
  5728. mutex_lock(&sched_domains_mutex);
  5729. init_sched_domains(cpu_active_mask);
  5730. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5731. if (cpumask_empty(non_isolated_cpus))
  5732. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5733. mutex_unlock(&sched_domains_mutex);
  5734. put_online_cpus();
  5735. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5736. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5737. /* RT runtime code needs to handle some hotplug events */
  5738. hotcpu_notifier(update_runtime, 0);
  5739. init_hrtick();
  5740. /* Move init over to a non-isolated CPU */
  5741. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5742. BUG();
  5743. sched_init_granularity();
  5744. free_cpumask_var(non_isolated_cpus);
  5745. init_sched_rt_class();
  5746. }
  5747. #else
  5748. void __init sched_init_smp(void)
  5749. {
  5750. sched_init_granularity();
  5751. }
  5752. #endif /* CONFIG_SMP */
  5753. const_debug unsigned int sysctl_timer_migration = 1;
  5754. int in_sched_functions(unsigned long addr)
  5755. {
  5756. return in_lock_functions(addr) ||
  5757. (addr >= (unsigned long)__sched_text_start
  5758. && addr < (unsigned long)__sched_text_end);
  5759. }
  5760. #ifdef CONFIG_CGROUP_SCHED
  5761. struct task_group root_task_group;
  5762. #endif
  5763. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5764. void __init sched_init(void)
  5765. {
  5766. int i, j;
  5767. unsigned long alloc_size = 0, ptr;
  5768. #ifdef CONFIG_FAIR_GROUP_SCHED
  5769. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5770. #endif
  5771. #ifdef CONFIG_RT_GROUP_SCHED
  5772. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5773. #endif
  5774. #ifdef CONFIG_CPUMASK_OFFSTACK
  5775. alloc_size += num_possible_cpus() * cpumask_size();
  5776. #endif
  5777. if (alloc_size) {
  5778. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5779. #ifdef CONFIG_FAIR_GROUP_SCHED
  5780. root_task_group.se = (struct sched_entity **)ptr;
  5781. ptr += nr_cpu_ids * sizeof(void **);
  5782. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5783. ptr += nr_cpu_ids * sizeof(void **);
  5784. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5785. #ifdef CONFIG_RT_GROUP_SCHED
  5786. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5787. ptr += nr_cpu_ids * sizeof(void **);
  5788. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5789. ptr += nr_cpu_ids * sizeof(void **);
  5790. #endif /* CONFIG_RT_GROUP_SCHED */
  5791. #ifdef CONFIG_CPUMASK_OFFSTACK
  5792. for_each_possible_cpu(i) {
  5793. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5794. ptr += cpumask_size();
  5795. }
  5796. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5797. }
  5798. #ifdef CONFIG_SMP
  5799. init_defrootdomain();
  5800. #endif
  5801. init_rt_bandwidth(&def_rt_bandwidth,
  5802. global_rt_period(), global_rt_runtime());
  5803. #ifdef CONFIG_RT_GROUP_SCHED
  5804. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5805. global_rt_period(), global_rt_runtime());
  5806. #endif /* CONFIG_RT_GROUP_SCHED */
  5807. #ifdef CONFIG_CGROUP_SCHED
  5808. list_add(&root_task_group.list, &task_groups);
  5809. INIT_LIST_HEAD(&root_task_group.children);
  5810. INIT_LIST_HEAD(&root_task_group.siblings);
  5811. autogroup_init(&init_task);
  5812. #endif /* CONFIG_CGROUP_SCHED */
  5813. #ifdef CONFIG_CGROUP_CPUACCT
  5814. root_cpuacct.cpustat = &kernel_cpustat;
  5815. root_cpuacct.cpuusage = alloc_percpu(u64);
  5816. /* Too early, not expected to fail */
  5817. BUG_ON(!root_cpuacct.cpuusage);
  5818. #endif
  5819. for_each_possible_cpu(i) {
  5820. struct rq *rq;
  5821. rq = cpu_rq(i);
  5822. raw_spin_lock_init(&rq->lock);
  5823. rq->nr_running = 0;
  5824. rq->calc_load_active = 0;
  5825. rq->calc_load_update = jiffies + LOAD_FREQ;
  5826. init_cfs_rq(&rq->cfs);
  5827. init_rt_rq(&rq->rt, rq);
  5828. #ifdef CONFIG_FAIR_GROUP_SCHED
  5829. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5830. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5831. /*
  5832. * How much cpu bandwidth does root_task_group get?
  5833. *
  5834. * In case of task-groups formed thr' the cgroup filesystem, it
  5835. * gets 100% of the cpu resources in the system. This overall
  5836. * system cpu resource is divided among the tasks of
  5837. * root_task_group and its child task-groups in a fair manner,
  5838. * based on each entity's (task or task-group's) weight
  5839. * (se->load.weight).
