tda10086.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
  1. /*
  2. Driver for Philips tda10086 DVBS Demodulator
  3. (c) 2006 Andrew de Quincey
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. */
  16. #include <linux/init.h>
  17. #include <linux/module.h>
  18. #include <linux/device.h>
  19. #include <linux/jiffies.h>
  20. #include <linux/string.h>
  21. #include <linux/slab.h>
  22. #include "dvb_frontend.h"
  23. #include "tda10086.h"
  24. #define SACLK 96000000
  25. struct tda10086_state {
  26. struct i2c_adapter* i2c;
  27. const struct tda10086_config* config;
  28. struct dvb_frontend frontend;
  29. /* private demod data */
  30. u32 frequency;
  31. u32 symbol_rate;
  32. bool has_lock;
  33. };
  34. static int debug = 0;
  35. #define dprintk(args...) \
  36. do { \
  37. if (debug) printk(KERN_DEBUG "tda10086: " args); \
  38. } while (0)
  39. static int tda10086_write_byte(struct tda10086_state *state, int reg, int data)
  40. {
  41. int ret;
  42. u8 b0[] = { reg, data };
  43. struct i2c_msg msg = { .flags = 0, .buf = b0, .len = 2 };
  44. msg.addr = state->config->demod_address;
  45. ret = i2c_transfer(state->i2c, &msg, 1);
  46. if (ret != 1)
  47. dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
  48. __FUNCTION__, reg, data, ret);
  49. return (ret != 1) ? ret : 0;
  50. }
  51. static int tda10086_read_byte(struct tda10086_state *state, int reg)
  52. {
  53. int ret;
  54. u8 b0[] = { reg };
  55. u8 b1[] = { 0 };
  56. struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
  57. { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
  58. msg[0].addr = state->config->demod_address;
  59. msg[1].addr = state->config->demod_address;
  60. ret = i2c_transfer(state->i2c, msg, 2);
  61. if (ret != 2) {
  62. dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
  63. ret);
  64. return ret;
  65. }
  66. return b1[0];
  67. }
  68. static int tda10086_write_mask(struct tda10086_state *state, int reg, int mask, int data)
  69. {
  70. int val;
  71. // read a byte and check
  72. val = tda10086_read_byte(state, reg);
  73. if (val < 0)
  74. return val;
  75. // mask if off
  76. val = val & ~mask;
  77. val |= data & 0xff;
  78. // write it out again
  79. return tda10086_write_byte(state, reg, val);
  80. }
  81. static int tda10086_init(struct dvb_frontend* fe)
  82. {
  83. struct tda10086_state* state = fe->demodulator_priv;
  84. u8 t22k_off = 0x80;
  85. dprintk ("%s\n", __FUNCTION__);
  86. if (state->config->diseqc_tone)
  87. t22k_off = 0;
  88. // reset
  89. tda10086_write_byte(state, 0x00, 0x00);
  90. msleep(10);
  91. // misc setup
  92. tda10086_write_byte(state, 0x01, 0x94);
  93. tda10086_write_byte(state, 0x02, 0x35); // NOTE: TT drivers appear to disable CSWP
  94. tda10086_write_byte(state, 0x03, 0xe4);
  95. tda10086_write_byte(state, 0x04, 0x43);
  96. tda10086_write_byte(state, 0x0c, 0x0c);
  97. tda10086_write_byte(state, 0x1b, 0xb0); // noise threshold
  98. tda10086_write_byte(state, 0x20, 0x89); // misc
  99. tda10086_write_byte(state, 0x30, 0x04); // acquisition period length
