fork.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/swap.h>
  36. #include <linux/syscalls.h>
  37. #include <linux/jiffies.h>
  38. #include <linux/futex.h>
  39. #include <linux/compat.h>
  40. #include <linux/kthread.h>
  41. #include <linux/task_io_accounting_ops.h>
  42. #include <linux/rcupdate.h>
  43. #include <linux/ptrace.h>
  44. #include <linux/mount.h>
  45. #include <linux/audit.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/ftrace.h>
  48. #include <linux/profile.h>
  49. #include <linux/rmap.h>
  50. #include <linux/ksm.h>
  51. #include <linux/acct.h>
  52. #include <linux/tsacct_kern.h>
  53. #include <linux/cn_proc.h>
  54. #include <linux/freezer.h>
  55. #include <linux/delayacct.h>
  56. #include <linux/taskstats_kern.h>
  57. #include <linux/random.h>
  58. #include <linux/tty.h>
  59. #include <linux/blkdev.h>
  60. #include <linux/fs_struct.h>
  61. #include <linux/magic.h>
  62. #include <linux/perf_event.h>
  63. #include <linux/posix-timers.h>
  64. #include <linux/user-return-notifier.h>
  65. #include <linux/oom.h>
  66. #include <linux/khugepaged.h>
  67. #include <asm/pgtable.h>
  68. #include <asm/pgalloc.h>
  69. #include <asm/uaccess.h>
  70. #include <asm/mmu_context.h>
  71. #include <asm/cacheflush.h>
  72. #include <asm/tlbflush.h>
  73. #include <trace/events/sched.h>
  74. #define CREATE_TRACE_POINTS
  75. #include <trace/events/task.h>
  76. /*
  77. * Protected counters by write_lock_irq(&tasklist_lock)
  78. */
  79. unsigned long total_forks; /* Handle normal Linux uptimes. */
  80. int nr_threads; /* The idle threads do not count.. */
  81. int max_threads; /* tunable limit on nr_threads */
  82. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  83. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  84. #ifdef CONFIG_PROVE_RCU
  85. int lockdep_tasklist_lock_is_held(void)
  86. {
  87. return lockdep_is_held(&tasklist_lock);
  88. }
  89. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  90. #endif /* #ifdef CONFIG_PROVE_RCU */
  91. int nr_processes(void)
  92. {
  93. int cpu;
  94. int total = 0;
  95. for_each_possible_cpu(cpu)
  96. total += per_cpu(process_counts, cpu);
  97. return total;
  98. }
  99. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  100. # define alloc_task_struct_node(node) \
  101. kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
  102. # define free_task_struct(tsk) \
  103. kmem_cache_free(task_struct_cachep, (tsk))
  104. static struct kmem_cache *task_struct_cachep;
  105. #endif
  106. #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
  107. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  108. int node)
  109. {
  110. #ifdef CONFIG_DEBUG_STACK_USAGE
  111. gfp_t mask = GFP_KERNEL | __GFP_ZERO;
  112. #else
  113. gfp_t mask = GFP_KERNEL;
  114. #endif
  115. struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
  116. return page ? page_address(page) : NULL;
  117. }
  118. static inline void free_thread_info(struct thread_info *ti)
  119. {
  120. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  121. }
  122. #endif
  123. /* SLAB cache for signal_struct structures (tsk->signal) */
  124. static struct kmem_cache *signal_cachep;
  125. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  126. struct kmem_cache *sighand_cachep;
  127. /* SLAB cache for files_struct structures (tsk->files) */
  128. struct kmem_cache *files_cachep;
  129. /* SLAB cache for fs_struct structures (tsk->fs) */
  130. struct kmem_cache *fs_cachep;
  131. /* SLAB cache for vm_area_struct structures */
  132. struct kmem_cache *vm_area_cachep;
  133. /* SLAB cache for mm_struct structures (tsk->mm) */
  134. static struct kmem_cache *mm_cachep;
  135. static void account_kernel_stack(struct thread_info *ti, int account)
  136. {
  137. struct zone *zone = page_zone(virt_to_page(ti));
  138. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  139. }
  140. void free_task(struct task_struct *tsk)
  141. {
  142. account_kernel_stack(tsk->stack, -1);
  143. free_thread_info(tsk->stack);
  144. rt_mutex_debug_task_free(tsk);
  145. ftrace_graph_exit_task(tsk);
  146. free_task_struct(tsk);
  147. }
  148. EXPORT_SYMBOL(free_task);
  149. static inline void free_signal_struct(struct signal_struct *sig)
  150. {
  151. taskstats_tgid_free(sig);
  152. sched_autogroup_exit(sig);
  153. kmem_cache_free(signal_cachep, sig);
  154. }
  155. static inline void put_signal_struct(struct signal_struct *sig)
  156. {
  157. if (atomic_dec_and_test(&sig->sigcnt))
  158. free_signal_struct(sig);
  159. }
  160. void __put_task_struct(struct task_struct *tsk)
  161. {
  162. WARN_ON(!tsk->exit_state);
  163. WARN_ON(atomic_read(&tsk->usage));
  164. WARN_ON(tsk == current);
  165. exit_creds(tsk);
  166. delayacct_tsk_free(tsk);
  167. put_signal_struct(tsk->signal);
  168. if (!profile_handoff_task(tsk))
  169. free_task(tsk);
  170. }
  171. EXPORT_SYMBOL_GPL(__put_task_struct);
  172. /*
  173. * macro override instead of weak attribute alias, to workaround
  174. * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
  175. */
  176. #ifndef arch_task_cache_init
  177. #define arch_task_cache_init()
  178. #endif
  179. void __init fork_init(unsigned long mempages)
  180. {
  181. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  182. #ifndef ARCH_MIN_TASKALIGN
  183. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  184. #endif
  185. /* create a slab on which task_structs can be allocated */
  186. task_struct_cachep =
  187. kmem_cache_create("task_struct", sizeof(struct task_struct),
  188. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  189. #endif
  190. /* do the arch specific task caches init */
  191. arch_task_cache_init();
  192. /*
  193. * The default maximum number of threads is set to a safe
  194. * value: the thread structures can take up at most half
  195. * of memory.