  5840. *
  5841. * In other words, if root_task_group has 10 tasks of weight
  5842. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5843. * then A0's share of the cpu resource is:
  5844. *
  5845. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5846. *
  5847. * We achieve this by letting root_task_group's tasks sit
  5848. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5849. */
  5850. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5851. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5852. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5853. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5854. #ifdef CONFIG_RT_GROUP_SCHED
  5855. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5856. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5857. #endif
  5858. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5859. rq->cpu_load[j] = 0;
  5860. rq->last_load_update_tick = jiffies;
  5861. #ifdef CONFIG_SMP
  5862. rq->sd = NULL;
  5863. rq->rd = NULL;
  5864. rq->cpu_power = SCHED_POWER_SCALE;
  5865. rq->post_schedule = 0;
  5866. rq->active_balance = 0;
  5867. rq->next_balance = jiffies;
  5868. rq->push_cpu = 0;
  5869. rq->cpu = i;
  5870. rq->online = 0;
  5871. rq->idle_stamp = 0;
  5872. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5873. rq_attach_root(rq, &def_root_domain);
  5874. #ifdef CONFIG_NO_HZ
  5875. rq->nohz_flags = 0;
  5876. #endif
  5877. #endif
  5878. init_rq_hrtick(rq);
  5879. atomic_set(&rq->nr_iowait, 0);
  5880. }
  5881. set_load_weight(&init_task);
  5882. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5883. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5884. #endif
  5885. #ifdef CONFIG_RT_MUTEXES
  5886. plist_head_init(&init_task.pi_waiters);
  5887. #endif
  5888. /*
  5889. * The boot idle thread does lazy MMU switching as well:
  5890. */
  5891. atomic_inc(&init_mm.mm_count);
  5892. enter_lazy_tlb(&init_mm, current);
  5893. /*
  5894. * Make us the idle thread. Technically, schedule() should not be
  5895. * called from this thread, however somewhere below it might be,
  5896. * but because we are the idle thread, we just pick up running again
  5897. * when this runqueue becomes "idle".
  5898. */
  5899. init_idle(current, smp_processor_id());
  5900. calc_load_update = jiffies + LOAD_FREQ;
  5901. /*
  5902. * During early bootup we pretend to be a normal task:
  5903. */
  5904. current->sched_class = &fair_sched_class;
  5905. #ifdef CONFIG_SMP
  5906. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5907. /* May be allocated at isolcpus cmdline parse time */
  5908. if (cpu_isolated_map == NULL)
  5909. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5910. #endif
  5911. init_sched_fair_class();
  5912. scheduler_running = 1;
  5913. }
  5914. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5915. static inline int preempt_count_equals(int preempt_offset)
  5916. {
  5917. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5918. return (nested == preempt_offset);
  5919. }
  5920. void __might_sleep(const char *file, int line, int preempt_offset)
  5921. {
  5922. static unsigned long prev_jiffy; /* ratelimiting */
  5923. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5924. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5925. system_state != SYSTEM_RUNNING || oops_in_progress)
  5926. return;
  5927. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5928. return;
  5929. prev_jiffy = jiffies;
  5930. printk(KERN_ERR
  5931. "BUG: sleeping function called from invalid context at %s:%d\n",
  5932. file, line);
  5933. printk(KERN_ERR
  5934. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5935. in_atomic(), irqs_disabled(),
  5936. current->pid, current->comm);
  5937. debug_show_held_locks(current);
  5938. if (irqs_disabled())
  5939. print_irqtrace_events(current);
  5940. dump_stack();
  5941. }
  5942. EXPORT_SYMBOL(__might_sleep);
  5943. #endif
  5944. #ifdef CONFIG_MAGIC_SYSRQ
  5945. static void normalize_task(struct rq *rq, struct task_struct *p)
  5946. {
  5947. const struct sched_class *prev_class = p->sched_class;
  5948. int old_prio = p->prio;
  5949. int on_rq;
  5950. on_rq = p->on_rq;
  5951. if (on_rq)
  5952. deactivate_task(rq, p, 0);
  5953. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5954. if (on_rq) {
  5955. activate_task(rq, p, 0);
  5956. resched_task(rq->curr);
  5957. }
  5958. check_class_changed(rq, p, prev_class, old_prio);
  5959. }
  5960. void normalize_rt_tasks(void)
  5961. {
  5962. struct task_struct *g, *p;
  5963. unsigned long flags;
  5964. struct rq *rq;
  5965. read_lock_irqsave(&tasklist_lock, flags);
  5966. do_each_thread(g, p) {
  5967. /*
  5968. * Only normalize user tasks:
  5969. */
  5970. if (!p->mm)
  5971. continue;
  5972. p->se.exec_start = 0;
  5973. #ifdef CONFIG_SCHEDSTATS
  5974. p->se.statistics.wait_start = 0;
  5975. p->se.statistics.sleep_start = 0;
  5976. p->se.statistics.block_start = 0;
  5977. #endif
  5978. if (!rt_task(p)) {
  5979. /*
  5980. * Renice negative nice level userspace
  5981. * tasks back to 0:
  5982. */
  5983. if (TASK_NICE(p) < 0 && p->mm)
  5984. set_user_nice(p, 0);
  5985. continue;
  5986. }
  5987. raw_spin_lock(&p->pi_lock);
  5988. rq = __task_rq_lock(p);
  5989. normalize_task(rq, p);
  5990. __task_rq_unlock(rq);
  5991. raw_spin_unlock(&p->pi_lock);
  5992. } while_each_thread(g, p);
  5993. read_unlock_irqrestore(&tasklist_lock, flags);
  5994. }
  5995. #endif /* CONFIG_MAGIC_SYSRQ */
  5996. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5997. /*
  5998. * These functions are only useful for the IA64 MCA handling, or kdb.