  100. tda10086_write_byte(state, 0x32, 0x00); // irq off
  101. tda10086_write_byte(state, 0x31, 0x56); // setup AFC
  102. // setup PLL (assumes 16Mhz XIN)
  103. tda10086_write_byte(state, 0x55, 0x2c); // misc PLL setup
  104. tda10086_write_byte(state, 0x3a, 0x0b); // M=12
  105. tda10086_write_byte(state, 0x3b, 0x01); // P=2
  106. tda10086_write_mask(state, 0x55, 0x20, 0x00); // powerup PLL
  107. // setup TS interface
  108. tda10086_write_byte(state, 0x11, 0x81);
  109. tda10086_write_byte(state, 0x12, 0x81);
  110. tda10086_write_byte(state, 0x19, 0x40); // parallel mode A + MSBFIRST
  111. tda10086_write_byte(state, 0x56, 0x80); // powerdown WPLL - unused in the mode we use
  112. tda10086_write_byte(state, 0x57, 0x08); // bypass WPLL - unused in the mode we use
  113. tda10086_write_byte(state, 0x10, 0x2a);
  114. // setup ADC
  115. tda10086_write_byte(state, 0x58, 0x61); // ADC setup
  116. tda10086_write_mask(state, 0x58, 0x01, 0x00); // powerup ADC
  117. // setup AGC
  118. tda10086_write_byte(state, 0x05, 0x0B);
  119. tda10086_write_byte(state, 0x37, 0x63);
  120. tda10086_write_byte(state, 0x3f, 0x0a); // NOTE: flydvb varies it
  121. tda10086_write_byte(state, 0x40, 0x64);
  122. tda10086_write_byte(state, 0x41, 0x4f);
  123. tda10086_write_byte(state, 0x42, 0x43);
  124. // setup viterbi
  125. tda10086_write_byte(state, 0x1a, 0x11); // VBER 10^6, DVB, QPSK
  126. // setup carrier recovery
  127. tda10086_write_byte(state, 0x3d, 0x80);
  128. // setup SEC
  129. tda10086_write_byte(state, 0x36, t22k_off); // all SEC off, 22k tone
  130. tda10086_write_byte(state, 0x34, (((1<<19) * (22000/1000)) / (SACLK/1000))); // } tone frequency
  131. tda10086_write_byte(state, 0x35, (((1<<19) * (22000/1000)) / (SACLK/1000)) >> 8); // }
  132. return 0;
  133. }
  134. static void tda10086_diseqc_wait(struct tda10086_state *state)
  135. {
  136. unsigned long timeout = jiffies + msecs_to_jiffies(200);
  137. while (!(tda10086_read_byte(state, 0x50) & 0x01)) {
  138. if(time_after(jiffies, timeout)) {
  139. printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__);
  140. break;
  141. }
  142. msleep(10);
  143. }
  144. }
  145. static int tda10086_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
  146. {
  147. struct tda10086_state* state = fe->demodulator_priv;
  148. u8 t22k_off = 0x80;
  149. dprintk ("%s\n", __FUNCTION__);
  150. if (state->config->diseqc_tone)
  151. t22k_off = 0;
  152. switch (tone) {
  153. case SEC_TONE_OFF:
  154. tda10086_write_byte(state, 0x36, t22k_off);
  155. break;
  156. case SEC_TONE_ON:
  157. tda10086_write_byte(state, 0x36, 0x01 + t22k_off);
  158. break;
  159. }
  160. return 0;
  161. }
  162. static int tda10086_send_master_cmd (struct dvb_frontend* fe,
  163. struct dvb_diseqc_master_cmd* cmd)
  164. {
  165. struct tda10086_state* state = fe->demodulator_priv;
  166. int i;
  167. u8 oldval;
  168. u8 t22k_off = 0x80;
  169. dprintk ("%s\n", __FUNCTION__);
  170. if (state->config->diseqc_tone)
  171. t22k_off = 0;
  172. if (cmd->msg_len > 6)
  173. return -EINVAL;