  196. */
  197. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  198. /*
  199. * we need to allow at least 20 threads to boot a system
  200. */
  201. if (max_threads < 20)
  202. max_threads = 20;
  203. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  204. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  205. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  206. init_task.signal->rlim[RLIMIT_NPROC];
  207. }
  208. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  209. struct task_struct *src)
  210. {
  211. *dst = *src;
  212. return 0;
  213. }
  214. static struct task_struct *dup_task_struct(struct task_struct *orig)
  215. {
  216. struct task_struct *tsk;
  217. struct thread_info *ti;
  218. unsigned long *stackend;
  219. int node = tsk_fork_get_node(orig);
  220. int err;
  221. prepare_to_copy(orig);
  222. tsk = alloc_task_struct_node(node);
  223. if (!tsk)
  224. return NULL;
  225. ti = alloc_thread_info_node(tsk, node);
  226. if (!ti) {
  227. free_task_struct(tsk);
  228. return NULL;
  229. }
  230. err = arch_dup_task_struct(tsk, orig);
  231. if (err)
  232. goto out;
  233. tsk->stack = ti;
  234. setup_thread_stack(tsk, orig);
  235. clear_user_return_notifier(tsk);
  236. clear_tsk_need_resched(tsk);
  237. stackend = end_of_stack(tsk);
  238. *stackend = STACK_END_MAGIC; /* for overflow detection */
  239. #ifdef CONFIG_CC_STACKPROTECTOR
  240. tsk->stack_canary = get_random_int();
  241. #endif
  242. /*
  243. * One for us, one for whoever does the "release_task()" (usually
  244. * parent)
  245. */
  246. atomic_set(&tsk->usage, 2);
  247. #ifdef CONFIG_BLK_DEV_IO_TRACE
  248. tsk->btrace_seq = 0;
  249. #endif
  250. tsk->splice_pipe = NULL;
  251. account_kernel_stack(ti, 1);
  252. return tsk;
  253. out:
  254. free_thread_info(ti);
  255. free_task_struct(tsk);
  256. return NULL;
  257. }
  258. #ifdef CONFIG_MMU
  259. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  260. {
  261. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  262. struct rb_node **rb_link, *rb_parent;
  263. int retval;
  264. unsigned long charge;
  265. struct mempolicy *pol;
  266. down_write(&oldmm->mmap_sem);
  267. flush_cache_dup_mm(oldmm);
  268. /*
  269. * Not linked in yet - no deadlock potential:
  270. */
  271. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  272. mm->locked_vm = 0;
  273. mm->mmap = NULL;
  274. mm->mmap_cache = NULL;
  275. mm->free_area_cache = oldmm->mmap_base;
  276. mm->cached_hole_size = ~0UL;
  277. mm->map_count = 0;
  278. cpumask_clear(mm_cpumask(mm));
  279. mm->mm_rb = RB_ROOT;
  280. rb_link = &mm->mm_rb.rb_node;
  281. rb_parent = NULL;
  282. pprev = &mm->mmap;
  283. retval = ksm_fork(mm, oldmm);
  284. if (retval)
  285. goto out;
  286. retval = khugepaged_fork(mm, oldmm);
  287. if (retval)
  288. goto out;
  289. prev = NULL;
  290. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  291. struct file *file;
  292. if (mpnt->vm_flags & VM_DONTCOPY) {
  293. long pages = vma_pages(mpnt);
  294. mm->total_vm -= pages;
  295. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  296. -pages);
  297. continue;
  298. }
  299. charge = 0;
  300. if (mpnt->vm_flags & VM_ACCOUNT) {
  301. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  302. if (security_vm_enough_memory(len))
  303. goto fail_nomem;
  304. charge = len;
  305. }
  306. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  307. if (!tmp)
  308. goto fail_nomem;
  309. *tmp = *mpnt;
  310. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  311. pol = mpol_dup(vma_policy(mpnt));
  312. retval = PTR_ERR(pol);
  313. if (IS_ERR(pol))
  314. goto fail_nomem_policy;
  315. vma_set_policy(tmp, pol);
  316. tmp->vm_mm = mm;
  317. if (anon_vma_fork(tmp, mpnt))
  318. goto fail_nomem_anon_vma_fork;
  319. tmp->vm_flags &= ~VM_LOCKED;
  320. tmp->vm_next = tmp->vm_prev = NULL;
  321. file = tmp->vm_file;
  322. if (file) {
  323. struct inode *inode = file->f_path.dentry->d_inode;
  324. struct address_space *mapping = file->f_mapping;
  325. get_file(file);
  326. if (tmp->vm_flags & VM_DENYWRITE)
  327. atomic_dec(&inode->i_writecount);
  328. mutex_lock(&mapping->i_mmap_mutex);
  329. if (tmp->vm_flags & VM_SHARED)
  330. mapping->i_mmap_writable++;
  331. flush_dcache_mmap_lock(mapping);
  332. /* insert tmp into the share list, just after mpnt */
  333. vma_prio_tree_add(tmp, mpnt);
  334. flush_dcache_mmap_unlock(mapping);
  335. mutex_unlock(&mapping->i_mmap_mutex);
  336. }
  337. /*
  338. * Clear hugetlb-related page reserves for children. This only
  339. * affects MAP_PRIVATE mappings. Faults generated by the child
  340. * are not guaranteed to succeed, even if read-only
  341. */
  342. if (is_vm_hugetlb_page(tmp))
  343. reset_vma_resv_huge_pages(tmp);
  344. /*
  345. * Link in the new vma and copy the page table entries.
  346. */
  347. *pprev = tmp;
  348. pprev = &tmp->vm_next;
  349. tmp->vm_prev = prev;
  350. prev = tmp;
  351. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  352. rb_link = &tmp->vm_rb.rb_right;
  353. rb_parent = &tmp->vm_rb;
  354. mm->map_count++;
  355. retval = copy_page_range(mm, oldmm, mpnt);
  356. if (tmp->vm_ops && tmp->vm_ops->open)
  357. tmp->vm_ops->open(tmp);
  358. if (retval)
  359. goto out;
  360. }
  361. /* a new mm has just been created */
  362. arch_dup_mmap(oldmm, mm);
  363. retval = 0;
  364. out:
  365. up_write(&mm->mmap_sem);
  366. flush_tlb_mm(oldmm);
  367. up_write(&oldmm->mmap_sem);
  368. return retval;
  369. fail_nomem_anon_vma_fork:
  370. mpol_put(pol);
  371. fail_nomem_policy:
  372. kmem_cache_free(vm_area_cachep, tmp);
  373. fail_nomem:
  374. retval = -ENOMEM;
  375. vm_unacct_memory(charge);
  376. goto out;
  377. }
  378. static inline int mm_alloc_pgd(struct mm_struct *mm)
  379. {
  380. mm->pgd = pgd_alloc(mm);
  381. if (unlikely(!mm->pgd))
  382. return -ENOMEM;
  383. return 0;
  384. }
  385. static inline void mm_free_pgd(struct mm_struct *mm)
  386. {
  387. pgd_free(mm, mm->pgd);
  388. }
  389. #else
  390. #define dup_mmap(mm, oldmm) (0)
  391. #define mm_alloc_pgd(mm) (0)
  392. #define mm_free_pgd(mm)
  393. #endif /* CONFIG_MMU */
  394. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  395. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  396. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  397. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  398. static int __init coredump_filter_setup(char *s)
  399. {
  400. default_dump_filter =
  401. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  402. MMF_DUMP_FILTER_MASK;
  403. return 1;
  404. }
  405. __setup("coredump_filter=", coredump_filter_setup);
  406. #include <linux/init_task.h>
  407. static void mm_init_aio(struct mm_struct *mm)
  408. {
  409. #ifdef CONFIG_AIO
  410. spin_lock_init(&mm->ioctx_lock);
  411. INIT_HLIST_HEAD(&mm->ioctx_list);
  412. #endif
  413. }
  414. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  415. {
  416. atomic_set(&mm->mm_users, 1);
  417. atomic_set(&mm->mm_count, 1);
  418. init_rwsem(&mm->mmap_sem);
  419. INIT_LIST_HEAD(&mm->mmlist);
  420. mm->flags = (current->mm) ?