  5999. *
  6000. * They can only be called when the whole system has been
  6001. * stopped - every CPU needs to be quiescent, and no scheduling
  6002. * activity can take place. Using them for anything else would
  6003. * be a serious bug, and as a result, they aren't even visible
  6004. * under any other configuration.
  6005. */
  6006. /**
  6007. * curr_task - return the current task for a given cpu.
  6008. * @cpu: the processor in question.
  6009. *
  6010. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6011. */
  6012. struct task_struct *curr_task(int cpu)
  6013. {
  6014. return cpu_curr(cpu);
  6015. }
  6016. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6017. #ifdef CONFIG_IA64
  6018. /**
  6019. * set_curr_task - set the current task for a given cpu.
  6020. * @cpu: the processor in question.
  6021. * @p: the task pointer to set.
  6022. *
  6023. * Description: This function must only be used when non-maskable interrupts
  6024. * are serviced on a separate stack. It allows the architecture to switch the
  6025. * notion of the current task on a cpu in a non-blocking manner. This function
  6026. * must be called with all CPU's synchronized, and interrupts disabled, the
  6027. * and caller must save the original value of the current task (see
  6028. * curr_task() above) and restore that value before reenabling interrupts and
  6029. * re-starting the system.
  6030. *
  6031. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6032. */
  6033. void set_curr_task(int cpu, struct task_struct *p)
  6034. {
  6035. cpu_curr(cpu) = p;
  6036. }
  6037. #endif
  6038. #ifdef CONFIG_CGROUP_SCHED
  6039. /* task_group_lock serializes the addition/removal of task groups */
  6040. static DEFINE_SPINLOCK(task_group_lock);
  6041. static void free_sched_group(struct task_group *tg)
  6042. {
  6043. free_fair_sched_group(tg);
  6044. free_rt_sched_group(tg);
  6045. autogroup_free(tg);
  6046. kfree(tg);
  6047. }
  6048. /* allocate runqueue etc for a new task group */
  6049. struct task_group *sched_create_group(struct task_group *parent)
  6050. {
  6051. struct task_group *tg;
  6052. unsigned long flags;
  6053. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6054. if (!tg)
  6055. return ERR_PTR(-ENOMEM);
  6056. if (!alloc_fair_sched_group(tg, parent))
  6057. goto err;
  6058. if (!alloc_rt_sched_group(tg, parent))
  6059. goto err;
  6060. spin_lock_irqsave(&task_group_lock, flags);
  6061. list_add_rcu(&tg->list, &task_groups);
  6062. WARN_ON(!parent); /* root should already exist */
  6063. tg->parent = parent;
  6064. INIT_LIST_HEAD(&tg->children);
  6065. list_add_rcu(&tg->siblings, &parent->children);
  6066. spin_unlock_irqrestore(&task_group_lock, flags);
  6067. return tg;
  6068. err:
  6069. free_sched_group(tg);
  6070. return ERR_PTR(-ENOMEM);
  6071. }
  6072. /* rcu callback to free various structures associated with a task group */
  6073. static void free_sched_group_rcu(struct rcu_head *rhp)
  6074. {
  6075. /* now it should be safe to free those cfs_rqs */
  6076. free_sched_group(container_of(rhp, struct task_group, rcu));
  6077. }
  6078. /* Destroy runqueue etc associated with a task group */
  6079. void sched_destroy_group(struct task_group *tg)
  6080. {
  6081. unsigned long flags;
  6082. int i;
  6083. /* end participation in shares distribution */
  6084. for_each_possible_cpu(i)
  6085. unregister_fair_sched_group(tg, i);
  6086. spin_lock_irqsave(&task_group_lock, flags);
  6087. list_del_rcu(&tg->list);
  6088. list_del_rcu(&tg->siblings);
  6089. spin_unlock_irqrestore(&task_group_lock, flags);
  6090. /* wait for possible concurrent references to cfs_rqs complete */
  6091. call_rcu(&tg->rcu, free_sched_group_rcu);
  6092. }
  6093. /* change task's runqueue when it moves between groups.
  6094. * The caller of this function should have put the task in its new group
  6095. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6096. * reflect its new group.