  174. oldval = tda10086_read_byte(state, 0x36);
  175. for(i=0; i< cmd->msg_len; i++) {
  176. tda10086_write_byte(state, 0x48+i, cmd->msg[i]);
  177. }
  178. tda10086_write_byte(state, 0x36, (0x08 + t22k_off)
  179. | ((cmd->msg_len - 1) << 4));
  180. tda10086_diseqc_wait(state);
  181. tda10086_write_byte(state, 0x36, oldval);
  182. return 0;
  183. }
  184. static int tda10086_send_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd)
  185. {
  186. struct tda10086_state* state = fe->demodulator_priv;
  187. u8 oldval = tda10086_read_byte(state, 0x36);
  188. u8 t22k_off = 0x80;
  189. dprintk ("%s\n", __FUNCTION__);
  190. if (state->config->diseqc_tone)
  191. t22k_off = 0;
  192. switch(minicmd) {
  193. case SEC_MINI_A:
  194. tda10086_write_byte(state, 0x36, 0x04 + t22k_off);
  195. break;
  196. case SEC_MINI_B:
  197. tda10086_write_byte(state, 0x36, 0x06 + t22k_off);
  198. break;
  199. }
  200. tda10086_diseqc_wait(state);
  201. tda10086_write_byte(state, 0x36, oldval);
  202. return 0;
  203. }
  204. static int tda10086_set_inversion(struct tda10086_state *state,
  205. struct dvb_frontend_parameters *fe_params)
  206. {
  207. u8 invval = 0x80;
  208. dprintk ("%s %i %i\n", __FUNCTION__, fe_params->inversion, state->config->invert);
  209. switch(fe_params->inversion) {
  210. case INVERSION_OFF:
  211. if (state->config->invert)
  212. invval = 0x40;
  213. break;
  214. case INVERSION_ON:
  215. if (!state->config->invert)
  216. invval = 0x40;
  217. break;
  218. case INVERSION_AUTO:
  219. invval = 0x00;
  220. break;
  221. }
  222. tda10086_write_mask(state, 0x0c, 0xc0, invval);
  223. return 0;
  224. }
  225. static int tda10086_set_symbol_rate(struct tda10086_state *state,
  226. struct dvb_frontend_parameters *fe_params)
  227. {
  228. u8 dfn = 0;
  229. u8 afs = 0;
  230. u8 byp = 0;
  231. u8 reg37 = 0x43;
  232. u8 reg42 = 0x43;
  233. u64 big;
  234. u32 tmp;
  235. u32 bdr;
  236. u32 bdri;
  237. u32 symbol_rate = fe_params->u.qpsk.symbol_rate;
  238. dprintk ("%s %i\n", __FUNCTION__, symbol_rate);
  239. // setup the decimation and anti-aliasing filters..
  240. if (symbol_rate < (u32) (SACLK * 0.0137)) {
  241. dfn=4;
  242. afs=1;
  243. } else if (symbol_rate < (u32) (SACLK * 0.0208)) {
  244. dfn=4;
  245. afs=0;
  246. } else if (symbol_rate < (u32) (SACLK * 0.0270)) {
  247. dfn=3;
  248. afs=1;
  249. } else if (symbol_rate < (u32) (SACLK * 0.0416)) {
  250. dfn=3;
  251. afs=0;
  252. } else if (symbol_rate < (u32) (SACLK * 0.0550)) {
  253. dfn=2;
  254. afs=1;
  255. } else if (symbol_rate < (u32) (SACLK * 0.0833)) {
  256. dfn=2;
  257. afs=0;
  258. } else if (symbol_rate < (u32) (SACLK * 0.1100)) {
  259. dfn=1;
  260. afs=1;
  261. } else if (symbol_rate < (u32) (SACLK * 0.1666)) {
  262. dfn=1;
  263. afs=0;
  264. } else if (symbol_rate < (u32) (SACLK * 0.2200)) {
  265. dfn=0;
  266. afs=1;
  267. } else if (symbol_rate < (u32) (SACLK * 0.3333)) {
  268. dfn=0;
  269. afs=0;
  270. } else {
  271. reg37 = 0x63;
  272. reg42 = 0x4f;
  273. byp=1;
  274. }
  275. // calculate BDR