  421. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  422. mm->core_state = NULL;
  423. mm->nr_ptes = 0;
  424. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  425. spin_lock_init(&mm->page_table_lock);
  426. mm->free_area_cache = TASK_UNMAPPED_BASE;
  427. mm->cached_hole_size = ~0UL;
  428. mm_init_aio(mm);
  429. mm_init_owner(mm, p);
  430. if (likely(!mm_alloc_pgd(mm))) {
  431. mm->def_flags = 0;
  432. mmu_notifier_mm_init(mm);
  433. return mm;
  434. }
  435. free_mm(mm);
  436. return NULL;
  437. }
  438. /*
  439. * Allocate and initialize an mm_struct.
  440. */
  441. struct mm_struct *mm_alloc(void)
  442. {
  443. struct mm_struct *mm;
  444. mm = allocate_mm();
  445. if (!mm)
  446. return NULL;
  447. memset(mm, 0, sizeof(*mm));
  448. mm_init_cpumask(mm);
  449. return mm_init(mm, current);
  450. }
  451. /*
  452. * Called when the last reference to the mm
  453. * is dropped: either by a lazy thread or by
  454. * mmput. Free the page directory and the mm.
  455. */
  456. void __mmdrop(struct mm_struct *mm)
  457. {
  458. BUG_ON(mm == &init_mm);
  459. mm_free_pgd(mm);
  460. destroy_context(mm);
  461. mmu_notifier_mm_destroy(mm);
  462. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  463. VM_BUG_ON(mm->pmd_huge_pte);
  464. #endif
  465. free_mm(mm);
  466. }
  467. EXPORT_SYMBOL_GPL(__mmdrop);
  468. /*
  469. * Decrement the use count and release all resources for an mm.
  470. */
  471. void mmput(struct mm_struct *mm)
  472. {
  473. might_sleep();
  474. if (atomic_dec_and_test(&mm->mm_users)) {
  475. exit_aio(mm);
  476. ksm_exit(mm);
  477. khugepaged_exit(mm); /* must run before exit_mmap */
  478. exit_mmap(mm);
  479. set_mm_exe_file(mm, NULL);
  480. if (!list_empty(&mm->mmlist)) {
  481. spin_lock(&mmlist_lock);
  482. list_del(&mm->mmlist);
  483. spin_unlock(&mmlist_lock);
  484. }
  485. put_swap_token(mm);
  486. if (mm->binfmt)
  487. module_put(mm->binfmt->module);
  488. mmdrop(mm);
  489. }
  490. }
  491. EXPORT_SYMBOL_GPL(mmput);
  492. /*
  493. * We added or removed a vma mapping the executable. The vmas are only mapped
  494. * during exec and are not mapped with the mmap system call.
  495. * Callers must hold down_write() on the mm's mmap_sem for these
  496. */
  497. void added_exe_file_vma(struct mm_struct *mm)
  498. {
  499. mm->num_exe_file_vmas++;
  500. }
  501. void removed_exe_file_vma(struct mm_struct *mm)
  502. {
  503. mm->num_exe_file_vmas--;
  504. if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
  505. fput(mm->exe_file);
  506. mm->exe_file = NULL;
  507. }
  508. }
  509. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  510. {
  511. if (new_exe_file)
  512. get_file(new_exe_file);
  513. if (mm->exe_file)
  514. fput(mm->exe_file);
  515. mm->exe_file = new_exe_file;
  516. mm->num_exe_file_vmas = 0;
  517. }
  518. struct file *get_mm_exe_file(struct mm_struct *mm)
  519. {
  520. struct file *exe_file;
  521. /* We need mmap_sem to protect against races with removal of
  522. * VM_EXECUTABLE vmas */
  523. down_read(&mm->mmap_sem);
  524. exe_file = mm->exe_file;
  525. if (exe_file)
  526. get_file(exe_file);
  527. up_read(&mm->mmap_sem);
  528. return exe_file;
  529. }
  530. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  531. {
  532. /* It's safe to write the exe_file pointer without exe_file_lock because
  533. * this is called during fork when the task is not yet in /proc */
  534. newmm->exe_file = get_mm_exe_file(oldmm);
  535. }
  536. /**
  537. * get_task_mm - acquire a reference to the task's mm
  538. *
  539. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  540. * this kernel workthread has transiently adopted a user mm with use_mm,
  541. * to do its AIO) is not set and if so returns a reference to it, after
  542. * bumping up the use count. User must release the mm via mmput()
  543. * after use. Typically used by /proc and ptrace.
  544. */
  545. struct mm_struct *get_task_mm(struct task_struct *task)
  546. {
  547. struct mm_struct *mm;
  548. task_lock(task);
  549. mm = task->mm;
  550. if (mm) {
  551. if (task->flags & PF_KTHREAD)
  552. mm = NULL;
  553. else
  554. atomic_inc(&mm->mm_users);
  555. }
  556. task_unlock(task);
  557. return mm;
  558. }
  559. EXPORT_SYMBOL_GPL(get_task_mm);
  560. /* Please note the differences between mmput and mm_release.
  561. * mmput is called whenever we stop holding onto a mm_struct,
  562. * error success whatever.
  563. *
  564. * mm_release is called after a mm_struct has been removed
  565. * from the current process.
  566. *
  567. * This difference is important for error handling, when we
  568. * only half set up a mm_struct for a new process and need to restore
  569. * the old one. Because we mmput the new mm_struct before
  570. * restoring the old one. . .
  571. * Eric Biederman 10 January 1998
  572. */
  573. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  574. {
  575. struct completion *vfork_done = tsk->vfork_done;
  576. /* Get rid of any futexes when releasing the mm */
  577. #ifdef CONFIG_FUTEX
  578. if (unlikely(tsk->robust_list)) {
  579. exit_robust_list(tsk);
  580. tsk->robust_list = NULL;
  581. }
  582. #ifdef CONFIG_COMPAT
  583. if (unlikely(tsk->compat_robust_list)) {
  584. compat_exit_robust_list(tsk);
  585. tsk->compat_robust_list = NULL;
  586. }
  587. #endif
  588. if (unlikely(!list_empty(&tsk->pi_state_list)))
  589. exit_pi_state_list(tsk);
  590. #endif
  591. /* Get rid of any cached register state */
  592. deactivate_mm(tsk, mm);
  593. /* notify parent sleeping on vfork() */
  594. if (vfork_done) {
  595. tsk->vfork_done = NULL;
  596. complete(vfork_done);
  597. }
  598. /*
  599. * If we're exiting normally, clear a user-space tid field if
  600. * requested. We leave this alone when dying by signal, to leave
  601. * the value intact in a core dump, and to save the unnecessary
  602. * trouble otherwise. Userland only wants this done for a sys_exit.