  6097. */
  6098. void sched_move_task(struct task_struct *tsk)
  6099. {
  6100. int on_rq, running;
  6101. unsigned long flags;
  6102. struct rq *rq;
  6103. rq = task_rq_lock(tsk, &flags);
  6104. running = task_current(rq, tsk);
  6105. on_rq = tsk->on_rq;
  6106. if (on_rq)
  6107. dequeue_task(rq, tsk, 0);
  6108. if (unlikely(running))
  6109. tsk->sched_class->put_prev_task(rq, tsk);
  6110. #ifdef CONFIG_FAIR_GROUP_SCHED
  6111. if (tsk->sched_class->task_move_group)
  6112. tsk->sched_class->task_move_group(tsk, on_rq);
  6113. else
  6114. #endif
  6115. set_task_rq(tsk, task_cpu(tsk));
  6116. if (unlikely(running))
  6117. tsk->sched_class->set_curr_task(rq);
  6118. if (on_rq)
  6119. enqueue_task(rq, tsk, 0);
  6120. task_rq_unlock(rq, tsk, &flags);
  6121. }
  6122. #endif /* CONFIG_CGROUP_SCHED */
  6123. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6124. static unsigned long to_ratio(u64 period, u64 runtime)
  6125. {
  6126. if (runtime == RUNTIME_INF)
  6127. return 1ULL << 20;
  6128. return div64_u64(runtime << 20, period);
  6129. }
  6130. #endif
  6131. #ifdef CONFIG_RT_GROUP_SCHED
  6132. /*
  6133. * Ensure that the real time constraints are schedulable.
  6134. */
  6135. static DEFINE_MUTEX(rt_constraints_mutex);
  6136. /* Must be called with tasklist_lock held */
  6137. static inline int tg_has_rt_tasks(struct task_group *tg)
  6138. {
  6139. struct task_struct *g, *p;
  6140. do_each_thread(g, p) {
  6141. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6142. return 1;
  6143. } while_each_thread(g, p);
  6144. return 0;
  6145. }
  6146. struct rt_schedulable_data {
  6147. struct task_group *tg;
  6148. u64 rt_period;
  6149. u64 rt_runtime;
  6150. };
  6151. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6152. {
  6153. struct rt_schedulable_data *d = data;
  6154. struct task_group *child;
  6155. unsigned long total, sum = 0;
  6156. u64 period, runtime;
  6157. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6158. runtime = tg->rt_bandwidth.rt_runtime;
  6159. if (tg == d->tg) {
  6160. period = d->rt_period;
  6161. runtime = d->rt_runtime;
  6162. }
  6163. /*
  6164. * Cannot have more runtime than the period.
  6165. */
  6166. if (runtime > period && runtime != RUNTIME_INF)
  6167. return -EINVAL;
  6168. /*
  6169. * Ensure we don't starve existing RT tasks.
  6170. */
  6171. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6172. return -EBUSY;
  6173. total = to_ratio(period, runtime);
  6174. /*
  6175. * Nobody can have more than the global setting allows.
  6176. */
  6177. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6178. return -EINVAL;
  6179. /*
  6180. * The sum of our children's runtime should not exceed our own.
  6181. */
  6182. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6183. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6184. runtime = child->rt_bandwidth.rt_runtime;
  6185. if (child == d->tg) {
  6186. period = d->rt_period;
  6187. runtime = d->rt_runtime;
  6188. }
  6189. sum += to_ratio(period, runtime);
  6190. }
  6191. if (sum > total)
  6192. return -EINVAL;
  6193. return 0;
  6194. }
  6195. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6196. {
  6197. int ret;
  6198. struct rt_schedulable_data data = {
  6199. .tg = tg,
  6200. .rt_period = period,
  6201. .rt_runtime = runtime,
  6202. };
  6203. rcu_read_lock();
  6204. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6205. rcu_read_unlock();
  6206. return ret;
  6207. }
  6208. static int tg_set_rt_bandwidth(struct task_group *tg,
  6209. u64 rt_period, u64 rt_runtime)
  6210. {
  6211. int i, err = 0;
  6212. mutex_lock(&rt_constraints_mutex);
  6213. read_lock(&tasklist_lock);
  6214. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6215. if (err)
  6216. goto unlock;
  6217. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6218. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6219. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6220. for_each_possible_cpu(i) {
  6221. struct rt_rq *rt_rq = tg->rt_rq[i];
  6222. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6223. rt_rq->rt_runtime = rt_runtime;
  6224. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6225. }
  6226. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6227. unlock:
  6228. read_unlock(&tasklist_lock);
  6229. mutex_unlock(&rt_constraints_mutex);
  6230. return err;
  6231. }
  6232. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6233. {
  6234. u64 rt_runtime, rt_period;
  6235. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6236. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6237. if (rt_runtime_us < 0)
  6238. rt_runtime = RUNTIME_INF;
  6239. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6240. }
  6241. long sched_group_rt_runtime(struct task_group *tg)
  6242. {
  6243. u64 rt_runtime_us;
  6244. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6245. return -1;
  6246. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6247. do_div(rt_runtime_us, NSEC_PER_USEC);
  6248. return rt_runtime_us;
  6249. }
  6250. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6251. {
  6252. u64 rt_runtime, rt_period;
  6253. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6254. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6255. if (rt_period == 0)
  6256. return -EINVAL;
  6257. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6258. }
  6259. long sched_group_rt_period(struct task_group *tg)
  6260. {
  6261. u64 rt_period_us;
  6262. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6263. do_div(rt_period_us, NSEC_PER_USEC);
  6264. return rt_period_us;
  6265. }
  6266. static int sched_rt_global_constraints(void)
  6267. {
  6268. u64 runtime, period;
  6269. int ret = 0;
  6270. if (sysctl_sched_rt_period <= 0)
  6271. return -EINVAL;
  6272. runtime = global_rt_runtime();
  6273. period = global_rt_period();
  6274. /*
  6275. * Sanity check on the sysctl variables.