  276. big = (1ULL<<21) * ((u64) symbol_rate/1000ULL) * (1ULL<<dfn);
  277. big += ((SACLK/1000ULL)-1ULL);
  278. do_div(big, (SACLK/1000ULL));
  279. bdr = big & 0xfffff;
  280. // calculate BDRI
  281. tmp = (1<<dfn)*(symbol_rate/1000);
  282. bdri = ((32 * (SACLK/1000)) + (tmp-1)) / tmp;
  283. tda10086_write_byte(state, 0x21, (afs << 7) | dfn);
  284. tda10086_write_mask(state, 0x20, 0x08, byp << 3);
  285. tda10086_write_byte(state, 0x06, bdr);
  286. tda10086_write_byte(state, 0x07, bdr >> 8);
  287. tda10086_write_byte(state, 0x08, bdr >> 16);
  288. tda10086_write_byte(state, 0x09, bdri);
  289. tda10086_write_byte(state, 0x37, reg37);
  290. tda10086_write_byte(state, 0x42, reg42);
  291. return 0;
  292. }
  293. static int tda10086_set_fec(struct tda10086_state *state,
  294. struct dvb_frontend_parameters *fe_params)
  295. {
  296. u8 fecval;
  297. dprintk ("%s %i\n", __FUNCTION__, fe_params->u.qpsk.fec_inner);
  298. switch(fe_params->u.qpsk.fec_inner) {
  299. case FEC_1_2:
  300. fecval = 0x00;
  301. break;
  302. case FEC_2_3:
  303. fecval = 0x01;
  304. break;
  305. case FEC_3_4:
  306. fecval = 0x02;
  307. break;
  308. case FEC_4_5:
  309. fecval = 0x03;
  310. break;
  311. case FEC_5_6:
  312. fecval = 0x04;
  313. break;
  314. case FEC_6_7:
  315. fecval = 0x05;
  316. break;
  317. case FEC_7_8:
  318. fecval = 0x06;
  319. break;
  320. case FEC_8_9:
  321. fecval = 0x07;
  322. break;
  323. case FEC_AUTO:
  324. fecval = 0x08;
  325. break;
  326. default:
  327. return -1;
  328. }
  329. tda10086_write_byte(state, 0x0d, fecval);
  330. return 0;
  331. }
  332. static int tda10086_set_frontend(struct dvb_frontend* fe,
  333. struct dvb_frontend_parameters *fe_params)
  334. {
  335. struct tda10086_state *state = fe->demodulator_priv;
  336. int ret;
  337. u32 freq = 0;
  338. int freqoff;
  339. dprintk ("%s\n", __FUNCTION__);
  340. // modify parameters for tuning
  341. tda10086_write_byte(state, 0x02, 0x35);
  342. state->has_lock = false;
  343. // set params
  344. if (fe->ops.tuner_ops.set_params) {
  345. fe->ops.tuner_ops.set_params(fe, fe_params);
  346. if (fe->ops.i2c_gate_ctrl)
  347. fe->ops.i2c_gate_ctrl(fe, 0);
  348. if (fe->ops.tuner_ops.get_frequency)
  349. fe->ops.tuner_ops.get_frequency(fe, &freq);
  350. if (fe->ops.i2c_gate_ctrl)
  351. fe->ops.i2c_gate_ctrl(fe, 0);
  352. }
  353. // calcluate the frequency offset (in *Hz* not kHz)
  354. freqoff = fe_params->frequency - freq;
  355. freqoff = ((1<<16) * freqoff) / (SACLK/1000);
  356. tda10086_write_byte(state, 0x3d, 0x80 | ((freqoff >> 8) & 0x7f));
  357. tda10086_write_byte(state, 0x3e, freqoff);
  358. if ((ret = tda10086_set_inversion(state, fe_params)) < 0)
  359. return ret;
  360. if ((ret = tda10086_set_symbol_rate(state, fe_params)) < 0)
  361. return ret;
  362. if ((ret = tda10086_set_fec(state, fe_params)) < 0)
  363. return ret;
  364. // soft reset + disable TS output until lock
  365. tda10086_write_mask(state, 0x10, 0x40, 0x40);
  366. tda10086_write_mask(state, 0x00, 0x01, 0x00);
  367. state->symbol_rate = fe_params->u.qpsk.symbol_rate;