  603. */
  604. if (tsk->clear_child_tid) {
  605. if (!(tsk->flags & PF_SIGNALED) &&
  606. atomic_read(&mm->mm_users) > 1) {
  607. /*
  608. * We don't check the error code - if userspace has
  609. * not set up a proper pointer then tough luck.
  610. */
  611. put_user(0, tsk->clear_child_tid);
  612. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  613. 1, NULL, NULL, 0);
  614. }
  615. tsk->clear_child_tid = NULL;
  616. }
  617. }
  618. /*
  619. * Allocate a new mm structure and copy contents from the
  620. * mm structure of the passed in task structure.
  621. */
  622. struct mm_struct *dup_mm(struct task_struct *tsk)
  623. {
  624. struct mm_struct *mm, *oldmm = current->mm;
  625. int err;
  626. if (!oldmm)
  627. return NULL;
  628. mm = allocate_mm();
  629. if (!mm)
  630. goto fail_nomem;
  631. memcpy(mm, oldmm, sizeof(*mm));
  632. mm_init_cpumask(mm);
  633. /* Initializing for Swap token stuff */
  634. mm->token_priority = 0;
  635. mm->last_interval = 0;
  636. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  637. mm->pmd_huge_pte = NULL;
  638. #endif
  639. if (!mm_init(mm, tsk))
  640. goto fail_nomem;
  641. if (init_new_context(tsk, mm))
  642. goto fail_nocontext;
  643. dup_mm_exe_file(oldmm, mm);
  644. err = dup_mmap(mm, oldmm);
  645. if (err)
  646. goto free_pt;
  647. mm->hiwater_rss = get_mm_rss(mm);
  648. mm->hiwater_vm = mm->total_vm;
  649. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  650. goto free_pt;
  651. return mm;
  652. free_pt:
  653. /* don't put binfmt in mmput, we haven't got module yet */
  654. mm->binfmt = NULL;
  655. mmput(mm);
  656. fail_nomem:
  657. return NULL;
  658. fail_nocontext:
  659. /*
  660. * If init_new_context() failed, we cannot use mmput() to free the mm
  661. * because it calls destroy_context()
  662. */
  663. mm_free_pgd(mm);
  664. free_mm(mm);
  665. return NULL;
  666. }
  667. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  668. {
  669. struct mm_struct *mm, *oldmm;
  670. int retval;
  671. tsk->min_flt = tsk->maj_flt = 0;
  672. tsk->nvcsw = tsk->nivcsw = 0;
  673. #ifdef CONFIG_DETECT_HUNG_TASK
  674. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  675. #endif
  676. tsk->mm = NULL;
  677. tsk->active_mm = NULL;
  678. /*
  679. * Are we cloning a kernel thread?
  680. *
  681. * We need to steal a active VM for that..
  682. */
  683. oldmm = current->mm;
  684. if (!oldmm)
  685. return 0;
  686. if (clone_flags & CLONE_VM) {
  687. atomic_inc(&oldmm->mm_users);
  688. mm = oldmm;
  689. goto good_mm;
  690. }
  691. retval = -ENOMEM;
  692. mm = dup_mm(tsk);
  693. if (!mm)
  694. goto fail_nomem;
  695. good_mm:
  696. /* Initializing for Swap token stuff */
  697. mm->token_priority = 0;
  698. mm->last_interval = 0;
  699. tsk->mm = mm;
  700. tsk->active_mm = mm;
  701. return 0;
  702. fail_nomem:
  703. return retval;
  704. }
  705. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  706. {
  707. struct fs_struct *fs = current->fs;
  708. if (clone_flags & CLONE_FS) {
  709. /* tsk->fs is already what we want */
  710. spin_lock(&fs->lock);
  711. if (fs->in_exec) {
  712. spin_unlock(&fs->lock);
  713. return -EAGAIN;
  714. }
  715. fs->users++;
  716. spin_unlock(&fs->lock);
  717. return 0;
  718. }
  719. tsk->fs = copy_fs_struct(fs);
  720. if (!tsk->fs)
  721. return -ENOMEM;
  722. return 0;
  723. }
  724. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  725. {
  726. struct files_struct *oldf, *newf;
  727. int error = 0;
  728. /*
  729. * A background process may not have any files ...
  730. */
  731. oldf = current->files;
  732. if (!oldf)
  733. goto out;
  734. if (clone_flags & CLONE_FILES) {
  735. atomic_inc(&oldf->count);
  736. goto out;
  737. }
  738. newf = dup_fd(oldf, &error);
  739. if (!newf)
  740. goto out;
  741. tsk->files = newf;
  742. error = 0;
  743. out:
  744. return error;
  745. }
  746. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  747. {
  748. #ifdef CONFIG_BLOCK
  749. struct io_context *ioc = current->io_context;
  750. struct io_context *new_ioc;
  751. if (!ioc)
  752. return 0;
  753. /*
  754. * Share io context with parent, if CLONE_IO is set
  755. */
  756. if (clone_flags & CLONE_IO) {
  757. tsk->io_context = ioc_task_link(ioc);
  758. if (unlikely(!tsk->io_context))
  759. return -ENOMEM;
  760. } else if (ioprio_valid(ioc->ioprio)) {
  761. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  762. if (unlikely(!new_ioc))
  763. return -ENOMEM;
  764. new_ioc->ioprio = ioc->ioprio;
  765. put_io_context(new_ioc, NULL);
  766. }
  767. #endif
  768. return 0;
  769. }
  770. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  771. {
  772. struct sighand_struct *sig;
  773. if (clone_flags & CLONE_SIGHAND) {
  774. atomic_inc(&current->sighand->count);
  775. return 0;
  776. }
  777. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  778. rcu_assign_pointer(tsk->sighand, sig);
  779. if (!sig)
  780. return -ENOMEM;
  781. atomic_set(&sig->count, 1);
  782. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  783. return 0;
  784. }
  785. void __cleanup_sighand(struct sighand_struct *sighand)
  786. {
  787. if (atomic_dec_and_test(&sighand->count))
  788. kmem_cache_free(sighand_cachep, sighand);
  789. }
  790. /*
  791. * Initialize POSIX timer handling for a thread group.