  6276. */
  6277. if (runtime > period && runtime != RUNTIME_INF)
  6278. return -EINVAL;
  6279. mutex_lock(&rt_constraints_mutex);
  6280. read_lock(&tasklist_lock);
  6281. ret = __rt_schedulable(NULL, 0, 0);
  6282. read_unlock(&tasklist_lock);
  6283. mutex_unlock(&rt_constraints_mutex);
  6284. return ret;
  6285. }
  6286. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6287. {
  6288. /* Don't accept realtime tasks when there is no way for them to run */
  6289. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6290. return 0;
  6291. return 1;
  6292. }
  6293. #else /* !CONFIG_RT_GROUP_SCHED */
  6294. static int sched_rt_global_constraints(void)
  6295. {
  6296. unsigned long flags;
  6297. int i;
  6298. if (sysctl_sched_rt_period <= 0)
  6299. return -EINVAL;
  6300. /*
  6301. * There's always some RT tasks in the root group
  6302. * -- migration, kstopmachine etc..
  6303. */
  6304. if (sysctl_sched_rt_runtime == 0)
  6305. return -EBUSY;
  6306. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6307. for_each_possible_cpu(i) {
  6308. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6309. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6310. rt_rq->rt_runtime = global_rt_runtime();
  6311. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6312. }
  6313. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6314. return 0;
  6315. }
  6316. #endif /* CONFIG_RT_GROUP_SCHED */
  6317. int sched_rt_handler(struct ctl_table *table, int write,
  6318. void __user *buffer, size_t *lenp,
  6319. loff_t *ppos)
  6320. {
  6321. int ret;
  6322. int old_period, old_runtime;
  6323. static DEFINE_MUTEX(mutex);
  6324. mutex_lock(&mutex);
  6325. old_period = sysctl_sched_rt_period;
  6326. old_runtime = sysctl_sched_rt_runtime;
  6327. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6328. if (!ret && write) {
  6329. ret = sched_rt_global_constraints();
  6330. if (ret) {
  6331. sysctl_sched_rt_period = old_period;
  6332. sysctl_sched_rt_runtime = old_runtime;
  6333. } else {
  6334. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6335. def_rt_bandwidth.rt_period =
  6336. ns_to_ktime(global_rt_period());
  6337. }
  6338. }
  6339. mutex_unlock(&mutex);
  6340. return ret;
  6341. }
  6342. #ifdef CONFIG_CGROUP_SCHED
  6343. /* return corresponding task_group object of a cgroup */
  6344. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6345. {
  6346. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6347. struct task_group, css);
  6348. }
  6349. static struct cgroup_subsys_state *
  6350. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6351. {
  6352. struct task_group *tg, *parent;
  6353. if (!cgrp->parent) {
  6354. /* This is early initialization for the top cgroup */
  6355. return &root_task_group.css;
  6356. }
  6357. parent = cgroup_tg(cgrp->parent);
  6358. tg = sched_create_group(parent);
  6359. if (IS_ERR(tg))
  6360. return ERR_PTR(-ENOMEM);
  6361. return &tg->css;
  6362. }
  6363. static void
  6364. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6365. {
  6366. struct task_group *tg = cgroup_tg(cgrp);
  6367. sched_destroy_group(tg);
  6368. }
  6369. static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6370. struct cgroup_taskset *tset)
  6371. {
  6372. struct task_struct *task;
  6373. cgroup_taskset_for_each(task, cgrp, tset) {
  6374. #ifdef CONFIG_RT_GROUP_SCHED
  6375. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6376. return -EINVAL;
  6377. #else
  6378. /* We don't support RT-tasks being in separate groups */
  6379. if (task->sched_class != &fair_sched_class)
  6380. return -EINVAL;
  6381. #endif
  6382. }
  6383. return 0;
  6384. }
  6385. static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6386. struct cgroup_taskset *tset)
  6387. {
  6388. struct task_struct *task;
  6389. cgroup_taskset_for_each(task, cgrp, tset)
  6390. sched_move_task(task);
  6391. }
  6392. static void
  6393. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6394. struct cgroup *old_cgrp, struct task_struct *task)
  6395. {
  6396. /*
  6397. * cgroup_exit() is called in the copy_process() failure path.