  368. state->frequency = fe_params->frequency;
  369. return 0;
  370. }
  371. static int tda10086_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
  372. {
  373. struct tda10086_state* state = fe->demodulator_priv;
  374. u8 val;
  375. int tmp;
  376. u64 tmp64;
  377. dprintk ("%s\n", __FUNCTION__);
  378. // check for invalid symbol rate
  379. if (fe_params->u.qpsk.symbol_rate < 500000)
  380. return -EINVAL;
  381. // calculate the updated frequency (note: we convert from Hz->kHz)
  382. tmp64 = tda10086_read_byte(state, 0x52);
  383. tmp64 |= (tda10086_read_byte(state, 0x51) << 8);
  384. if (tmp64 & 0x8000)
  385. tmp64 |= 0xffffffffffff0000ULL;
  386. tmp64 = (tmp64 * (SACLK/1000ULL));
  387. do_div(tmp64, (1ULL<<15) * (1ULL<<1));
  388. fe_params->frequency = (int) state->frequency + (int) tmp64;
  389. // the inversion
  390. val = tda10086_read_byte(state, 0x0c);
  391. if (val & 0x80) {
  392. switch(val & 0x40) {
  393. case 0x00:
  394. fe_params->inversion = INVERSION_OFF;
  395. if (state->config->invert)
  396. fe_params->inversion = INVERSION_ON;
  397. break;
  398. default:
  399. fe_params->inversion = INVERSION_ON;
  400. if (state->config->invert)
  401. fe_params->inversion = INVERSION_OFF;
  402. break;
  403. }
  404. } else {
  405. tda10086_read_byte(state, 0x0f);
  406. switch(val & 0x02) {
  407. case 0x00:
  408. fe_params->inversion = INVERSION_OFF;
  409. if (state->config->invert)
  410. fe_params->inversion = INVERSION_ON;
  411. break;
  412. default:
  413. fe_params->inversion = INVERSION_ON;
  414. if (state->config->invert)
  415. fe_params->inversion = INVERSION_OFF;
  416. break;
  417. }
  418. }
  419. // calculate the updated symbol rate
  420. tmp = tda10086_read_byte(state, 0x1d);
  421. if (tmp & 0x80)
  422. tmp |= 0xffffff00;
  423. tmp = (tmp * 480 * (1<<1)) / 128;
  424. tmp = ((state->symbol_rate/1000) * tmp) / (1000000/1000);
  425. fe_params->u.qpsk.symbol_rate = state->symbol_rate + tmp;
  426. // the FEC
  427. val = (tda10086_read_byte(state, 0x0d) & 0x70) >> 4;
  428. switch(val) {
  429. case 0x00:
  430. fe_params->u.qpsk.fec_inner = FEC_1_2;
  431. break;
  432. case 0x01:
  433. fe_params->u.qpsk.fec_inner = FEC_2_3;
  434. break;
  435. case 0x02:
  436. fe_params->u.qpsk.fec_inner = FEC_3_4;
  437. break;
  438. case 0x03:
  439. fe_params->u.qpsk.fec_inner = FEC_4_5;
  440. break;
  441. case 0x04:
  442. fe_params->u.qpsk.fec_inner = FEC_5_6;
  443. break;
  444. case 0x05:
  445. fe_params->u.qpsk.fec_inner = FEC_6_7;
  446. break;
  447. case 0x06:
  448. fe_params->u.qpsk.fec_inner = FEC_7_8;
  449. break;
  450. case 0x07:
  451. fe_params->u.qpsk.fec_inner = FEC_8_9;
  452. break;
  453. }
  454. return 0;
  455. }
  456. static int tda10086_read_status(struct dvb_frontend* fe, fe_status_t *fe_status)
  457. {
  458. struct tda10086_state* state = fe->demodulator_priv;
  459. u8 val;
  460. dprintk ("%s\n", __FUNCTION__);
  461. val = tda10086_read_byte(state, 0x0e);
  462. *fe_status = 0;
  463. if (val & 0x01)
  464. *fe_status |= FE_HAS_SIGNAL;
  465. if (val & 0x02)