  792. */
  793. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  794. {
  795. unsigned long cpu_limit;
  796. /* Thread group counters. */
  797. thread_group_cputime_init(sig);
  798. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  799. if (cpu_limit != RLIM_INFINITY) {
  800. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  801. sig->cputimer.running = 1;
  802. }
  803. /* The timer lists. */
  804. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  805. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  806. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  807. }
  808. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  809. {
  810. struct signal_struct *sig;
  811. if (clone_flags & CLONE_THREAD)
  812. return 0;
  813. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  814. tsk->signal = sig;
  815. if (!sig)
  816. return -ENOMEM;
  817. sig->nr_threads = 1;
  818. atomic_set(&sig->live, 1);
  819. atomic_set(&sig->sigcnt, 1);
  820. init_waitqueue_head(&sig->wait_chldexit);
  821. if (clone_flags & CLONE_NEWPID)
  822. sig->flags |= SIGNAL_UNKILLABLE;
  823. sig->curr_target = tsk;
  824. init_sigpending(&sig->shared_pending);
  825. INIT_LIST_HEAD(&sig->posix_timers);
  826. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  827. sig->real_timer.function = it_real_fn;
  828. task_lock(current->group_leader);
  829. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  830. task_unlock(current->group_leader);
  831. posix_cpu_timers_init_group(sig);
  832. tty_audit_fork(sig);
  833. sched_autogroup_fork(sig);
  834. #ifdef CONFIG_CGROUPS
  835. init_rwsem(&sig->group_rwsem);
  836. #endif
  837. sig->oom_adj = current->signal->oom_adj;
  838. sig->oom_score_adj = current->signal->oom_score_adj;
  839. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  840. mutex_init(&sig->cred_guard_mutex);
  841. return 0;
  842. }
  843. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  844. {
  845. unsigned long new_flags = p->flags;
  846. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  847. new_flags |= PF_FORKNOEXEC;
  848. new_flags |= PF_STARTING;
  849. p->flags = new_flags;
  850. }
  851. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  852. {
  853. current->clear_child_tid = tidptr;
  854. return task_pid_vnr(current);
  855. }
  856. static void rt_mutex_init_task(struct task_struct *p)
  857. {
  858. raw_spin_lock_init(&p->pi_lock);
  859. #ifdef CONFIG_RT_MUTEXES
  860. plist_head_init(&p->pi_waiters);
  861. p->pi_blocked_on = NULL;
  862. #endif
  863. }
  864. #ifdef CONFIG_MM_OWNER
  865. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  866. {
  867. mm->owner = p;
  868. }
  869. #endif /* CONFIG_MM_OWNER */
  870. /*
  871. * Initialize POSIX timer handling for a single task.
  872. */
  873. static void posix_cpu_timers_init(struct task_struct *tsk)
  874. {
  875. tsk->cputime_expires.prof_exp = 0;
  876. tsk->cputime_expires.virt_exp = 0;
  877. tsk->cputime_expires.sched_exp = 0;
  878. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  879. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  880. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  881. }
  882. /*
  883. * This creates a new process as a copy of the old one,
  884. * but does not actually start it yet.
  885. *
  886. * It copies the registers, and all the appropriate
  887. * parts of the process environment (as per the clone
  888. * flags). The actual kick-off is left to the caller.
  889. */
  890. static struct task_struct *copy_process(unsigned long clone_flags,
  891. unsigned long stack_start,
  892. struct pt_regs *regs,
  893. unsigned long stack_size,
  894. int __user *child_tidptr,
  895. struct pid *pid,
  896. int trace)
  897. {
  898. int retval;
  899. struct task_struct *p;
  900. int cgroup_callbacks_done = 0;
  901. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  902. return ERR_PTR(-EINVAL);
  903. /*
  904. * Thread groups must share signals as well, and detached threads
  905. * can only be started up within the thread group.
  906. */
  907. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  908. return ERR_PTR(-EINVAL);
  909. /*
  910. * Shared signal handlers imply shared VM. By way of the above,
  911. * thread groups also imply shared VM. Blocking this case allows
  912. * for various simplifications in other code.
  913. */
  914. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  915. return ERR_PTR(-EINVAL);
  916. /*
  917. * Siblings of global init remain as zombies on exit since they are
  918. * not reaped by their parent (swapper). To solve this and to avoid
  919. * multi-rooted process trees, prevent global and container-inits
  920. * from creating siblings.
  921. */
  922. if ((clone_flags & CLONE_PARENT) &&
  923. current->signal->flags & SIGNAL_UNKILLABLE)
  924. return ERR_PTR(-EINVAL);
  925. retval = security_task_create(clone_flags);
  926. if (retval)
  927. goto fork_out;
  928. retval = -ENOMEM;
  929. p = dup_task_struct(current);
  930. if (!p)
  931. goto fork_out;
  932. ftrace_graph_init_task(p);
  933. rt_mutex_init_task(p);
  934. #ifdef CONFIG_PROVE_LOCKING
  935. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  936. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  937. #endif
  938. retval = -EAGAIN;
  939. if (atomic_read(&p->real_cred->user->processes) >=
  940. task_rlimit(p, RLIMIT_NPROC)) {
  941. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  942. p->real_cred->user != INIT_USER)
  943. goto bad_fork_free;
  944. }
  945. current->flags &= ~PF_NPROC_EXCEEDED;
  946. retval = copy_creds(p, clone_flags);
  947. if (retval < 0)
  948. goto bad_fork_free;
  949. /*
  950. * If multiple threads are within copy_process(), then this check
  951. * triggers too late. This doesn't hurt, the check is only there
  952. * to stop root fork bombs.