  6398. * Ignore this case since the task hasn't ran yet, this avoids
  6399. * trying to poke a half freed task state from generic code.
  6400. */
  6401. if (!(task->flags & PF_EXITING))
  6402. return;
  6403. sched_move_task(task);
  6404. }
  6405. #ifdef CONFIG_FAIR_GROUP_SCHED
  6406. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6407. u64 shareval)
  6408. {
  6409. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6410. }
  6411. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6412. {
  6413. struct task_group *tg = cgroup_tg(cgrp);
  6414. return (u64) scale_load_down(tg->shares);
  6415. }
  6416. #ifdef CONFIG_CFS_BANDWIDTH
  6417. static DEFINE_MUTEX(cfs_constraints_mutex);
  6418. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6419. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6420. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6421. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6422. {
  6423. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6424. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6425. if (tg == &root_task_group)
  6426. return -EINVAL;
  6427. /*
  6428. * Ensure we have at some amount of bandwidth every period. This is
  6429. * to prevent reaching a state of large arrears when throttled via
  6430. * entity_tick() resulting in prolonged exit starvation.
  6431. */
  6432. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6433. return -EINVAL;
  6434. /*
  6435. * Likewise, bound things on the otherside by preventing insane quota
  6436. * periods. This also allows us to normalize in computing quota
  6437. * feasibility.
  6438. */
  6439. if (period > max_cfs_quota_period)
  6440. return -EINVAL;
  6441. mutex_lock(&cfs_constraints_mutex);
  6442. ret = __cfs_schedulable(tg, period, quota);
  6443. if (ret)
  6444. goto out_unlock;
  6445. runtime_enabled = quota != RUNTIME_INF;
  6446. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6447. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6448. raw_spin_lock_irq(&cfs_b->lock);
  6449. cfs_b->period = ns_to_ktime(period);
  6450. cfs_b->quota = quota;
  6451. __refill_cfs_bandwidth_runtime(cfs_b);
  6452. /* restart the period timer (if active) to handle new period expiry */
  6453. if (runtime_enabled && cfs_b->timer_active) {
  6454. /* force a reprogram */
  6455. cfs_b->timer_active = 0;
  6456. __start_cfs_bandwidth(cfs_b);
  6457. }
  6458. raw_spin_unlock_irq(&cfs_b->lock);
  6459. for_each_possible_cpu(i) {
  6460. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6461. struct rq *rq = cfs_rq->rq;
  6462. raw_spin_lock_irq(&rq->lock);
  6463. cfs_rq->runtime_enabled = runtime_enabled;
  6464. cfs_rq->runtime_remaining = 0;
  6465. if (cfs_rq->throttled)
  6466. unthrottle_cfs_rq(cfs_rq);
  6467. raw_spin_unlock_irq(&rq->lock);
  6468. }
  6469. out_unlock:
  6470. mutex_unlock(&cfs_constraints_mutex);
  6471. return ret;
  6472. }
  6473. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6474. {
  6475. u64 quota, period;
  6476. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6477. if (cfs_quota_us < 0)
  6478. quota = RUNTIME_INF;
  6479. else
  6480. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6481. return tg_set_cfs_bandwidth(tg, period, quota);
  6482. }
  6483. long tg_get_cfs_quota(struct task_group *tg)
  6484. {
  6485. u64 quota_us;
  6486. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6487. return -1;
  6488. quota_us = tg->cfs_bandwidth.quota;
  6489. do_div(quota_us, NSEC_PER_USEC);
  6490. return quota_us;
  6491. }
  6492. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6493. {
  6494. u64 quota, period;
  6495. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6496. quota = tg->cfs_bandwidth.quota;
  6497. return tg_set_cfs_bandwidth(tg, period, quota);
  6498. }
  6499. long tg_get_cfs_period(struct task_group *tg)
  6500. {
  6501. u64 cfs_period_us;
  6502. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6503. do_div(cfs_period_us, NSEC_PER_USEC);
  6504. return cfs_period_us;
  6505. }
  6506. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6507. {
  6508. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6509. }
  6510. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6511. s64 cfs_quota_us)
  6512. {
  6513. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6514. }
  6515. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6516. {
  6517. return tg_get_cfs_period(cgroup_tg(cgrp));
  6518. }
  6519. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6520. u64 cfs_period_us)
  6521. {
  6522. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6523. }
  6524. struct cfs_schedulable_data {
  6525. struct task_group *tg;
  6526. u64 period, quota;
  6527. };
  6528. /*