  466. *fe_status |= FE_HAS_CARRIER;
  467. if (val & 0x04)
  468. *fe_status |= FE_HAS_VITERBI;
  469. if (val & 0x08)
  470. *fe_status |= FE_HAS_SYNC;
  471. if (val & 0x10) {
  472. *fe_status |= FE_HAS_LOCK;
  473. if (!state->has_lock) {
  474. state->has_lock = true;
  475. // modify parameters for stable reception
  476. tda10086_write_byte(state, 0x02, 0x00);
  477. }
  478. }
  479. return 0;
  480. }
  481. static int tda10086_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
  482. {
  483. struct tda10086_state* state = fe->demodulator_priv;
  484. u8 _str;
  485. dprintk ("%s\n", __FUNCTION__);
  486. _str = 0xff - tda10086_read_byte(state, 0x43);
  487. *signal = (_str << 8) | _str;
  488. return 0;
  489. }
  490. static int tda10086_read_snr(struct dvb_frontend* fe, u16 * snr)
  491. {
  492. struct tda10086_state* state = fe->demodulator_priv;
  493. u8 _snr;
  494. dprintk ("%s\n", __FUNCTION__);
  495. _snr = 0xff - tda10086_read_byte(state, 0x1c);
  496. *snr = (_snr << 8) | _snr;
  497. return 0;
  498. }
  499. static int tda10086_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
  500. {
  501. struct tda10086_state* state = fe->demodulator_priv;
  502. dprintk ("%s\n", __FUNCTION__);
  503. // read it
  504. *ucblocks = tda10086_read_byte(state, 0x18) & 0x7f;
  505. // reset counter
  506. tda10086_write_byte(state, 0x18, 0x00);
  507. tda10086_write_byte(state, 0x18, 0x80);
  508. return 0;
  509. }
  510. static int tda10086_read_ber(struct dvb_frontend* fe, u32* ber)
  511. {
  512. struct tda10086_state* state = fe->demodulator_priv;
  513. dprintk ("%s\n", __FUNCTION__);
  514. // read it
  515. *ber = 0;
  516. *ber |= tda10086_read_byte(state, 0x15);
  517. *ber |= tda10086_read_byte(state, 0x16) << 8;
  518. *ber |= (tda10086_read_byte(state, 0x17) & 0xf) << 16;
  519. return 0;
  520. }
  521. static int tda10086_sleep(struct dvb_frontend* fe)
  522. {
  523. struct tda10086_state* state = fe->demodulator_priv;
  524. dprintk ("%s\n", __FUNCTION__);
  525. tda10086_write_mask(state, 0x00, 0x08, 0x08);
  526. return 0;
  527. }
  528. static int tda10086_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
  529. {
  530. struct tda10086_state* state = fe->demodulator_priv;
  531. dprintk ("%s\n", __FUNCTION__);
  532. if (enable) {
  533. tda10086_write_mask(state, 0x00, 0x10, 0x10);
  534. } else {
  535. tda10086_write_mask(state, 0x00, 0x10, 0x00);
  536. }
  537. return 0;
  538. }
  539. static int tda10086_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
  540. {
  541. if (fesettings->parameters.u.qpsk.symbol_rate > 20000000) {
  542. fesettings->min_delay_ms = 50;
  543. fesettings->step_size = 2000;
  544. fesettings->max_drift = 8000;
  545. } else if (fesettings->parameters.u.qpsk.symbol_rate > 12000000) {
  546. fesettings->min_delay_ms = 100;
  547. fesettings->step_size = 1500;
  548. fesettings->max_drift = 9000;
  549. } else if (fesettings->parameters.u.qpsk.symbol_rate > 8000000) {
  550. fesettings->min_delay_ms = 100;
  551. fesettings->step_size = 1000;
  552. fesettings->max_drift = 8000;