  953. */
  954. retval = -EAGAIN;
  955. if (nr_threads >= max_threads)
  956. goto bad_fork_cleanup_count;
  957. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  958. goto bad_fork_cleanup_count;
  959. p->did_exec = 0;
  960. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  961. copy_flags(clone_flags, p);
  962. INIT_LIST_HEAD(&p->children);
  963. INIT_LIST_HEAD(&p->sibling);
  964. rcu_copy_process(p);
  965. p->vfork_done = NULL;
  966. spin_lock_init(&p->alloc_lock);
  967. init_sigpending(&p->pending);
  968. p->utime = p->stime = p->gtime = 0;
  969. p->utimescaled = p->stimescaled = 0;
  970. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  971. p->prev_utime = p->prev_stime = 0;
  972. #endif
  973. #if defined(SPLIT_RSS_COUNTING)
  974. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  975. #endif
  976. p->default_timer_slack_ns = current->timer_slack_ns;
  977. task_io_accounting_init(&p->ioac);
  978. acct_clear_integrals(p);
  979. posix_cpu_timers_init(p);
  980. do_posix_clock_monotonic_gettime(&p->start_time);
  981. p->real_start_time = p->start_time;
  982. monotonic_to_bootbased(&p->real_start_time);
  983. p->io_context = NULL;
  984. p->audit_context = NULL;
  985. if (clone_flags & CLONE_THREAD)
  986. threadgroup_change_begin(current);
  987. cgroup_fork(p);
  988. #ifdef CONFIG_NUMA
  989. p->mempolicy = mpol_dup(p->mempolicy);
  990. if (IS_ERR(p->mempolicy)) {
  991. retval = PTR_ERR(p->mempolicy);
  992. p->mempolicy = NULL;
  993. goto bad_fork_cleanup_cgroup;
  994. }
  995. mpol_fix_fork_child_flag(p);
  996. #endif
  997. #ifdef CONFIG_CPUSETS
  998. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  999. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1000. #endif
  1001. #ifdef CONFIG_TRACE_IRQFLAGS
  1002. p->irq_events = 0;
  1003. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1004. p->hardirqs_enabled = 1;
  1005. #else
  1006. p->hardirqs_enabled = 0;
  1007. #endif
  1008. p->hardirq_enable_ip = 0;
  1009. p->hardirq_enable_event = 0;
  1010. p->hardirq_disable_ip = _THIS_IP_;
  1011. p->hardirq_disable_event = 0;
  1012. p->softirqs_enabled = 1;
  1013. p->softirq_enable_ip = _THIS_IP_;
  1014. p->softirq_enable_event = 0;
  1015. p->softirq_disable_ip = 0;
  1016. p->softirq_disable_event = 0;
  1017. p->hardirq_context = 0;
  1018. p->softirq_context = 0;
  1019. #endif
  1020. #ifdef CONFIG_LOCKDEP
  1021. p->lockdep_depth = 0; /* no locks held yet */
  1022. p->curr_chain_key = 0;
  1023. p->lockdep_recursion = 0;
  1024. #endif
  1025. #ifdef CONFIG_DEBUG_MUTEXES
  1026. p->blocked_on = NULL; /* not blocked yet */
  1027. #endif
  1028. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  1029. p->memcg_batch.do_batch = 0;
  1030. p->memcg_batch.memcg = NULL;
  1031. #endif
  1032. /* Perform scheduler related setup. Assign this task to a CPU. */
  1033. sched_fork(p);
  1034. retval = perf_event_init_task(p);
  1035. if (retval)
  1036. goto bad_fork_cleanup_policy;
  1037. retval = audit_alloc(p);
  1038. if (retval)
  1039. goto bad_fork_cleanup_policy;
  1040. /* copy all the process information */
  1041. retval = copy_semundo(clone_flags, p);
  1042. if (retval)
  1043. goto bad_fork_cleanup_audit;
  1044. retval = copy_files(clone_flags, p);
  1045. if (retval)
  1046. goto bad_fork_cleanup_semundo;
  1047. retval = copy_fs(clone_flags, p);
  1048. if (retval)
  1049. goto bad_fork_cleanup_files;
  1050. retval = copy_sighand(clone_flags, p);
  1051. if (retval)
  1052. goto bad_fork_cleanup_fs;
  1053. retval = copy_signal(clone_flags, p);
  1054. if (retval)
  1055. goto bad_fork_cleanup_sighand;
  1056. retval = copy_mm(clone_flags, p);
  1057. if (retval)
  1058. goto bad_fork_cleanup_signal;
  1059. retval = copy_namespaces(clone_flags, p);
  1060. if (retval)
  1061. goto bad_fork_cleanup_mm;
  1062. retval = copy_io(clone_flags, p);
  1063. if (retval)
  1064. goto bad_fork_cleanup_namespaces;
  1065. retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
  1066. if (retval)
  1067. goto bad_fork_cleanup_io;
  1068. if (pid != &init_struct_pid) {
  1069. retval = -ENOMEM;
  1070. pid = alloc_pid(p->nsproxy->pid_ns);
  1071. if (!pid)
  1072. goto bad_fork_cleanup_io;
  1073. }
  1074. p->pid = pid_nr(pid);
  1075. p->tgid = p->pid;
  1076. if (clone_flags & CLONE_THREAD)
  1077. p->tgid = current->tgid;
  1078. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1079. /*
  1080. * Clear TID on mm_release()?
  1081. */
  1082. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1083. #ifdef CONFIG_BLOCK
  1084. p->plug = NULL;
  1085. #endif
  1086. #ifdef CONFIG_FUTEX
  1087. p->robust_list = NULL;
  1088. #ifdef CONFIG_COMPAT
  1089. p->compat_robust_list = NULL;
  1090. #endif
  1091. INIT_LIST_HEAD(&p->pi_state_list);
  1092. p->pi_state_cache = NULL;
  1093. #endif
  1094. /*
  1095. * sigaltstack should be cleared when sharing the same VM
  1096. */
  1097. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1098. p->sas_ss_sp = p->sas_ss_size = 0;
  1099. /*
  1100. * Syscall tracing and stepping should be turned off in the
  1101. * child regardless of CLONE_PTRACE.
  1102. */
  1103. user_disable_single_step(p);
  1104. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1105. #ifdef TIF_SYSCALL_EMU
  1106. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1107. #endif
  1108. clear_all_latency_tracing(p);
  1109. /* ok, now we should be set up.. */
  1110. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1111. p->pdeath_signal = 0;
  1112. p->exit_state = 0;
  1113. p->nr_dirtied = 0;
  1114. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1115. p->dirty_paused_when = 0;
  1116. /*
  1117. * Ok, make it visible to the rest of the system.
  1118. * We dont wake it up yet.
  1119. */
  1120. p->group_leader = p;
  1121. INIT_LIST_HEAD(&p->thread_group);
  1122. /* Now that the task is set up, run cgroup callbacks if
  1123. * necessary. We need to run them before the task is visible
  1124. * on the tasklist. */
  1125. cgroup_fork_callbacks(p);
  1126. cgroup_callbacks_done = 1;
  1127. /* Need tasklist lock for parent etc handling! */
  1128. write_lock_irq(&tasklist_lock);
  1129. /* CLONE_PARENT re-uses the old parent */
  1130. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1131. p->real_parent = current->real_parent;
  1132. p->parent_exec_id = current->parent_exec_id;
  1133. } else {
  1134. p->real_parent = current;
  1135. p->parent_exec_id = current->self_exec_id;
  1136. }
  1137. spin_lock(&current->sighand->siglock);
  1138. /*
  1139. * Process group and session signals need to be delivered to just the
  1140. * parent before the fork or both the parent and the child after the
  1141. * fork. Restart if a signal comes in before we add the new process to
  1142. * it's process group.