  6529. * normalize group quota/period to be quota/max_period
  6530. * note: units are usecs
  6531. */
  6532. static u64 normalize_cfs_quota(struct task_group *tg,
  6533. struct cfs_schedulable_data *d)
  6534. {
  6535. u64 quota, period;
  6536. if (tg == d->tg) {
  6537. period = d->period;
  6538. quota = d->quota;
  6539. } else {
  6540. period = tg_get_cfs_period(tg);
  6541. quota = tg_get_cfs_quota(tg);
  6542. }
  6543. /* note: these should typically be equivalent */
  6544. if (quota == RUNTIME_INF || quota == -1)
  6545. return RUNTIME_INF;
  6546. return to_ratio(period, quota);
  6547. }
  6548. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6549. {
  6550. struct cfs_schedulable_data *d = data;
  6551. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6552. s64 quota = 0, parent_quota = -1;
  6553. if (!tg->parent) {
  6554. quota = RUNTIME_INF;
  6555. } else {
  6556. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6557. quota = normalize_cfs_quota(tg, d);
  6558. parent_quota = parent_b->hierarchal_quota;
  6559. /*
  6560. * ensure max(child_quota) <= parent_quota, inherit when no
  6561. * limit is set
  6562. */
  6563. if (quota == RUNTIME_INF)
  6564. quota = parent_quota;
  6565. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6566. return -EINVAL;
  6567. }
  6568. cfs_b->hierarchal_quota = quota;
  6569. return 0;
  6570. }
  6571. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6572. {
  6573. int ret;
  6574. struct cfs_schedulable_data data = {
  6575. .tg = tg,
  6576. .period = period,
  6577. .quota = quota,
  6578. };
  6579. if (quota != RUNTIME_INF) {
  6580. do_div(data.period, NSEC_PER_USEC);
  6581. do_div(data.quota, NSEC_PER_USEC);
  6582. }
  6583. rcu_read_lock();
  6584. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6585. rcu_read_unlock();
  6586. return ret;
  6587. }
  6588. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6589. struct cgroup_map_cb *cb)
  6590. {
  6591. struct task_group *tg = cgroup_tg(cgrp);
  6592. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6593. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6594. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6595. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6596. return 0;
  6597. }
  6598. #endif /* CONFIG_CFS_BANDWIDTH */
  6599. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6600. #ifdef CONFIG_RT_GROUP_SCHED
  6601. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6602. s64 val)
  6603. {
  6604. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6605. }
  6606. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6607. {
  6608. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6609. }
  6610. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6611. u64 rt_period_us)
  6612. {
  6613. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6614. }
  6615. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6616. {
  6617. return sched_group_rt_period(cgroup_tg(cgrp));
  6618. }
  6619. #endif /* CONFIG_RT_GROUP_SCHED */
  6620. static struct cftype cpu_files[] = {
  6621. #ifdef CONFIG_FAIR_GROUP_SCHED
  6622. {
  6623. .name = "shares",
  6624. .read_u64 = cpu_shares_read_u64,
  6625. .write_u64 = cpu_shares_write_u64,
  6626. },
  6627. #endif
  6628. #ifdef CONFIG_CFS_BANDWIDTH
  6629. {
  6630. .name = "cfs_quota_us",
  6631. .read_s64 = cpu_cfs_quota_read_s64,
  6632. .write_s64 = cpu_cfs_quota_write_s64,
  6633. },
  6634. {
  6635. .name = "cfs_period_us",
  6636. .read_u64 = cpu_cfs_period_read_u64,
  6637. .write_u64 = cpu_cfs_period_write_u64,
  6638. },
  6639. {
  6640. .name = "stat",
  6641. .read_map = cpu_stats_show,
  6642. },
  6643. #endif
  6644. #ifdef CONFIG_RT_GROUP_SCHED
  6645. {
  6646. .name = "rt_runtime_us",
  6647. .read_s64 = cpu_rt_runtime_read,
  6648. .write_s64 = cpu_rt_runtime_write,
  6649. },
  6650. {
  6651. .name = "rt_period_us",
  6652. .read_u64 = cpu_rt_period_read_uint,
  6653. .write_u64 = cpu_rt_period_write_uint,
  6654. },
  6655. #endif
  6656. };
  6657. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6658. {
  6659. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6660. }
  6661. struct cgroup_subsys cpu_cgroup_subsys = {
  6662. .name = "cpu",
  6663. .create = cpu_cgroup_create,
  6664. .destroy = cpu_cgroup_destroy,
  6665. .can_attach = cpu_cgroup_can_attach,
  6666. .attach = cpu_cgroup_attach,
  6667. .exit = cpu_cgroup_exit,
  6668. .populate = cpu_cgroup_populate,
  6669. .subsys_id = cpu_cgroup_subsys_id,
  6670. .early_init = 1,
  6671. };
  6672. #endif /* CONFIG_CGROUP_SCHED */
  6673. #ifdef CONFIG_CGROUP_CPUACCT
  6674. /*
  6675. * CPU accounting code for task groups.
  6676. *
  6677. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6678. * (balbir@in.ibm.com).