  553. } else if (fesettings->parameters.u.qpsk.symbol_rate > 4000000) {
  554. fesettings->min_delay_ms = 100;
  555. fesettings->step_size = 500;
  556. fesettings->max_drift = 7000;
  557. } else if (fesettings->parameters.u.qpsk.symbol_rate > 2000000) {
  558. fesettings->min_delay_ms = 200;
  559. fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
  560. fesettings->max_drift = 14 * fesettings->step_size;
  561. } else {
  562. fesettings->min_delay_ms = 200;
  563. fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
  564. fesettings->max_drift = 18 * fesettings->step_size;
  565. }
  566. return 0;
  567. }
  568. static void tda10086_release(struct dvb_frontend* fe)
  569. {
  570. struct tda10086_state *state = fe->demodulator_priv;
  571. tda10086_sleep(fe);
  572. kfree(state);
  573. }
  574. static struct dvb_frontend_ops tda10086_ops = {
  575. .info = {
  576. .name = "Philips TDA10086 DVB-S",
  577. .type = FE_QPSK,
  578. .frequency_min = 950000,
  579. .frequency_max = 2150000,
  580. .frequency_stepsize = 125, /* kHz for QPSK frontends */
  581. .symbol_rate_min = 1000000,
  582. .symbol_rate_max = 45000000,
  583. .caps = FE_CAN_INVERSION_AUTO |
  584. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  585. FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  586. FE_CAN_QPSK
  587. },
  588. .release = tda10086_release,
  589. .init = tda10086_init,
  590. .sleep = tda10086_sleep,
  591. .i2c_gate_ctrl = tda10086_i2c_gate_ctrl,
  592. .set_frontend = tda10086_set_frontend,
  593. .get_frontend = tda10086_get_frontend,
  594. .get_tune_settings = tda10086_get_tune_settings,
  595. .read_status = tda10086_read_status,
  596. .read_ber = tda10086_read_ber,
  597. .read_signal_strength = tda10086_read_signal_strength,
  598. .read_snr = tda10086_read_snr,
  599. .read_ucblocks = tda10086_read_ucblocks,
  600. .diseqc_send_master_cmd = tda10086_send_master_cmd,
  601. .diseqc_send_burst = tda10086_send_burst,
  602. .set_tone = tda10086_set_tone,
  603. };
  604. struct dvb_frontend* tda10086_attach(const struct tda10086_config* config,
  605. struct i2c_adapter* i2c)
  606. {
  607. struct tda10086_state *state;
  608. dprintk ("%s\n", __FUNCTION__);
  609. /* allocate memory for the internal state */
  610. state = kmalloc(sizeof(struct tda10086_state), GFP_KERNEL);
  611. if (!state)
  612. return NULL;
  613. /* setup the state */
  614. state->config = config;
  615. state->i2c = i2c;
  616. /* check if the demod is there */
  617. if (tda10086_read_byte(state, 0x1e) != 0xe1) {
  618. kfree(state);
  619. return NULL;
  620. }
  621. /* create dvb_frontend */
  622. memcpy(&state->frontend.ops, &tda10086_ops, sizeof(struct dvb_frontend_ops));
  623. state->frontend.demodulator_priv = state;
  624. return &state->frontend;
  625. }
  626. module_param(debug, int, 0644);
  627. MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
  628. MODULE_DESCRIPTION("Philips TDA10086 DVB-S Demodulator");
  629. MODULE_AUTHOR("Andrew de Quincey");
  630. MODULE_LICENSE("GPL");
  631. EXPORT_SYMBOL(tda10086_attach);