  1143. * A fatal signal pending means that current will exit, so the new
  1144. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1145. */
  1146. recalc_sigpending();
  1147. if (signal_pending(current)) {
  1148. spin_unlock(&current->sighand->siglock);
  1149. write_unlock_irq(&tasklist_lock);
  1150. retval = -ERESTARTNOINTR;
  1151. goto bad_fork_free_pid;
  1152. }
  1153. if (clone_flags & CLONE_THREAD) {
  1154. current->signal->nr_threads++;
  1155. atomic_inc(&current->signal->live);
  1156. atomic_inc(&current->signal->sigcnt);
  1157. p->group_leader = current->group_leader;
  1158. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1159. }
  1160. if (likely(p->pid)) {
  1161. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1162. if (thread_group_leader(p)) {
  1163. if (is_child_reaper(pid))
  1164. p->nsproxy->pid_ns->child_reaper = p;
  1165. p->signal->leader_pid = pid;
  1166. p->signal->tty = tty_kref_get(current->signal->tty);
  1167. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1168. attach_pid(p, PIDTYPE_SID, task_session(current));
  1169. list_add_tail(&p->sibling, &p->real_parent->children);
  1170. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1171. __this_cpu_inc(process_counts);
  1172. }
  1173. attach_pid(p, PIDTYPE_PID, pid);
  1174. nr_threads++;
  1175. }
  1176. total_forks++;
  1177. spin_unlock(&current->sighand->siglock);
  1178. write_unlock_irq(&tasklist_lock);
  1179. proc_fork_connector(p);
  1180. cgroup_post_fork(p);
  1181. if (clone_flags & CLONE_THREAD)
  1182. threadgroup_change_end(current);
  1183. perf_event_fork(p);
  1184. trace_task_newtask(p, clone_flags);
  1185. return p;
  1186. bad_fork_free_pid:
  1187. if (pid != &init_struct_pid)
  1188. free_pid(pid);
  1189. bad_fork_cleanup_io:
  1190. if (p->io_context)
  1191. exit_io_context(p);
  1192. bad_fork_cleanup_namespaces:
  1193. exit_task_namespaces(p);
  1194. bad_fork_cleanup_mm:
  1195. if (p->mm)
  1196. mmput(p->mm);
  1197. bad_fork_cleanup_signal:
  1198. if (!(clone_flags & CLONE_THREAD))
  1199. free_signal_struct(p->signal);
  1200. bad_fork_cleanup_sighand:
  1201. __cleanup_sighand(p->sighand);
  1202. bad_fork_cleanup_fs:
  1203. exit_fs(p); /* blocking */
  1204. bad_fork_cleanup_files:
  1205. exit_files(p); /* blocking */
  1206. bad_fork_cleanup_semundo:
  1207. exit_sem(p);
  1208. bad_fork_cleanup_audit:
  1209. audit_free(p);
  1210. bad_fork_cleanup_policy:
  1211. perf_event_free_task(p);
  1212. #ifdef CONFIG_NUMA
  1213. mpol_put(p->mempolicy);
  1214. bad_fork_cleanup_cgroup:
  1215. #endif
  1216. if (clone_flags & CLONE_THREAD)
  1217. threadgroup_change_end(current);
  1218. cgroup_exit(p, cgroup_callbacks_done);
  1219. delayacct_tsk_free(p);
  1220. module_put(task_thread_info(p)->exec_domain->module);
  1221. bad_fork_cleanup_count:
  1222. atomic_dec(&p->cred->user->processes);
  1223. exit_creds(p);
  1224. bad_fork_free:
  1225. free_task(p);
  1226. fork_out:
  1227. return ERR_PTR(retval);
  1228. }
  1229. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1230. {
  1231. memset(regs, 0, sizeof(struct pt_regs));
  1232. return regs;
  1233. }
  1234. static inline void init_idle_pids(struct pid_link *links)
  1235. {
  1236. enum pid_type type;
  1237. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1238. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1239. links[type].pid = &init_struct_pid;
  1240. }
  1241. }
  1242. struct task_struct * __cpuinit fork_idle(int cpu)
  1243. {
  1244. struct task_struct *task;
  1245. struct pt_regs regs;
  1246. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1247. &init_struct_pid, 0);
  1248. if (!IS_ERR(task)) {
  1249. init_idle_pids(task->pids);
  1250. init_idle(task, cpu);
  1251. }
  1252. return task;
  1253. }
  1254. /*
  1255. * Ok, this is the main fork-routine.
  1256. *
  1257. * It copies the process, and if successful kick-starts
  1258. * it and waits for it to finish using the VM if required.
  1259. */
  1260. long do_fork(unsigned long clone_flags,
  1261. unsigned long stack_start,
  1262. struct pt_regs *regs,
  1263. unsigned long stack_size,
  1264. int __user *parent_tidptr,
  1265. int __user *child_tidptr)
  1266. {
  1267. struct task_struct *p;
  1268. int trace = 0;
  1269. long nr;
  1270. /*
  1271. * Do some preliminary argument and permissions checking before we
  1272. * actually start allocating stuff
  1273. */
  1274. if (clone_flags & CLONE_NEWUSER) {
  1275. if (clone_flags & CLONE_THREAD)
  1276. return -EINVAL;
  1277. /* hopefully this check will go away when userns support is
  1278. * complete
  1279. */
  1280. if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
  1281. !capable(CAP_SETGID))
  1282. return -EPERM;
  1283. }
  1284. /*
  1285. * Determine whether and which event to report to ptracer. When
  1286. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1287. * requested, no event is reported; otherwise, report if the event
  1288. * for the type of forking is enabled.
  1289. */
  1290. if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
  1291. if (clone_flags & CLONE_VFORK)
  1292. trace = PTRACE_EVENT_VFORK;
  1293. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1294. trace = PTRACE_EVENT_CLONE;
  1295. else
  1296. trace = PTRACE_EVENT_FORK;
  1297. if (likely(!ptrace_event_enabled(current, trace)))
  1298. trace = 0;
  1299. }
  1300. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1301. child_tidptr, NULL, trace);
  1302. /*
  1303. * Do this prior waking up the new thread - the thread pointer
  1304. * might get invalid after that point, if the thread exits quickly.
  1305. */
  1306. if (!IS_ERR(p)) {
  1307. struct completion vfork;
  1308. trace_sched_process_fork(current, p);
  1309. nr = task_pid_vnr(p);
  1310. if (clone_flags & CLONE_PARENT_SETTID)
  1311. put_user(nr, parent_tidptr);
  1312. if (clone_flags & CLONE_VFORK) {
  1313. p->vfork_done = &vfork;
  1314. init_completion(&vfork);
  1315. }
  1316. /*
  1317. * We set PF_STARTING at creation in case tracing wants to
  1318. * use this to distinguish a fully live task from one that
  1319. * hasn't finished SIGSTOP raising yet. Now we clear it
  1320. * and set the child going.