  6679. */
  6680. /* create a new cpu accounting group */
  6681. static struct cgroup_subsys_state *cpuacct_create(
  6682. struct cgroup_subsys *ss, struct cgroup *cgrp)
  6683. {
  6684. struct cpuacct *ca;
  6685. if (!cgrp->parent)
  6686. return &root_cpuacct.css;
  6687. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6688. if (!ca)
  6689. goto out;
  6690. ca->cpuusage = alloc_percpu(u64);
  6691. if (!ca->cpuusage)
  6692. goto out_free_ca;
  6693. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6694. if (!ca->cpustat)
  6695. goto out_free_cpuusage;
  6696. return &ca->css;
  6697. out_free_cpuusage:
  6698. free_percpu(ca->cpuusage);
  6699. out_free_ca:
  6700. kfree(ca);
  6701. out:
  6702. return ERR_PTR(-ENOMEM);
  6703. }
  6704. /* destroy an existing cpu accounting group */
  6705. static void
  6706. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6707. {
  6708. struct cpuacct *ca = cgroup_ca(cgrp);
  6709. free_percpu(ca->cpustat);
  6710. free_percpu(ca->cpuusage);
  6711. kfree(ca);
  6712. }
  6713. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6714. {
  6715. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6716. u64 data;
  6717. #ifndef CONFIG_64BIT
  6718. /*
  6719. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6720. */
  6721. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6722. data = *cpuusage;
  6723. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6724. #else
  6725. data = *cpuusage;
  6726. #endif
  6727. return data;
  6728. }
  6729. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6730. {
  6731. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6732. #ifndef CONFIG_64BIT
  6733. /*
  6734. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6735. */
  6736. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6737. *cpuusage = val;
  6738. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6739. #else
  6740. *cpuusage = val;
  6741. #endif
  6742. }
  6743. /* return total cpu usage (in nanoseconds) of a group */
  6744. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6745. {
  6746. struct cpuacct *ca = cgroup_ca(cgrp);
  6747. u64 totalcpuusage = 0;
  6748. int i;
  6749. for_each_present_cpu(i)
  6750. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6751. return totalcpuusage;
  6752. }
  6753. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6754. u64 reset)
  6755. {
  6756. struct cpuacct *ca = cgroup_ca(cgrp);
  6757. int err = 0;
  6758. int i;
  6759. if (reset) {
  6760. err = -EINVAL;
  6761. goto out;
  6762. }
  6763. for_each_present_cpu(i)
  6764. cpuacct_cpuusage_write(ca, i, 0);
  6765. out:
  6766. return err;
  6767. }
  6768. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6769. struct seq_file *m)
  6770. {
  6771. struct cpuacct *ca = cgroup_ca(cgroup);
  6772. u64 percpu;
  6773. int i;
  6774. for_each_present_cpu(i) {
  6775. percpu = cpuacct_cpuusage_read(ca, i);
  6776. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6777. }
  6778. seq_printf(m, "\n");
  6779. return 0;
  6780. }
  6781. static const char *cpuacct_stat_desc[] = {
  6782. [CPUACCT_STAT_USER] = "user",
  6783. [CPUACCT_STAT_SYSTEM] = "system",
  6784. };
  6785. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6786. struct cgroup_map_cb *cb)
  6787. {
  6788. struct cpuacct *ca = cgroup_ca(cgrp);
  6789. int cpu;
  6790. s64 val = 0;
  6791. for_each_online_cpu(cpu) {
  6792. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6793. val += kcpustat->cpustat[CPUTIME_USER];
  6794. val += kcpustat->cpustat[CPUTIME_NICE];
  6795. }
  6796. val = cputime64_to_clock_t(val);
  6797. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6798. val = 0;
  6799. for_each_online_cpu(cpu) {
  6800. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6801. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6802. val += kcpustat->cpustat[CPUTIME_IRQ];
  6803. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6804. }
  6805. val = cputime64_to_clock_t(val);
  6806. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6807. return 0;
  6808. }
  6809. static struct cftype files[] = {
  6810. {
  6811. .name = "usage",
  6812. .read_u64 = cpuusage_read,
  6813. .write_u64 = cpuusage_write,
  6814. },
  6815. {
  6816. .name = "usage_percpu",
  6817. .read_seq_string = cpuacct_percpu_seq_read,
  6818. },
  6819. {
  6820. .name = "stat",
  6821. .read_map = cpuacct_stats_show,
  6822. },
  6823. };
  6824. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6825. {
  6826. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  6827. }
  6828. /*
  6829. * charge this task's execution time to its accounting group.
  6830. *
  6831. * called with rq->lock held.
  6832. */
  6833. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6834. {
  6835. struct cpuacct *ca;
  6836. int cpu;
  6837. if (unlikely(!cpuacct_subsys.active))
  6838. return;
  6839. cpu = task_cpu(tsk);
  6840. rcu_read_lock();
  6841. ca = task_ca(tsk);
  6842. for (; ca; ca = parent_ca(ca)) {
  6843. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6844. *cpuusage += cputime;
  6845. }
  6846. rcu_read_unlock();
  6847. }
  6848. struct cgroup_subsys cpuacct_subsys = {
  6849. .name = "cpuacct",
  6850. .create = cpuacct_create,
  6851. .destroy = cpuacct_destroy,
  6852. .populate = cpuacct_populate,
  6853. .subsys_id = cpuacct_subsys_id,
  6854. };
  6855. #endif /* CONFIG_CGROUP_CPUACCT */