  1321. */
  1322. p->flags &= ~PF_STARTING;
  1323. wake_up_new_task(p);
  1324. /* forking complete and child started to run, tell ptracer */
  1325. if (unlikely(trace))
  1326. ptrace_event(trace, nr);
  1327. if (clone_flags & CLONE_VFORK) {
  1328. freezer_do_not_count();
  1329. wait_for_completion(&vfork);
  1330. freezer_count();
  1331. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1332. }
  1333. } else {
  1334. nr = PTR_ERR(p);
  1335. }
  1336. return nr;
  1337. }
  1338. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1339. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1340. #endif
  1341. static void sighand_ctor(void *data)
  1342. {
  1343. struct sighand_struct *sighand = data;
  1344. spin_lock_init(&sighand->siglock);
  1345. init_waitqueue_head(&sighand->signalfd_wqh);
  1346. }
  1347. void __init proc_caches_init(void)
  1348. {
  1349. sighand_cachep = kmem_cache_create("sighand_cache",
  1350. sizeof(struct sighand_struct), 0,
  1351. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1352. SLAB_NOTRACK, sighand_ctor);
  1353. signal_cachep = kmem_cache_create("signal_cache",
  1354. sizeof(struct signal_struct), 0,
  1355. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1356. files_cachep = kmem_cache_create("files_cache",
  1357. sizeof(struct files_struct), 0,
  1358. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1359. fs_cachep = kmem_cache_create("fs_cache",
  1360. sizeof(struct fs_struct), 0,
  1361. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1362. /*
  1363. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1364. * whole struct cpumask for the OFFSTACK case. We could change
  1365. * this to *only* allocate as much of it as required by the
  1366. * maximum number of CPU's we can ever have. The cpumask_allocation
  1367. * is at the end of the structure, exactly for that reason.
  1368. */
  1369. mm_cachep = kmem_cache_create("mm_struct",
  1370. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1371. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1372. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1373. mmap_init();
  1374. nsproxy_cache_init();
  1375. }
  1376. /*
  1377. * Check constraints on flags passed to the unshare system call.
  1378. */
  1379. static int check_unshare_flags(unsigned long unshare_flags)
  1380. {
  1381. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1382. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1383. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
  1384. return -EINVAL;
  1385. /*
  1386. * Not implemented, but pretend it works if there is nothing to
  1387. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1388. * needs to unshare vm.
  1389. */
  1390. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1391. /* FIXME: get_task_mm() increments ->mm_users */
  1392. if (atomic_read(&current->mm->mm_users) > 1)
  1393. return -EINVAL;
  1394. }
  1395. return 0;
  1396. }
  1397. /*
  1398. * Unshare the filesystem structure if it is being shared
  1399. */
  1400. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1401. {
  1402. struct fs_struct *fs = current->fs;
  1403. if (!(unshare_flags & CLONE_FS) || !fs)
  1404. return 0;
  1405. /* don't need lock here; in the worst case we'll do useless copy */
  1406. if (fs->users == 1)
  1407. return 0;
  1408. *new_fsp = copy_fs_struct(fs);
  1409. if (!*new_fsp)
  1410. return -ENOMEM;
  1411. return 0;
  1412. }
  1413. /*
  1414. * Unshare file descriptor table if it is being shared
  1415. */
  1416. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1417. {
  1418. struct files_struct *fd = current->files;
  1419. int error = 0;
  1420. if ((unshare_flags & CLONE_FILES) &&
  1421. (fd && atomic_read(&fd->count) > 1)) {
  1422. *new_fdp = dup_fd(fd, &error);
  1423. if (!*new_fdp)
  1424. return error;
  1425. }
  1426. return 0;
  1427. }
  1428. /*
  1429. * unshare allows a process to 'unshare' part of the process
  1430. * context which was originally shared using clone. copy_*
  1431. * functions used by do_fork() cannot be used here directly
  1432. * because they modify an inactive task_struct that is being
  1433. * constructed. Here we are modifying the current, active,
  1434. * task_struct.
  1435. */
  1436. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1437. {
  1438. struct fs_struct *fs, *new_fs = NULL;
  1439. struct files_struct *fd, *new_fd = NULL;
  1440. struct nsproxy *new_nsproxy = NULL;
  1441. int do_sysvsem = 0;
  1442. int err;
  1443. err = check_unshare_flags(unshare_flags);
  1444. if (err)
  1445. goto bad_unshare_out;
  1446. /*
  1447. * If unsharing namespace, must also unshare filesystem information.
  1448. */
  1449. if (unshare_flags & CLONE_NEWNS)
  1450. unshare_flags |= CLONE_FS;
  1451. /*
  1452. * CLONE_NEWIPC must also detach from the undolist: after switching
  1453. * to a new ipc namespace, the semaphore arrays from the old
  1454. * namespace are unreachable.
  1455. */
  1456. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1457. do_sysvsem = 1;
  1458. err = unshare_fs(unshare_flags, &new_fs);
  1459. if (err)
  1460. goto bad_unshare_out;
  1461. err = unshare_fd(unshare_flags, &new_fd);
  1462. if (err)
  1463. goto bad_unshare_cleanup_fs;
  1464. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
  1465. if (err)
  1466. goto bad_unshare_cleanup_fd;
  1467. if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
  1468. if (do_sysvsem) {
  1469. /*
  1470. * CLONE_SYSVSEM is equivalent to sys_exit().
  1471. */
  1472. exit_sem(current);
  1473. }
  1474. if (new_nsproxy) {
  1475. switch_task_namespaces(current, new_nsproxy);
  1476. new_nsproxy = NULL;
  1477. }
  1478. task_lock(current);
  1479. if (new_fs) {
  1480. fs = current->fs;
  1481. spin_lock(&fs->lock);
  1482. current->fs = new_fs;
  1483. if (--fs->users)
  1484. new_fs = NULL;
  1485. else
  1486. new_fs = fs;
  1487. spin_unlock(&fs->lock);
  1488. }
  1489. if (new_fd) {
  1490. fd = current->files;
  1491. current->files = new_fd;
  1492. new_fd = fd;
  1493. }
  1494. task_unlock(current);
  1495. }
  1496. if (new_nsproxy)
  1497. put_nsproxy(new_nsproxy);
  1498. bad_unshare_cleanup_fd:
  1499. if (new_fd)
  1500. put_files_struct(new_fd);
  1501. bad_unshare_cleanup_fs:
  1502. if (new_fs)
  1503. free_fs_struct(new_fs);
  1504. bad_unshare_out:
  1505. return err;
  1506. }
  1507. /*
  1508. * Helper to unshare the files of the current task.
  1509. * We don't want to expose copy_files internals to
  1510. * the exec layer of the kernel.
  1511. */
  1512. int unshare_files(struct files_struct **displaced)
  1513. {
  1514. struct task_struct *task = current;
  1515. struct files_struct *copy = NULL;
  1516. int error;
  1517. error = unshare_fd(CLONE_FILES, &copy);
  1518. if (error || !copy) {
  1519. *displaced = NULL;
  1520. return error;
  1521. }
  1522. *displaced = task->files;
  1523. task_lock(task);
  1524. task->files = copy;
  1525. task_unlock(task);
  1526. return 0;
  1527. }